1
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
2
|
Gogna T, Housden BE, Houldsworth A. Exploring the Role of Reactive Oxygen Species in the Pathogenesis and Pathophysiology of Alzheimer's and Parkinson's Disease and the Efficacy of Antioxidant Treatment. Antioxidants (Basel) 2024; 13:1138. [PMID: 39334797 PMCID: PMC11429442 DOI: 10.3390/antiox13091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's (AD) and Parkinson's Disease (PD) are life-altering diseases that are characterised by progressive memory loss and motor dysfunction. The prevalence of AD and PD is predicted to continuously increase. Symptoms of AD and PD are primarily mediated by progressive neuron death and dysfunction in the hippocampus and substantia nigra. Central features that drive neurodegeneration are caspase activation, DNA fragmentation, lipid peroxidation, protein carbonylation, amyloid-β, and/or α-synuclein formation. Reactive oxygen species (ROS) increase these central features. Currently, there are limited therapeutic options targeting these mechanisms. Antioxidants reduce ROS levels by the induction of antioxidant proteins and direct neutralisation of ROS. This review aims to assess the effectiveness of antioxidants in reducing ROS and neurodegeneration. Antioxidants enhance major endogenous defences against ROS including superoxide dismutase, catalase, and glutathione. Direct neutralisation of ROS by antioxidants protects against ROS-induced cytotoxicity. The combination of Indirect and direct protective mechanisms prevents ROS-induced α-synuclein and/or amyloid-β formation. Antioxidants ameliorate ROS-mediated oxidative stress and subsequent deleterious downstream effects that promote apoptosis. As a result, downstream harmful events including neuron death, dysfunction, and protein aggregation are decreased. The protective effects of antioxidants in human models have yet to directly replicate the success seen in cell and animal models. However, the lack of diversity in antioxidants for clinical trials prevents a definitive answer if antioxidants are protective. Taken together, antioxidant treatment is a promising avenue in neurodegenerative disease therapy and subsequent clinical trials are needed to provide a definitive answer on the protective effects of antioxidants. No current treatment strategies have significant impact in treating advanced AD and PD, but new mimetics of endogenous mitochondrial antioxidant enzymes (Avasopasem Manganese, GC4419 AVA) may be a promising innovative option for decelerating neurodegenerative progress in the future at the mitochondrial level of OS.
Collapse
Affiliation(s)
- Talin Gogna
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| | - Benjamin E Housden
- Living Systems Institute, Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Annwyne Houldsworth
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| |
Collapse
|
3
|
Zhao Y, Lv X, Chen Y, Zhang C, Zhou D, Deng Y. Neuroinflammatory response on a newly combinatorial cell-cell interaction chip. Biomater Sci 2024; 12:2096-2107. [PMID: 38441146 DOI: 10.1039/d4bm00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Neuroinflammation is a common feature in various neurological disorders. Understanding neuroinflammation and neuro-immune interactions is of significant importance. However, the intercellular interactions in the inflammatory model are intricate. Microfluidic chips, with their complex micrometer-scale structures and real-time observation capabilities, offer unique advantages in tackling these complexities compared to other techniques. In this study, microfluidic chip technology was used to construct a microarray physical barrier structure with 15 μm spacing, providing well-defined cell growth areas and clearly delineated interaction channels. Moreover, an innovative hydrophilic treatment process on the glass surface facilitated long-term co-culture of cells. The developed neuroinflammation model on the chip revealed that SH-SY5Y cytotoxicity was predominantly influenced by co-cultured THP-1 cells. The co-culture model fostered complex interactions that may exacerbate cytotoxicity, including irregular morphological changes of cells, cell viability reduction, THP-1 cell migration, and the release of inflammatory factors. The integration of the combinatorial cell-cell interaction chip not only offers a clear imaging detection platform but also provides diverse data on cell migration distance, migration direction, and migration angle. Furthermore, the designed ample space for cell culture, along with microscale channels with fluid characteristics, allow for the study of inflammatory factor distribution patterns on the chip, offering vital theoretical data on biological relevance that conventional experiments cannot achieve. The fabricated user-friendly, reusable, and durable co-culture chip serves as a valuable in vitro tool, providing an intuitive platform for gaining insights into the complex mechanisms underlying neuroinflammation and other interacting models.
Collapse
Affiliation(s)
- Yimeng Zhao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yu Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Chen Zhang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Di Zhou
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
4
|
Chapple B, Woodfin S, Moore W. The Perfect Cup? Coffee-Derived Polyphenols and Their Roles in Mitigating Factors Affecting Type 2 Diabetes Pathogenesis. Molecules 2024; 29:751. [PMID: 38398503 PMCID: PMC10891742 DOI: 10.3390/molecules29040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Type 2 diabetes (T2D) is a growing health concern with an estimated 462 million people having been diagnosed worldwide. T2D is characterized by chronically elevated blood glucose and insulin resistance, which culminate in a diminished function of the β-cell mass in its later stages. This can be perpetuated by and result in inflammation, excess reactive oxygen species production, obesity, and the dysregulation of multiple cellular pathways. Many naturally occurring small molecules have been investigated in terms of their roles in modulating glucose homeostasis and β-cell function. Many of these compounds can be found in commonly used sources of food and drink. Interestingly, a correlation has been observed between coffee consumption and T2D incidence. However, the specific compounds responsible for this correlation and their mechanisms are still somewhat undetermined. This paper reviews recent research findings on the effects of several polyphenols that are either found in coffee or are metabolites of compounds found in coffee (enterodiol, enterolactone, matairesinol, secoisolariciresinol, kaempferol, quercetin, and chlorogenic acid) on glucose homeostasis and health complications associated with glucose dysregulation, with a special emphasis on their potential anti-diabetic effects. The factors that affect polyphenol content in coffee are also addressed.
Collapse
Affiliation(s)
| | | | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA; (B.C.); (S.W.)
| |
Collapse
|
5
|
Richardson M, Richardson DR. Pharmacological Targeting of Senescence with Senolytics as a New Therapeutic Strategy for Neurodegeneration. Mol Pharmacol 2024; 105:64-74. [PMID: 38164616 DOI: 10.1124/molpharm.123.000803] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Cellular senescence is a state of permanent cell-cycle arrest. Early in life, senescence has a physiologic role in tumor suppression and wound healing. However, gradually, as these senescent cells accumulate over the lifespan of an organism, they contribute to inflammation and the progression of age-related diseases, including neurodegeneration. Targeting senescent cells using a class of drugs known as "senolytics" holds great promise for the management of Alzheimer's and Parkinson's disease. Already, several senolytic compounds have been shown to ameliorate cognitive deficits across several preclinical models of neurodegeneration. Most of these senolytics (e.g., dasatinib) are repurposed clinical or experimental anticancer drugs, which trigger apoptosis of senescent cells by interfering with pro-survival pathways. However, outside of their senolytic function, many first-generation senolytics also have other less appreciated neuroprotective effects, such as potent antioxidant and anti-inflammatory activity. In addition, some senolytic drugs may also have negative dose-limiting toxicities, including thrombocytopenia. In this review, we discuss the various biologic pathways targeted by the leading senolytic drugs, namely dasatinib, quercetin, fisetin, and navitoclax. We further evaluate the clinical transability of these compounds for neurodegeneration, assessing their adverse effects, pharmacokinetic properties, and chemical structure. SIGNIFICANCE STATEMENT: Currently, there are no effective disease-modifying treatments for the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Some of the drugs currently available for treating these diseases are associated with unwanted side-effects and/or become less efficacious with time. Therefore, researchers have begun to explore new innovative treatments for these belligerent diseases, including senolytic drugs. These agents lead to the apoptosis of senescent cells thereby preventing their deleterious role in neurodegeneration.
