1
|
Pagadala MS, Teerlink CC, Jasuja GK, Palnati M, Anglin-Foote T, Chang NCN, Deka R, Lee KM, Agiri FY, Amariuta T, Seibert TM, Rose BS, Pridgen KM, Lynch JA, Carter HK, Panizzon MS, Hauger RL. Discovery of novel ancestry specific genes for androgens and hypogonadism in Million Veteran Program Men. Nat Commun 2025; 16:4104. [PMID: 40316537 PMCID: PMC12048691 DOI: 10.1038/s41467-025-57372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/12/2025] [Indexed: 05/04/2025] Open
Abstract
Given the various roles of testosterone in men's health, we conducted a multi-ancestral genetic analysis of total testosterone, free testosterone, SHBG, and hypogonadism in men within the Million Veteran Program (MVP). Here we identified 157 significant testosterone genetic variants, of which 8 have significant ancestry-specific associations. These variants implicate several genes, including SERPINF2, PRPF8, BAIAP2L1, SHBG, PRMT6, and PPIF, related to liver function. Genetic regulators of testosterone have cell type-specific effects in the testes, liver, and adrenal gland and are associated with disease risk. We conducted a meta-analysis amongst ancestry groups to identify 188 variants significantly associated with testosterone, of which 22 are novel associations. We constructed genetic scores for total testosterone, SHBG levels, and hypogonadism and find that men with higher testosterone genetic scores have lower odds of diabetes, hyperlipidemia, gout, and cardiac disorders. These findings provide insight into androgen regulation and identify novel variants for disease risk stratification.
Collapse
Affiliation(s)
- Meghana S Pagadala
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
- Biomedical Science Program, University of California San Diego, La Jolla, CA, USA
| | - Craig C Teerlink
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, US
- Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, US
| | - Guneet K Jasuja
- Center for Healthcare Organization and Implementation Research (CHOIR), VA Bedford Healthcare System, Bedford, MA, US
- Section of General Internal Medicine, Boston University School of Medicine, Boston, MA, US
- Department of Health Law, Policy, and Management, Boston University School of Public Health, Boston, MA, US
| | - Madhuri Palnati
- Center for Healthcare Organization and Implementation Research (CHOIR), VA Bedford Healthcare System, Bedford, MA, US
| | - Tori Anglin-Foote
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, US
| | - Nai-Chung N Chang
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, US
| | - Rishi Deka
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kyung M Lee
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, US
| | - Fatai Y Agiri
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, US
| | - Tiffany Amariuta
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Halicioglu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Tyler M Seibert
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Brent S Rose
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Urology, University of California San Diego, La Jolla, CA, USA
| | - Kathryn M Pridgen
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, US
| | - Julie A Lynch
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, US
- Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, US
| | - Hannah K Carter
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Matthew S Panizzon
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA
| | - Richard L Hauger
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA.
- Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
2
|
Firoozi A, Shadi M, Rezagholizadeh A. The role of low-level laser therapy in Alzheimer's disease: a review of the potential benefits of vitamin D enhancement. Lasers Med Sci 2025; 40:159. [PMID: 40131549 DOI: 10.1007/s10103-025-04407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
As the global population ages, neurodegenerative diseases, particularly Alzheimer's disease (AD), have become a major public health concern. AD is the most prevalent neurodegenerative disorder, accounting for 60-80% of cases, and is characterized by progressive cognitive and memory decline due to neuronal loss. Current pharmacological treatments primarily offer symptomatic relief rather than a cure. Recent research has highlighted the role of vitamin D in neuroprotection, owing to its antioxidant, anti-inflammatory, and neuroprotective properties, as well as its ability to maintain blood-brain barrier integrity and regulate amyloid-beta (Aβ) clearance. Another emerging noninvasive therapeutic approach is Low-Level Laser Therapy (LLLT), a form of photobiomodulation (PBM) that has been shown to enhance neuronal function, reduce oxidative stress, inflammation, and Aβ deposition, and potentially increase vitamin D levels. This review examines the interplay between LLLT, vitamin D, and oxidative stress in AD pathophysiology. Findings suggest that LLLT can stimulate mitochondrial function, enhance synaptic plasticity, and improve cognitive performance in preclinical and clinical studies. Furthermore, LLLT has been reported to modulate immune responses, promote neurogenesis, and facilitate vitamin D synthesis by activating cytochrome c oxidase (CCO), which plays a crucial role in mitochondrial energy production. However, while promising, further in vivo and clinical trials are required to optimize treatment protocols and establish standardized guidelines for LLLT application, particularly in enhancing vitamin D levels, in AD patients. CLINICAL TRIAL NUMBER: Not applicable.
Collapse
Affiliation(s)
- Amin Firoozi
- Larestan University of Medical Sciences, Larestan, Iran, Islamic Republic of
| | - Mehri Shadi
- Birjand University of Medical Sciences, Birjand, Iran, Islamic Republic of
| | | |
Collapse
|
3
|
Zhou T, Zhang R, Ohulchanskyy TY, Qu J. Monitoring photobiomodulation of amyloid-β aggregation in 3D cultured cells using label-free nonlinear optical imaging. BIOMEDICAL OPTICS EXPRESS 2025; 16:1143-1155. [PMID: 40109529 PMCID: PMC11919351 DOI: 10.1364/boe.549594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 03/22/2025]
Abstract
The accumulation of beta-amyloid (Aβ) peptide aggregates, commonly known as plaques, is considered a key hallmark in the development of Alzheimer's disease (AD). Recently, low-level light therapy (LLLT), also referred to as photobiomodulation (PBM), has emerged as a promising treatment approach for AD. Previous studies have shown that PBM reduces Aβ load primarily by enhancing the clearance capabilities of glia cells. However, it remains unclear whether PBM can directly reduce the formation of Aβ plaques in neuronal cells independent of the glia cell effect. In this study, we employed three-dimensional (3D) cultured HEK 293 APPsw cells as an AD model to investigate the impact of PBM on Aβ aggregation. We demonstrated that label-free two-photon excited fluorescence (TPEF) imaging and second harmonic generation (SHG) imaging are effective tools for monitoring Aβ aggregation in 3D cell models. The TPEF imaging results and subsequent quantification revealed that PBM, particularly with low-level near-infrared light from an 808 nm laser (compared to 1064, 1210, and 1470 nm lasers), significantly reduced Aβ aggregation, specifically plaques formation, in the 3D cultured cells, with the effect found to be dose-dependent. Moreover, a comprehensive analysis of protein expression in the 3D cultured cells revealed that PBM induces overexpression of the LRP1 receptor, which mediates Aβ degradation and thus leads to the reduction of Aβ aggregation. This study highlights the use of label-free nonlinear optical imaging to monitor Aβ aggregation in AD progression and provides novel insights into the effects of PBM on Aβ plaque formation in AD models.
Collapse
Affiliation(s)
- Ting Zhou
- School of Medical and Health Engineering, Changzhou University, Changzhou, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Renlong Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tymish Y Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Chemical and Biological Engineering, The State University of New York, Buffalo, New York 14260, USA
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Chemical and Biological Engineering, The State University of New York, Buffalo, New York 14260, USA
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
4
|
Guo R, Li D, Li F, Ji L, Liu H, Qiao H, Lv Z, Tang Y, Wang D. Effects of whole-head 810 nm near-infrared therapy on cognitive and neuropsychiatric symptoms in Alzheimer's disease: A pilot study. J Alzheimers Dis 2025; 104:52-60. [PMID: 39910867 DOI: 10.1177/13872877251313819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
BackgroundAlzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by significant cognitive and behavioral impairments. Near-infrared (NIR) light treatment has shown potential in cognitive improvement in previous studies. However, clinical trials of NIR for AD remain limited.ObjectiveThis study investigated the safety and effects of whole-head 810 nm NIR therapy in AD patients, including long-term efficacy.MethodsAn open-label pilot study on whole-head NIR treatment for AD patients was conducted. Nine AD patients completed 4-month treatment (810 nm, 100 mW/cm², 30 min/session, 6 sessions weekly). Safety and efficacy were evaluated at baseline, months 2 and 4, and 2-month post-treatment.ResultsAfter four months of whole-head NIR treatment, mean changes from baseline on the Mini-Mental State Examination were 3.2 (p = 0.02). Mean changes from baseline on the Alzheimer's Disease Assessment Scale-Cognitive were -5.0 (p = 0.05), mean changes from baseline on the Montreal Cognitive Assessment were 1.9 (p = 0.12). Mean changes from baseline on the Neuropsychiatric Inventory were -4.2 (p = 0.47). These benefits were sustained two months at least. With no device-related adverse effects were reported.ConclusionsWhole-head 810 nm NIR light is safe and offers promising benefits for AD patients. To fully confirm its efficacy, durability, and underlying mechanisms, further large-scale randomized controlled trials are necessary.
