1
|
Jin Z, Wang X, Lang Y, Song Y, Zhan H, Shama W, Shen Y, Zeng G, Zhou F, Gao H, Ye S, Wang Y, Lu F, Shen M. Retinal optical coherence tomography intensity spatial correlation features as new biomarkers for confirmed Alzheimer's disease. Alzheimers Res Ther 2025; 17:33. [PMID: 39893456 PMCID: PMC11786474 DOI: 10.1186/s13195-025-01676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The nature and severity of Alzheimer's disease (AD) pathologies in the retina and brain correspond. However, retinal biomarkers need to be validated in clinical cohorts with confirmed AD biomarkers and optical coherence tomography (OCT). The main objective of this study was to investigate whether retinal metrics measured by OCT aid in the early screening and brain pathology monitoring for confirmed AD. METHODS This was a case-control study. All participants underwent retinal OCT imaging, and neurological examinations, including amyloid-β (Aβ) positron emission tomography. Participants were subdivided into cognitively normal (CN), mild cognitive impairment (MCI), and AD-derived dementia (ADD). Except retinal thickness, we developed the grey level co-occurrence matrix algorithm to extract retinal OCT intensity spatial correlation features (OCT-ISCF), including angular second matrix (ASM), correlation (COR), and homogeneity (HOM), one-way analysis of variance was used to compare the differences in retinal parameters among the groups, and to analyze the correlation with brain Aβ plaques and cognitive scores. The repeatability and robustness of OCT-ISCF were evaluated using experimental and simulation methods. RESULTS This study enrolled 82 participants, subdivided into 20 CN, 22 MCI, and 40 ADD. Compared with the CN, the thickness of retinal nerve fiber layer and myoid and ellipsoid zone were significantly thinner (P < 0.05), and ASM, COR, and HOM in several retinal sublayers changed significantly in the ADD (P < 0.05). Notably, the MCI showed significant differences in ASM and COR in the outer segment of photoreceptor compared with the CN (P < 0.05). The changing pattern of OCT-ISCF with interclass correlation coefficients above 0.8 differed from that caused by speckle noise, and was affected by OCT image quality index. Moreover, the retinal OCT-ISCF were more strongly correlated with brain Aβ plaque burden and MoCA scores than retinal thickness. The accuracy using retinal OCT-ISCF (AUC = 0.935, 0.830) was better than that using retinal thickness (AUC = 0.795, 0.705) in detecting ADD and MCI. CONCLUSIONS The study demonstrates that retinal OCT-ISCF enhance the association and detection efficacy of AD pathology compared to retinal thickness, suggesting retinal OCT-ISCF have the potential to be new biomarkers for AD.
Collapse
Affiliation(s)
- Zi Jin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinmin Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Lang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yufeng Song
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huangxiong Zhan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wuge Shama
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yingying Shen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Guihua Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Faying Zhou
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hongjian Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuling Ye
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yanjiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fan Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Meixiao Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Wang R, Cai J, Gao Y, Tang Y, Gao H, Qin L, Cai H, Yang F, Ren Y, Luo C, Feng S, Yin H, Zhang M, Luo C, Gong Q, Xiao X, Chen Q. Retinal biomarkers for the risk of Alzheimer's disease and frontotemporal dementia. Front Aging Neurosci 2025; 16:1513302. [PMID: 39868381 PMCID: PMC11759267 DOI: 10.3389/fnagi.2024.1513302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose Differentiating between Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be challenging due to overlapping cognitive and behavioral manifestations. Evidence regarding non-invasive and early-stage biomarkers remains limited. Our aim was to identify retinal biomarkers for the risk of AD and FTD in populations without dementia and explore underlying brain structural mechanisms. Methods We included a total of 3,0573 UK Biobank participants without dementia, ocular disorders, and diabetes who underwent baseline retinal optical coherence tomography (OCT) imaging. Cox proportional hazards models were used to estimate the associations between macular OCT parameters and the risk of AD and FTD. Mediation analysis was used to explore the underlying mechanisms affected by brain structures. Results The mean age at recruitment was 55.27, and 46.10% of the participants were male. During a mean follow-up of 9.15 ± 2.59 years, 148 patients with AD and eight patients with FTD were identified. Reduced thickness of the ganglion cell-inner plexiform layer (GC-IPL) at baseline was associated with an increased risk of AD (HR, 1.033; 95% CI, 1.001-1.066; P = 0.044), while thinner retinal pigment epithelial in the inner superior subfield at baseline was associated with an elevated risk of FTD (HR, 1.409; 95% CI, 1.060-1.871; P = 0.018). Structurally abnormal visual pathways, including cortical and subcortical gray matter volumes, as well as white matter integrity, mediated the association between the GC-IPL thickness and AD risk. Conclusion Our findings provide preliminary empirical support for a relationship between prodromal changes in retinal layers and a higher risk of AD or FTD, suggesting that macular OCT may serve as a non-invasive, sensitive biomarker of high-risk years before the onset of dementia.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiajie Cai
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuzhu Gao
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Tang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Linyuan Qin
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hanlin Cai
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Yang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yimeng Ren
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Caimei Luo
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyu Feng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongbo Yin
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunyan Luo
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiong Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Jiang Y, Swain T, Gim N, Blazes M, Donald CM, Rokem A, Owen JP, Balu N, Clark ME, Goerdt L, McGwin G, Hunt D, Curcio CA, Levendovszky SR, Trittschuh EH, Owsley C, Lee CS. Outer Retinal Thinning is Associated With Brain Atrophy in Early Age-Related Macular Degeneration. Am J Ophthalmol 2025; 269:457-465. [PMID: 39369929 PMCID: PMC11634662 DOI: 10.1016/j.ajo.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE Both retinal changes and age-related macular degeneration (AMD) have been shown to be associated with Alzheimer's disease and related dementias (ADRD). In AMD, the outer retina is impacted significantly and early, but little is known about its association with cognition or changes in brain morphometry. This study investigates the relationship between retinal and brain morphometry in older adults with early and intermediate AMD. DESIGN Cross-sectional study. METHODS Adults ≥70 years with normal, early, and intermediate AMD were recruited from Callahan Eye Hospital Clinics at the University of Alabama at Birmingham. Participants underwent cognitive testing, optical coherence tomography, and magnetic resonance imaging. Associations of retinal layer thickness with brain volume and thickness of specific brain regions were evaluated utilizing multivariable linear regression. The relevance of retinal thickness variables in brain volumetrics was quantified using least absolute shrinkage and selection operator regression models. Correlations between demographic variables, cognitive scores, and brain morphometry were evaluated. RESULTS Participants with thinner outer retina had significantly smaller hippocampus (β = 0.019, P = .022), lower occipital cortex regions of interest (occipital ROIs) thickness (β = 5.68, P = .020), and lower cortical thickness in ADRD-related brain regions (β = 7.72, P = .006). People with thinner total retina had significantly lower occipital ROIs (β = 3.19, P = .009) and ADRD-related brain region (β = 3.94, P = .005) thickness. Outer retinal thickness in the outer Early Treatment of Diabetic Retinopathy Study ring was the most frequently reported retinal variable associated with brain morphometry on least absolute shrinkage and selection operator regression. Total gray matter volume showed positive correlations with education (Pearson's r = 0.30, P = .022). CONCLUSIONS In older adults with normal retinal aging and early and intermediate AMD, thinner outer retina had specific associations with brain regions primarily involved in vision and cognition, such as lower hippocampal volume and lower thickness of the occipital ROIs and brain regions known to show early structural changes in dementia.