Collapse
Affiliation(s)
- Miriam Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Singh NK, Singh A, Mayank. Nuclear Factor Kappa B: A Nobel Therapeutic Target of FlavonoidsAgainst Parkinson's Disease. Comb Chem High Throughput Screen 2024; 27:2062-2077. [PMID: 38243959 DOI: 10.2174/0113862073295568240105025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024]
Abstract
Parkinson's disease (PD), the most common brain-related neurodegenerative disorder, is comprised of several pathophysiological mechanisms, such as mitochondrial dysfunction, neuroinflammation, aggregation of misfolded alpha-synuclein, and synaptic loss in the substantia nigra pars compacta region of the midbrain. Misfolded alpha-synuclein, originating from damaged neurons, triggers a series of signaling pathways in both glial and neuronal cells. Activation of such events results in the production and expression of several proinflammatory cytokines via the activation of the nuclear factor κB (NF-κB) signaling pathway. Consequently, this cascade of events worsens the neurodegenerative processes, particularly in conditions, such as PD and synucleinopathies. Microglia, astrocytes, and neurons are just a few of the many cells and tissues that express the NF-κB family of inducible types of transcription factors. The dual role of NF-κB activation can be crucial for neuronal survival, although the classical NF-κB pathway is important for controlling the generation of inflammatory mediators during neuroinflammation. Modulating NF-κB-associated pathways through the selective action of several agents holds promise for mitigating dopaminergic neuronal degeneration and PD. Several naturally occurring compounds in medicinal plants can be an effective treatment option in attenuating PD-associated dopaminergic neuronal loss via selectively modifying the NF-κB-mediated signaling pathways. Recently, flavonoids have gained notable attention from researchers because of their remarkable anti-neuroinflammatory activity and significant antioxidant properties in numerous neurodegenerative disorders, including PD. Several subclasses of flavonoids, including flavones, flavonols, isoflavones, and anthocyanins, have been evaluated for neuroprotective effects against in vitro and in vivo models of PD. In this aspect, the present review highlights the pathological role of NF-κB in the progression of PD and investigates the therapeutic potential of natural flavonoids targeting the NF-κB signaling pathway for the prevention and management of PD-like manifestations with a comprehensive list for further reference. Available facts strongly support that bioactive flavonoids could be considered in food and/or as lead pharmacophores for the treatment of neuroinflammation-mediated PD. Furthermore, natural flavonoids having potent pharmacological properties could be helpful in enhancing the economy of countries that cultivate medicinal plants yielding bioactive flavonoids on a large scale.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Mayank
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| |
Collapse
|
7
|
Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel) 2023; 16:1020. [PMID: 37513932 PMCID: PMC10384403 DOI: 10.3390/ph16071020] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin, a flavonoid found in fruits and vegetables, has been a part of human diets for centuries. Its numerous health benefits, including antioxidant, antimicrobial, anti-inflammatory, antiviral, and anticancer properties, have been extensively studied. Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage. Quercetin's anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes, making it a potential therapeutic agent for various inflammatory conditions. It also exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis. Finally, quercetin has cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function, making it a promising candidate for preventing and treating cardiovascular diseases. This review provides an overview of the chemical structure, biological activities, and bioavailability of quercetin, as well as the different delivery systems available for quercetin. Incorporating quercetin-rich foods into the diet or taking quercetin supplements may be beneficial for maintaining good health and preventing chronic diseases. As research progresses, the future perspectives of quercetin appear promising, with potential applications in nutraceuticals, pharmaceuticals, and functional foods to promote overall well-being and disease prevention. However, further studies are needed to elucidate its mechanisms of action, optimize its bioavailability, and assess its long-term safety for widespread utilization.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
8
|
Mobasheri K, Zaefizadeh M, Ghobeh M, Eidi A. Synthesis of Novel Magnetic Quercetin-Neuropeptide Nanocomposite as a Smart Nano-Drug Shuttle System: Investigation of Its Effect on Behavior, Histopathological Characteristics, and Expression of MAPT and APP Genes in Alzheimer's Disease Rats. J Alzheimers Dis 2023:JAD221095. [PMID: 37393494 DOI: 10.3233/jad-221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The drugs introduced for this disease have many side effects and limitations in use, so the production of a suitable herbal medicine to cure AD patients is essential. OBJECTIVE The aim of this research is to make a magnetic neuropeptide nano shuttle as a targeted carrier for the transfer of quercetin to the brains of AD model rats. METHODS In this work, a magnetic quercetin-neuropeptide nanocomposite (MQNPN) was fabricated and administered to the rat's brain by the shuttle drug of the Margatoxin scorpion venom neuropeptide, and will be a prospect for targeted drug delivery in AD. The MQNPN has been characterized by FTIR, spectroscopy, FE-SEM, XRD, and VSM. Investigations into the efficacy of MQNPN, MTT, and real Time PCR for MAPT and APP genes expression were performed. After 7 days treatment with Fe3O4 (Ctr) and MQNPN treatment in AD rat, superoxide dismutase activity and quercetin in blood serum and brain was detected. Hematoxylin-Eosin staining was applied for histopathological analysis. RESULTS Analysis of data showed that MQNPN increased the activity of superoxide dismutase. The histopathology results of the hippocampal region of AD rats also confirmed their improvement after treatment with MQNPN. MQNPN treatment caused a significant decrease in the relative expression of MAPT and APP genes. CONCLUSION MQNPN is a suitable carrier for the transfer of quercetin to the rat hippocampus, and has a significant effect in reducing AD symptoms in terms of histopathology, behavioral testing, and changing the expression of AD-related genes.
Collapse
Affiliation(s)
- Kamelia Mobasheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Zaefizadeh
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Han X, He X, Zhan X, Yao L, Sun Z, Gao X, Wang S, Wang Z. Disturbed microbiota-metabolites-immune interaction network is associated with olfactory dysfunction in patients with chronic rhinosinusitis. Front Immunol 2023; 14:1159112. [PMID: 37292198 PMCID: PMC10245275 DOI: 10.3389/fimmu.2023.1159112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Purpose Olfactory dysfunction (OD) is a debilitating symptom frequently reported by patients with chronic rhinosinusitis (CRS) and it is associated with a dysregulated sinonasal inflammation. However, little information is available about the effect of the inflammation-related nasal microbiota and related metabolites on the olfactory function in these patients. Therefore, the current study aimed to investigate the nasal microbiota-metabolites-immune interactions and their role in the pathogenesis of OD in CRS patients. Methods 23 and 19 CRS patients with and without OD, respectively, were enrolled in the present study. The "Sniffin' Sticks" was used to measure the olfactory function, while the metagenomic shotgun sequencing and the untargeted metabolite profiling were performed to assess the differences in terms of the nasal microbiome and metabolome between the two groups. The levels of nasal mucus inflammatory mediators were investigated by a multiplex flow Cytometric Bead Array (CBA). Results A decreased diversity in the nasal microbiome from the OD group compared to the NOD group was evidenced. The metagenomic analysis revealed a significant enrichment of Acinetobacter johnsonii in the OD group, while Mycoplasma arginini, Aeromonas dhakensis, and Salmonella enterica were significantly less represented (LDA value > 3, p < 0.05). The nasal metabolome profiles were significantly different between the OD and NOD groups (P < 0.05). The purine metabolism was the most significantly enriched metabolic subpathway in OD patients compared with NOD patients (P < 0.001). The expressions of IL-5, IL-8, MIP-1α, MCP-1, and TNF were statistically and significantly increased in the OD group (P < 0.05). All these data, including the dysregulation of the nasal microbiota, differential metabolites, and elevated inflammatory mediators in OD patients demonstrated a clear interaction relationship. Conclusion The disturbed nasal microbiota-metabolite-immune interaction networks may be implicated in the pathogenesis of OD in CRS patients and the underlying pathophysiological mechanisms need to be further investigated in future studies.
Collapse
Affiliation(s)
- Xingyu Han
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Xuejia He
- Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing, China
| | - Xiaojun Zhan
- Department of Otorhinolaryngology-Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Linyin Yao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhifu Sun
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xing Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhenlin Wang
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Jamal QMS, Khan MI, Alharbi AH, Ahmad V, Yadav BS. Identification of Natural Compounds of the Apple as Inhibitors against Cholinesterase for the Treatment of Alzheimer's Disease: An In Silico Molecular Docking Simulation and ADMET Study. Nutrients 2023; 15:nu15071579. [PMID: 37049419 PMCID: PMC10097405 DOI: 10.3390/nu15071579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in older people, causes neurological problems associated with memory and thinking. The key enzymes involved in Alzheimer's disease pathways are acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Because of this, there is a lot of interest in finding new AChE inhibitors. Among compounds that are not alkaloids, flavonoids have stood out as good candidates. The apple fruit, Malus domestica (Rosaceae), is second only to cranberries regarding total phenolic compound concentration. Computational tools and biological databases were used to investigate enzymes and natural compounds. Molecular docking techniques were used to analyze the interactions of natural compounds of the apple with enzymes involved in the central nervous system (CNS), acetylcholinesterase, and butyrylcholinesterase, followed by binding affinity calculations using the AutoDock tool. The molecular docking results revealed that CID: 107905 exhibited the best interactions with AChE, with a binding affinity of -12.2 kcal/mol, and CID: 163103561 showed the highest binding affinity with BuChE, i.e., -11.2 kcal/mol. Importantly, it was observed that amino acid residue Trp286 of AChE was involved in hydrogen bond formation, Van Der Walls interactions, and Pi-Sigma/Pi-Pi interactions in the studied complexes. Moreover, the results of the Molecular Dynamics Simulation (MDS) analysis indicated interaction stability. This study shows that CID: 12000657 could be used as an AChE inhibitor and CID: 135398658 as a BuChE inhibitor to treat Alzheimer's disease and other neurological disorders.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali H Alharbi
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Varish Ahmad
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Brijesh Singh Yadav
- Faculty of Biosciences and Aquaculture, Nord University, N-8026 Bodø, Norway
| |
Collapse
|
11
|
Neurotherapeutic Effects of Quercetin and Its Metabolite Compounds on Cognitive Impairment and Parkinson's Disease: An In Silico Study. Eur J Drug Metab Pharmacokinet 2023; 48:151-169. [PMID: 36848007 DOI: 10.1007/s13318-023-00816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Little is known about the metabolomic profile of quercetin and its biological effects. This study aimed to determine the biological activities of quercetin and its metabolite products, as well as the molecular mechanisms of quercetin in cognitive impairment (CI) and Parkinson's disease (PD). METHODS Key methods used were MetaTox, PASS Online, ADMETlab 2.0, SwissADME, CTD MicroRNA MIENTURNE, AutoDock, and Cytoscape. RESULTS A total of 28 quercetin metabolite compounds were identified by phase I reactions (hydroxylation and hydrogenation reactions) and phase II reactions (methylation, O-glucuronidation, and O-sulfation reactions). Quercetin and its metabolites were found to inhibit cytochrome P450 (CYP) 1A, CYP1A1, and CYP1A2. The studied compounds demonstrated significant gastrointestinal absorption and satisfied Lipinsky's criterion. Due to their high blood-brain barrier permeability, P-glycoprotein inhibition, anticancer, anti-inflammatory, and antioxidant capabilities, quercetin and its metabolite products have been proposed as promising molecular targets for the therapy of CI and PD. By regulating the expression of crucial signaling pathways [mitogen-activated protein kinase (MAPK) signaling pathway, and neuroinflammation and glutamatergic signaling], genes [brain derived neurotrophic factor (BDNF), human insulin gene (INS), and dopamine receptor D2 (DRD2), miRNAs (hsa-miR-16-5p, hsa-miR-26b-5p, hsa-miR-30a-5p, hsa-miR-125b-5p, hsa-miR-203a-3p, and hsa-miR-335-5p], and transcription factors [specificity protein 1 (SP1), v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), and nuclear factor Kappa B subunit 1 (NFKB1)], quercetin exhibited its neurotherapeutic effects in CI and PD. In addition to inhibiting β-N-acetylhexosaminidase, quercetin also showed robust interactions and binding affinities with heme oxygenase 1 (HMOX1), superoxide dismutase 2 (SOD2), tumor necrosis factor (TNF), nitric oxide synthase 2 (NOS2), brain-derived neurotrophic factor (BDNF), INS, DRD2, and γ-aminobutyric acid type A (GABAa). CONCLUSION This study identified 28 quercetin metabolite products. The metabolites have similar characteristics to quercetin such as physicochemical properties, absorption, distribution, metabolism, and excretion (ADME), and biological activities. More research, especially clinical trials, is needed to find out how quercetin and its metabolites protect against CI and PD.