Collapse
Affiliation(s)
- Rong Guo
- School of Biological Science and Medical Engineering, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Deyu Li
- School of Biological Science and Medical Engineering, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Software Development Environment, State Key Laboratory of Virtual Reality Technology and System, Beihang University, Beijing, China
| | - Fang Li
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Linna Ji
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Hongying Liu
- Rehabilitation Hospital Affiliated to National Rehabilitation Assistive Devices Research Center, Beijing, China
| | - Huiting Qiao
- School of Biological Science and Medical Engineering, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zeping Lv
- Rehabilitation Hospital Affiliated to National Rehabilitation Assistive Devices Research Center, Beijing, China
- Key Laboratory of Assistive Technology for Rehabilitation of Elderly Dysfunction, Beijing, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Daifa Wang
- School of Biological Science and Medical Engineering, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Jiangsu Danyang Huichuang Medical Equipment Co., Ltd, Jiangsu, China
| |
Collapse
|
5
|
Wang S, Xu H, Liu G, Chen L. Non-pharmacological treatment of Alzheimer's disease: an update. Front Aging Neurosci 2025; 17:1527242. [PMID: 40018518 PMCID: PMC11865074 DOI: 10.3389/fnagi.2025.1527242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impairs memory, cognitive function, and the ability to perform daily tasks. The pathological features of AD include β-amyloid plaques, neurofibrillary tangles, and neuronal loss. Current AD treatments target pathological changes but often fail to noticeably slow disease progression and can cause severe complications, limiting their effectiveness. In addition to therapies targeting the core pathology of AD, a more comprehensive approach may be needed for its treatment. In recent years, non-pharmacological treatments such as physical therapy, exercise therapy, cell therapy, and nanoparticles have shown great potential in mitigating disease progression and alleviating clinical symptoms. This article reviews recent advances in non-pharmacological treatment approaches for AD, highlighting their contributions to AD management and facilitating the exploration of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shaofen Wang
- West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Haochen Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guangdong Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Limei Chen
- West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
6
|
You J, Fuchs J, Wang M, Hu Q, Tao X, Krolczyk E, Tirumala T, Bragin A, Liu H, Engel J, Li L. Preventive effects of transcranial photobiomodulation on epileptogenesis in a kainic acid-induced rat epilepsy model. Exp Neurol 2025; 383:115005. [PMID: 39419434 DOI: 10.1016/j.expneurol.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy affects nearly 50 million people worldwide and is a major burden to families and society. A significant portion of patients are living in developing countries with limited access to therapeutic resources. This highlights the urgent need to develop more readily available, noninvasive treatments for seizure control. This research explored the effectiveness of transcranial photobiomodulation (tPBM), a non-invasive method utilizing photon-tissue interactions, for preventing epileptogenesis and controlling seizures. METHODS In a kainic acid (KA)-induced rat model of epilepsy, two different wavelengths of tPBM, 808 nm and 940 nm, were applied separately in two groups of animals (KA+808 and KA+940). The ability of tPBM for seizure control was evaluated by comparing the occurrence rate of interictal epileptiform discharges (IED) and behavioral seizures among three groups: KA, KA+808, KA+940. Prevention of epileptogenesis was assessed by comparing the occurrence rate of high frequency oscillations (HFOs), especially fast ripple (FR) rate, among the three groups. Nissl staining and immunostaining for the apoptosis marker caspase-3 were used as indications of neuroprotection. RESULTS The KA+808 group and the KA+940 group showed significantly lower FR and IED rates compared to the KA group. Weekly FR rates started to drop during the first week of tPBM treatment. The KA+808 and KA+940 groups also displayed milder seizure behaviors and less neuronal loss in hippocampal areas compared to KA rats without tPBM treatment. Similarly, lower caspase-3 levels in the KA+808 and KA+940 compared with the KA group suggested effectiveness of tPBM in reducing cell death. SIGNIFICANCE tPBM of 808 nm/940 nm showed effectiveness in suppressing epileptogenesis and ictogenesis in the KA-induced rat epilepsy model. This effectiveness of tPBM can be linked to the neuroprotection benefits of photon-tissue interactions. Further studies are warranted to elucidate the fundamental mechanism of tPBM protection, determine optimal treatment parameters and validate its effectiveness in other epilepsy models.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Jannon Fuchs
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Miaomiao Wang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Qichan Hu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Xiaoxiao Tao
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Elizabeth Krolczyk
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Tanya Tirumala
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, California, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA; Department of Neurology, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
7
|
Trajano LADSN, Siqueira PB, Rodrigues MMDS, Pires BRB, da Fonseca ADS, Mencalha AL. Does photobiomodulation alter mitochondrial dynamics? Photochem Photobiol 2025; 101:21-37. [PMID: 38774941 DOI: 10.1111/php.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 01/18/2025]
Abstract
Mitochondrial dysfunction is one of the leading causes of disease development. Dysfunctional mitochondria limit energy production, increase reactive oxygen species generation, and trigger apoptotic signals. Photobiomodulation is a noninvasive, nonthermal technique involving the application of monochromatic light with low energy density, inducing non-thermal photochemical effects at the cellular level, and it has been used due to its therapeutic potential. This review focuses on the mitochondrial dynamic's role in various diseases, evaluating the possible therapeutic role of low-power lasers (LPL) and light-emitting diodes (LED). Studies increasingly support that mitochondrial dysfunction is correlated with severe neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's, and Charcot-Marie-Tooth diseases. Furthermore, a disturbance in mitofusin activity is also associated with metabolic disorders, including obesity and type 2 diabetes. The effects of PBM on mitochondrial dynamics have been observed in cells using a human fibroblast cell line and in vivo models of brain injury, diabetes, spinal cord injury, Alzheimer's disease, and skin injury. Thus, new therapies aiming to improve mitochondrial dynamics are clinically relevant. Several studies have demonstrated that LPL and LED can be important therapies to improve health conditions when there is dysfunction in mitochondrial dynamics.
Collapse
Affiliation(s)
- Larissa Alexsandra da Silva Neto Trajano
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Pró-Reitoria de Pesquisa e pós-graduação, Mestrado Profissional em Ciências Aplicadas em Saúde, Universidade de Vassouras, Rio de Janeiro, Brazil
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Moreno de Sousa Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Golovynska I, Golovynskyi S, Stepanov YV, Qu J, Zhang R, Qu J. Near-infrared light therapy normalizes amyloid load, neuronal lipid membrane order, rafts and cholesterol level in Alzheimer's disease. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113086. [PMID: 39724841 DOI: 10.1016/j.jphotobiol.2024.113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Cholesterol dysregulation, disorder of neuronal membrane lipid packing, and lipid rafts lead to the synthesis and accumulation of toxic amyloid-β (Aβ), contributing to the development of Alzheimer's disease (AD). Our study shows that near-infrared (NIR) transcranial photobiomodulation therapy (tPBMT) can reduce Aβ load and restore the properties of neuronal plasma membrane, including Aβ production, bilayer order, rafts, lipid content, and Ca2+ channels during AD. Mice in the experiments were exposed to 808-nm LED for 1 h daily over 3 months. In the APOE transgenic model with cholesterol dysregulation, the cholesterol levels increased by 22 times, causing healthy neurons to produce toxic Aβ three times faster, increasing its load by five times. Consequently, Aβ disrupts the membrane bilayer and prompts the formation of lipid rafts and pores. NIR-tPBMT can nearly half attenuate Aβ load, restore membrane lipid order and rigidity, reduce the number of lipid rafts, modulate cholesterol synthesis, normalize Ca2+ influx by activated endocytosis, and reduce neuronal death. The Ca2+ influx induced by light does not cause excitotoxicity but modulates Ca2+/calmodulin signaling involved in AD mechanisms and cell viability. The transcriptome analysis of the brain cortex and hippocampus shows that light can downregulate Ca2+/calmodulin-dependent AD-risk genes BACE, PSEN, and APP, and normalize cholesterol homeostasis via the HMGCR, DHCR7, and INSIG1 genes. Additionally, light enhances neuron resistance to the endoplasmic reticulum stress via activating transcription factors of the unfolded protein response. Thus, red/NIR light could be promising in combating AD, restoring synaptic plasticity in degenerating neurons and reducing Aβ load.
Collapse
Affiliation(s)
- Iuliia Golovynska
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, PR China.
| | - Sergii Golovynskyi
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Yurii V Stepanov
- Laboratory of Molecular and Cellular Mechanisms of Metastasis, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv 03022, Ukraine
| | - Jinghan Qu
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Renlong Zhang
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Junle Qu
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
9
|
Barzegar Behrooz A, Aghanoori MR, Nazari M, Latifi-Navid H, Vosoughian F, Anjomani M, Lotfi J, Ahmadiani A, Eliassi A, Nabavizadeh F, Soleimani E, Ghavami S, Khodagholi F, Fahanik-Babaei J. 40 Hz light preserves synaptic plasticity and mitochondrial function in Alzheimer's disease model. Sci Rep 2024; 14:26949. [PMID: 39506052 PMCID: PMC11541745 DOI: 10.1038/s41598-024-78528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Its causes are not fully understood, but it is now known that factors like mitochondrial dysfunction, oxidative stress, and compromised ion channels contribute to its onset and progression. Flickering light therapy has shown promise in AD treatment, though its mechanisms remain unclear. In this study, we used a rat model of streptozotocin (STZ)-induced AD to evaluate the effects of 40 Hz flickering light therapy. Rats received intracerebroventricular (ICV) STZ injections, and 7 days after, they were exposed to 40 Hz flickering light for 15 min daily over seven days. Cognitive and memory functions were assessed using Morris water maze, novel object recognition, and passive avoidance tests. STZ-induced AD rats exhibited cognitive decline, elevated reactive oxygen species, amyloid beta accumulation, decreased serotonin and dopamine levels, and impaired mitochondrial function. However, light therapy prevented these effects, preserving cognitive function and synaptic plasticity. Additionally, flickering light restored mitochondrial metabolites and normalized ATP-insensitive mitochondrial calcium-sensitive potassium (mitoBKCa) channel activity, which was otherwise downregulated in AD rats. Our findings suggest that 40 Hz flickering light therapy could be a promising treatment for neurodegenerative disorders like AD by preserving synaptic and mitochondrial function.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamad-Reza Aghanoori
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary & Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Maryam Nazari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Latifi-Navid
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Vosoughian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Anjomani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jabar Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Eliassi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Soleimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, 41-800, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Ahmed ME, Akhter N, Fatima S, Ahmad S, Giri S, Hoda MN, Ahmad AS. Therapeutic utility of Perfluorocarbon Oxygent in limiting the severity of subarachnoid hemorrhage in mice. Sci Rep 2024; 14:26638. [PMID: 39496694 PMCID: PMC11535447 DOI: 10.1038/s41598-024-77321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is the deadliest form of hemorrhagic stroke; however, effective therapies are still lacking. Perfluorocarbons (PFCs) are lipid emulsion particles with great flexibility and their much smaller size as compared to red blood cells (RBCs) allows them to flow more efficiently within the blood circulation. Due to their ability to carry oxygen, a specific PFC-based emulsion, PFC-Oxygent, has been used as a blood substitute; however, its role in cerebral blood flow regulation is unknown. Adult C57BL/6 wildtype male mice were subjected to an endovascular perforation model of SAH followed by an intravenous (i.v.) injection of 9 ml/kg PFC-Oxygent or no treatment at 5 h after SAH. At 48 h after SAH, functional and anatomical outcomes were assessed. We found that SAH resulted in significant neurologic and motor deficits which were prevented by PFC-Oxygent treatment. We found that SAH-induced vasospasm, reduced RBC deformability, and augmented endothelial dysfunction were also restricted by PFC-Oxygent treatment. Moreover, mitochondrial activity and fusion proteins were also markedly decreased as assessed by oxidative phosphorylation (OXPHOS) after SAH. Interestingly, PFC-Oxygent treatment brought the mitochondrial activity close to the basal level. Moreover, SAH attenuated the level of phosphorylated AMP-activated protein kinase (pAMPK), whereas PFC treatment improved pAMPK levels. These data show the beneficial effects of PFC-Oxygent in limiting the severity of SAH. Further studies are needed to fully understand the mechanism through which PFC-Oxygent exerts its beneficial effects in limiting SAH severity.
Collapse
Affiliation(s)
- Mohammad Ejaz Ahmed
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Naseem Akhter
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Sumbul Fatima
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Saif Ahmad
- Department of Neurosurgery and Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | | |
Collapse
|
11
|
He Y, Ye R, Peng Y, Pei Q, Wu L, Wang C, Ni W, Li M, Zhang Y, Yao M. Photobiomodulation ameliorates ovarian aging by alleviating oxidative stress and inflammation damage and improving mitochondrial function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113024. [PMID: 39276447 DOI: 10.1016/j.jphotobiol.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Ovarian aging is a serious clinical concern. Few safe and effective methods are currently available to improve ovarian functions. Photobiomodulation (PBM) is a safe and noninvasive physical therapy that can modulate a series of biological processes. Recently, several studies have noted its potential to improve the function of ovary and reproductive cells. However, the effects of PBM treatment on natural ovarian aging remain unclear. In this study, we used a naturally reproductive aging mouse model to observe the effect of PBM on ovarian function. Young and aged female ICR mice were treated with or without PBM for 2 months. PBM was performed using a semiconductor InGaAlP laser emitting at 650 nm (80 mW, 6.7 mW/cm2 for 5 or 10 min, resulting in a dose of 2 or 4 J/cm2, respectively). After treatment, the effects of PBM and its role in oxidative stress, inflammation, and mitochondrial function were investigated. We found that PBM (4 J/cm2) effectively recovered the levels of sex hormones, increased the number of primordial and growing follicles, improved angiogenesis, and decreased cell apoptosis in naturally aged mice. Moreover, PBM reduced oxidative stress, inhibited chronic ovarian inflammation, and improved mitochondrial function in aged ovaries. Similar protective effects of PBM were observed in a hydrogen peroxide-induced oxidative stress model of human granulosa cell line (KGN) in vitro. Increased cell viability, cell proliferation, hormone secretion, mitochondrial membrane potential, and adenosine triphosphate levels and decreased apoptosis and oxidative stress were detected in KGN cells after PBM treatment. Collectively, this study suggest that PBM treatment is beneficial for restoring ovarian function in naturally reproductive aging mice and has a significant protective effect against oxidative stress damage in KGN cells. The mechanisms underlying the benefits of PBM in ovarian aging include antioxidant stress, reduction of inflammation, and preservation of mitochondrial function. Therefore, this study emphasizes the potential of PBM as a therapeutic intervention to ameliorate ovarian aging.