Collapse
Affiliation(s)
- Yu Jiang
- From the Department of Ophthalmology (Y.J., N.G., M.B., J.P.O., and C.S.L.), University of Washington, Seattle, Washington, USA
| | - Thomas Swain
- Department of Ophthalmology and Visual Sciences (T.S., M.E.C., L.G., G.M., C.A.C., and C.O.), University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Epidemiology (T.S. and G.M.), School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nayoon Gim
- From the Department of Ophthalmology (Y.J., N.G., M.B., J.P.O., and C.S.L.), University of Washington, Seattle, Washington, USA; Department of Bioengineering (N.G.), University of Washington, Seattle, Washington, USA
| | - Marian Blazes
- From the Department of Ophthalmology (Y.J., N.G., M.B., J.P.O., and C.S.L.), University of Washington, Seattle, Washington, USA
| | - Christine Mac Donald
- Department of Neurological Surgery (C.M.D. and D.H.), University of Washington, Seattle, Washington, USA
| | - Ariel Rokem
- Department of Psychology and eScience Institute (A.R.), University of Washington, Seattle, Washington, USA
| | - Julia P Owen
- From the Department of Ophthalmology (Y.J., N.G., M.B., J.P.O., and C.S.L.), University of Washington, Seattle, Washington, USA
| | - Niranjan Balu
- Department of Radiology (N.B., S.R.L.), University of Washington, Seattle, Washington, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences (T.S., M.E.C., L.G., G.M., C.A.C., and C.O.), University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lukas Goerdt
- Department of Ophthalmology and Visual Sciences (T.S., M.E.C., L.G., G.M., C.A.C., and C.O.), University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Ophthalmology (L.G.), University of Bonn, Bonn, Germany
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences (T.S., M.E.C., L.G., G.M., C.A.C., and C.O.), University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Epidemiology (T.S. and G.M.), School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David Hunt
- Department of Neurological Surgery (C.M.D. and D.H.), University of Washington, Seattle, Washington, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences (T.S., M.E.C., L.G., G.M., C.A.C., and C.O.), University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Emily H Trittschuh
- Department of Psychiatry and Behavioral Sciences (E.H.T.), University of Washington, Seattle, Washington, USA; GRECC (E.H.T.), VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences (T.S., M.E.C., L.G., G.M., C.A.C., and C.O.), University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cecilia S Lee
- From the Department of Ophthalmology (Y.J., N.G., M.B., J.P.O., and C.S.L.), University of Washington, Seattle, Washington, USA; The Roger and Angie Karalis Johnson Retina Center (C.S.L.), Seattle, Washington, USA.
| |
Collapse
|
4
|
Liu J, Tao W, Li D, Kwapong WR, Cao L, Zhang X, Ye C, Chen S, Liu M. Characterization of retinal microvasculature and structure in atrial fibrillation. Front Cardiovasc Med 2023; 10:1229881. [PMID: 38152608 PMCID: PMC10751341 DOI: 10.3389/fcvm.2023.1229881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/17/2023] [Indexed: 12/29/2023] Open
Abstract
Background and objective Quantitative changes in retinal microvasculature are associated with subclinical cardiac alterations and clinical cardiovascular diseases (i.e., heart failure and coronary artery disease). Nonetheless, very little is known about the retinal vascular and structural changes in patients with atrial fibrillation (AF). Our study aims to characterize the microvasculature and structure of the retina in AF patients and explore their differences in different types of AF (paroxysmal and sustained AF). Methods This cross-sectional study was conducted at the Departments of Neurology and Cardiology in West China Hospital, Chengdu, China. Individuals aged 40 years or older with a diagnosis of AF were eligible for inclusion and underwent an evaluation and diagnosis confirmation before enrollment. Control individuals aged 40 years or older and without a history of AF, ocular abnormalities/disease, or any significant systemic illness were recruited. The retinal vascular and structural parameters were assessed using swept-source optical coherence tomography (SS-OCT)/SS-OCT angiography. Echocardiographic data of left atrium (LA) diameter were collected in patients with AF at the time of inclusion. Results A total of 242 eyes of 125 participants [71 men (56.8%); mean (SD) age, 61.98 (8.73) years] with AF and 219 eyes of 111 control participants [53 men (47.7%); mean (SD) age, 62.31 (6.47) years] were analyzed. In our AF cohort, 71 patients with paroxysmal AF and 54 patients with sustained AF (i.e., persistent/permanent AF) were included. Decreased retinal microvascular perfusion (β coefficient = -0.08; 95% CI, -0.14 to -0.03) and densities (β coefficient = -1.86; 95% CI, -3.11 to -0.60) in superficial vascular plexus (SVC) were found in the eyes of the participants with AF. In regard to retinal structures, thinner ganglion cell-inner plexiform layer (GCIPL; β coefficient = -2.34; 95% CI, -4.32 to -0.36) and retinal nerve fiber layer (RNFL) thicknesses (β coefficient = -0.63; 95% CI, -2.09 to -0.18) were observed in the eyes of the participants with AF. The retinal parameters did not significantly differ between paroxysmal and sustained AF (all P > 0.05). However, significant interactions were observed between LA diameter and AF subtypes with the perfusion and densities in SVC (P < 0.05). Conclusion This study found that individuals with AF had decreased retinal vascular densities and perfusion in SVC, as well as thinner GCIPL and RNFL thickness compared with age- and sex-matched control participants. The differences of the retinal microvasculature in SVC between paroxysmal and sustained AF depend on the LA diameter. Given our findings, further longitudinal studies with our participants are of interest to investigate the natural history of retinal microvascular and structural changes in individuals across the clinical process of AF and AF subtypes.
Collapse
Affiliation(s)
- Junfeng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Wendan Tao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dayan Li
- Cardiac Ultrasound Office, Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Le Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoling Zhang
- Cardiac Ultrasound Office, Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Ye
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Shi Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Liu J, Tao W, Guo X, Kwapong WR, Ye C, Wang A, Wu X, Wang Z, Liu M. The Association of Retinal Microvasculature With Gray Matter Changes and Structural Covariance Network: A Voxel-Based Morphometry Study. Invest Ophthalmol Vis Sci 2023; 64:40. [PMID: 38153752 PMCID: PMC10756243 DOI: 10.1167/iovs.64.15.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Purpose Increasing evidence suggests that retinal microvasculature may reflect global cerebral atrophy. However, little is known about the relation of retinal microvasculature with specific brain regions and brain networks. Therefore, we aimed to unravel the association of retinal microvasculature with gray matter changes and structural covariance network using a voxel-based morphometry (VBM) analysis. Methods One hundred and forty-four volunteers without previously known neurological diseases were recruited from West China Hospital, Sichuan University between April 1, 2021, and December 31, 2021. Retinal microvasculature of superficial vascular plexus (SVP), intermediate capillary plexus (ICP), and deep capillary plexus (DCP) were measured by optical coherence tomography angiography using an automatic segmentation. The VBM and structural covariance network analyses were applied to process brain magnetic resonance imaging (MRI) images. The associations of retinal microvasculature with voxel-wise gray matter volumes and structural covariance network were assessed by linear regression models. Results In the study, 137 participants (mean age = 59.72 years, 37.2% men) were included for the final analysis. Reduced perfusion in SVP was significantly associated with reduced voxel-wise gray matter volumes of the brain regions including the insula, putamen, occipital, frontal, and temporal lobes, all of which were located in the anterior part of the brain supplied by internal carotid artery, except the occipital lobe. In addition, these regions were also involved in visual processing and cognitive impairment (such as left inferior occipital gyrus, left lingual gyrus, and right parahippocampal gyrus). In regard to the structural covariance, the perfusions in SVP were positively related to the structural covariance of the left lingual gyrus seed with the left middle occipital gyrus, the right middle occipital gyrus, and the left middle frontal gyrus. Conclusions Poor perfusion in SVP was correlated with reduced voxel-wise gray matter volumes and structural covariance networks in regions related to visual processing and cognitive impairment. It suggests that retinal microvasculature may offer a window to identify aging related cerebral alterations.
Collapse
Affiliation(s)
- Junfeng Liu
- Department of Neurology, West China Hospital, Sichuan University China, Chengdu, Sichuan Province, China
| | - Wendan Tao
- Department of Neurology, West China Hospital, Sichuan University China, Chengdu, Sichuan Province, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - William Robert Kwapong
- Department of Neurology, West China Hospital, Sichuan University China, Chengdu, Sichuan Province, China
| | - Chen Ye
- Department of Neurology, West China Hospital, Sichuan University China, Chengdu, Sichuan Province, China
| | - Anmo Wang
- Department of Neurology, West China Hospital, Sichuan University China, Chengdu, Sichuan Province, China
| | - Xinmao Wu
- Department of Neurology, West China Hospital, Sichuan University China, Chengdu, Sichuan Province, China
| | - Zhetao Wang
- Department of Radiology, West China Hospital, Sichuan University China, Chengdu, Sichuan Province, China
| | - Ming Liu
- Department of Neurology, West China Hospital, Sichuan University China, Chengdu, Sichuan Province, China
| |
Collapse
|
6
|
Wang R, Wu X, Zhang Z, Cao L, Kwapong WR, Wang H, Tao W, Ye C, Liu J, Wu B. Retinal ganglion cell-inner plexiform layer, white matter hyperintensities, and their interaction with cognition in older adults. Front Aging Neurosci 2023; 15:1240815. [PMID: 38035269 PMCID: PMC10685347 DOI: 10.3389/fnagi.2023.1240815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Purpose We explored the interaction of optical coherence tomography (OCT) parameters and white matter hyperintensities with cognitive measures in our older adult cohort. Methods This observational study enrolled participants who underwent a comprehensive neuropsychological battery, structural 3-T brain magnetic resonance imaging (MRI), visual acuity examination, and OCT imaging. Cerebral small vessel disease (CSVD) markers were read on MR images; lacune, cerebral microbleeds (CMB), white matter hyperintensities (WMH), and enlarged perivascular spaces (EPVS), were defined according to the STRIVE standards. Retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL) thicknesses (μm) were measured on the OCT tool. Results Older adults with cognitive impairment (CI) showed lower RNFL (p = 0.001), GCIPL (p = 0.009) thicknesses, and lower hippocampal volume (p = 0.004) when compared to non-cognitively impaired (NCI). RNFL (p = 0.006) and GCIPL thicknesses (p = 0.032) correlated with MoCA scores. GCIPL thickness (p = 0.037), total WMH (p = 0.003), PWMH (p = 0.041), and DWMH (p = 0.001) correlated with hippocampal volume in our older adults after adjusting for covariates. With hippocampal volume as the outcome, a significant interaction (p < 0.05) between GCIPL and PWMH and total WMH was observed in our older adults. Conclusion Both GCIPL thinning and higher WMH burden (especially PWMH) are associated with hippocampal volume and older adults with both pathologies are more susceptible to subclinical cognitive decline.