Collapse
|
12
|
Liang Y, Wang L. Carthamus tinctorius L.: A natural neuroprotective source for anti-Alzheimer's disease drugs. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115656. [PMID: 36041691 DOI: 10.1016/j.jep.2022.115656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a multicausal neurodegenerative disease clinically characterized by generalized dementia. The pathogenic process of AD not only is progressive and complex but also involves multiple factors and mechanisms, including β-amyloid (Aβ) aggregation, tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. As the first-line treatment for AD, cholinesterase inhibitors can, to a certain extent, relieve AD symptoms and delay AD progression. Nonetheless, the current treatment strategies for AD are far from meeting clinical expectations, and more options for AD treatment should be applied in clinical practice. AIM OF THE REVIEW The aim of this review was to investigate published reports of C. tinctorius L. and its active constituents in AD treatment through a literature review. MATERIALS AND METHODS Information was retrieved from scientific databases including Web of Science, ScienceDirect, Scopus, Google Scholar, Chemical Abstracts Services and books, PubMed, dissertations and technical reports. Keywords used for the search engines were "Honghua" or "Carthamus tinctorius L." or "safflower" in conjunction with "(native weeds OR alien invasive)"AND "Chinese herbal medicine". RESULTS A total of 47 literatures about C. tinctorius L. and its active constituents in AD treatment through signaling pathways, immune cells, and disease-related mediators and systematically elucidates potential mechanisms from the point of anti-Aβ aggregation, suppressing tau protein hyperphosphorylation, increasing cholinergic neurotransmitters levels, inhibiting oxidative stress, anti-neuroinflammation, ameliorating synaptic plasticity, and anti-apoptosis. CONCLUSIONS Chinese herbal medicine (CHM) is a treasure endowed by nature to mankind. Emerging studies have confirmed that CHM and its active constituents play a positive role in AD treatment. Carthamus tinctorius L., the most commonly used CHM, can be used with medicine and food, with the effect of activating blood circulation and eliminating blood stasis. In the paper, we have concluded that the existing therapeutic mechanisms of C. tinctorius L. and summarized the potential mechanisms of C. tinctorius L. and its active constituents in AD treatment through a literature review.
Collapse
Affiliation(s)
- Yuanyuan Liang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
13
|
Moreira P, Matos P, Figueirinha A, Salgueiro L, Batista MT, Branco PC, Cruz MT, Pereira CF. Forest Biomass as a Promising Source of Bioactive Essential Oil and Phenolic Compounds for Alzheimer's Disease Therapy. Int J Mol Sci 2022; 23:ijms23158812. [PMID: 35955963 PMCID: PMC9369093 DOI: 10.3390/ijms23158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting elderly people worldwide. Currently, there are no effective treatments for AD able to prevent disease progression, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology. Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities, namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuroprotective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on AD-relevant pathological features, including deposition of amyloid-β (Aβ) in senile plaques and hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and especially their major compounds, were found to prevent several pathological cellular processes and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are a relevant source of biological active and safe molecules that could be used as raw material for nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Maria Teresa Cruz
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
14
|
Acıkara OB, Karatoprak GŞ, Yücel Ç, Akkol EK, Sobarzo-Sánchez E, Khayatkashani M, Kamal MA, Kashani HRK. A Critical Analysis of Quercetin as the Attractive Target for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:795-817. [PMID: 34872486 DOI: 10.2174/1871527320666211206122407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Parkinson's Disease (PD) is a multifaceted disorder with various factors suggested to play a synergistic pathophysiological role, such as oxidative stress, autophagy, pro-inflammatory events, and neurotransmitter abnormalities. While it is crucial to discover new treatments in addition to preventing PD, recent studies have focused on determining whether nutraceuticals will exert neuroprotective actions and pharmacological functions in PD. Quercetin, a flavonol-type flavonoid, is found in many fruits and vegetables and is recognised as a complementary therapy for PD. The neuroprotective effect of quercetin is directly associated with its antioxidant activity, in addition to stimulating cellular defence against oxidative stress. Other related mechanisms are activating Sirtuins (SIRT1) and inducing autophagy, in addition to induction of Nrf2-ARE and Paraoxonase 2 (PON2). Quercetin, whose neuroprotective activity has been demonstrated in many studies, unfortunately, has a disadvantage because of its poor water solubility, chemical instability, and low oral bioavailability. It has been reported that the disadvantages of quercetin have been eliminated with nanocarriers loaded with quercetin. The role of nanotechnology and nanodelivery systems in reducing oxidative stress during PD provides an indisputable advantage. Accordingly, the present review aims to shed light on quercetin's beneficial effects and underlying mechanisms in neuroprotection. In addition, the contribution of nanodelivery systems to the neuroprotective effect of quercetin is also discussed.
Collapse
Affiliation(s)
- Ozlem Bahadır Acıkara
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Tandoğan, 06100 Ankara, Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507, Santiago, Chile.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, Sydney, Australia
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Wu H, Gu J, BK A, Nawaz MA, Barrow CJ, Dunshea FR, Suleria HA. Effect of processing on bioaccessibility and bioavailability of bioactive compounds in coffee beans. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Zhang L, Cao J, Yang H, Pham P, Khan U, Brown B, Wang Y, Zieneldien T, Cao C. Commercial and Instant Coffees Effectively Lower Aβ1-40 and Aβ1-42 in N2a/APPswe Cells. Front Nutr 2022; 9:850523. [PMID: 35369094 PMCID: PMC8965317 DOI: 10.3389/fnut.2022.850523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Alzheimer's disease (AD) is a multifactorial neurological disease with neurofibrillary tangles and neuritic plaques as histopathological markers. Due to this, although AD is the leading cause of dementia worldwide, clinical AD dementia cannot be certainly diagnosed until neuropathological post-mortem evaluation. Coffee has been reported to have neurologically protective factors, particularly against AD, but coffee brand and type have not been taken into consideration in previous studies. We examined the discrepancies among popular commercial and instant coffees in limiting the development and progression through Aβ1-40 and Aβ1-42 production, and hypothesized that coffee consumption, regardless of brand or type, is beneficial for stalling the progression and development of Aβ-related AD. Methods Coffee samples from four commercial coffee brands and four instant coffees were purchased or prepared following given instructions and filtered for the study. 5, 2.5, and 1.25% concentrations of each coffee were used to treat N2a/APPswe cell lines. MTT assay was used to assess cell viability for coffee concentrations, as well as pure caffeine concentrations. Sandwich ELISA assay was used to determine Aβ concentration for Aβ1-40 and Aβ1-42 peptides of coffee-treated cells. Results Caffeine concentrations were significantly varied among all coffees (DC vs. MDC, PC, SB, NIN, MIN p < 0.05). There was no correlation between caffeine concentration and cell toxicity among brands and types of coffee, with no toxicity at 0.5 mg/ml caffeine and lower. Most coffees were toxic to N2a/APPswe cells at 5% (p < 0.05), but not at 2.5%. Most coffees at a 2.5% concentration reduced Aβ1-40 and Aβ1-42 production, with comparable results between commercial and instant coffees. Conclusion All coffees tested have beneficial health effects for AD through lowering Aβ1-40 and Aβ1-42 production, with Dunkin' Donuts® medium roast coffee demonstrating the most consistent and optimal cell survival rates and Aβ concentration. On the other hand, Starbucks® coffee exhibited the highest cell toxicity rates among the tested coffees.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Neurological Rehabilitation, The Affiliated Brain Hospital of Guangzhou Medical University, Guanzhou, China
| | - Jessica Cao
- Department of Kinesiology, Wiess School of Natural Sciences, Rice University, Houston, TX, United States
| | - Haiqiang Yang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Phillip Pham
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Umer Khan
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Breanna Brown
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Yanhong Wang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Tarek Zieneldien
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
17
|
Yan L, Guo MS, Zhang Y, Yu L, Wu JM, Tang Y, Ai W, Zhu FD, Law BYK, Chen Q, Yu CL, Wong VKW, Li H, Li M, Zhou XG, Qin DL, Wu AG. Dietary Plant Polyphenols as the Potential Drugs in Neurodegenerative Diseases: Current Evidence, Advances, and Opportunities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5288698. [PMID: 35237381 PMCID: PMC8885204 DOI: 10.1155/2022/5288698] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lu Yan
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Min-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yue Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wei Ai
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of Nursing, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hua Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Mao Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
18
|
LIczbiński P, Bukowska B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. INDUSTRIAL CROPS AND PRODUCTS 2022; 175:114265. [PMID: 34815622 PMCID: PMC8601035 DOI: 10.1016/j.indcrop.2021.114265] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 06/01/2023]
Abstract
Tea and coffee contain numerous polyphenolic compounds that exhibit health-promoting properties for humans, including antioxidant and neuroprotective properties, and can also take part in the treatment of covid-19 and improve fertility. This review, presents the activity of polyphenols found in different types of tea and coffee and describes the effects of tea fermentation and coffee roasting on their polyphenol composition and antioxidant properties. Polyphenol oxidase activity is reduced in the fermentation process; therefore black tea contains significantly less polyphenolic compounds compared to green and white tea. Epigallocatechin-3-gallate - a polyphenol from tea - effectively has been shown to inhibit the activity of SARS-CoV-2 as it blocked binding of coronavirus 2 to human angiotensin converting enzyme 2, decreased the expression of inflammatory factors in the blood, including tumor necrosis factor-α and interleukin-6, and significantly increased the overall fertilization efficiency in animals. Coffee roasting process influences both the content of polyphenols and the oxidative activity. The lowest levels of active compounds such as caffeine, chlorogenic acid and coffee acids are identified in roasted coffee beans. On the other hand, light coffee and green coffee show the strongest cytotoxic potential and antioxidant properties, and thus the greatest ability to decrease apoptosis by stopping the cell cycle in the S phase. Proteins, such as components of milk, can strongly bind/interact with phenolic compounds (especially, the CGAs) contain in coffee, which may explain the negative influence of milk on its antioxidant properties. Coffee polyphenols have also antiproliferative and antiesterase activities, which may be important in prevention of cancer and neurodegenerative disorders, respectively. In this review, biological properties of tea and coffee polyphenols, observed mainly in in vitro studies have been described. Based on these findings, future directions of the research works on these compounds have been suggested.