Collapse
Affiliation(s)
- Yu He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rongan Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qing Pei
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Wu
- Shanghai Institute of Laser Technology, Shanghai 200233, China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wei Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiqiu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
12
|
Wang M, Dinarvand D, Chan CTY, Bragin A, Li L. Photobiomodulation as a Potential Treatment for Alzheimer's Disease: A Review Paper. Brain Sci 2024; 14:1064. [PMID: 39595827 PMCID: PMC11591719 DOI: 10.3390/brainsci14111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, is a leading neurodegenerative disorder currently affecting approximately 55 million individuals globally, a number projected to escalate to 139 million by 2050. Despite extensive research spanning several decades, the cure for AD remains at a developing stage. The only existing therapeutic options are limited to symptom management, and are often accompanied by adverse side effects. The pathological features of AD, including the accumulation of beta-amyloid plaques and tau protein tangles, result in progressive neuronal death, synaptic loss, and brain atrophy, leading to significant cognitive decline and a marked reduction in quality of life. OBJECTIVE In light of the shortcomings of existing pharmacological interventions, this review explores the potential of photobiomodulation (PBM) as a non-invasive therapeutic option for AD. PBM employs infrared light to facilitate cellular repair and regeneration, focusing on addressing the disease's underlying biomechanical mechanisms. METHOD This paper presents a comprehensive introduction to the mechanisms of PBM and an analysis of preclinical studies evaluating its impact on cellular health, cognitive function, and disease progression in AD.The review provides a comprehensive overview of the various wavelengths and application methods, evaluating their efficacy in mitigating AD-related symptoms. CONCLUSIONS The findings underscore the significant potential of PBM as a safe and effective alternative treatment for Alzheimer's disease, emphasizing the necessity for further research and clinical trials to establish its therapeutic efficacy conclusively.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (M.W.); (D.D.); (C.T.Y.C.)
| | - Deeba Dinarvand
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (M.W.); (D.D.); (C.T.Y.C.)
| | - Clement T. Y. Chan
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (M.W.); (D.D.); (C.T.Y.C.)
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (M.W.); (D.D.); (C.T.Y.C.)
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| |
Collapse
|
13
|
Kim MJ, Kim MH, Kim S, Lee JJ, Kim HJ. Near-infrared laser diode mitigates Aβ 1-42-induced neurodegeneration in cortical neurons. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113021. [PMID: 39222549 DOI: 10.1016/j.jphotobiol.2024.113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease, a prevalent neurodegenerative condition primarily affecting older adults, remains incurable. Its principle pathological hallmark is the accelerated accumulation of amyloid β (Aβ) protein. This study investigates the potential of photobiomodulation using near infrared light to counteract Aβ1-42-induced synaptic degeneration and neurotoxicity. We focused on the effect of 808 nm near-infrared laser diode (LD) on Aβ1-42 cytotoxicity in primary cultured cortical neurons. We assessed cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, observing substantial benefits from LD irradiation with a power of 10 mW and a dose of 30 J. Cells exposed to Aβ1-42 exhibited morphological changes indicative of synaptic damage and a significant decrease in the number of postsynaptic density protein-95 (PSD-95) contacts, which were significantly improved with near-infrared LD therapy. Furthermore, this therapy reduced Aβ and phosphorylated tau (P-tau) protein accumulation. Additionally, near-infrared LD irradiation substantially lessened the Aβ1-42-induced rise in glial fibrillary acid protein (GFAP) and ionized calcium-binding adaptor molecule 1 (IBA1) in astrocytes and microglia. Remarkably, near-infrared LD irradiation effectively inhibited phosphorylation of key proteins involved in Aβ1-42-induced necroptosis, namely Receptor-interacting protein kinase-3 (RIP3) and Mixed Lineage Kinase domain-Like protein (MLKL). Our findings suggest that near-infrared LD treatment significantly reduces neurodegeneration by reducing glial overactivation and neuronal necroptosis triggered by Aβ1-42. Thus, near-infrared LD treatment emerges as a promising approach for slowing or treating Alzheimer's disease, offering new avenues in its management.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Physiology, College of Medicine, Center for Human Risk Assessment, Dankook University, Cheonan 31116, Republic of Korea; Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Republic of Korea
| | - Mi-Hye Kim
- Department of Physiology, College of Medicine, Center for Human Risk Assessment, Dankook University, Cheonan 31116, Republic of Korea; Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Republic of Korea
| | - Sehwan Kim
- Department of Biomedical Engineering, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| | - Jung Jae Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan 31116, Republic of Korea; Department of Psychiatry, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Center for Human Risk Assessment, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
14
|
Lau AA, Jin K, Beard H, Windram T, Xie K, O'Brien JA, Neumann D, King BM, Snel MF, Trim PJ, Mitrofanis J, Hemsley KM, Austin PJ. Photobiomodulation in the infrared spectrum reverses the expansion of circulating natural killer cells and brain microglial activation in Sanfilippo mice. J Neurochem 2024; 168:2791-2813. [PMID: 38849324 DOI: 10.1111/jnc.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Sanfilippo syndrome results from inherited mutations in genes encoding lysosomal enzymes that catabolise heparan sulfate (HS), leading to early childhood-onset neurodegeneration. This study explores the therapeutic potential of photobiomodulation (PBM), which is neuroprotective and anti-inflammatory in several neurodegenerative diseases; it is also safe and PBM devices are readily available. We investigated the effects of 10-14 days transcranial PBM at 670 nm (2 or 4 J/cm2/day) or 904 nm (4 J/cm2/day) in young (3 weeks) and older (15 weeks) Sanfilippo or mucopolysaccharidosis type IIIA (MPS IIIA) mice. Although we found no PBM-induced changes in HS accumulation, astrocyte activation, CD206 (an anti-inflammatory marker) and BDNF expression in the brains of Sanfilippo mice, there was a near-normalisation of microglial activation in older MPS IIIA mice by 904 nm PBM, with decreased IBA1 expression and a return of their morphology towards a resting state. Immune cell immunophenotyping of peripheral blood with mass cytometry revealed increased pro-inflammatory signalling through pSTAT1 and p-p38 in NK and T cells in young but not older MPS IIIA mice (5 weeks of age), and expansion of NK, B and CD8+ T cells in older affected mice (17 weeks of age), highlighting the importance of innate and adaptive lymphocytes in Sanfilippo syndrome. Notably, 670 and 904 nm PBM both reversed the Sanfilippo-induced increase in pSTAT1 and p-p38 expression in multiple leukocyte populations in young mice, while 904 nm reversed the increase in NK cells in older mice. In conclusion, this is the first study to demonstrate the beneficial effects of PBM in Sanfilippo mice. The distinct reduction in microglial activation and NK cell pro-inflammatory signalling and number suggests PBM may alleviate neuroinflammation and lymphocyte activation, encouraging further investigation of PBM as a standalone, or complementary therapy in Sanfilippo syndrome.
Collapse
Affiliation(s)
- A A Lau
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - K Jin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| | - H Beard
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - T Windram
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - K Xie
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - J A O'Brien
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| | - D Neumann
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - B M King
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - M F Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - P J Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - J Mitrofanis
- Fonds Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, UK
| | - K M Hemsley
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - P J Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
15
|
Thammasart S, Namchaiw P, Pasuwat K, Tonsomboon K, Khantachawana A. Neuroprotective Potential of Photobiomodulation Therapy: Mitigating Amyloid-Beta Accumulation and Modulating Acetylcholine Levels in an In Vitro Model of Alzheimer's Disease. Photobiomodul Photomed Laser Surg 2024; 42:524-533. [PMID: 39058735 DOI: 10.1089/pho.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Objective: To investigate the effects of photobiomodulation therapy (PBMT) at 660 and 810 nm on amyloid-beta (Aβ)42-induced toxicity in differentiated SH-SY5Y cells and to assess its impact on Aβ42 accumulation and cholinergic neurotransmission. Background: Alzheimer's disease (AD) is characterized by the accumulation of Aβ peptides, leading to neurodegeneration, cholinergic deficit, and cognitive decline. PBMT has emerged as a potential therapeutic approach to mitigate Aβ-induced toxicity and enhance cholinergic function. Methods: Differentiated neurons were treated with 1 μM Aβ42 for 1 day, followed by daily PBMT at wavelengths of 660 and 810 nm for 7 days. Treatments used LEDs emitting continuous wave light at a power density of 5 mW/cm2 for 10 min daily to achieve an energy density of 3 J/cm2. Results: Differentiated SH-SY5Y cells exhibited increased Aβ42 aggregation, neurite retraction, and reduced cell viability. PBMT at 810 nm significantly mitigated the Aβ42-induced toxicity in these cells, as evidenced by reduced Aβ42 aggregation, neurite retraction, and improved cell viability and neuronal morphology. Notably, this treatment also restored acetylcholine levels in the neurons exposed to Aβ42. Conclusions: PBMT at 810 nm effectively reduces Aβ42-induced toxicity and supports neuronal survival, highlighting its neuroprotective effects on cholinergic neurons. By shedding light on the impact of low-level light therapy on Aβ42 accumulation and cellular processes. These findings advocate for further research to elucidate the mechanisms of PBMT and validate its clinical relevance in AD management.
Collapse
Affiliation(s)
- Siriluk Thammasart
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Poommaree Namchaiw
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Kwanchanok Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Khaow Tonsomboon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anak Khantachawana
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| |
Collapse
|
16
|
Soleimani E, Ahmadiani A, Bazrgar M, Khodagholi F, Eliassi A. The 40-Hz White Light Emitting Diode to Alleviate Psychiatric Symptoms Induced by Streptozotocin In Vivo. Basic Clin Neurosci 2024; 15:463-476. [PMID: 39553262 PMCID: PMC11565670 DOI: 10.32598/bcn.2024.1856.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction A 40-Hz white light emitting diode (WLED) has emerged as an alternative nonpharmacological and noninvasive approach to Alzheimer disease (AD). Here, we investigated the therapeutic effects of 40-Hz WLED on psychiatric symptoms (PS) and the contribution of mitochondrial factors in the early stages of sporadic AD (sAD) in rats. Methods In male Wistar rats, the AD model was induced via intracerebroventricular (ICV) injection of streptozotocin (STZ). After recovering (7 days) from stereotaxic surgery, 40-Hz WLED exposure was performed for 7 consecutive days lasting 15 min/d. Behavioral (elevated plus maze (EPM), force swim test, and social interaction test), enzymatic, and molecular assays were conducted 24 hours after the last 40-Hz WLED exposure. Results Behavioral tasks revealed that 40-Hz WLED exposure in STZ-induced toxicity rats lowered anxiety and depression and increased social interaction. Furthermore, the 40-Hz WLED therapy in STZ-induced toxicity rats increased catalase (CAT) activity in the amygdala, decreased the activity of monoamine oxidases A and B in the whole brain, and increased mitochondrial DNA in the hippocampus. Conclusion The current study supports that 40-Hz WLED therapy improved PS and biomarkers in the early stages of sAD. Also, a potential relationship between PS and alterations in mitochondrial markers in certain brain regions seems to exist.