Collapse
Affiliation(s)
- Ruilin Wang
- Ophthalmology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Xinmao Wu
- Neurology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Zengyi Zhang
- Neurology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Le Cao
- Ophthalmology Department, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hang Wang
- Neurology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Wendan Tao
- Neurology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Ye
- Neurology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Junfeng Liu
- Neurology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Wu
- Neurology Department, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Lima Rebouças SC, Crivello F, Tsuchida A, Tzourio C, Schweitzer C, Korobelnik J, Delcourt C, Helmer C. Association of retinal nerve layers thickness and brain imaging in healthy young subjects from the i-Share-Bordeaux study. Hum Brain Mapp 2023; 44:4722-4737. [PMID: 37401639 PMCID: PMC10400793 DOI: 10.1002/hbm.26412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
Given the anatomical and functional similarities between the retina and the brain, the retina could be a "window" for viewing brain structures. We investigated the association between retinal nerve fiber layers (peripapillary retinal nerve fiber layer, ppRNFL; macular ganglion cell-inner plexiform layer, GC-IPL; and macular ganglion cell complex, GCC), and brain magnetic resonance imaging (MRI) parameters in young health adults. We included 857 students (mean age: 23.3 years, 71.3% women) from the i-Share study. We used multivariate linear models to study the cross-sectional association of each retinal nerve layer thickness assessed by spectral-domain optical coherence tomography (SD-OCT) with structural (volumes and cortical thickness), and microstructural brain markers, assessed on MRI globally and regionally. Microstructural MRI parameters included diffusion tensor imaging (DTI) and Neurite Orientation Dispersion and Density Imaging (NODDI). On global brain analysis, thicker ppRNFL, GC-IPL and GCC were all significantly associated with patterns of diffusion metrics consistent with higher WM microstructural integrity. In regional analyses, after multiple testing corrections, our results suggested significant associations of some retinal nerve layers with brain regional gray matter occipital volumes and with diffusion MRI parameters in a region involved in the visual pathway and in regions containing associative tracts. No associations were found with global volumes or with global or regional cortical thicknesses. Results of this study suggest that some retinal nerve layers may reflect brain structures. Further studies are needed to confirm these results in young subjects.
Collapse
Affiliation(s)
| | | | - Ami Tsuchida
- University of Bordeaux, CNRS, CEA, IMN, GINBordeauxFrance
| | | | - Cédric Schweitzer
- Department of OphthalmologyBordeaux University HospitalBordeauxFrance
| | | | | | | |
Collapse
|
8
|
Chen S, Zhang D, Zheng H, Cao T, Xia K, Su M, Meng Q. The association between retina thinning and hippocampal atrophy in Alzheimer's disease and mild cognitive impairment: a meta-analysis and systematic review. Front Aging Neurosci 2023; 15:1232941. [PMID: 37680540 PMCID: PMC10481874 DOI: 10.3389/fnagi.2023.1232941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction The retina is the "window" of the central nervous system. Previous studies discovered that retinal thickness degenerates through the pathological process of the Alzheimer's disease (AD) continuum. Hippocampal atrophy is one of the typical clinical features and diagnostic criteria of AD. Former studies have described retinal thinning in normal aging subjects and AD patients, yet the association between retinal thickness and hippocampal atrophy in AD is unclear. The optical coherence tomography (OCT) technique has access the non-invasive to retinal images and magnetic resonance imaging can outline the volume of the hippocampus. Thus, we aim to quantify the correlation between these two parameters to identify whether the retina can be a new biomarker for early AD detection. Methods We systematically searched the PubMed, Embase, and Web of Science databases from inception to May 2023 for studies investigating the correlation between retinal thickness and hippocampal volume. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the study quality. Pooled correlation coefficient r values were combined after Fisher's Z transformation. Moderator effects were detected through subgroup analysis and the meta-regression method. Results Of the 1,596 citations initially identified, we excluded 1,062 studies after screening the titles and abstract (animal models, n = 99; irrelevant literature, n = 963). Twelve studies met the inclusion criteria, among which three studies were excluded due to unextractable data. Nine studies were eligible for this meta-analysis. A positive moderate correlation between the retinal thickness was discovered in all participants of with AD, mild cognitive impairment (MCI), and normal controls (NC) (r = 0.3469, 95% CI: 0.2490-0.4377, I2 = 5.0%), which was significantly higher than that of the AD group (r = 0.1209, 95% CI:0.0905-0.1510, I2 = 0.0%) (p < 0.05). Among different layers, the peripapillary retinal nerve fiber layer (pRNFL) indicated a moderate positive correlation with hippocampal volume (r = 0.1209, 95% CI:0.0905-0.1510, I2 = 0.0%). The retinal pigmented epithelium (RPE) was also positively correlated [r = 0.1421, 95% CI:(-0.0447-0.3192), I2 = 84.1%]. The retinal layers and participants were the main overall heterogeneity sources. Correlation in the bilateral hemisphere did not show a significant difference. Conclusion The correlation between RNFL thickness and hippocampal volume is more predominant in both NC and AD groups than other layers. Whole retinal thickness is positively correlated to hippocampal volume not only in AD continuum, especially in MCI, but also in NC. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, CRD42022328088.
Collapse
Affiliation(s)
- Shuntai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dian Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyu Cao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kun Xia
- Department of Respiratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwan Su
- Department of Respiratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Barrett-Young A, Abraham WC, Cheung CY, Gale J, Hogan S, Ireland D, Keenan R, Knodt AR, Melzer TR, Moffitt TE, Ramrakha S, Tham YC, Wilson GA, Wong TY, Hariri AR, Poulton R. Associations Between Thinner Retinal Neuronal Layers and Suboptimal Brain Structural Integrity in a Middle-Aged Cohort. Eye Brain 2023; 15:25-35. [PMID: 36936476 PMCID: PMC10018220 DOI: 10.2147/eb.s402510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Purpose The retina has potential as a biomarker of brain health and Alzheimer's disease (AD) because it is the only part of the central nervous system which can be easily imaged and has advantages over brain imaging technologies. Few studies have compared retinal and brain measurements in a middle-aged sample. The objective of our study was to investigate whether retinal neuronal measurements were associated with structural brain measurements in a middle-aged population-based cohort. Participants and Methods Participants were members of the Dunedin Multidisciplinary Health and Development Study (n=1037; a longitudinal cohort followed from birth and at ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, 38, and most recently at age 45, when 94% of the living Study members participated). Retinal nerve fibre layer (RNFL) and ganglion cell-inner plexiform layer (GC-IPL) thickness were measured by optical coherence tomography (OCT). Brain age gap estimate (brainAGE), cortical surface area, cortical thickness, subcortical grey matter volumes, white matter hyperintensities, were measured by magnetic resonance imaging (MRI). Results Participants with both MRI and OCT data were included in the analysis (RNFL n=828, female n=413 [49.9%], male n=415 [50.1%]; GC-IPL n=825, female n=413 [50.1%], male n=412 [49.9%]). Thinner retinal neuronal layers were associated with older brain age, smaller cortical surface area, thinner average cortex, smaller subcortical grey matter volumes, and increased volume of white matter hyperintensities. Conclusion These findings provide evidence that the retinal neuronal layers reflect differences in midlife structural brain integrity consistent with increased risk for later AD, supporting the proposition that the retina may be an early biomarker of brain health.