Collapse
Affiliation(s)
- Przemysław LIczbiński
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Bożena Bukowska
- Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
|
20
|
LIczbiński P, Bukowska B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. INDUSTRIAL CROPS AND PRODUCTS 2022; 175:114265. [PMID: 34815622 DOI: 10.1016/j.indcrop.2021.114264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 05/10/2023]
Abstract
Tea and coffee contain numerous polyphenolic compounds that exhibit health-promoting properties for humans, including antioxidant and neuroprotective properties, and can also take part in the treatment of covid-19 and improve fertility. This review, presents the activity of polyphenols found in different types of tea and coffee and describes the effects of tea fermentation and coffee roasting on their polyphenol composition and antioxidant properties. Polyphenol oxidase activity is reduced in the fermentation process; therefore black tea contains significantly less polyphenolic compounds compared to green and white tea. Epigallocatechin-3-gallate - a polyphenol from tea - effectively has been shown to inhibit the activity of SARS-CoV-2 as it blocked binding of coronavirus 2 to human angiotensin converting enzyme 2, decreased the expression of inflammatory factors in the blood, including tumor necrosis factor-α and interleukin-6, and significantly increased the overall fertilization efficiency in animals. Coffee roasting process influences both the content of polyphenols and the oxidative activity. The lowest levels of active compounds such as caffeine, chlorogenic acid and coffee acids are identified in roasted coffee beans. On the other hand, light coffee and green coffee show the strongest cytotoxic potential and antioxidant properties, and thus the greatest ability to decrease apoptosis by stopping the cell cycle in the S phase. Proteins, such as components of milk, can strongly bind/interact with phenolic compounds (especially, the CGAs) contain in coffee, which may explain the negative influence of milk on its antioxidant properties. Coffee polyphenols have also antiproliferative and antiesterase activities, which may be important in prevention of cancer and neurodegenerative disorders, respectively. In this review, biological properties of tea and coffee polyphenols, observed mainly in in vitro studies have been described. Based on these findings, future directions of the research works on these compounds have been suggested.
Collapse
Affiliation(s)
- Przemysław LIczbiński
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Bożena Bukowska
- Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Systematic analysis of the molecular mechanisms mediated by coffee in Parkinson’s disease based on network pharmacology approach. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
22
|
Al-Okbi SY, Mabrok HB, Al-Siedy ESK, Mohamed RS, Ramadan AA. Iron status, immune system, and expression of brain divalent metal transporter 1 and dopamine receptors D1 interrelationship in Parkinson’s disease and the role of grape seed and green coffee bean extracts and quercetin in mitigating the disease in rats. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Parkinson’s disease (PD) is a neurodegenerative disease with a prevalence of 1% in the elderly worldwide. The aim of the research is to study the interrelationship of iron status, the immune system including inflammatory cytokines, brain divalent metal transporter 1 (DMT1), and dopamine receptors D1 (DRD1) in a PD rat model. The potential protective effects of grape seed and green coffee bean ethanol extracts and quercetin were also studied. Methods: Phenolic and flavonoid contents of grape seed and green coffee bean and in vitro free radicals scavenging activities of the extracts and quercetin were determined. Male rats were divided into five groups. Group 1 served as normal control (NC), group 2 represented Parkinsonian control (PC). Groups 3, 4, and 5 were the test groups treated by daily oral green coffee bean, grape seed extracts, and quercetin, respectively. PD was induced by rotenone in groups 2 to 5. Brain oxidative stress, DMT1, and DRD1 expressions, and histopathology were assessed. Parameters of the immune system, represented by plasma interferon-gamma (IFNγ) and CD4, and brain tumor necrosis factor-alpha (TNF-α) along with iron status were also determined. Results: Phenolic and flavonoid contents of green coffee bean were high compared to grape seed (P < 0.05). Quercetin experienced the highest in-vitro free radicals scavenging activities. Iron deficiency anemia, together with elevated IFNγ, TNF-α, DMT1 expressions, and brain malondialdehyde (MDA) were demonstrated in PC compared to NC (P < 0.05). Also, reduction in CD4 and brain reduced-glutathione (GSH) (P < 0.05) were noticed in PC with brain histopathological alterations. Different treatments showed variable improvements in the majority of parameters (P < 0.05) and brain histopathology. Conclusion: Iron deficiency anemia might result from cytokine elevation in PD. Reduced DRD1 and altered immune system including cytokines together with increased brain DMT1 might induce neurodegeneration in PD. Different treatments showed variable neuroprotective effects through modulation of inflammation, oxidative stress, immune system, iron status, DMT1, and DRD1.
Collapse
Affiliation(s)
| | - Hoda Bakr Mabrok
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| | | | - Rasha Salah Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
23
|
Molska GR, Paula-Freire LIG, Sakalem ME, Köhn DO, Negri G, Carlini EA, Mendes FR. Green coffee extract attenuates Parkinson's-related behaviors in animal models. AN ACAD BRAS CIENC 2021; 93:e20210481. [PMID: 34730624 DOI: 10.1590/0001-3765202120210481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies have shown an inverse association between coffee consumption and the development of Parkinson's disease (PD). The effects of the oral treatment with green (non-roasted) coffee extracts (CE, 100 or 400 mg/kg) and caffeine (31.2 mg/kg) were evaluated on catalepsy induced by haloperidol in mice, and unilateral 6-OHDA lesion of medial forebrain bundle (MFB) or striatum in rats. Also, the in vitro antioxidant activity and the monoamine levels in the striatum were investigated. CE presented a mild antioxidant activity in vitro and its administration decreased the catalepsy index. CE at the dose of 400 mg/kg induced ipsilateral rotations 14 days after lesion; however, chronic 30-day CE and caffeine treatments did not interfere with the animals' rotation after apomorphine or methamphetamine challenges in animals with MFB lesion, nor on monoamines levels. Furthermore, CE and caffeine were effective in inhibiting the asymmetry between ipsilateral and contralateral rotations induced by methamphetamine and apomorphine in animals with lesion in the striatum but did not avoid the monoamines depletion. These results indicate that CE components indirectly modulate dopaminergic transmission, suggesting a pro-dopaminergic action of CE, and further investigation must be conducted to elucidate the mechanisms of action and the possible neuroprotective role in PD.