Collapse
Affiliation(s)
- Elham Soleimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Nairuz T, Sangwoo-Cho, Lee JH. Photobiomodulation Therapy on Brain: Pioneering an Innovative Approach to Revolutionize Cognitive Dynamics. Cells 2024; 13:966. [PMID: 38891098 PMCID: PMC11171912 DOI: 10.3390/cells13110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Photobiomodulation (PBM) therapy on the brain employs red to near-infrared (NIR) light to treat various neurological and psychological disorders. The mechanism involves the activation of cytochrome c oxidase in the mitochondrial respiratory chain, thereby enhancing ATP synthesis. Additionally, light absorption by ion channels triggers the release of calcium ions, instigating the activation of transcription factors and subsequent gene expression. This cascade of events not only augments neuronal metabolic capacity but also orchestrates anti-oxidant, anti-inflammatory, and anti-apoptotic responses, fostering neurogenesis and synaptogenesis. It shows promise for treating conditions like dementia, stroke, brain trauma, Parkinson's disease, and depression, even enhancing cognitive functions in healthy individuals and eliciting growing interest within the medical community. However, delivering sufficient light to the brain through transcranial approaches poses a significant challenge due to its limited penetration into tissue, prompting an exploration of alternative delivery methods such as intracranial and intranasal approaches. This comprehensive review aims to explore the mechanisms through which PBM exerts its effects on the brain and provide a summary of notable preclinical investigations and clinical trials conducted on various brain disorders, highlighting PBM's potential as a therapeutic modality capable of effectively impeding disease progression within the organism-a task often elusive with conventional pharmacological interventions.
Collapse
Affiliation(s)
| | | | - Jong-Ha Lee
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea; (T.N.); (S.-C.)
| |
Collapse
|
18
|
Huang Z, Feng Y, Zhang Y, Ma X, Zong X, Jordan JD, Zhang Q. Enhancing axonal myelination: Clemastine attenuates cognitive impairment in a rat model of diffuse traumatic brain injury. Transl Res 2024; 268:40-50. [PMID: 38246342 PMCID: PMC11081842 DOI: 10.1016/j.trsl.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/10/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) has a significant impact on cognitive function, affecting millions of people worldwide. Myelin loss is a prominent pathological feature of TBI, while well-functioning myelin is crucial for memory and cognition. Utilizing drug repurposing to identify effective drug candidates for TBI treatment has gained attention. Notably, recent research has highlighted the potential of clemastine, an FDA-approved allergy medication, as a promising pro-myelinating drug. Therefore, in this study, we aim to investigate whether clemastine can enhance myelination and alleviate cognitive impairment following mild TBI using a clinically relevant rat model of TBI. Mild diffuse TBI was induced using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA). Animals were treated with either clemastine or an equivalent volume of the vehicle from day 1 to day 14 post-injury. Following treatment, memory-related behavioral tests were conducted, and myelin pathology in the cortex and hippocampus was assessed through immunofluorescence staining and ProteinSimple® capillary-based immunoassay. Our results showed that TBI leads to significant myelin loss, axonal damage, glial activation, and a decrease in mature oligodendrocytes in both the cortex and hippocampus. The TBI animals also exhibited notable deficits in memory-related tests. In contrast, animals treated with clemastine showed an increase in mature oligodendrocytes, enhanced myelination, and improved performance in the behavioral tests. These preliminary findings support the therapeutic value of clemastine in alleviating TBI-induced cognitive impairment, with substantial clinical translational potential. Our findings also underscore the potential of remyelinating therapies for TBI.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Yu Feng
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Yulan Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Xuemei Zong
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| |
Collapse
|
19
|
Huang Z, Hamblin MR, Zhang Q. Photobiomodulation in experimental models of Alzheimer's disease: state-of-the-art and translational perspectives. Alzheimers Res Ther 2024; 16:114. [PMID: 38773642 PMCID: PMC11106984 DOI: 10.1186/s13195-024-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
Alzheimer's disease (AD) poses a significant public health problem, affecting millions of people across the world. Despite decades of research into therapeutic strategies for AD, effective prevention or treatment for this devastating disorder remains elusive. In this review, we discuss the potential of photobiomodulation (PBM) for preventing and alleviating AD-associated pathologies, with a focus on the biological mechanisms underlying this therapy. Future research directions and guidance for clinical practice for this non-invasive and non-pharmacological therapy are also highlighted. The available evidence indicates that different treatment paradigms, including transcranial and systemic PBM, along with the recently proposed remote PBM, all could be promising for AD. PBM exerts diverse biological effects, such as enhancing mitochondrial function, mitigating the neuroinflammation caused by activated glial cells, increasing cerebral perfusion, improving glymphatic drainage, regulating the gut microbiome, boosting myokine production, and modulating the immune system. We suggest that PBM may serve as a powerful therapeutic intervention for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
20
|
Lutfy RH, Salam SA, Mohammed HS, Shakweer MM, Essawy AE. Photomodulatory effects in the hypothalamus of sleep-deprived young and aged rats. Behav Brain Res 2024; 458:114731. [PMID: 37898350 DOI: 10.1016/j.bbr.2023.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insufficient sleep is associated with impaired hypothalamic activity and declined attentional performance. In this study, alterations in the hypothalamus of REM sleep-deprived (SD) young and aged rats, and the modulatory effect of near-infrared (NIR) laser were investigated. Forty-eight male Wistar rats (24 young at 2 months and 24 senile at 14 months) were divided into three groups: the control, the SD group subjected to 72 hr of sleep deprivation, and the transcranial-NIR laser-treated (TLT) group subjected to SD for 72 hr and irradiated with 830 nm laser. The hypothalamic levels of oxidative stress, inflammatory biomarkers, antioxidant enzymes, mitochondrial cytochrome C oxidase (CCO), apoptotic markers (BAX, BCL-2), and neuronal survival-associated genes (BDNF, GLP-1) were evaluated. Furthermore, the hypothalamic tissue alterations were analyzed via histological examination. The results revealed that TLT treatment has enhanced the antioxidant status, prevented oxidative insults, suppressed neuroinflammation, regulated CCO activity, reduced apoptotic markers, and tuned the survival genes (BDNF & GLP-1) in hypothalamic tissue of SD young and aged rats. Microscopically, TLT treatment has ameliorated the SD-induced alterations and restored the normal histological features of hypothalamus tissue. Moreover, the obtained data showed that SD and NIR laser therapy are age-dependent. Altogether, our findings emphasize the age-dependent adverse effects of SD on the hypothalamus and suggest the use of low-laser NIR radiation as a potential non-invasive and therapeutic approach against SD-induced adverse effects in young and aged animals.
Collapse
Affiliation(s)
- Radwa H Lutfy
- Zoology Department, Faculty of Science, Alexandria University, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Pathology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
21
|
Sleem T, Decourt B, Sabbagh MN. Nonmedication Devices in Development for the Treatment of Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:241-255. [PMID: 38405349 PMCID: PMC10894612 DOI: 10.3233/adr-230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
Huge investments continue to be made in treatment for Alzheimer's disease (AD), with more than one hundred drugs currently in development. Pharmacological approaches and drug development, particularly those targeting amyloid-β, have dominated the therapeutic landscape. At the same time, there is also a growing interest in devices for treating AD. This review aimed to identify and describe devices under development for AD treatment. In this review, we queried the devices that are in development for the treatment of AD. PubMed was searched through the end of 2021 using the terms "device," "therapeutics," and "Alzheimer's" for articles that report on devices to treat AD. Ten devices with 31 references were identified as actively being developed for the treatment of AD. Many of these devices are far along in development. Device-based therapies are often overlooked when evaluating treatment approaches to AD. However, many devices for treating AD are in development and some show promising results.
Collapse
Affiliation(s)
- Tamara Sleem
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
22
|
Shen Q, Guo H, Yan Y. Photobiomodulation for Neurodegenerative Diseases: A Scoping Review. Int J Mol Sci 2024; 25:1625. [PMID: 38338901 PMCID: PMC10855709 DOI: 10.3390/ijms25031625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases involve the progressive dysfunction and loss of neurons in the central nervous system and thus present a significant challenge due to the absence of effective therapies for halting or reversing their progression. Based on the characteristics of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), which have prolonged incubation periods and protracted courses, exploring non-invasive physical therapy methods is essential for alleviating such diseases and ensuring that patients have an improved quality of life. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits and functions by stimulating, healing, regenerating, and protecting organizations at risk of injury, degradation, or death. Over the last two decades, PBM has gained widespread recognition as a non-invasive physical therapy method, showing efficacy in pain relief, anti-inflammatory responses, and tissue regeneration. Its application has expanded into the fields of neurology and psychiatry, where extensive research has been conducted. This paper presents a review and evaluation of studies investigating PBM in neurodegenerative diseases, with a specific emphasis on recent applications in AD and PD treatment for both animal and human subjects. Molecular mechanisms related to neuron damage and cognitive impairment are scrutinized, offering valuable insights into PBM's potential as a non-invasive therapeutic strategy.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haoyun Guo
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yihua Yan
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
23
|
Ramakrishnan P, Joshi A, Fazil M, Yadav P. A comprehensive review on therapeutic potentials of photobiomodulation for neurodegenerative disorders. Life Sci 2024; 336:122334. [PMID: 38061535 DOI: 10.1016/j.lfs.2023.122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
A series of experimental trials over the past two centuries has put forth Photobiomodulation (PBM) as a treatment modality that utilizes colored lights for various conditions. While in its cradle, PBM was used for treating simple conditions such as burns and wounds, advancements in recent years have extended the use of PBM for treating complex neurodegenerative diseases (NDDs). PBM has exhibited the potential to curb several symptoms and signs associated with NDDs. While several of the currently used therapeutics cause adverse side effects alongside being highly invasive, PBM on the contrary, seems to be broad-acting, less toxic, and non-invasive. Despite being projected as an ideal therapeutic for NDDs, PBM still isn't considered a mainstream treatment modality due to some of the challenges and knowledge gaps associated with it. Here, we review the advantages of PBM summarized above with an emphasis on the common mechanisms that underlie major NDDs and how PBM helps tackle them. We also discuss important questions such as whether PBM should be considered a mainstay treatment modality for these conditions and if PBM's properties can be harnessed to develop prophylactic therapies for high-risk individuals and also highlight important animal studies that underscore the importance of PBM and the challenges associated with it. Overall, this review is intended to bring the major advances made in the field to the spotlight alongside addressing the practicalities and caveats to develop PBM as a major therapeutic for NDDs.
Collapse
Affiliation(s)
- Pooja Ramakrishnan
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Aradhana Joshi
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Mohamed Fazil
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India; School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
24
|
Lin H, Li D, Zhu J, Liu S, Li J, Yu T, Tuchin VV, Semyachkina-Glushkovskaya O, Zhu D. Transcranial photobiomodulation for brain diseases: review of animal and human studies including mechanisms and emerging trends. NEUROPHOTONICS 2024; 11:010601. [PMID: 38317779 PMCID: PMC10840571 DOI: 10.1117/1.nph.11.1.010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The brain diseases account for 30% of all known diseases. Pharmacological treatment is hampered by the blood-brain barrier, limiting drug delivery to the central nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising technology for treating brain diseases, due to its effectiveness, non-invasiveness, and affordability. tPBM has been widely used in pre-clinical experiments and clinical trials for treating brain diseases, such as stroke and Alzheimer's disease. This review provides a comprehensive overview of tPBM. We summarize emerging trends and new discoveries in tPBM based on over one hundred references published in the past 20 years. We discuss the advantages and disadvantages of tPBM and highlight successful experimental and clinical protocols for treating various brain diseases. A better understanding of tPBM mechanisms, the development of guidelines for clinical practice, and the study of dose-dependent and personal effects hold great promise for progress in treating brain diseases.