Collapse
Affiliation(s)
| | | | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong
| | - Jesse Gale
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| | - Sean Hogan
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - David Ireland
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Ross Keenan
- Department of Radiology, Christchurch Hospital, Christchurch, New Zealand
- Pacific Radiology Group, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Annchen R Knodt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Tracy R Melzer
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sandhya Ramrakha
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Graham A Wilson
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Tien Yin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Tsinghua Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Richie Poulton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Retinal Neurodegeneration Measured With Optical Coherence Tomography and Neuroimaging in Alzheimer Disease: A Systematic Review. J Neuroophthalmol 2023; 43:116-125. [PMID: 36255105 DOI: 10.1097/wno.0000000000001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Optical coherence tomography (OCT) has enabled several retinal alterations to be detected in patients with Alzheimer disease (AD), alterations that could be potential biomarkers. However, the relationship between the retina and other biomarkers of AD has been underresearched. We gathered and analyzed the literature about the relationship between retinal and cerebral alterations detected via neuroimaging in patients with AD, mild cognitive impairment (MCI), and preclinical AD. METHODS This systematic review followed the PRISMA Statement guidelines through the 27 items on its checklist. We searched in PubMed, BVS, Scopus, and the Cochrane Library, using the keywords: Alzheimer's disease, optical coherence tomography, white matter, cortex, atrophy, cortical thickness, neuroimaging, magnetic resonance imaging, and positron emission tomography. We included articles that studied the retina in relation to neuroimaging in patients with AD, MCI, and preclinical AD. We excluded studies without OCT, without neuroimaging, clinical cases, opinion articles, systematic reviews, and animal studies. RESULTS Of a total of 35 articles found, 23 were finally included. Although mixed results were found, most of these corroborate the relationship between retinal and brain disorders. CONCLUSIONS More rigorous research is needed in the field, including homogenized, longitudinal, and prolonged follow-up studies, as well as studies that include all stages of AD. This will enable better understanding of the retina and its implications in AD, leading to the discovery of retinal biomarkers that reflect brain alterations in AD patients in an accessible and noninvasive manner.
Collapse
|
11
|
Ghanam AR, Ke S, Wang S, Elgendy R, Xie C, Wang S, Zhang R, Wei M, Liu W, Cao J, Zhang Y, Zhang Z, Xue T, Zheng Y, Song X. Alternative transcribed 3' isoform of long non-coding RNA Malat1 inhibits mouse retinal oxidative stress. iScience 2023; 26:105740. [PMID: 36594014 PMCID: PMC9804114 DOI: 10.1016/j.isci.2022.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The function of the cancer-associated lncRNA Malat1 during aging is as-of-yet uncharacterized. Here, we show that Malat1 interacts with Nucleophosmin (NPM) in young mouse brain, and with Lamin A/C, hnRNP C, and KAP1 with age. RNA-seq and RT-qPCR reveal a persistent expression of Malat1_2 (the 3'isoform of Malat1) in Malat1Δ1 (5'-1.5 kb deletion) mouse retinas and brains at 1/4th level of the full-length Malat1, while Malat1_1 (the 5'isoform) in Malat1Δ2 (deletion of 3'-conserved 5.7 kb) at a much lower level, suggesting an internal promoter driving the 3' isoform. The 1774 and 496 differentially expressed genes in Malat1Δ2 and Malat1Δ1 brains, respectively, suggest the 3' isoform regulates gene expression in trans and the 5' isoform in cis. Consistently, Malat1Δ2 mice show increased age-dependent retinal oxidative stress and corneal opacity, while Malat1Δ1 mice show no obvious phenotype. Collectively, this study reveals a physiological function of the lncRNA Malat1 3'-isoform during the aging process.
Collapse
Affiliation(s)
- Amr. R. Ghanam
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengwei Ke
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Shujuan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ramy Elgendy
- Department of Pharmacology, College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Chenyao Xie
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Siqi Wang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ran Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Wei
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiguang Liu
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Cao
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Zhang
- Stroke Center & Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaoyuan Song
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
T. P, V. S. Identification of Alzheimer's Disease by Imaging: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1273. [PMID: 36674027 PMCID: PMC9858674 DOI: 10.3390/ijerph20021273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
In developing countries, there is more concern for Alzheimer's disease (AD) by public health professionals due to its catastrophic effects on the elderly. Early detection of this disease helps in starting the therapy soon and slows down the progression of the disease. Imaging techniques are considered to be the best solutions for its detection. Brain imaging was initially used to diagnose AD. Different techniques for identifying protein accumulation in the nervous system, a sign of Alzheimer's disease, are identified by MRI imaging. Although they were initially attributed to cortical dysfunction, visual system impairments in Alzheimer's patients were also found in the early 1970s. Several non-invasive approaches reported for screening, prevention, and therapy were unsuccessful. It is vitally necessary to develop new diagnostic methods in order to accurately identify patients who are in the early stages of this disease. It would be wonderful to have a quick, non-invasive, affordable, and easily scalable Alzheimer's disease screening. Researchers may be able to identify biomarkers for Alzheimer's disease and understand more about its aetiology with imaging and data processing. This study clarifies the need for medical image processing and analysis strategies which aid in the non-invasive diagnosis of AD.
Collapse
Affiliation(s)
- Prasath T.
- School of Electrical Engineering, VIT Chennai, Chennai 600127, Tamil Nadu, India
| | - Sumathi V.
- Centre for Automation, School of Electrical Engineering, VIT Chennai, Chennai 600127, Tamil Nadu, India
| |
Collapse
|
13
|
Mathew S, WuDunn D, Mackay DD, Vosmeier A, Tallman EF, Deardorff R, Harris A, Farlow MR, Brosch JR, Gao S, Apostolova LG, Saykin AJ, Risacher SL. Association of Brain Volume and Retinal Thickness in the Early Stages of Alzheimer's Disease. J Alzheimers Dis 2023; 91:743-752. [PMID: 36502316 PMCID: PMC9990456 DOI: 10.3233/jad-210533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The eye has been considered a 'window to the brain,' and several neurological diseases including neurodegenerative conditions like Alzheimer's disease (AD) also show changes in the retina. OBJECTIVE To investigate retinal nerve fiber layer (RNFL) thickness and its association with brain volume via magnetic resonance imaging (MRI) in older adults with subjective or objective cognitive decline. METHODS 75 participants underwent ophthalmological and neurological evaluation including optical coherence tomography and MRI (28 cognitively normal subjects, 26 with subjective cognitive decline, 17 patients diagnosed with mild cognitive impairment, and 4 with AD). Differences in demographics, thickness of RNFL, and brain volume were assessed using ANCOVA, while partial Pearson correlations, covaried for age and sex, were used to compare thickness of the peripapillary RNFL with brain volumes, with p < 0.05 considered statistically significant. RESULTS Mean RNFL thickness was significantly correlated with brain volumes, including global volume (right eye r = 0.235 p = 0.046, left eye r = 0.244, p = 0.037), temporal lobe (right eye r = 0.242 p = 0.039, left eye r = 0.290, p = 0.013), hippocampal (right eye r = 0.320 p = 0.005, left eye r = 0.306, p = 0.008), amygdala (left eye r = 0.332, p = 0.004), and occipital lobe (right eye r = 0.264 p = 0.024) volumes. CONCLUSION RNFL thickness in both eyes was positively associated with brain volumes in subjects with subjective and objective cognitive decline. The RNFL, however, did not correlate with the disease, but the small sample number makes it important to conduct larger studies. RNFL thickness may be a useful non-invasive and inexpensive tool for detection of brain neurodegeneration and may assist with diagnosis and monitoring of progression and treatment in AD.