Collapse
Affiliation(s)
- Graziella R Molska
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil.,Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G6, Canada
| | - Lyvia Izaura G Paula-Freire
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Marna E Sakalem
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Daniele O Köhn
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Giuseppina Negri
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Elisaldo A Carlini
- Universidade Federal de São Paulo, Departamento de Medicina Preventiva, Rua Botucatu, 740, 4º andar, 04024-002 São Paulo, SP, Brazil
| | - Fúlvio R Mendes
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Rua Arcturus, 03, 09606-070 São Bernardo do Campo, SP, Brazil
| |
Collapse
|
24
|
Chromiec PA, Urbaś ZK, Jacko M, Kaczor JJ. The Proper Diet and Regular Physical Activity Slow Down the Development of Parkinson Disease. Aging Dis 2021; 12:1605-1623. [PMID: 34631210 PMCID: PMC8460298 DOI: 10.14336/ad.2021.0123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
From year to year, we know more about neurodegeneration and Parkinson’s disease (PD). A positive influence of various types of physical activity is more often described in the context of neuroprotection and prevention as well as the form of rehabilitation in Parkinson’s patients. Moreover, when we look at supplementation, clinical nutrition and dietetics, we will see that balancing consumed products and supplementing the vitamins or minerals is necessary. Considering the biochemical pathways in skeletal muscle, we may see that many researchers desire to identify molecular mediators that have an impact through exercise and balanced diet on human health or development of the neurodegenerative disease. Therefore, it is mandatory to study the potential mechanism(s) related to diet and factors resulted from physical activity as molecular mediators, which play a therapeutic role in PD. This review summarizes the available literature on mechanisms and specific pathways involved in diet-exercise relationship and discusses how therapy, including appropriate exercises and diet that influence molecular mediators, may significantly slow down the progress of neurodegenerative processes. We suggest that a proper diet combined with physical activity will be a good solution for psycho-muscle BALANCE not only in PD but also in other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Zofia Kinga Urbaś
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| | - Martyna Jacko
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| | - Jan Jacek Kaczor
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| |
Collapse
|
25
|
Role of quercetin on sterigmatocystin-induced oxidative stress-mediated toxicity. Food Chem Toxicol 2021; 156:112498. [PMID: 34380011 DOI: 10.1016/j.fct.2021.112498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/01/2023]
Abstract
Oxidative stress appears to be a common trigger for many of the effects associated with the exposure to various mycotoxins, including sterigmatocystin (STE). However, studies to alleviate STE toxicity through the use of natural antioxidants are sparsely reported in literature. In the present study, the cytoprotective effect of quercetin (QUE) was tested in SH-SY5Y cells against STE-induced oxidative stress and cytotoxicity. The MTT assay revealed that STE decreased cell viability, whereas pre-treatment of cells with QUE restored it. The QUE was also found to counteract STE-induced ROS generation and decrease STE-induced up-regulation of the expression of the stress-inducible enzymes HO-1 and NOS-2. Pre-treatment with QUE also prevented STE-induced nuclear translocation of NF-κB, as measured by immunofluorescence. Finally, considering the key role played by NF-κB in the regulation of inflammation, the effect of STE on the pro-inflammatory cytokines TNF-α and IL-6 expression was evaluated. Our results showed the down-regulation of TNF-α and IL-6 following STE exposure, suggesting a negative immunomodulatory effect of STE. In QUE pre-treated samples, TNF-α and IL-6 were significantly further reduced, indicating the anti-inflammatory role of QUE. The results of the present study demonstrate for the first time that QUE exerts a cytoprotective role in STE-induced toxicity.
Collapse
|
26
|
Hossain R, Al-Khafaji K, Khan RA, Sarkar C, Islam MS, Dey D, Jain D, Faria F, Akbor R, Atolani O, Oliveira SMR, Siyadatpanah A, Pereira MDL, Islam MT. Quercetin and/or Ascorbic Acid Modulatory Effect on Phenobarbital-Induced Sleeping Mice Possibly through GABA A and GABA B Receptor Interaction Pathway. Pharmaceuticals (Basel) 2021; 14:ph14080721. [PMID: 34451819 PMCID: PMC8398796 DOI: 10.3390/ph14080721] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Depressive disorder is a recurrent illness that affects large numbers of the general population worldwide. In recent years, the goal of depression treatment has moved from symptomatic response to that of full remission. However, treatment-resistant depression is a major challenge in the treatment of depression or depression-related disorders. Consensus opinion, therefore, suggests that effective combined aggressive initial treatment is the most appropriate strategy. This study aimed to evaluate the effects of quercetin (QUR) and/or ascorbic acid (AA) on Phenobarbital-induced sleeping mice. QUR (50 mg/kg) and/or AA (25 mg/kg) with or without intraperitoneally pre-treated with GABA receptor agonist (diazepam: 2 mg/kg, i.p.) or antagonist (Flumazenil: 2.5 mg/kg, i.p.) to underscore the effects, as well as the possible involvement of the GABA receptor in the modulatory action of QUR and AA in sleeping mice. Additionally, an in silico study was undertaken to predict the involvement of GABA receptors in the sleep mechanism. Findings suggest that the pretreatment of QUR and AA modulated the onset and duration of action of the standard drugs in experimental animals. The acute administration of QUR and/or AA significantly (p < 0.05) reversed the DZP-mediated onset of action and slightly reversed the duration of sleep time in comparison to the vehicle (control) group. A further combination of QUR or AA with the FLU resulted in an enhancement of the onset of action while reducing the duration of action, suggesting a FLU-like effect on the test animals. In in silico studies, AA and QUR showed good to moderate binding affinities with GABAA and GABAB receptors. Both QUR and AA produced a stimulatory-like effect on mice, possibly through the GABAA and GABAB receptor interaction pathways. Further studies are necessary to verify this activity and clarify the exact mechanism of action(s) involved.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
| | - Khattab Al-Khafaji
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310 Gaziantep, Turkey;
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9280, Bangladesh;
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
| | - Md. Shahazul Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh;
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali 304022, Rajasthan, India;
| | - Farhana Faria
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
| | - Rukaya Akbor
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
| | - Olubunmi Atolani
- Department of Chemistry, University of Ilorin, Ilorin P.M.B. 1515, Nigeria;
| | - Sónia M. R. Oliveira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (M.d.L.P.); (M.T.I.)
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
- Correspondence: (M.d.L.P.); (M.T.I.)
| |
Collapse
|
27
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
28
|
Macedo T, Ferreres F, Pereira DM, Oliveira AP, Gomes NGM, Gil-Izquierdo Á, Valentão P, Araújo L, Andrade PB. Cassia sieberiana DC. leaves modulate LPS-induced inflammatory response in THP-1 cells and inhibit eicosanoid-metabolizing enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113746. [PMID: 33359184 DOI: 10.1016/j.jep.2020.113746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to ethnobotanical surveys, Cassia sieberiana DC. (1825) is a particularly reputed species in African folk Medicine, namely due to the application of its leaves and roots for the treatment of diseases and symptomatology that appear to be related with an inflammatory background. In contrast with the roots of the plant, the leaves remain to be investigated, which prompted us to further detail mechanisms underlying their anti-inflammatory properties, by using in vitro models of disease. AIM OF THE STUDY Considering its use in the amelioration and treatment of conditions that frequently underlie an inflammatory response, C. sieberiana leaves extract was prioritized amongst a collection of extracts obtained from plants collected in Guinea-Bissau. As such, this work aims to deliver experimental data on the anti-inflammatory properties of C. sieberiana leaf and to establish possible associations with its chemical composition, thus providing a rationale on its use in folk Medicine. MATERIALS AND METHODS The chemical profile of an hydroethanol extract obtained from the leaves of the plant was established by HPLC-DAD-ESI/MSn in order to identify bioactives. The extract and its main compound were tested towards a series of inflammatory mediators, both in enzymatic and cell-based models. The capacity to interfere with the eicosanoid-metabolizing enzymes 5-lipoxygenase (5-LOX), cyclooxygenase-1 (COX-1) and -2 (COX-2) was evaluated in cell-free systems, while the effects in interleukin 6 (IL-6) and tumour necrosis factor-α (TNF-α) levels produced by THP-1 derived macrophages were assessed through ELISA. RESULTS HPLC-DAD-ESI/MSn analysis of the extract elucidated a chemical profile qualitatively characterized by a series of anthraquinones, particularly rhein derivatives, and nine flavonols, most of which 3-O-glycosylated. Considering the concentrations of the identified compounds, quercetin was detached as the main component. Effects of the hydroethanol extract obtained from C. sieberiana leaves against key enzymes of the arachidonic acid cascade were recorded, namely a concentration-dependent inhibition against 5-LOX, at concentrations ranging from 16 to 250 μg mL-1 and a selective inhibitory action upon COX-2 (IC50 = 3.58 μg mL-1) in comparison with the isoform COX-1 (IC50 = 9.10 μg mL-1). Impact on inflammatory cytokines was also noted, C. sieberiana leaf extract significantly decreasing IL-6 levels in THP-1 derived macrophages at 250 and 500 μg mL-1. In contrast, TNF-α levels were found to be increased in the same model. Quercetin appears to partially account for the observed effects, namely due to the significant inhibitory effects on the activity of the arachidonic acid metabolizing enzymes COX-2 and 5-LOX. CONCLUSIONS The anti-inflammatory effects herein reported provide a rationale for the use of C. sieberiana leaves in African folk practices, such as in the treatment of arthritis, rheumatism and body aches. Considering the occurrence of flavonoidic and anthraquinonic constituents, as well as the observed anti-inflammatory properties of quercetin, recorded effects must be related with the presence of several bioactives.