Collapse
Affiliation(s)
- Hao Lin
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Dongyu Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
- Huazhong University of Science and Technology, School of Optical Electronic Information, Wuhan, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Shaojun Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Jingting Li
- Huazhong University of Science and Technology, School of Engineering Sciences, Wuhan, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Valery V. Tuchin
- Saratov State University, Science Medical Center, Saratov, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow, Russia
- Tomsk State University, Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Science Medical Center, Saratov, Russia
- Humboldt University, Department of Physics, Berlin, Germany
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| |
Collapse
|
25
|
Chamkouri H, Liu Q, Zhang Y, Chen C, Chen L. Brain photobiomodulation therapy on neurological and psychological diseases. JOURNAL OF BIOPHOTONICS 2024; 17:e202300145. [PMID: 37403428 DOI: 10.1002/jbio.202300145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Photobiomodulation (PBM) therapy is an innovative treatment for neurological and psychological conditions. Complex IV of the mitochondrial respiratory chain can be stimulated by red light, which increases ATP synthesis. In addition, the ion channels' light absorption causes the release of Ca2+, which activates transcription factors and changes gene expression. Neuronal metabolism is improved by brain PBM therapy, which also promotes synaptogenesis and neurogenesis as well as anti-inflammatory. Its depression-treating potential is attracting attention for other conditions, including Parkinson's disease and dementia. Giving enough dosage for optimum stimulation using the transcranial PBM technique is challenging because of the rapidly increasing attenuation of light transmission in tissue. Different strategies like intranasal and intracranial light delivery systems have been proposed to overcome this restriction. The most recent preclinical and clinical data on the effectiveness of brain PBM therapy are studied in this review article.
Collapse
Affiliation(s)
- Hossein Chamkouri
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Qi Liu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yuqin Zhang
- Department of Neurology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Changchun Chen
- Department of Neurology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Lei Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
- Intelligent manufacturing institute of HFUT, Hefei, China
| |
Collapse
|
26
|
Feng W, Domeracki A, Park C, Shah S, Chhatbar PY, Pawar S, Chang C, Hsu PC, Richardson E, Hasan D, Sokhadze E, Zhang Q, Liu H. Revisiting Transcranial Light Stimulation as a Stroke Therapeutic-Hurdles and Opportunities. Transl Stroke Res 2023; 14:854-862. [PMID: 36369294 DOI: 10.1007/s12975-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Near-infrared laser therapy, a special form of transcranial light therapy, has been tested as an acute stroke therapy in three large clinical trials. While the NEST trials failed to show the efficacy of light therapy in human stroke patients, there are many lingering questions and lessons that can be learned. In this review, we summarize the putative mechanism of light stimulation in the setting of stroke, highlight barriers, and challenges during the translational process, and evaluate light stimulation parameters, dosages and safety issues, choice of outcomes, effect size, and patient selection criteria. In the end, we propose potential future opportunities with transcranial light stimulation as a cerebroprotective or restorative tool for future stroke treatment.
Collapse
Affiliation(s)
- Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Alexis Domeracki
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Christine Park
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shreyansh Shah
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Swaroop Pawar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cherylee Chang
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Po-Chun Hsu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Eric Richardson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - David Hasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Estate Sokhadze
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Quanguang Zhang
- Department Department of Neurology, LSU Health Sciences Center, Shreveport, LA, 71103, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
27
|
Wu Y, Zhou K, Liu B, Xu J, Lei L, Hu J, Cheng X, Zhong F, Wang S. Glial Activation, Mitochondrial Imbalance, and Akt/mTOR Signaling May Be Potential Mechanisms of Cognitive Impairment in Heart Failure Mice. Neurotox Res 2023; 41:589-603. [PMID: 37668877 DOI: 10.1007/s12640-023-00655-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 09/06/2023]
Abstract
Heart failure (HF) is a major health burden worldwide, with approximately half of HF patients having a comorbid cognitive impairment (CI). However, it is still unclear how CI develops in patients with HF. In the present study, a mice model of heart failure was established by ligating the left anterior descending coronary artery. Echocardiography 1 month later confirmed the decline in ejection fraction and ventricular remodeling. Cognitive function was examined by the Pavlovian fear conditioning and the Morris water maze. HF group cued fear memory, spatial memory, and learning impairment, accompanied by activation of glial cells (astrocytes, microglia, and oligodendrocytes) in the hippocampus. In addition, the mitochondrial biogenesis genes TFAM and SIRT1 decreased, and the fission gene DRP1 increased in the hippocampus. Damaged mitochondria release excessive ROS, and the ability to produce ATP decreases. Damaged swollen mitochondria with altered morphology and aberrant inner-membrane crista were observed under a transmission electron microscope. Finally, Akt/mTOR signaling was upregulated in the hippocampus of heart failure mice. These findings suggest that activation of Akt/mTOR signaling, glial activation, and mitochondrial dynamics imbalance could trigger cognitive impairment in the pathological process of heart failure mice.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Kaiyi Zhou
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Baiyang Liu
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jindong Xu
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liming Lei
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiaqi Hu
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao Cheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, China.
| | - Feng Zhong
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
29
|
Shen Y, Wang M, Li S, Yang J. Current emerging novel therapies for Alzheimer's disease and the future prospects of magneto-mechanical force therapy. J Mater Chem B 2023; 11:9404-9418. [PMID: 37721092 DOI: 10.1039/d3tb01629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly, and the morbidity increases with the aging population aggravation. The clinical symptoms of AD mainly include cognitive impairment and memory loss, which undoubtedly bring a huge burden to families and society. Currently, the drugs in clinical use only improve the symptoms of AD but do not cure or prevent the progression of the disease. Therefore, it is urgent for us to develop novel therapeutic strategies for effective AD treatment. To provide a better theoretical basis for exploring novel therapeutic strategies in future AD treatment, this review introduces the recent AD treatment technologies from three aspects, including nanoparticle (NP) based drug therapy, biological therapy and physical therapy. The nanoparticle-mediated therapeutic approaches at the nanomaterial-neural interface and biological system are described in detail, and in particular the magneto-regulated strategies by magnetic field actuating magnetic nanoparticles are highlighted. Promising application of magneto-mechanical force regulated strategy in future AD treatment is also addressed, which offer possibilities for the remote manipulation in a precise manner. In the future, it may be possible for physicians to realize a remote, precise and effective therapy for AD using magneto-mechanical force regulated technology based on the combination of magnetic nanoparticles and an external magnetic field.
Collapse
Affiliation(s)
- Yajing Shen
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Shutang Li
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
30
|
Zhu Q, Cao X, Zhang Y, Zhou Y, Zhang J, Zhang X, Zhu Y, Xue L. Repeated Low-Level Red-Light Therapy for Controlling Onset and Progression of Myopia-a Review. Int J Med Sci 2023; 20:1363-1376. [PMID: 37786442 PMCID: PMC10542022 DOI: 10.7150/ijms.85746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/10/2023] [Indexed: 10/04/2023] Open
Abstract
Repeated low-level red-light (RLRL), characterized by increased energy supply and cellular metabolism, thus enhancing metabolic repair processes, has gained persistent worldwide attention in recent years as a new novel scientific approach for therapeutic application in myopia. This therapeutic revolution led by RLRL therapy is due to significant advances in bioenergetics and photobiology, for instance, enormous progresses in photobiomodulation regulated by cytochrome c oxidase, the primary photoreceptor of the light in the red to near infrared regions of the electromagnetic spectrum, as the primary mechanism of action in RLRL therapy. This oxidase is also a key mitochondrial enzyme for cellular bioenergetics, especially for the nerve cells in the retina and brain. In addition, dopamine (DA)-enhanced release of nitric oxide may also be involved in controlling myopia by activation of nitric oxide synthase, enhancing cGMP signaling. Recent evidence has also suggested that RLRL may inhibit myopia progression by inhibiting spherical equivalent refraction (SER) progression and axial elongation without adverse effects. In this review, we provide scientific evidence for RLRL therapy as a unique paradigm to control myopia and support the theory that targeting neuronal energy metabolism may constitute a major target for the neurotherapeutics of myopia, with emphasis on its molecular, cellular, and nervous tissue levels, and the potential benefits of RLRL therapy for myopia.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Xuejun Cao
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Yuan Zhang
- BioTissue (Tissue Tech, Inc.), Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33126 USA
| | - Yuan Zhou
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Jieying Zhang
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Xiaofan Zhang
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Yingting Zhu
- BioTissue (Tissue Tech, Inc.), Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33126 USA
| | - Liping Xue
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, China
| |
Collapse
|
31
|
Cho Y, Tural U, Iosifescu DV. Efficacy of Transcranial Photobiomodulation on Depressive Symptoms: A Meta-Analysis. Photobiomodul Photomed Laser Surg 2023; 41:460-466. [PMID: 37651208 PMCID: PMC10518694 DOI: 10.1089/photob.2023.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023] Open
Abstract
Background: Transcranial photobiomodulation (tPBM) is a novel, noninvasive, device-based intervention, which has been tested as a possible treatment for various neurological and psychiatric conditions. Recently, it has been investigated as an innovative treatment for major depressive disorder (MDD). There have been several animal and clinical studies that evaluated the underlying mechanism and the efficacy of its antidepressant effects, but results have been conflicting. Objective: Thus, we conducted the first meta-analysis on effects of tPBM on depressive symptoms. Materials and methods: Thirty original articles on tPBM were retrieved, eight of them met criteria for inclusion to a random effects meta-analysis. Results: tPBM appeared effective in decreasing depressive symptom severity regardless of diagnosis (Hedges' g = 1.415, p < 0.001, k = 8), but a significant heterogeneity has been found. The meta-analysis of single-arm studies (baseline to endpoint changes) limited to participants with MDD has supported the significant effect of tPBM in reducing the depression severity, without a significant heterogeneity (Hedges' g = 1.142, 95% confidence interval = 0.780-1.504, z = 6.19, p < 0.001, k = 5). However, the meta-analysis of the few double-blind, sham-controlled studies in MDD has not supported the statistically significant superiority of tPBM over sham (Hedges' g = 0.499, p = 0.211, k = 3), although a sample size bias is likely present. Conclusions: Overall, this meta-analysis provides weak support for the promising role of tPBM in the treatment of depressive symptoms. Dose finding studies to determine optimal tPBM parameters followed by larger, randomized, sham-controlled studies will be needed to fully demonstrate the antidepressant efficacy of tPBM.