Collapse
Affiliation(s)
- Sunu Mathew
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Devin D. Mackay
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aaron Vosmeier
- Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA
| | - Eileen F. Tallman
- Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA
| | - Rachael Deardorff
- Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA
| | | | - Martin R. Farlow
- Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA
| | - Jared R. Brosch
- Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA
| | - Liana G. Apostolova
- Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA
| | - Andrew J. Saykin
- Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA
| | - Shannon L. Risacher
- Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA
| |
Collapse
|
14
|
López-Cuenca I, Marcos-Dolado A, Yus-Fuertes M, Salobrar-García E, Elvira-Hurtado L, Fernández-Albarral JA, Salazar JJ, Ramírez AI, Sánchez-Puebla L, Fuentes-Ferrer ME, Barabash A, Ramírez-Toraño F, Gil-Martínez L, Arrazola-García J, Gil P, de Hoz R, Ramírez JM. The relationship between retinal layers and brain areas in asymptomatic first-degree relatives of sporadic forms of Alzheimer’s disease: an exploratory analysis. Alzheimers Res Ther 2022; 14:79. [PMID: 35659054 PMCID: PMC9166601 DOI: 10.1186/s13195-022-01008-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Background Two main genetic risks for sporadic Alzheimer’s disease (AD) are a family history and ɛ4 allele of apolipoprotein E. The brain and retina are part of the central nervous system and share pathophysiological mechanisms in AD. Methods We performed a cross-sectional study with 30 participants without a family history of sporadic AD (FH−) and noncarriers of ApoE ɛ4 (ApoE ɛ4−) as a control group and 34 participants with a family history of sporadic AD (FH+) and carriers of at least one ɛ4 allele (ApoE ɛ4+). We analyzed the correlations between macular volumes of retinal layers and thickness of the peripapillary retinal nerve fiber layer (pRNFL) measured by optical coherence tomography (OCT) with the brain area parameters measured by magnetic resonance imaging (MRI) in participants at high genetic risk of developing AD (FH+ ApoE ɛ4+). Results We observed a significant volume reduction in the FH+ ApoE ɛ4+ group compared with the control group in some macular areas of (i) macular RNFL (mRNFL), (ii) inner plexiform layer (IPL), (iii) inner nuclear layer (INL), and (iv) outer plexiform layer (OPL). Furthermore, in the FH+ ApoE ɛ4+ group, the retinal sectors that showed statistically significant volume decrease correlated with brain areas that are affected in the early stages of AD. In the same group, the peripapillary retinal nerve fiber layer (pRNFL) did not show statistically significant changes in thickness compared with the control group. However, correlations of these sectors with the brain areas involved in this disease were also found. Conclusions In cognitively healthy participants at high genetic risk of developing sporadic forms of AD, there are significant correlations between retinal changes and brain areas closely related to AD such as the entorhinal cortex, the lingual gyrus, and the hippocampus. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01008-5.
Collapse
|
15
|
Wang R, Kwapong WR, Tao W, Cao L, Ye C, Liu J, Zhang S, Wu B. Association of retinal thickness and microvasculature with cognitive performance and brain volumes in elderly adults. Front Aging Neurosci 2022; 14:1010548. [PMID: 36466601 PMCID: PMC9709407 DOI: 10.3389/fnagi.2022.1010548] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Retinal structural and microvascular changes can be visualized and have been linked with cognitive decline and brain changes in cerebral age-related disorders. We investigated the association between retinal structural and microvascular changes with cognitive performance and brain volumes in elderly adults. MATERIALS AND METHODS All participants underwent magnetic resonance imaging (MRI), and a battery of neuropsychological examinations. Macula retinal thicknesses (retinal nerve fiber layer, mRNFL, and ganglion cell-inner plexiform layer, GCIPL) were imaged and measured with swept-source optical coherence tomography (SS-OCT) while Optical Coherence Tomography Angiography (OCTA) imaged and measured the superficial vascular complex (SVC) and deep vascular complex (DVC) of the retina. RESULTS Out of the 135 participants, 91 (67.41%) were females and none had dementia. After adjusting for risk factors, Shape Trail Test (STT)-A correlated with SVC (P < 0.001), DVC (P = 0.015) and mRNFL (P = 0.013) while STT-B correlated with SVC (P = 0.020) and GCIPL (P = 0.015). mRNFL thickness correlated with Montreal Cognitive Assessment (MoCA) (P = 0.007) and Stroop A (P = 0.030). After adjusting for risk factors and total intracranial volume, SVC correlated with hippocampal volume (P < 0.001). Hippocampal volume correlated (P < 0.05) with most cognitive measures. Stroop B (P < 0.001) and Stroop C (P = 0.020) correlated with white matter volume while Stroop measures and STT-A correlated with gray matter volume (P < 0.05). CONCLUSION Our findings suggest that the retinal structure and microvasculature can be useful pointers for cognitive performance, giving a choice for early discovery of decline in cognition and potential early treatment.
Collapse
Affiliation(s)
- Ruilin Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Wendan Tao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Le Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Ye
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Junfeng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Ocular Manifestations and Potential Treatments of Alport Syndrome: A Systematic Review. J Ophthalmol 2022; 2022:9250367. [PMID: 36119140 PMCID: PMC9477629 DOI: 10.1155/2022/9250367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives. Alport syndrome (AS) is a severe, rare hereditary disorder that can lead to end-stage renal disease, auditory degeneration, and ocular abnormalities. Despite extensive research on AS in relation to auditory and renal disorders, more research is needed on the ocular presentations of AS. This systematic review aims to summarize the common ocular abnormalities in patients with AS and to explore the potential treatment options for these irregularities. Methods. The PubMed, MEDLINE, and EMBASE databases were systematically searched from January 1977 to April 2022. Only papers that were published in the English language and explored the ocular abnormalities in AS patients were selected. We manually searched reference lists of included papers for additional studies. Results. A total of 23 articles involving 195 patients were included in this review. The common ocular manifestations in AS patients are lenticonus, macular holes, fleck retinopathy, and thinning of the macula. Although published literature has described the use of cataract surgeries and vitrectomies as standard surgical techniques to alleviate ocular abnormalities in non-AS patients, it must be noted that surgical techniques have not been evaluated in a large research study as a solution for AS abnormalities. Another prospective treatment for AS is gene therapy through the reversion of causative COL4 variants to wild type or exon-skipping therapy for X-linked AS with COL4A5 truncating mutations. Gene therapy, however, remains unable to treat alterations that occur in the fetal and early development phase of the disease. Conclusions. The review found no definitive conclusions regarding the efficacy and safety of surgical techniques and gene therapy in AS patients. Recognition of ocular abnormalities through an ophthalmic examination with an optical coherence tomography (OCT) and slit-lamp examination is critical to the medical field, as ophthalmologists can aid nephrologists and other physicians in diagnosing AS. Early diagnosis and care can minimize the risk of detrimental ocular outcomes, such as blindness and retinal detachment.
Collapse
|
17
|
Tao W, Kwapong WR, Xie J, Wang Z, Guo X, Liu J, Ye C, Wu B, Zhao Y, Liu M. Retinal microvasculature and imaging markers of brain frailty in normal aging adults. Front Aging Neurosci 2022; 14:945964. [PMID: 36072485 PMCID: PMC9441884 DOI: 10.3389/fnagi.2022.945964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe retina and brain share a similar embryologic origin, blood barriers, and microvasculature features. Thus, retinal imaging has been of interest in the aging population to help in the early detection of brain disorders. Imaging evaluation of brain frailty, including brain atrophy and markers of cerebral small vessel disease (CSVD), could reflect brain health in normal aging, but is costly and time-consuming. In this study, we aimed to evaluate the retinal microvasculature and its association with radiological indicators of brain frailty in normal aging adults.MethodsSwept-source optical coherence tomography angiography (SS-OCTA) and 3T-MRI brain scanning were performed on normal aging adults (aged ≥ 50 years). Using a deep learning algorithm, microvascular tortuosity (VT) and fractal dimension parameter (Dbox) were used to evaluate the superficial vascular complex (SVC) and deep vascular complex (DVC) of the retina. MRI markers of brain frailty include brain volumetric measures and CSVD markers that were assessed.ResultsOf the 139 normal aging individuals included, the mean age was 59.43 ± 7.31 years, and 64.0% (n = 89) of the participants were females. After adjustment of age, sex, and vascular risk factors, Dbox in the DVC showed a significant association with the presence of lacunes (β = 0.58, p = 0.007), while VT in the SVC significantly correlated with the score of cerebral deep white matter hyperintensity (β = 0.31, p = 0.027). No correlations were found between brain volumes and retinal microvasculature changes (P > 0.05).ConclusionOur report suggests that imaging of the retinal microvasculature may give clues to brain frailty in the aging population.
Collapse
Affiliation(s)
- Wendan Tao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Jianyang Xie
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Zetao Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Junfeng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Ye
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yitian Zhao
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Yitian Zhao,
| | - Ming Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ming Liu,
| |
Collapse
|
18
|
Abstract
Schizophrenia is increasingly recognized as a systemic disease, characterized by dysregulation in multiple physiological systems (eg, neural, cardiovascular, endocrine). Many of these changes are observed as early as the first psychotic episode, and in people at high risk for the disorder. Expanding the search for biomarkers of schizophrenia beyond genes, blood, and brain may allow for inexpensive, noninvasive, and objective markers of diagnosis, phenotype, treatment response, and prognosis. Several anatomic and physiologic aspects of the eye have shown promise as biomarkers of brain health in a range of neurological disorders, and of heart, kidney, endocrine, and other impairments in other medical conditions. In schizophrenia, thinning and volume loss in retinal neural layers have been observed, and are associated with illness progression, brain volume loss, and cognitive impairment. Retinal microvascular changes have also been observed. Abnormal pupil responses and corneal nerve disintegration are related to aspects of brain function and structure in schizophrenia. In addition, studying the eye can inform about emerging cardiovascular, neuroinflammatory, and metabolic diseases in people with early psychosis, and about the causes of several of the visual changes observed in the disorder. Application of the methods of oculomics, or eye-based biomarkers of non-ophthalmological pathology, to the treatment and study of schizophrenia has the potential to provide tools for patient monitoring and data-driven prediction, as well as for clarifying pathophysiology and course of illness. Given their demonstrated utility in neuropsychiatry, we recommend greater adoption of these tools for schizophrenia research and patient care.