Collapse
Affiliation(s)
- Tiago Macedo
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Federico Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia. UCAM, Campus Los Jerónimos, s/n., 30107, Murcia, Spain.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Andreia P Oliveira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, Campus University Espinardo, Murcia, 30100, Spain.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Luísa Araújo
- MDS - Medicamentos e Diagnósticos em Saúde, Avenida dos Combatentes da Liberdade da Pátria, Bissau, Republic of Guinea-Bissau.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
29
|
Niu WH, Wu F, Cao WY, Wu ZG, Chao YC, Peng F, Liang C. Network pharmacology for the identification of phytochemicals in traditional Chinese medicine for COVID-19 that may regulate interleukin-6. Biosci Rep 2021; 41:BSR20202583. [PMID: 33146673 PMCID: PMC7809559 DOI: 10.1042/bsr20202583] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE ´Three formulas and three medicines,' namely, Jinhua Qinggan Granule, Lianhua Qingwen Capsule, Xuebijing Injection, Qingfei Paidu Decoction, HuaShi BaiDu Formula, and XuanFei BaiDu Granule, were proven to be effective for coronavirus disease 2019 (COVID-19) treatment. The present study aimed to identify the active chemical constituents of this traditional Chinese medicine (TCM) and investigate their mechanisms through interleukin-6 (IL-6) integrating network pharmacological approaches. METHODS We collected the compounds from all herbal ingredients of the previously mentioned TCM, but those that could down-regulate IL-6 were screened through the network pharmacology approach. Then, we modeled molecular docking to evaluate the binding affinity between compounds and IL-6. Furthermore, we analyzed the biological processes and pathways of compounds. Finally, we screened out the core genes of compounds through the construction of the protein-protein interaction network and the excavation of gene clusters of compounds. RESULTS The network pharmacology research showed that TCM could decrease IL-6 using several compounds, such as quercetin, ursolic acid, luteolin, and rutin. Molecular docking results showed that the molecular binding affinity with IL-6 of all compounds except γ-aminobutyric acid was < -5.0 kJ/mol, indicating the potential of numerous active compounds in TCM to directly interact with IL-6, leading to an anti-inflammation effect. Finally, Cytoscape 3.7.2 was used to topologize the biological processes and pathways of compounds, revealing potential mechanisms for COVID-19 treatment. CONCLUSION These results indicated the positive effect of TCM on the prevention and rehabilitation of COVID-19 in at-risk people. Quercetin, ursolic acid, luteolin, and rutin could inhibit COVID-19 by down-regulating IL-6.
Collapse
Affiliation(s)
- Wen-hao Niu
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200001, China
| | - Feng Wu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200080, China
| | - Wen-yue Cao
- Department of Ultrasound, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Zong-gui Wu
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200001, China
| | - Yu-Chieh Chao
- Department of Anesthesiology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200120, China
| | - Fei Peng
- Department of Nursing, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200001, China
| | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200001, China
| |
Collapse
|
30
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
31
|
Quercetin mitigates the deoxynivalenol mycotoxin induced apoptosis in SH-SY5Y cells by modulating the oxidative stress mediators. Saudi J Biol Sci 2020; 28:465-477. [PMID: 33424329 PMCID: PMC7783655 DOI: 10.1016/j.sjbs.2020.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022] Open
Abstract
Deoxynivalenol (DON) is Fusarium mycotoxin that is frequently found in many cereal-based foods, and its ingestion has a deleterious impact on human health. In this investigation, we studied the mechanism of DON-induced neurotoxicity and followed by cytoprotective efficacy of quercetin (QUE) in contradiction of DON-induced neurotoxicity through assessing the oxidative stress and apoptotic demise in the human neuronal model, i.e. SH-SY5Y cells. DON diminished the proliferation of cells in the manner of dose and time-dependent as revealed by cell viability investigations, i.e. MTT and lactate dehydrogenase assays. Additional studies, such as intracellular reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial membrane potential (MMP), DNA damage, cell cycle, and neuronal biomarkers (amino acid decarboxylase, tyrosine hydroxylase, and brain-derived neurotrophic factor) demonstrated that DON induces apoptotic demise in neuronal cells through oxidative stress intermediaries. On another hand, pre-treatment of neuronal cells with 1 mM of quercetin (QUE) showed decent viability upon exposure to 100 µM of DON. In detailed studies demonstrated that QUE (1 mM) pre-treated cells show strong attenuation efficiency against DON-induced ROS generation, LPO, MMP loss, DNA impairment, cell cycle arrest, and down-regulation of neuronal biomarkers. The consequences of the investigation concluded that QUE mitigates the DON-induced stress viz., decreased ROS production and LPO generation, upholding MMP and DNA integrity and regulation of neuronal biomarker gene expression in SH-SY5Y cells.
Collapse
|
32
|
Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 2020; 162:105253. [PMID: 33080321 DOI: 10.1016/j.phrs.2020.105253] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.
Collapse
|
33
|
Henríquez G, Gomez A, Guerrero E, Narayan M. Potential Role of Natural Polyphenols against Protein Aggregation Toxicity: In Vitro, In Vivo, and Clinical Studies. ACS Chem Neurosci 2020; 11:2915-2934. [PMID: 32822152 DOI: 10.1021/acschemneuro.0c00381] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the main features of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease is the amyloidogenic behavior of disease-specific proteins including amyloid β, tau, α-synuclein, and mutant Huntingtin which participate in the formation, accumulation, and deposition of toxic misfolded aggregates. Consequently, these proteins not only associated with the progress of their respective neurodegenerative pathologies but also qualify as disease-specific biomarkers. The aim of using natural polyphenols is to target amyloid-dependent proteopathies by decreasing free radical damage and inhibiting and dissolving amyloid fibrils. We explore the effectiveness of the polyphenols epigallocatechin-3-gallate, oleuropein aglycone, and quercetin on their ability to inhibit aggregation of amyloid β, tau, and α-synuclein and mitigate other pathological features for Alzheimer's disease and Parkinson's disease. The analysis was carried from in vitro and cell line studies to animal models and clinical trials. This Review describes the use of phytochemical compounds as prophylactic agents for Alzheimer's disease, Parkinson's disease, and other proteopathies.
Collapse
Affiliation(s)
- Gabriela Henríquez
- Department of Environmental Science and Engineering, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Alejandra Gomez
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Erick Guerrero
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
34
|
Aryal S, Skinner T, Bridges B, Weber JT. The Pathology of Parkinson's Disease and Potential Benefit of Dietary Polyphenols. Molecules 2020; 25:E4382. [PMID: 32987656 PMCID: PMC7582699 DOI: 10.3390/molecules25194382] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by a loss of dopaminergic neurons, leading to bradykinesia, rigidity, tremor at rest, and postural instability, as well as non-motor symptoms such as olfactory impairment, pain, autonomic dysfunction, impaired sleep, fatigue, and behavioral changes. The pathogenesis of PD is believed to involve oxidative stress, disruption to mitochondria, alterations to the protein α-synuclein, and neuroinflammatory processes. There is currently no cure for the disease. Polyphenols are secondary metabolites of plants, which have shown benefit in several experimental models of PD. Intake of polyphenols through diet is also associated with lower PD risk in humans. In this review, we provide an overview of the pathology of PD and the data supporting the potential neuroprotective capacity of increased polyphenols in the diet. Evidence suggests that the intake of dietary polyphenols may inhibit neurodegeneration and the progression of PD. Polyphenols appear to have a positive effect on the gut microbiome, which may decrease inflammation that contributes to the disease. Therefore, a diet rich in polyphenols may decrease the symptoms and increase quality of life in PD patients.
Collapse
Affiliation(s)
| | | | | | - John T. Weber
- School of Pharmacy, Memorial University, St. John’s, NL A1B 3V6, Canada; (S.A.); (T.S.); (B.B.)
| |
Collapse
|
35
|
Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr Res 2020; 80:1-17. [DOI: 10.1016/j.nutres.2020.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/11/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023]
|
36
|
Zhao J, Zhu M, Kumar M, Ngo FY, Li Y, Lao L, Rong J. A Pharmacological Appraisal of Neuroprotective and Neurorestorative Flavonoids Against Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:103-114. [PMID: 30394219 DOI: 10.2174/1871527317666181105093834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & OBJECTIVE Alzheimer's disease (AD) and Parkinson's disease (PD) affect an increasing number of the elderly population worldwide. The existing treatments mainly improve the core symptoms of AD and PD in a temporary manner and cause alarming side effects. Naturally occurring flavonoids are well-documented for neuroprotective and neurorestorative effects against various neurodegenerative diseases. Thus, we analyzed the pharmacokinetics of eight potent natural products flavonoids for the druggability and discussed the neuroprotective and neurorestorative effects and the underlying mechanisms. CONCLUSION This review provides valuable clues for the development of novel therapeutics against neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Mengxia Zhu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Mukesh Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Fung Yin Ngo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yinghui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Lixing Lao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.,Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong Shenzhen, Shenzhen, China
| |
Collapse
|
37
|
Haile M, Bae HM, Kang WH. Comparison of the Antioxidant Activities and Volatile Compounds of Coffee Beans Obtained Using Digestive Bio-Processing (Elephant Dung Coffee) and Commonly Known Processing Methods. Antioxidants (Basel) 2020; 9:E408. [PMID: 32403247 PMCID: PMC7278605 DOI: 10.3390/antiox9050408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022] Open
Abstract
There are different types of coffee processing methods. The wet (WP) and dry processing (DP) methods are widely practiced in different parts of coffee-growing countries. There is also a digestive bioprocessing method in which the most expensive coffee is produced. The elephant dung coffee is produced using the digestive bioprocessing method. In the present experiment, the antioxidant activity and volatile compounds of coffee that have been processed using different methods were compared. The antioxidant activity, total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC) of green coffee beans from all treatments were higher as compared to roasted coffee beans. Regarding the green coffee beans, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of elephant dung coffee beans was higher as compared to that of the DP and WP coffee beans. The green coffee beans had higher DPPH activity and ferric reducing antioxidant power (FRAP) value compared to the roasted coffee beans. The green beans of elephant dung coffee had a high TPC than the beans obtained by WP and DP methods. TFC in elephant dung coffee in both green and roasted condition was improved in contrast to the beans processed using dry and wet methods. The elephant dung coffee had an increased TTC in comparison to the DP and WP coffee (green beans). About 37 volatile compounds of acids, alcohols, aldehydes, amide, esters, ethers, furans, furanones, ketones, phenols, pyrazines, pyridines, Heterocyclic N, and pyrroles functional classes have been found. Some of the most abundant volatile compounds detected in all treatments of coffee were 2-furanmethanol, acetic acid, 2-methylpyrazine, 2,6-dimethylpyrazine, pyridine, and 5-methylfurfural. Few volatile compounds have been detected only in elephant dung coffee. The principal component analysis (PCAs) was performed using the percentage of relative peak areas of the volatile compound classes and individual volatile compounds. This study will provide a better understanding of the impacts of processing methods on the antioxidants and volatile compounds of coffee.