Collapse
Affiliation(s)
- Yoonju Cho
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Umit Tural
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Dan V. Iosifescu
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
32
|
Semyachkina-Glushkovskaya O, Penzel T, Poluektov M, Fedosov I, Tzoy M, Terskov A, Blokhina I, Sidorov V, Kurths J. Phototherapy of Alzheimer's Disease: Photostimulation of Brain Lymphatics during Sleep: A Systematic Review. Int J Mol Sci 2023; 24:10946. [PMID: 37446135 DOI: 10.3390/ijms241310946] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The global number of people with Alzheimer's disease (AD) doubles every 5 years. It has been established that unless an effective treatment for AD is found, the incidence of AD will triple by 2060. However, pharmacological therapies for AD have failed to show effectiveness and safety. Therefore, the search for alternative methods for treating AD is an urgent problem in medicine. The lymphatic drainage and removal system of the brain (LDRSB) plays an important role in resistance to the progression of AD. The development of methods for augmentation of the LDRSB functions may contribute to progress in AD therapy. Photobiomodulation (PBM) is considered to be a non-pharmacological and safe approach for AD therapy. Here, we highlight the most recent and relevant studies of PBM for AD. We focus on emerging evidence that indicates the potential benefits of PBM during sleep for modulation of natural activation of the LDRSB at nighttime, providing effective removal of metabolites, including amyloid-β, from the brain, leading to reduced progression of AD. Our review creates a new niche in the therapy of brain diseases during sleep and sheds light on the development of smart sleep technologies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Interdisziplinäres Schlafmedizinisches Zentrum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mikhail Poluektov
- Department of Nervous Diseases, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, Building 4, 119435 Moscow, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Tzoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Viktor Sidorov
- Company "Lazma" for Research and Production Enterprise of Laser Medical Equipment, Kuusinena Str. 11, 123308 Moscow, Russia
| | - Jürgen Kurths
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
33
|
Su M, Nizamutdinov D, Liu H, Huang JH. Recent Mechanisms of Neurodegeneration and Photobiomodulation in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119272. [PMID: 37298224 DOI: 10.3390/ijms24119272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the world's primary cause of dementia, a condition characterized by significant progressive declines in memory and intellectual capacities. While dementia is the main symptom of Alzheimer's, the disease presents with many other debilitating symptoms, and currently, there is no known treatment exists to stop its irreversible progression or cure the disease. Photobiomodulation has emerged as a very promising treatment for improving brain function, using light in the range from red to the near-infrared spectrum depending on the application, tissue penetration, and density of the target area. The goal of this comprehensive review is to discuss the most recent achievements in and mechanisms of AD pathogenesis with respect to neurodegeneration. It also provides an overview of the mechanisms of photobiomodulation associated with AD pathology and the benefits of transcranial near-infrared light treatment as a potential therapeutic solution. This review also discusses the older reports and hypotheses associated with the development of AD, as well as some other approved AD drugs.
Collapse
Affiliation(s)
- Matthew Su
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jason H Huang
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| |
Collapse
|
34
|
Zhu Z, Li X, Wang X, Zuo X, Ma Y, Gao X, Liang Z, Zhang Z, Song Z, Ding T, Ju C, Li P, Li K, Zhang J, Quan H, Wang Z, Hu X. Photobiomodulation augments the effects of mitochondrial transplantation in the treatment of spinal cord injury in rats by facilitating mitochondrial transfer to neurons via Connexin 36. Bioeng Transl Med 2023; 8:e10473. [PMID: 37206245 PMCID: PMC10189468 DOI: 10.1002/btm2.10473] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial transplantation is a promising treatment for spinal cord injury (SCI), but it has the disadvantage of low efficiency of mitochondrial transfer to targeted cells. Here, we demonstrated that Photobiomodulation (PBM) could promote the transfer process, thus augmenting the therapeutic effect of mitochondrial transplantation. In vivo experiments, motor function recovery, tissue repair, and neuronal apoptosis were evaluated in different treatment groups. Under the premise of mitochondrial transplantation, the expression of Connex36 (Cx36), the trend of mitochondria transferred to neurons, and its downstream effects, such as ATP production and antioxidant capacity, were evaluated after PBM intervention. In in vitro experiments, dorsal root ganglia (DRG) were cotreated with PBM and 18β-GA (a Cx36 inhibitor). In vivo experiments showed that PBM combined with mitochondrial transplantation could increase ATP production and reduce oxidative stress and neuronal apoptosis levels, thereby promoting tissue repair and motor function recovery. In vitro experiments further verified that Cx36 mediated the transfer of mitochondria into neurons. PBM could facilitate this progress via Cx36 both in vivo and in vitro. The present study reports a potential method of using PBM to facilitate the transfer of mitochondria to neurons for the treatment of SCI.
Collapse
Affiliation(s)
- Zhijie Zhu
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xin Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
- 967 Hospital of People's Liberation Army Joint Logistic Support ForceDalianLiaoningChina
| | - Xuankang Wang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xiaoshuang Zuo
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Yangguang Ma
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xue Gao
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhuowen Liang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhihao Zhang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhiwen Song
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Tan Ding
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Cheng Ju
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Penghui Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Kun Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Jiawei Zhang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Huilin Quan
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhe Wang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xueyu Hu
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| |
Collapse
|
35
|
Zhong J, Zhao L, Wu W, Chen J, Yuan S, Zhang X, Wang Z. Transcranial near-infrared laser improves postoperative neurocognitive disorder in aged mice via SIRT3/AMPK/Nrf2 pathway. Front Neurosci 2023; 16:1100915. [PMID: 36760797 PMCID: PMC9904281 DOI: 10.3389/fnins.2022.1100915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Background Postoperative neurocognitive disorder (PND) is a common central nervous system (CNS) complication that might increase the morbidity and mortality of elderly patients after anesthesia/surgery. Neuroinflammation, oxidative stress, and synaptic dysfunction are closely related to cognitive dysfunction, an important clinical feature of PND. Transcranial near-infrared laser (TNIL) is regarded as an effective treatment for cognitive-related diseases by improving mitochondrial function and alleviating neuroinflammation and oxidative stress damage. Materials and methods Aged male C57BL/6 mice underwent a carotid artery exposure procedure under isoflurane anesthesia. We treated PND-aged mice for three consecutive days (4 h post-operation, 1-laser) with 810 nm continuous wave (CW) laser 18 J/cm2 at 120 mW/cm2. The post-treatment evaluation included behavioral tests, RTq-PCR, immunofluorescence, and Western blot. Results The results demonstrated that TNIL improved PND and the levels of synaptic function-associated proteins such as post-synaptic density protein 95 (PSD95), synaptophysin (SYP), and brain-derived neurotrophic factor (BDNF). Besides, neuroinflammatory cytokine levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β as well as microglia activation and oxidative stress damage were attenuated after TNIL treatment in aged mice with PND. Further investigation suggested that TNIL relieved oxidative stress response by activating the SIRT3/AMPK/Nrf2 pathway. Conclusion Transcranial near-infrared laser improved cognitive impairment in aged mice with PND, which may be a promising therapeutic for PND.
Collapse
Affiliation(s)
- Junying Zhong
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Le Zhao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wensi Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiawei Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shangyan Yuan
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,*Correspondence: Xiaojun Zhang,
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Zhi Wang,
| |
Collapse
|
36
|
Tian Z, Wang P, Huang K, Yu J, Zhang M, Liu Y, Zhao H, Zhu B, Huang X, Tong Z. Photobiomodulation for Alzheimer's disease: photoelectric coupling effect on attenuating Aβ neurotoxicity. Lasers Med Sci 2023; 38:39. [PMID: 36633696 PMCID: PMC9837011 DOI: 10.1007/s10103-022-03692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) and dementia are the most worrying health problems faced by people globally today. Although the pathological features of AD consisting of amyloid-beta (Aβ) plaques in the extracellular space (ECS) and intracellular tau tangles are well established, the developed medicines targeting these two proteins have not obtained the expected clinical effects. Photobiomodulation (PBM) describes the therapeutic use of red light (RL) or near-infrared light (NIR) to serve as a noninvasive neuroprotective strategy for brain diseases. The present review discusses the mechanisms of the photoelectric coupling effect (light energy-induced special electronic transition-related alterations in protein structure) of PBM on reducing Aβ toxicity. On the one hand, RL or NIR can directly disassemble Aβ in vitro and in vivo. On the other hand, formaldehyde (FA)-inhibited catalase (CAT) and H2O2-inactived formaldehyde dehydrogenase (FDH) are formed a vicious circle in AD; however, light energy not only activates FDH to degrade excessive FA (which crosslinks Aβ monomer to form Aβ oligomers and senile plaques) but also sensitizes CAT to reduce hydrogen peroxide levels (H2O2, which can facilitate Aβ aggregation and enhance FA generation). In addition, it also activates mitochondrial cytochrome-c to produce ATP in the neurons. Clinical trials of phototherapeutics or oral coenzyme Q10 have shown positive effects in AD patients. Hence, a promising strategy combined PBM with nanopacked Q10 has been proposed to apply for treating AD.
Collapse
Affiliation(s)
- Zixi Tian
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Panpan Wang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
- Department Neurology, Wenzhou Medical University Affiliated Hospital 3, Wenzhou, 325200, China
| | - Kai Huang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Yu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mange Zhang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yanming Liu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hang Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Beilei Zhu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Department Neurology, Wenzhou Medical University Affiliated Hospital 3, Wenzhou, 325200, China.
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
37
|
Chen L, Xue J, Zhao Q, Liang X, Zheng L, Fan Z, Souare ISJ, Suo Y, Wei X, Ding D, Mao Y. A Pilot Study of Near-Infrared Light Treatment for Alzheimer's Disease. J Alzheimers Dis 2023; 91:191-201. [PMID: 36373323 DOI: 10.3233/jad-220866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Laboratory investigations have demonstrated that near-infrared (NIR) light treatment can reduce amyloid-β burden in models of Alzheimer's disease (AD). However, previous clinical studies are rather insufficient. OBJECTIVE Before starting a large-scale clinical trial, we performed a pilot study to characterize the efficacy of NIR light for AD patients. METHODS Twenty participants with mild to moderate AD were assigned randomly to the intervention (1060-1080 nm and 800-820 nm NIR light treatment for 12 weeks) or control group (without sham treatment). Safety and efficacy were evaluated at baseline, week 4, 8, and 12, and 4 weeks after treatment. RESULTS In the intervention and control groups at week 12, mean changes from baseline on the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-Cog) were -3.1 and -1.3 (p = 0.5689). Mean changes from baseline on the Activities of Daily Living (ADL) were -3.6 versus 3.1 (p = 0.0437). Mean changes from baseline on the Mini-Mental State Examination (MMSE) were 4.4 versus 1.0 (p = 0.0253). The percentage of participants who exhibited a change larger than 4 points from baseline to week 12 was determined for the intervention and control groups on the ADAS-Cog (57% versus 29%), ADL (29% versus 0%), and MMSE (57% versus 14%). Treatment with NIR light did not increase the incidence of adverse events in participants. CONCLUSION NIR light treatment appears to be safe and potentially beneficial for AD patients. It improved cognitive function and activities of daily living. The preliminary data encouraged us to launch a large-sample, multicenter, double-blind clinical trial.
Collapse
Affiliation(s)
- Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jun Xue
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zheng
- Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Ibrahima Sory Jnr Souare
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Xunbin Wei
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
38
|
Monteiro F, Carvalho Ó, Sousa N, Silva FS, Sotiropoulos I. Photobiomodulation and visual stimulation against cognitive decline and Alzheimer's disease pathology: A systematic review. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12249. [PMID: 36447479 PMCID: PMC9695760 DOI: 10.1002/trc2.12249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022]
Abstract
Introduction Given the ineffectiveness of the available drug treatment against Alzheimer disease (AD), light-based therapeutic modalities have been increasingly receiving attention with photobiomodulation (PBM) and, more recently, visual stimulation (VS) being among the most promising approaches. However, the PBM and VS light parameters tested so far, as well as their outcomes, vary a lot with conflicting results being reported. Methods Based on Scopus, PubMed, and Web of Science databases search, this systematic review summarizes, compares, and discusses 43 cell, animal, and human studies of PBM and VS related to cognitive decline and AD pathology. Results Preclinical work suggests that PBM with 640±30-nm light and VS at 40 Hz attenuates Aβ and Tau pathology and improves neuronal and synaptic plasticity with most studies pointing towards enhancement of degradation/clearance mechanisms in the brain of AD animal models. Despite the gap of the translational evidence for both modalities, the few human studies performed so far support the use of PBM at 810-870 nm light pulsing at 40 Hz for improving brain network connectivity and memory in older subjects and AD patients, while 40 Hz VS in humans seems to improve cognition; further clinical investigation is urgently required to clarify the beneficial impact of PBM and VS in AD patients. Discussion This review highlights PBM and VS as promising light-based therapeutic approaches against AD brain neuropathology and related cognitive decline, clarifying the most effective light parameters for further preclinical and clinical testing and use. Highlights Light-based brain stimulation produces neural entrainment and reverts neuronal damageBrain PBM and VS attenuate AD neuropathologyPMB and VS are suggested to improve cognitive performance in AD patients and animal modelsLight stimulation represents a promising therapeutic strategy against neurodegeneration.