Collapse
Affiliation(s)
- Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Joy J Choi
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Kyle M Green
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Rajeev S Ramchandran
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
19
|
Zhang H, Shen H, Gong W, Sun X, Jiang X, Wang J, Jin L, Xu X, Luo D, Wang X. Plasma homocysteine and macular thickness in older adults-the Rugao Longevity and Aging Study. Eye (Lond) 2022; 36:1050-1060. [PMID: 33976397 PMCID: PMC9046221 DOI: 10.1038/s41433-021-01549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/08/2021] [Accepted: 04/09/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES To determine the association of plasma homocysteine levels with retinal layer thickness in a large community cohort of older adults. METHODS The Rugao Longevity and Ageing Study is an observational, prospective and community-based cohort study. A total of 989 older adults who underwent spectral-domain optical coherence tomography (SD-OCT) were included and analyzed. Foveal, macular retinal nerve fibre layer (mRNFL) and ganglion cell layer plus inner plexiform layer (GC-IPL) thicknesses were measured by SD-OCT. Plasma homocysteine levels were measured using chemiluminescence immunoassay. Linear regression analyses were performed to evaluate the relationship between plasma homocysteine and retinal layer thickness while controlling for confounding factors. RESULTS Of the 989 participants, 500 (50.56%) were men. The mean age was 78.26 (4.58) years, and the mean plasma homocysteine level was 16.38 (8.05) μmol/L. In multivariable analyses, each unit increase in plasma homocysteine was associated with an 8.84 × 10-2 (95% CI: -16.54 × 10-2 to -1.15 × 10-2, p = 0.032) μm decrease in the average inner thickness of the GC-IPL after controlling for confounding factors. The association remained significant even in participants without major cardiovascular disease or diabetes (β = -10.33 × 10-2, 95% CI: -18.49 × 10-2 to -2.18 × 10-2, p = 0.013). No significant associations of plasma homocysteine levels with macular thickness or mRNFL were found in primary and sensitivity analyses (p > 0.05). CONCLUSIONS Increased plasma homocysteine levels are associated with a thinner GC-IPL. Plasma homocysteine may be a risk factor for thinner retinas in older adults.
Collapse
Affiliation(s)
- Hui Zhang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Human Phenome Institute, Fudan University, Shanghai, China
| | - Hangqi Shen
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.412478.c0000 0004 1760 4628Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China ,Shanghai Engineering Center for Visual Science and Photomedicin, Shanghai, China ,grid.412478.c0000 0004 1760 4628Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China ,grid.412478.c0000 0004 1760 4628National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Wei Gong
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.412478.c0000 0004 1760 4628Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China ,Shanghai Engineering Center for Visual Science and Photomedicin, Shanghai, China ,grid.412478.c0000 0004 1760 4628Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China ,grid.412478.c0000 0004 1760 4628National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xuehui Sun
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaoyan Jiang
- grid.24516.340000000123704535Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Human Phenome Institute, Fudan University, Shanghai, China
| | - Li Jin
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Human Phenome Institute, Fudan University, Shanghai, China
| | - Xun Xu
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.412478.c0000 0004 1760 4628Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China ,Shanghai Engineering Center for Visual Science and Photomedicin, Shanghai, China ,grid.412478.c0000 0004 1760 4628Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China ,grid.412478.c0000 0004 1760 4628National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Dawei Luo
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.412478.c0000 0004 1760 4628Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China ,Shanghai Engineering Center for Visual Science and Photomedicin, Shanghai, China ,grid.412478.c0000 0004 1760 4628Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China ,grid.412478.c0000 0004 1760 4628National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xiaofeng Wang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Human Phenome Institute, Fudan University, Shanghai, China ,grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine and Huadong Hospital Clinical Research Center for Geriatric Medicine, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
López-de-Eguileta A, López-García S, Lage C, Pozueta A, García-Martínez M, Kazimierczak M, Bravo M, Irure J, López-Hoyos M, Muñoz-Cacho P, Rodríguez-Perez N, Tordesillas-Gutiérrez D, Goikoetxea A, Nebot C, Rodríguez-Rodríguez E, Casado A, Sánchez-Juan P. The retinal ganglion cell layer reflects neurodegenerative changes in cognitively unimpaired individuals. Alzheimers Res Ther 2022; 14:57. [PMID: 35449033 PMCID: PMC9022357 DOI: 10.1186/s13195-022-00998-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/04/2022] [Indexed: 12/22/2022]
Abstract
Background To evaluate a wide range of optical coherence tomography (OCT) parameters for possible application as a screening tool for cognitively healthy individuals at risk of Alzheimer’s disease (AD), assessing the potential relationship with established cerebrospinal fluid (CSF) core AD biomarkers and magnetic resonance imaging (MRI). Methods We studied 99 participants from the Valdecilla Study for Memory and Brain Aging. This is a prospective cohort for multimodal biomarker discovery and validation that includes participants older than 55 years without dementia. Participants received a comprehensive neuropsychological battery and underwent structural 3-T brain MRI, lumbar puncture for CSF biomarkers (phosphorylated-181-Tau (pTau), total Tau (tTau), beta-amyloid 1–42 (Aβ 1–42), and beta-amyloid 1–40 (Aβ 1–40)). All individuals underwent OCT to measure the retinal ganglion cell layer (GCL), the retinal nerve fiber layer (RFNL), the Bruch’s membrane opening-minimum rim width (BMO-MRW), and choroidal thickness (CT). In the first stage, we performed a univariate analysis, using Student’s t-test. In the second stage, we performed a multivariate analysis including only those OCT parameters that discriminated at a nominal level, between positive/negative biomarkers in stage 1. Results We found significant differences between the OCT measurements of pTau- and tTau-positive individuals compared with those who were negative for these markers, most notably that the GCL and the RNFL were thinner in the former. In stage 2, our dependent variables were the quantitative values of CSF markers and the hippocampal volume. The Aβ 1–42/40 ratio did not show a significant correlation with OCT measurements while the associations between pTau and tTau with GCL were statistically significant, especially in the temporal region of the macula. Besides, the multivariate analysis showed a significant correlation between hippocampal volume with GCL and RNFL. However, after false discovery rate correction, only the associations with hippocampal volume remained significant. Conclusions We found a significant correlation between Tau (pTau) and neurodegeneration biomarkers (tTau and hippocampus volume) with GCL degeneration and, to a lesser degree, with damage in RFNL. OCT analysis constitutes a non-invasive and unexpensive biomarker that allows the detection of neurodegeneration in cognitively asymptomatic individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00998-6.
Collapse
Affiliation(s)
- Alicia López-de-Eguileta
- Department of Ophthalmology, 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' Santander, University of Cantabria, Santander, Spain.
| | - Sara López-García
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - Carmen Lage
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - Ana Pozueta
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - María García-Martínez
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - Martha Kazimierczak
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - María Bravo
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - Juan Irure
- Department of Immunology, 'Marqués de Valdecilla' University Hospital of Cantabria, Institute for Research 'Marqués de Valdecilla', Santander, Spain
| | - Marcos López-Hoyos
- Department of Immunology, 'Marqués de Valdecilla' University Hospital of Cantabria, Institute for Research 'Marqués de Valdecilla', Santander, Spain
| | - Pedro Muñoz-Cacho
- Department of Medicina Familiar y Comunitaria, IDIVAL, Santander, Spain
| | | | | | | | - Claudia Nebot
- Department of Ophthalmology, 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' Santander, University of Cantabria, Santander, Spain
| | - Eloy Rodríguez-Rodríguez
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - Alfonso Casado
- Department of Ophthalmology, 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' Santander, University of Cantabria, Santander, Spain
| | - Pascual Sánchez-Juan
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| |
Collapse
|
21
|
Mauschitz MM, Lohner V, Koch A, Stöcker T, Reuter M, Holz FG, Finger RP, Breteler MMB. Retinal layer assessments as potential biomarkers for brain atrophy in the Rhineland Study. Sci Rep 2022; 12:2757. [PMID: 35177781 PMCID: PMC8854401 DOI: 10.1038/s41598-022-06821-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/20/2022] [Indexed: 01/09/2023] Open
Abstract
Retinal assessments have been discussed as biomarkers for brain atrophy. However, available studies did not investigate all retinal layers due to older technology, reported inconsistent results, or were based on small sample sizes. We included 2872 eligible participants of the Rhineland Study with data on spectral domain-optical coherence tomography (SD-OCT) and brain magnetic resonance imaging (MRI). We used multiple linear regression to examine relationships between retinal measurements and volumetric brain measures as well as fractional anisotropy (FA) as measure of microstructural integrity of white matter (WM) for different brain regions. Mean (SD) age was 53.8 ± 13.2 years (range 30-94) and 57% were women. Volumes of the inner retina were associated with total brain and grey matter (GM) volume, and even stronger with WM volume and FA. In contrast, the outer retina was mainly associated with GM volume, while both, inner and outer retina, were associated with hippocampus volume. While we extend previously reported associations between the inner retina and brain measures, we found additional associations of the outer retina with parts of the brain. This indicates that easily accessible retinal SD-OCT assessments may serve as biomarkers for clinical monitoring of neurodegenerative diseases and merit further research.