Collapse
Affiliation(s)
- Mesfin Haile
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; (M.H.); (H.M.B.)
| | - Hyung Min Bae
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; (M.H.); (H.M.B.)
| | - Won Hee Kang
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; (M.H.); (H.M.B.)
- Convergence Program of Coffee Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
38
|
Effect of Quercetin on PC12 Alzheimer's Disease Cell Model Induced by A β 25-35 and Its Mechanism Based on Sirtuin1/Nrf2/HO-1 Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8210578. [PMID: 32420373 PMCID: PMC7201675 DOI: 10.1155/2020/8210578] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Objective This study is aimed at studying the effect of quercetin on the Alzheimer disease cell model induced by Aβ25-35 in PC12 cells and its mechanism of action. Methods The AD cell model was established by Aβ25-35. Quercetin was used at different concentrations (0, 10, 20, 40, and 80 μmol/L). The morphology of cells was observed, and the effect on cell survival rate was detected by the MTT method. Cell proliferation was detected by the SRB method. The contents of LDH, SOD, MDA, GSH-Px, AChE, CAT, and T-AOC were detected by kits. The expression of sirtuin1/Nrf2/HO-1 was detected by RT-qPCR and Western blot. Results PC12 cells in the control group grew quickly and adhered well to the wall, most of which had extended long axons and easily grew into clusters. In the model group, cells were significantly damaged and the number of cells was significantly reduced. It was found that PC12 cells were swollen, rounded, protruding, and retracting, with reduced adherent function and floating phenomenon. Quercetin could increase the survival rate and proliferation rate of PC12 cells; reduce the levels of LDH, AChE, MDA, and HO-1 protein; and increase the levels of SOD, GSH-Px, CAT, T-AOC, sirtuin1, and Nrf2 protein. Conclusion Quercetin can increase the survival rate of PC12 injured by Aβ25-35, promote cell proliferation, and antagonize the toxicity of Aβ; it also has certain neuroprotective effects. Therefore, quercetin is expected to become a drug for the treatment of AD.
Collapse
|
39
|
The Antioxidant Content of Coffee and Its In Vitro Activity as an Effect of Its Production Method and Roasting and Brewing Time. Antioxidants (Basel) 2020; 9:antiox9040308. [PMID: 32290140 PMCID: PMC7222172 DOI: 10.3390/antiox9040308] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/05/2022] Open
Abstract
Coffee is one of the most popular beverages in the world. The high production and health properties of coffee make it one of the best among daily drinks. Coffee is wrongly identified as only a stimulant because of its caffeine content. On the other hand, coffee is one of the best sources of other bioactive compounds, such as flavonoids and phenolic acids. Organic coffee is produced without artificial fertilizers and pesticides. Not only the high quality of beans but also roasting and brewing times guarantee the best taste and quality of coffee beverages. The aim of the present experiment was to determine the best level of roasting and brewing time for organic and conventional coffee. The experiment was carried out with Peru coffee beans from organic and conventional farms. The contents of caffeine and bioactive compounds were measured in different roasted and brewed coffee drinks. The obtained results showed that the conventional coffee contained significantly more caffeine, total flavonoids, and quercetin derivatives than the organic coffee. On the other hand, the organic coffee was characterized by a higher level of almost all bioactive compounds. The best level of roasting was determined to be medium, and the optimal brewing time was 3 minutes.
Collapse
|
40
|
Bandookwala M, Sengupta P. 3-Nitrotyrosine: a versatile oxidative stress biomarker for major neurodegenerative diseases. Int J Neurosci 2020; 130:1047-1062. [PMID: 31914343 DOI: 10.1080/00207454.2020.1713776] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species are generated as a by-product of routine biochemical reactions. However, dysfunction of the antioxidant system or mutations in gene function may result in the elevated production of the pro-oxidant species. Modified endogenous molecules due to chemical interactions with increased levels of reactive oxygen and nitrogen species in the cellular microenvironment can be termed as biomarkers of oxidative stress. 3-Nitrotyrosine is one such promising biomarker of oxidative stress formed due to nitration of protein-bound and free tyrosine residues by reactive peroxynitrite molecules. Nitration of proteins at the subcellular level results in conformational alterations that damage the cytoskeleton and result in neurodegeneration. In this review, we summarized the role of oxidative/nitrosative processes as a contributing factor for progressive neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, Lou Gehrig's disease and Prion disease. The selective tyrosine protein nitration of the major marker proteins in related pathologies has been discussed. The alteration in 3-Nitrotyrosine profile occurs well before any symptoms appear and can be considered as a potential target for early diagnosis of neurodegenerative diseases. Furthermore, the reduction in 3-Nitrotyrosine levels in response to treatment with neuroprotective has been highlighted which is indicative of the importance of this particular marker in oxidative stress-related brain and central nervous system pathologies.
Collapse
Affiliation(s)
- Maria Bandookwala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
41
|
Gligor FG, Frum A, Vicaș LG, Totan M, Roman-Filip C, Dobrea CM. Determination of a Mixture of Plantago lanceolata L. and Salvia officinalis L. by High-Performance Liquid Chromatography with Ultraviolet Detection (HPLC-UV). ANAL LETT 2020. [DOI: 10.1080/00032719.2019.1708373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Adina Frum
- Faculty of Medicine, “Lucian Braga” University of Sibiu, Sibiu, Romania
| | | | - Maria Totan
- Faculty of Medicine, “Lucian Braga” University of Sibiu, Sibiu, Romania
| | | | | |
Collapse
|
42
|
Król K, Gantner M, Tatarak A, Hallmann E. The content of polyphenols in coffee beans as roasting, origin and storage effect. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03388-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Coffee, one of the most popular beverages in the world, contains many bioactive compounds. The aim of this study was a comparative evaluation of the content of bioactive compounds in organic and conventional coffee (Coffea arabica) originating from Brazil during 12 months storage. The content of the polyphenolic compounds was determined using HPLC analysis. The obtained results indicate that organic or conventional production and roasting conditions (light, medium, dark roast) affect the polyphenolic compounds of coffee. The highest content of total polyphenolic compounds was determined in coffees roasted in light and medium roasting conditions. Furthermore, organic coffee beans showed higher content of bioactive compounds (total phenolic, phenolic acids and flavonoids) than conventional coffee beans. During 12 months storage a decrease in polyphenolic compounds is observed and it is connected with the degradation of chlorogenic acid, which influences total bioactivity. Moreover, the highest caffeine content was observed in light and medium roasted coffee and after storage an increase in caffeine content was observed only in organic coffee beans.
Collapse
|
43
|
Ulusoy HG, Sanlier N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr 2019; 60:3290-3303. [PMID: 31680558 DOI: 10.1080/10408398.2019.1683810] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quercetin, one of the most taken flavonoid with diet, belongs to the family of flavonols in which kaempferol and myricetin are also found. Quercetin occurs as a glycoside (with linked sugars) or as an aglycone (without linked sugars). Although quercetin has many different forms in nature, the form found in plants is quercetin-3-O-glucoside, which generally functions as a pigment that gives color to a multitude of fruits and vegetables. The recent literature has been reviewed using PubMed, Science Direct, and Embase databases. In this article, we reviewed quercetin with respect to chemical properties, absorption mechanism, metabolism, bioavailability, food sources, bioactivities, and possible health-promoting mechanisms. Quercetin is known as an antioxidant, anti-inflammatory, cardioprotective, and anti-obesity compound. It is thought to be beneficial against cardiovascular diseases, cancer, diabetes, neurological diseases, obesity, allergy asthma, and atopic diseases. Further clinical studies with large sample sizes are needed to determine the appropriate dose and form of quercetin for preventing diseases.