Collapse
Affiliation(s)
- Francisca Monteiro
- Center for Microelectromechanical Systems (CMEMS)Campus AzurémUniversity of MinhoGuimarãesPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- LABBELS—Associate LaboratoryUniversity of MinhoGuimarãesPortugal
| | - Óscar Carvalho
- Center for Microelectromechanical Systems (CMEMS)Campus AzurémUniversity of MinhoGuimarãesPortugal
- LABBELS—Associate LaboratoryUniversity of MinhoGuimarãesPortugal
| | - Nuno Sousa
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de GualtarBragaPortugal
| | - Filipe S. Silva
- Center for Microelectromechanical Systems (CMEMS)Campus AzurémUniversity of MinhoGuimarãesPortugal
- LABBELS—Associate LaboratoryUniversity of MinhoGuimarãesPortugal
| | - Ioannis Sotiropoulos
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de GualtarBragaPortugal
- Institute of Biosciences and ApplicationsNCSR DemokritosAthensGreece
| |
Collapse
|
39
|
Abstract
Although the cause(s) of Alzheimer's disease in the majority of cases remains elusive, it has long been associated with hypertension. In animal models of the disease, hypertension has been shown to exacerbate Alzheimer-like pathology and behavior, while in humans, hypertension during mid-life increases the risk of developing the disease later in life. Unfortunately, once individuals are diagnosed with the disease, there are few therapeutic options available. There is neither an effective symptomatic treatment, one that treats the debilitating cognitive and memory deficits, nor, more importantly, a neuroprotective treatment, one that stops the relentless progression of the pathology. Further, there is no specific preventative treatment that offsets the onset of the disease. A key factor or clue in this quest for an effective preventative and therapeutic treatment may lie in the contribution of hypertension to the disease. In this review, we explore the idea that photobiomodulation, the application of specific wavelengths of light onto body tissues, can reduce the neuropathology and behavioral deficits in Alzheimer's disease by controlling hypertension. We suggest that treatment with photobiomodulation can be an effective preventative and therapeutic option for this neurodegenerative disease.
Collapse
Affiliation(s)
- Audrey Valverde
- Université Grenoble Alpes, Fonds de dotation Clinatec, Grenoble, France
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de dotation Clinatec, Grenoble, France,
Institute of Ophthalmology, University College London, London, United Kingdom,Correspondence to: John Mitrofanis, E-mail:
| |
Collapse
|
40
|
Xie K, El Khoury H, Mitrofanis J, Austin PJ. A systematic review of the effect of photobiomodulation on the neuroinflammatory response in animal models of neurodegenerative diseases. Rev Neurosci 2022; 34:459-481. [DOI: 10.1515/revneuro-2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/18/2022] [Indexed: 12/09/2022]
Abstract
Abstract
This systematic review examines the effect of photobiomodulation (PBM), the application of red to near infrared light on body tissues, on the neuroinflammatory response and oxidative stress in animal models of neurodegenerative diseases. The research question and search protocol were prospectively registered on the PROSPERO database. Neurodegenerative diseases are becoming ever more prevalent in the ageing populations across the Western world, with no disease-modifying or neuroprotective treatment options being available. Hence there is a real need for the development of effective treatment options for patients. Inflammatory responses and oxidative stress within the central nervous system have a strong correlation with neuronal cell death. PBM is a non-invasive therapeutic option that has shown efficacy and promising effects in animal models of neurodegenerative disease; many studies have reported neuroprotection and improved behavioural outcomes. To the best of our knowledge, there has been no previous study that has reviewed the anti-inflammatory and the antioxidant effect of PBM in the context of neurodegeneration. This review has examined this relationship in animal models of a range of neurodegenerative diseases. We found that PBM can effectively reduce glial activation, pro-inflammatory cytokine expression and oxidative stress, whilst increasing anti-inflammatory glial responses and cytokines, and antioxidant capacity. These positive outcomes accompanied the neuroprotection evident after PBM treatment. Our review provides further indication that PBM can be developed into an effective non-pharmacological intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kangzhe Xie
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2006 , Australia
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2050 , Australia
| | - Hala El Khoury
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2050 , Australia
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de Dotation Clinatec , 38054 Grenoble , France
| | - Paul J. Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2050 , Australia
| |
Collapse
|
41
|
[Epidural photobiomodulation accelerates the drainage of brain interstitial fluid and its mechanism]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022. [PMID: 36241244 PMCID: PMC9568398 DOI: 10.19723/j.issn.1671-167x.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To evaluate the effect of photobiomodulation (PBM) on the drainage of brain interstitial fluid (ISF) and to investigate the possible mechanism of the positive effect of PBM on Alzheimer's disease (AD). METHODS Twenty-four SD male rats were randomly divided into PBM group (n=12), sham PBM group (n=6), and negative control group (n=6). According to the injection site of tracer, the PBM group was further divided into PBM-ipsilateral traced group (n=6) and PBM-contralateral traced group (n=6). Rats in the PBM group and the sham PBM group were exposed to the dura minimally invasively on the skull corresponding to the frontal cortical area reached by ISF drainage from caudate nucleus region. The PBM group was irradiated by using 630 nm red light (5-6 mW/cm2), following an irradiation of 5 min with a 2 min pause, and a total of 5 times; the sham PBM group was kept in the same position for the same time using the light without power. The negative control group was kept without any measure. After PBM, tracer was injected into caudate nucleus of each group. The changes of ISF drainage in caudate nucleus were observed according to the diffusion and distribution of tracer molecule by tracer-based magnetic resonance imaging, and the structural changes of brain extracellular space (ECS) were analyzed by diffusion rate in ECS-mapping (DECS-mapping) technique. Finally, parameters reflecting the structure of brain ECS and the drainage of ISF were obtained: volume fraction (α), tortuo-sity (λ), half-life (T1/2), and DECS. The differences of parameters among different groups were compared to analyze the effect of PBM on brain ECS and ISF. One-Way ANOVA post hoc tests and independent sample t test were used for statistical analysis. RESULTS The parameters including T1/2, DECS, and λ were significantly different among the PBM-ipsilateral traced group, the PBM-contralateral traced group, and the sham PBM group (F=79.286, P < 0.001; F=13.458, P < 0.001; F=10.948, P=0.001), while there was no difference in the parameter α of brain ECS among the three groups (F=1.217, P=0.324). Compared with the sham PBM group and the PBM-contralateral traced group, the PBM-ipsilateral traced group had a significant decrease in the parameter T1/2 [(45.45±6.76) min vs. (76.01±3.44) min, P < 0.001; (45.45±6.76) min vs. (78.07±4.27) min, P < 0.001], representing a significant acceleration of ISF drainage; the PBM-ipsilateral traced group had a significant increase in the parameter DECS [(4.51±0.77)×10-4 mm2/s vs. (3.15±0.44)×10-4 mm2/s, P < 0.001; (4.51±0.77)×10-4 mm2/s vs. (3.01±0.38)×10-4 mm2/s, P < 0.001], representing a significantly increased molecular diffusion rate of in the brain ECS; the PBM-ipsilateral traced group had a significant decrease in the parameter λ (1.51±0.21 vs. 1.85±0.12, P=0.001; 1.51±0.21 vs. 1.89±0.11, P=0.001), representing a significant decrease in the degree of tortuosity in the brain ECS. CONCLUSION PBM can regulate the brain ISF drainage actively, which may be one of the potential mechanisms of the effect of PBM therapy on AD. This study provides a new method for enhancing the brain function via ECS pathway.
Collapse
|
42
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
43
|
Cardoso FDS, Salehpour F, Coimbra NC, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation for the treatment of neuroinflammation: A systematic review of controlled laboratory animal studies. Front Neurosci 2022; 16:1006031. [PMID: 36203812 PMCID: PMC9531128 DOI: 10.3389/fnins.2022.1006031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuroinflammation is a response that involves different cell lineages of the central nervous system, such as neurons and glial cells. Among the non-pharmacological interventions for neuroinflammation, photobiomodulation (PBM) is gaining prominence because of its beneficial effects found in experimental brain research. We systematically reviewed the effects of PBM on laboratory animal models, specially to investigate potential benefits of PBM as an efficient anti-inflammatory therapy. Methods We conducted a systematic search on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: photobiomodulation, low-level laser therapy, brain, neuroinflammation, inflammation, cytokine, and microglia. Data search was limited from 2009 to June 2022. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The initial systematic search identified 140 articles. Among them, 54 articles were removed for duplication and 59 articles by screening. Therefore, 27 studies met the inclusion criteria. Results The studies showed that PBM has anti-inflammatory properties in several conditions, such as traumatic brain injury, edema formation and hyperalgesia, ischemia, neurodegenerative conditions, aging, epilepsy, depression, and spinal cord injury. Conclusion Taken together, these results indicate that transcranial PBM therapy is a promising strategy to treat brain pathological conditions induced by neuroinflammation.