Collapse
Affiliation(s)
- Matthias M. Mauschitz
- grid.424247.30000 0004 0438 0426Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Valerie Lohner
- grid.424247.30000 0004 0438 0426Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Alexandra Koch
- grid.424247.30000 0004 0438 0426Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Tony Stöcker
- grid.424247.30000 0004 0438 0426MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| | - Martin Reuter
- grid.424247.30000 0004 0438 0426Image Analysis, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank G. Holz
- grid.15090.3d0000 0000 8786 803XDepartment of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Robert P. Finger
- grid.15090.3d0000 0000 8786 803XDepartment of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Monique M. B. Breteler
- grid.424247.30000 0004 0438 0426Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Cheung CY, Mok V, Foster PJ, Trucco E, Chen C, Wong TY. Retinal imaging in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2021; 92:983-994. [PMID: 34108266 DOI: 10.1136/jnnp-2020-325347] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Identifying biomarkers of Alzheimer's disease (AD) will accelerate the understanding of its pathophysiology, facilitate screening and risk stratification, and aid in developing new therapies. Developments in non-invasive retinal imaging technologies, including optical coherence tomography (OCT), OCT angiography and digital retinal photography, have provided a means to study neuronal and vascular structures in the retina in people with AD. Both qualitative and quantitative measurements from these retinal imaging technologies (eg, thinning of peripapillary retinal nerve fibre layer, inner retinal layer, and choroidal layer, reduced capillary density, abnormal vasodilatory response) have been shown to be associated with cognitive function impairment and risk of AD. The development of computer algorithms for respective retinal imaging methods has further enhanced the potential of retinal imaging as a viable tool for rapid, early detection and screening of AD. In this review, we present an update of current retinal imaging techniques and their potential applications in AD research. We also discuss the newer retinal imaging techniques and future directions in this expanding field.
Collapse
Affiliation(s)
- Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Paul J Foster
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
| | - Emanuele Trucco
- VAMPIRE project, Computing, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Christopher Chen
- Pharmacology, National University Singapore Yong Loo Lin School of Medicine, Singapore.,Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore
| |
Collapse
|
23
|
Hamedani AG. Vision loss and hallucinations: perspectives from neurology and ophthalmology. Curr Opin Neurol 2021; 34:84-88. [PMID: 33230034 DOI: 10.1097/wco.0000000000000882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to summarize the evidence for visual impairment as a risk factor for visual hallucinations in neurologic disease and recent advances in our understanding of the central visual pathways that mediate this association. RECENT FINDINGS Recent studies have described the prevalence Charles Bonnet syndrome and questioned its lack of association with cognitive impairment, used advanced neuroimaging to show that disinhibition of the occipital lobe is involved in the pathogenesis of visual hallucinations in Parkinson's disease, and demonstrated that visual impairment because of eye disease is a consistent risk factor for visual hallucinations across a number of different neurodegenerative disease populations. SUMMARY Through connections between the primary visual cortex and other brain structures, visual function is closely tied to visual hallucinations. Given that the vast majority of vision loss is caused by ophthalmic disease, much of which is preventable or treatable, the detection and treatment of vision loss in at-risk populations may reduce the burden and consequences of visual hallucinations in older adults.
Collapse
Affiliation(s)
- Ali G Hamedani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Fereshetian S, Agranat JS, Siegel N, Ness S, Stein TD, Subramanian ML. Protein and Imaging Biomarkers in the Eye for Early Detection of Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:375-387. [PMID: 34189409 PMCID: PMC8203283 DOI: 10.3233/adr-210283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia worldwide. Although no formal curative therapy exists for the treatment of AD, considerable research has been performed to identify biomarkers for early detection of this disease, and thus improved subsequent management. Given that the eye can be examined and imaged non-invasively with relative ease, it has emerged as an exciting area of research for evidence of biomarkers and to aid in the early diagnosis of AD. This review explores the current understanding of both protein and retinal imaging biomarkers in the eye. Herein, primary findings in the literature regarding AD biomarkers associated with the lens, retina, and other ocular structures are reviewed.
Collapse
Affiliation(s)
- Shaunt Fereshetian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
| | - Joshua S. Agranat
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Nicole Siegel
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Steven Ness
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Manju L. Subramanian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| |
Collapse
|
25
|
Donix M, Wittig D, Hermann W, Haussmann R, Dittmer M, Bienert F, Buthut M, Jacobi L, Werner A, Linn J, Ziemssen T, Brandt MD. Relation of retinal and hippocampal thickness in patients with amnestic mild cognitive impairment and healthy controls. Brain Behav 2021; 11:e02035. [PMID: 33448670 PMCID: PMC8119792 DOI: 10.1002/brb3.2035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Investigating retinal thickness may complement existing biological markers for dementia and other neurodegenerative diseases. Although retinal thinning is predictive for cognitive decline, it remains to be investigated if and how this feature aligns with neurodegeneration elsewhere in the brain, specifically in early disease stages. METHODS Using optical coherence tomography and magnetic resonance imaging, we examined retinal thickness as well as hippocampal structure in patients with amnestic mild cognitive impairment and healthy controls. RESULTS The groups did not differ in hippocampal and retinal thickness measures. However, we detected a correlation of peripapillary retinal nerve fiber layer thickness and hippocampal thickness in healthy people but not in cognitively impaired patients. The ratio of hippocampus to retina thickness was significantly smaller in patients with mild cognitive impairment and correlated positively with cognitive performance. CONCLUSIONS Different temporal trajectories of neurodegeneration may disrupt transregional brain structure associations in patients with amnestic mild cognitive impairment.
Collapse
Affiliation(s)
- Markus Donix
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Dierk Wittig
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Department of Ophthalmology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Wiebke Hermann
- Department of Neurology, University Hospital, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Robert Haussmann
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maren Dittmer
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Franziska Bienert
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maria Buthut
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Liane Jacobi
- Department of Neurology, Sächsisches Krankenhaus Arnsdorf, Arnsdorf, Germany
| | - Annett Werner
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jennifer Linn
- Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moritz D Brandt
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Song A, Johnson N, Ayala A, Thompson AC. Optical Coherence Tomography in Patients with Alzheimer's Disease: What Can It Tell Us? Eye Brain 2021; 13:1-20. [PMID: 33447120 PMCID: PMC7802785 DOI: 10.2147/eb.s235238] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Although Alzheimer's disease (AD) is a leading cause of dementia worldwide, its clinical diagnosis remains a challenge. Optical coherence tomography (OCT) and OCT with angiography (OCTA) are non-invasive ophthalmic imaging tools with the potential to detect retinal structural and microvascular changes in patients with AD, which may serve as biomarkers for the disease. In this systematic review, we evaluate whether certain OCT and OCTA parameters are significantly associated with AD and mild cognitive impairment (MCI). METHODS PubMed database was searched using a combination of MeSH terms to identify studies for review. Studies were organized by participant diagnostic groups, type of imaging modality, and OCT/OCTA parameters of interest. Participant demographic data was also collected and baseline descriptive statistics were calculated for the included studies. RESULTS Seventy-one studies were included for review, representing a total of 6757 patients (2350 AD, 793 MCI, 2902 healthy controls (HC), and 841 others with a range of other neurodegenerative diagnoses). The mean baseline ages were 72.78±3.69, 71.52±2.88, 70.55±3.85 years for AD, MCI and HC groups, respectively. The majority of studies noted significant structural and functional decline in AD patients when compared to HC. Although analysis of MCI groups yielded more mixed results, a similar pattern of decline was often noted amongst patients with MCI relative to HC. OCT and OCTA measurements were also shown to correlate with established measures of AD such as neuropsychological testing or neuroimaging. CONCLUSION OCT and OCTA show great potential as non-invasive technologies for the diagnosis of AD. However, further research is needed to determine whether there are AD-specific patterns of structural or microvascular change in the retina and optic nerve that distinguish AD from other neurodegenerative diseases. Development of sensitive and specific OCT/OCTA parameters will be necessary before they can be used to detect AD in clinical settings.