Collapse
Affiliation(s)
- Hande Gül Ulusoy
- School of Health Sciences, Department of Nutrition and Dietetic, Ankara Medipol University, Ankara, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Department of Nutrition and Dietetic, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
44
|
Kiyama R. Estrogenic Activity of Coffee Constituents. Nutrients 2019; 11:E1401. [PMID: 31234352 PMCID: PMC6628280 DOI: 10.3390/nu11061401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Here, the constituents of coffee with estrogenic activity are summarized by a comprehensive literature search, and their mechanisms of action for their physiological effects are discussed at the molecular and cellular levels. The estrogenic activity of coffee constituents, such as acids, caramelized products, carbohydrates, lignin, minerals, nitrogenous compounds, oil (lipids), and others, such as volatile compounds, was first evaluated by activity assays, such as animal tests, cell assay, ligand-binding assay, protein assay, reporter-gene assay, transcription assay, and yeast two-hybrid assay. Second, the health benefits associated with the estrogenic coffee constituents, such as bone protection, cancer treatment/prevention, cardioprotection, neuroprotection, and the improvement of menopausal syndromes, were summarized, including their potential therapeutic/clinical applications. Inconsistent results regarding mixed estrogenic/anti-estrogenic/non-estrogenic or biphasic activity, and unbeneficial effects associated with the constituents, such as endocrine disruption, increase the complexity of the effects of estrogenic coffee constituents. However, as the increase of the knowledge about estrogenic cell signaling, such as the types of specific signaling pathways, selective modulations of cell signaling, signal crosstalk, and intercellular/intracellular networks, pathway-based assessment will become a more realistic means in the future to more reliably evaluate the beneficial applications of estrogenic coffee constituents.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| |
Collapse
|
45
|
Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer's disease. Life Sci 2019; 224:109-119. [PMID: 30914316 DOI: 10.1016/j.lfs.2019.03.055] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Quercetin belongs to the flavonoids family, which is present in most of the plants including fruits, vegetables, green tea and even in red wine having antioxidant activities. It is available as a food supplement in the market and has physiological health effects. Quercetin has anti-inflammatory, anticancer and anti-prostate activities along with its beneficial effects on high cholesterol, kidney transplantation, asthma, diabetes, viral infections, pulmonary, schizophrenia and cardiovascular diseases. Quercetin possesses scavenging potential of hydroxyl radical (OH-), hydrogen peroxide (H2O2), and superoxide anion (O2-). These reactive oxygen species (ROS) hampers lipid, protein, amino acids and deoxyribonucleic acid (DNA) processing leading to epigenetic alterations. Quercetin has the ability to combat these harmful effects. ROS plays a vital role in the progression of Alzheimer's disease (AD), and we propose that quercetin would be the best choice to overcome cellular and molecular signals in regulating normal physiological functions. However, data are not well documented regarding exact cellular mechanisms of quercetin. The neuroprotective effects of quercetin are mainly due to potential up- and/or down-regulation of cytokines via nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Paraoxonase-2, c-Jun N-terminal kinase (JNK), Protein kinase C, Mitogen-activated protein kinase (MAPK) signalling cascades, and PI3K/Akt pathways. Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against AD.
Collapse
|
46
|
Colombo R, Papetti A. An outlook on the role of decaffeinated coffee in neurodegenerative diseases. Crit Rev Food Sci Nutr 2019; 60:760-779. [PMID: 30614247 DOI: 10.1080/10408398.2018.1550384] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
47
|
Tsai CW, Tsai RT, Liu SP, Chen CS, Tsai MC, Chien SH, Hung HS, Lin SZ, Shyu WC, Fu RH. Neuroprotective Effects of Betulin in Pharmacological and Transgenic Caenorhabditis elegans Models of Parkinson's Disease. Cell Transplant 2018; 26:1903-1918. [PMID: 29390878 PMCID: PMC5802634 DOI: 10.1177/0963689717738785] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common degenerative disorder of the central nervous system in the elderly. It is characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta, as well as by motor dysfunction. Although the causes of PD are not well understood, aggregation of α-synuclein (α-syn) in neurons contributes to this disease. Current therapeutics for PD provides satisfactory symptom relief but not a cure. Treatment strategies include attempts to identify new drugs that will prevent or arrest the progressive course of PD by correcting disease-specific pathogenic process. Betulin is derived from the bark of birch trees and possesses anticancer, antimicrobial, and anti-inflammatory properties. The aim of the present study was to evaluate the potential for betulin to ameliorate PD features in Caenorhabditis elegans (C. elegans) models. We demonstrated that betulin diminished α-syn accumulation in the transgenic C. elegans model. Betulin also reduced 6-hydroxydopamine-induced dopaminergic neuron degeneration, reduced food-sensing behavioral abnormalities, and reversed life-span decreases in a pharmacological C. elegans model. Moreover, we found that the enhancement of proteasomes activity by promoting rpn1 expression and downregulation of the apoptosis pathway gene, egl-1, may be the molecular mechanism for betulin-mediated protection against PD pathology. Together, these findings support betulin as a possible treatment for PD and encourage further investigations of betulin as an antineurodegenerative agent.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- 1 Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Rong-Tzong Tsai
- 2 Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Ping Liu
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Shi Chen
- 5 Department of Biochemical and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Min-Chen Tsai
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shao-Hsuan Chien
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Huey-Shan Hung
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- 6 Bioinnovation Center, Tzu Chi foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Woei-Cherng Shyu
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ru-Huei Fu
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,7 Department of Psychology, Asia University, Taichung, Taiwan
| |
Collapse
|
48
|
Bakoyiannis I, Daskalopoulou A, Pergialiotis V, Perrea D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed Pharmacother 2018; 109:1488-1497. [PMID: 30551400 DOI: 10.1016/j.biopha.2018.10.086] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022] Open
Abstract
Flavonoids constitute a large group of polyphenolic compounds with numerous effects on behaviour and cognition. These effects vary from learning and memory enhancement to an improvement of general cognition. Furthermore, flavonoids have been implicated in a) neuronal proliferation and survival, by acting on a variety of cellular signalling cascades, including the ERK/CREB/BDNF and PI3K/Akt pathway, b) oxidative stress reduction and c) relief from Alzheimer's disease-type symptoms. From an electrophysiological aspect, they promote long term potentiation in the hippocampus, supporting the hypothesis of synaptic plasticity mediation. Together, these actions reveal a neuroprotective effect of flavonoid compounds in the brain. Therefore, flavonoid intake could be a potential clinical direction for prevention and/or attenuation of cognitive decline deterioration which accompanies various brain disorders. The purpose of the current review paper was to summarise all these effects on cognition, describe the possible pathways via which they may act on a cellular level and provide a better picture for future research towards this direction.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Medical School, Greece.
| | - Afrodite Daskalopoulou
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Medical School, Greece
| | - Vasilios Pergialiotis
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Medical School, Greece
| | - Despina Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Medical School, Greece
| |
Collapse
|
49
|
Zeindlhofer V, Berger M, Steinhauser O, Schröder C. A shell-resolved analysis of preferential solvation of coffee ingredients in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate. J Chem Phys 2018; 148:193819. [PMID: 30307218 DOI: 10.1063/1.5009802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ionic liquids increase the solubility of various coffee ingredients in aqueous solution but little is known about the underlying mechanism. Kirkwood-Buff integrals as well as the potential of mean force indicate that the imidazolium cations are accumulated at the surface of the solutes, removing water molecules from the solute surface. Although hydrogen bonding of the anions to hydroxy groups of the solutes can be detected, their concentration at the surface is less enhanced compared to the cations. The decomposition into solvation shells by Voronoi tessellation reveals that structural features are only observed in the first solvation shell. Nevertheless, the depletion of water and the excess concentration of the ions and, in particular, of the cations are visible in the next solvation shells as well. Therefore, classical arguments of hydrotropic theory fail to explain this behavior.
Collapse
Affiliation(s)
- Veronika Zeindlhofer
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Magdalena Berger
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Othmar Steinhauser
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Christian Schröder
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
50
|
Mancini RS, Wang Y, Weaver DF. Phenylindanes in Brewed Coffee Inhibit Amyloid-Beta and Tau Aggregation. Front Neurosci 2018; 12:735. [PMID: 30369868 PMCID: PMC6194148 DOI: 10.3389/fnins.2018.00735] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Coffee consumption has been correlated with a decreased risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD), but the mechanism by which coffee may provide neuroprotection in humans is not fully understood. We hypothesized that compounds found in brewed coffee may elicit neuroprotective effects by inhibiting the aggregation of amyloid-beta (Aβ) and tau (AD) or α-synuclein (PD). Three instant coffee extracts (light roast, dark roast, decaffeinated dark roast) and six coffee components [caffeine (1), chlorogenic acid (2), quinic acid (3), caffeic acid (4), quercetin (5), and phenylindane (6)] were investigated for their ability to inhibit the fibrillization of Aβ and tau proteins using thioflavin T (ThT) and thioflavin S (ThS) fluorescence assays, respectively. Inhibition of Aβ and α-synuclein oligomerization was assessed using ELISA assays. All instant coffee extracts inhibit fibrillization of Aβ and tau, and promote α-synuclein oligomerization at concentrations above 100 μg/mL. Dark roast coffee extracts are more potent inhibitors of Aβ oligomerization (IC50 ca. 10 μg/mL) than light roast coffee extract (IC50 = 40.3 μg/mL), and pure caffeine (1) has no effect on Aβ, tau or α-synuclein aggregation. Coffee components 2, 4, and 5 inhibit the fibrillization of Aβ at 100 μM concentration, yet only 5 inhibits Aβ oligomerization (IC50 = 10.3 μM). 1-5 have no effect on tau fibrillization. Coffee component 6, however, is a potent inhibitor of both Aβ and tau fibrillization, and also inhibits Aβ oligomerization (IC50 = 42.1 μM). Coffee components 4 and 5 promote the aggregation of α-synuclein at concentrations above 100 μM; no other coffee components affect α-synuclein oligomerization. While the neuroprotective effect of coffee consumption is likely due to a combination of factors, our data suggest that inhibition Aβ and tau aggregation by phenylindane 6 (formed during the roasting of coffee beans, higher quantities found in dark roast coffees) is a plausible mechanism by which coffee may provide neuroprotection. The identification of 6 as a dual-inhibitor of both Aβ and tau aggregation is noteworthy, and to our knowledge this is the first report of the aggregation inhibition activity of 6.
Collapse
Affiliation(s)
- Ross S. Mancini
- Department of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yanfei Wang
- Department of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Donald F. Weaver
- Department of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|