Collapse
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
- *Correspondence: Fabrízio dos Santos Cardoso
| | - Farzad Salehpour
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Norberto Cysne Coimbra
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
| |
Collapse
|
44
|
Zhu Z, Wang X, Song Z, Zuo X, Ma Y, Zhang Z, Ju C, Liang Z, Li K, Hu X, Wang Z. Photobiomodulation promotes repair following spinal cord injury by restoring neuronal mitochondrial bioenergetics via AMPK/PGC-1α/TFAM pathway. Front Pharmacol 2022; 13:991421. [PMID: 36172183 PMCID: PMC9512226 DOI: 10.3389/fphar.2022.991421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Insufficient neuronal mitochondrial bioenergetics supply occurs after spinal cord injury (SCI), leading to neuronal apoptosis and impaired motor function. Previous reports have shown that photobiomodulation (PBM) could reduce neuronal apoptosis and promote functional recovery, but the underlying mechanism remains unclear. Therefore, we aimed to investigate whether PBM improved prognosis by promoting neuronal mitochondrial bioenergetics after SCI. Methods: Sprague Dawley rats were randomly divided into four groups: a Sham group, an SCI group, an SCI + PBM group and an SCI + PBM + Compound C group. After SCI model was established, PBM and Compound C (an AMPK inhibitor) injection were carried out. The level of neuron apoptosis, the recovery of motor function and mitochondrial function were observed at different times (7, 14, and 28 days). The AMPK/PGC-1α/TFAM pathway was hypothesized to be a potential target through which PBM could affect neuronal mitochondrial bioenergetics. In vitro, ventral spinal cord 4.1 (VSC4.1) cells were irradiated with PBM and cotreated with Compound C after oxygen and glucose deprivation (OGD). Results: PBM promoted the recovery of mitochondrial respiratory chain complex activity, increased ATP production, alleviated neuronal apoptosis and reversed motor dysfunction after SCI. The activation of the AMPK/PGC-1α/TFAM pathway after SCI were facilitated by PBM but inhibited by Compound C. Equally important, PBM could inhibit OGD-induced VSC4.1 cell apoptosis by increasing ATP production whereas these changes could be abolished by Compound C. Conclusion: PBM activated AMPK/PGC-1α/TFAM pathway to restore mitochondrial bioenergetics and exerted neuroprotective effects after SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xueyu Hu
- *Correspondence: Zhe Wang, ; Xueyu Hu,
| | - Zhe Wang
- *Correspondence: Zhe Wang, ; Xueyu Hu,
| |
Collapse
|
45
|
The Effect of 40-Hz White LED Therapy on Structure-Function of Brain Mitochondrial ATP-Sensitive Ca-Activated Large-Conductance Potassium Channel in Amyloid Beta Toxicity. Neurotox Res 2022; 40:1380-1392. [PMID: 36057039 DOI: 10.1007/s12640-022-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/07/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Photobiomodulation therapy has become the focus of medical research in many areas such as Alzheimer's disease (AD), because of its modulatory effect on cellular processes through light energy absorption via photoreceptors/chromophores located in the mitochondria. However, there are still many questions around the underlying mechanisms. This study was carried out to unravel whether the function-structure of ATP-sensitive mitoBKCa channels, as crucial components for maintenance of mitochondrial homeostasis, can be altered subsequent to light therapy in AD. Induction of Aβ neurotoxicity in male Wistar rats was done by intracerebroventricular injection of Aβ1-42. After a week, light-treated rats were exposed to 40-Hz white light LEDs, 15 min for 7 days. Electrophysiological properties of mitoBKCa channel were investigated using a channel incorporated into the bilayer lipid membrane, and mitoBKCa-β2 subunit expression was determined using western blot analysis in Aβ-induced toxicity and light-treated rats. Our results describe that conductance and open probability (Po) of mitoBKCa channel decreased significantly and was accompanied by a Po curve rightward shift in mitochondrial preparation in Aβ-induced toxicity rats. We also showed a significant reduction in expression of mitoBKCa-β2 subunit, which is partly responsible for a leftward shift in BKCa Po curve in low calcium status. Interestingly, we provided evidence of a significant improvement in channel conductance and Po after light therapy. We also found that light therapy improved mitoBKCa-β2 subunit expression, increasing it close to saline group. The current study explains a light therapy improvement in brain mitoBKCa channel function in the Aβ-induced neurotoxicity rat model, an effect that can be linked to increased expression of β2 subunit.
Collapse
|
46
|
Kheradmand A, Donboli S, Tanjani PT, Farhadinasab A, Tabeie F, Qutbi M, Kordmir T. Therapeutic Effects of Low-Level Laser Therapy on Cognitive Symptoms of Patients with Dementia: A Double-Blinded Randomized Clinical Trial. Photobiomodul Photomed Laser Surg 2022; 40:632-638. [DOI: 10.1089/photob.2021.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ali Kheradmand
- Department of Psychiatry, Taleghani Hospital Research Development Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sonia Donboli
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Taheri Tanjani
- Department of Geriatric Medicine, School of Medicine, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Farhadinasab
- Department of Psychiatry, Taleghani Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraj Tabeie
- Department of Basic Sciences, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Qutbi
- Department of Nuclear Medicine, Taleghani Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Kordmir
- Memory Clinic, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Zhang R, Zhou T, Samanta S, Luo Z, Li S, Xu H, Qu J. Synergistic photobiomodulation with 808-nm and 1064-nm lasers to reduce the β-amyloid neurotoxicity in the in vitro Alzheimer's disease models. FRONTIERS IN NEUROIMAGING 2022; 1:903531. [PMID: 37555169 PMCID: PMC10406259 DOI: 10.3389/fnimg.2022.903531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 08/10/2023]
Abstract
BACKGROUND In Alzheimer's disease (AD), the deposition of β-amyloid (Aβ) plaques is closely associated with the neuronal apoptosis and activation of microglia, which may result in the functional impairment of neurons through pro-inflammation and over-pruning of the neurons. Photobiomodulation (PBM) is a non-invasive therapeutic approach without any conspicuous side effect, which has shown promising attributes in the treatment of chronic brain diseases such as AD by reducing the Aβ burden. However, neither the optimal parameters for PBM treatment nor its exact role in modulating the microglial functions/activities has been conclusively established yet. METHODS An inflammatory stimulation model of Alzheimer's disease (AD) was set up by activating microglia and neuroblastoma with fibrosis β-amyloid (fAβ) in a transwell insert system. SH-SY5Y neuroblastoma cells and BV2 microglial cells were irradiated with the 808- and 1,064-nm lasers, respectively (a power density of 50 mW/cm2 and a dose of 10 J/cm2) to study the PBM activity. The amount of labeled fAβ phagocytosed by microglia was considered to assess the microglial phagocytosis. A PBM-induced neuroprotective study was conducted with the AD model under different laser parameters to realize the optimal condition. Microglial phenotype, microglial secretions of the pro-inflammatory and anti-inflammatory factors, and the intracellular Ca2+ levels in microglia were studied in detail to understand the structural and functional changes occurring in the microglial cells of AD model upon PBM treatment. CONCLUSION A synergistic PBM effect (with the 808- and 1,064-nm lasers) effectively inhibited the fAβ-induced neurotoxicity of neuroblastoma by promoting the viability of neuroblastoma and regulating the intracellular Ca2+ levels of microglia. Moreover, the downregulation of Ca2+ led to microglial polarization with an M2 phenotype, which promotes the fAβ phagocytosis, and resulted in the upregulated expression of anti-inflammatory factors and downregulated expression of inflammatory factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
48
|
Role of Mitophagy in neurodegenerative Diseases and potential tagarts for Therapy. Mol Biol Rep 2022; 49:10749-10760. [PMID: 35794507 DOI: 10.1007/s11033-022-07738-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 12/27/2022]
Abstract
Mitochondria dysfunction has been defined as one of the hallmarks of aging-related diseases as is characterized by the destroyed integrity, abnormal distribution and size, insufficient ATP supply, increased ROS production, and subsequently damage and oxidize the proteins, lipids and nucleic acid. Mitophagy, an efficient way of removing damaged or defective mitochondria by autophagy, plays a pivotal role in maintaining the mitochondrial quantity and quality control enabling the degradation of unwanted mitochondria, and thus rescues cellular homeostasis in response to stress. Accumulating evidence demonstrates that impaired mitophagy has been associated with many neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) in a variety of patients and disease models with neural death, oxidative stress and disturbed metabolism, either as the cause or consequence. These findings suggest that modulation of mitophagy may be considered as a valid therapeutic strategy in neurodegenerative diseases. In this review, we summarize recent findings on the mechanisms of mitophagy and its role in neurodegenerative diseases, with a particular focus on mitochondrial proteins acting as receptors that mediate mitophagy in these diseases.
Collapse
|
49
|
Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice. Sci Rep 2022; 12:10848. [PMID: 35761012 PMCID: PMC9237037 DOI: 10.1038/s41598-022-14812-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/13/2022] [Indexed: 12/06/2022] Open
Abstract
Neuroinflammation is a key event in neurodegenerative conditions such as Alzheimer's disease (AD) and characterizes metabolic pathologies like obesity and type 2 diabetes (T2D). Growing evidence in humans shows that obesity increases the risk of developing AD by threefold. Hippocampal neuroinflammation in rodents correlates with poor memory performance, suggesting that it contributes to cognitive decline. Here we propose that reducing obesity/T2D-driven neuroinflammation may prevent the progression of cognitive decline associated with AD-like neurodegenerative states. Near-infrared light (NIR) has attracted increasing attention as it was shown to improve learning and memory in both humans and animal models. We previously reported that transcranial NIR delivery reduced amyloid beta and Tau pathology and improved memory function in mouse models of AD. Here, we report the effects of NIR in preventing obesity-induced neuroinflammation in a diet-induced obese mouse model. Five-week-old wild-type mice were fed a high-fat diet (HFD) for 13 weeks to induce obesity prior to transcranial delivery of NIR for 4 weeks during 90-s sessions given 5 days a week. After sacrifice, brain slices were subjected to free-floating immunofluorescence for microglia and astrocyte markers to evaluate glial activation and quantitative real-time polymerase chain reaction (PCR) to evaluate expression levels of inflammatory cytokines and brain-derived neurotrophic factor (BDNF). The hippocampal and cortical regions of the HFD group had increased expression of the activated microglial marker CD68 and the astrocytic marker glial fibrillary acidic protein. NIR-treated HFD groups showed decreased levels of these markers. PCR revealed that hippocampal tissue from the HFD group had increased levels of pro-inflammatory interleukin (IL)-1β and tumor necrosis factor-α. Interestingly, the same samples showed increased levels of the anti-inflammatory IL-10. All these changes were attenuated by NIR treatment. Lastly, hippocampal levels of the neurotrophic factor BDNF were increased in NIR-treated HFD mice, compared to untreated HFD mice. The marked reductions in glial activation and pro-inflammatory cytokines along with elevated BDNF provide insights into how NIR could reduce neuroinflammation. These results support the use of NIR as a potential non-invasive and preventive therapeutic approach against chronic obesity-induced deficits that are known to occur with AD neuropathology.
Collapse
|
50
|
Xie L, Song W, Dong W, Li Y, Chen S, Sun X, Huang M, Cheng Y, Gao Y, Yang S, Yan X. Indirect Application of Intense Pulsed Light Induces Therapeutic Effects on Experimental Murine Meibomian Gland Dysfunction. Front Med (Lausanne) 2022; 9:923280. [PMID: 35721080 PMCID: PMC9201038 DOI: 10.3389/fmed.2022.923280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To investigate the indirect effects of intense pulsed light (IPL) on morphological and pathological changes of the meibomian glands (MGs) in apolipoprotein E knockout (ApoE–/–) mice and explore the underlying mechanisms. Methods ApoE–/– mice were treated with or without IPL three times below the lower eyelids and MGs were not directly exposed to irradiation. The eyelids and ocular surface were observed under a stereoscope. The morphology of MGs was examined by photographing and hematoxylin and eosin staining. Lipid droplets in MGs were examined by Oil Red O staining. The ultrastructure of meibocytes and mitochondria was observed under transmission electron microscopy. The relative gene and protein expression in MGs of upper eyelids was determined by immunostaining, Western blot, and qRT–PCR. Results Three IPL treatments decreased the toothpaste-like plugging of orifices and thickening and irregularity of the upper and lower eyelid margins in ApoE–/– mice. The morphology of some MGs improved after IPL treatments, accompanied by increased proliferation of acinar basal cells and decreased ductal keratinization. Furthermore, the accumulation of hyperchromatic lipid droplets in the acini increased, and the lipid droplets distributed in the cells around the acini were round and small. Compared with untreated ApoE–/– mice, oxidative stress and apoptosis were downregulated by IPL treatment, accompanied by the improvements in mitochondrial structure. Further research showed that IPL treatments reduced the levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-17A, IL-6 in MGs and inactivated nuclear factor kappa B (NF-κ B). Conclusion Collectively, the results demonstrate that indirect effects of IPL can improve the structure and function of MGs and mitigate the progression of MGD, which may be related to the indirect effects of photobiomodulation.
Collapse
|