Collapse
Affiliation(s)
- Ailin Song
- Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
27
|
Sergott RC, Raji A, Kost J, Sur C, Jackson S, Locco A, Patel A, Furtek C, Mattson B, Egan MF. Retinal Optical Coherence Tomography Metrics Are Unchanged in Verubecestat Alzheimer's Disease Clinical Trial but Correlate with Baseline Regional Brain Atrophy. J Alzheimers Dis 2020; 79:275-287. [PMID: 33252075 DOI: 10.3233/jad-200735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND We performed exploratory analyses of retinal thickness data from a clinical trial of the AβPP cleaving enzyme (BACE) inhibitor verubecestat in patients with Alzheimer's disease (AD). OBJECTIVE To evaluate: 1) possible retinal thickness changes following BACE inhibition; and 2) possible association between retinal thickness and brain atrophy. METHODS Retinal thickness was measured using spectral-domain optical coherence tomography in a 78-week randomized placebo-controlled trial of verubecestat in 1,785 patients with mild-to-moderate AD. Changes from baseline in retinal pigment epithelium, macular grid retinal nerve fiber layer, central subfield retinal thickness, and macular grid volume were evaluated for verubecestat versus placebo. Correlation analyses were performed to investigate the potential association between macular grid retinal nerve fiber layer and central subfield retinal thickness with brain volumetric magnetic resonance imaging (vMRI) data at baseline, as well as correlations for changes from baseline at Week 78 in patients receiving placebo. RESULTS Verubecestat did not significantly alter retinal thickness during the trial compared with placebo. At baseline, mean macular grid retinal nerve fiber layer and central subfield retinal thickness were weakly but significantly correlated (Pearson's r values≤0.23, p-values < 0.01) with vMRI of several brain regions including whole brain, hippocampus, and thalamus. At Week 78, correlations between retinal thickness and brain vMRI changes from baseline in the placebo group were small and mostly not statistically significant. CONCLUSION BACE inhibition by verubecestat was not associated with adverse effects on retinal thickness in patients with mild-to-moderate AD. Correlations between retinal thickness and brain volume were observed at baseline. TRIAL REGISTRATION Clinicaltrials.gov NCT01739348 (registered December 3, 2012; https://clinicaltrials.gov/ct2/show/NCT01739348).
Collapse
Affiliation(s)
- Robert C Sergott
- Wills Eye Hospital, and Annesley Eye Brain Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | - Amy Locco
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | |
Collapse
|
28
|
Mejia-Vergara AJ, Karanjia R, Sadun AA. OCT parameters of the optic nerve head and the retina as surrogate markers of brain volume in a normal population, a pilot study. J Neurol Sci 2020; 420:117213. [PMID: 33271374 DOI: 10.1016/j.jns.2020.117213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022]
Abstract
The relationship between optical coherence tomography (OCT) measurements of the retinal structures has been described for various neurological diseases including Multiple Sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Brain volume changes, both globally and by area, are associated with some of these same diseases, yet the correlation of OCT and disease is not fully elucidated. Our study looked at normal subjects, at the correlation of OCT measurements and brain volumes, both globally and for specific regions including the pericalcarine grey matter, entorhinal grey matter, and cerebellar volume using a retrospective, cross-sectional cohort study design. Thickness of the retinal nerve fiber layer (RNFL) as measured by OCT, correlated with volume of the pericalcarine grey matter, when adjusted for age and gender. Similarly, thickness of the ganglion cell layer-inner plexiform layer complex may be associated with both entorhinal grey matter volumes and total cerebellar volumes, although our pilot study did not reach statistical significance. This suggests that both eye and brain volumes follow a similar trajectory and understanding the inter-relationship of these structures will aid in the analysis of changes seen in disease. Further studies are needed to longitudinally demonstrate these relationships.
Collapse
Affiliation(s)
- Alvaro J Mejia-Vergara
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America; Doheny Eye Institute, Los Angeles, California, United States of America; Department of Neuro-ophthalmology, Oftlamo-Sanitas Eye Institute, School of Medicine, Fundación Universitaria Sanitas, Bogotá, Colombia.
| | - Rustum Karanjia
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America; Doheny Eye Institute, Los Angeles, California, United States of America; Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alfredo A Sadun
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America; Doheny Eye Institute, Los Angeles, California, United States of America
| |
Collapse
|
29
|
Alber J, Goldfarb D, Thompson LI, Arthur E, Hernandez K, Cheng D, DeBuc DC, Cordeiro F, Provetti-Cunha L, den Haan J, Van Stavern GP, Salloway SP, Sinoff S, Snyder PJ. Developing retinal biomarkers for the earliest stages of Alzheimer's disease: What we know, what we don't, and how to move forward. Alzheimers Dement 2020; 16:229-243. [PMID: 31914225 DOI: 10.1002/alz.12006] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
The last decade has seen a substantial increase in research focused on the identification, development, and validation of diagnostic and prognostic retinal biomarkers for Alzheimer's disease (AD). Sensitive retinal biomarkers may be advantageous because they are cost and time efficient, non-invasive, and present a minimal degree of patient risk and a high degree of accessibility. Much of the work in this area thus far has focused on distinguishing between symptomatic AD and/or mild cognitive impairment (MCI) and cognitively normal older adults. Minimal work has been done on the detection of preclinical AD, the earliest stage of AD pathogenesis characterized by the accumulation of cerebral amyloid absent clinical symptoms of MCI or dementia. The following review examines retinal structural changes, proteinopathies, and vascular alterations that have been proposed as potential AD biomarkers, with a focus on studies examining the earliest stages of disease pathogenesis. In addition, we present recommendations for future research to move beyond the discovery phase and toward validation of AD risk biomarkers that could potentially be used as a first step in a multistep screening process for AD risk detection.
Collapse
Affiliation(s)
- Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | | | - Louisa I Thompson
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | - Edmund Arthur
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | | | - Derrick Cheng
- Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Delia Cabrera DeBuc
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Francesca Cordeiro
- Imperial College London, London, UK.,University College London, London, UK.,Western Eye Hospital, London, UK
| | - Leonardo Provetti-Cunha
- Federal University of Juiz de Fora Medical School, Juiz de Fora, Minas Gerais, Brazil.,Juiz de Fora Eye Hospital, Juiz de Fora, Minas Gerais, Brazil.,University of São Paulo Medical School, São Paulo, Brazil
| | - Jurre den Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gregory P Van Stavern
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Stephen P Salloway
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA.,Department of Neurology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Peter J Snyder
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Department of Neurology and Department of Surgery (Ophthalmology), Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
30
|
Wu SZ, Masurkar AV, Balcer LJ. Afferent and Efferent Visual Markers of Alzheimer's Disease: A Review and Update in Early Stage Disease. Front Aging Neurosci 2020; 12:572337. [PMID: 33061906 PMCID: PMC7518395 DOI: 10.3389/fnagi.2020.572337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Vision, which requires extensive neural involvement, is often impaired in Alzheimer's disease (AD). Over the last few decades, accumulating evidence has shown that various visual functions and structures are compromised in Alzheimer's dementia and when measured can detect those with dementia from those with normal aging. These visual changes involve both the afferent and efferent parts of the visual system, which correspond to the sensory and eye movement aspects of vision, respectively. There are fewer, but a growing number of studies, that focus on the detection of predementia stages. Visual biomarkers that detect these stages are paramount in the development of successful disease-modifying therapies by identifying appropriate research participants and in identifying those who would receive future therapies. This review provides a summary and update on common afferent and efferent visual markers of AD with a focus on mild cognitive impairment (MCI) and preclinical disease detection. We further propose future directions in this area. Given the ease of performing visual tests, the accessibility of the eye, and advances in ocular technology, visual measures have the potential to be effective, practical, and non-invasive biomarkers of AD.
Collapse
Affiliation(s)
- Shirley Z. Wu
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arjun V. Masurkar
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
31
|
Shi Z, Cao X, Hu J, Jiang L, Mei X, Zheng H, Chen Y, Wang M, Cao J, Li W, Li T, Li C, Shen Y. Retinal nerve fiber layer thickness is associated with hippocampus and lingual gyrus volumes in nondemented older adults. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109824. [PMID: 31765713 DOI: 10.1016/j.pnpbp.2019.109824] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Abnormal retina structures, such as thinner retinal nerve fiber layer (RNFL), have been frequently reported in patients with Alzheimer's disease (AD). However, the association between RNFL and brain structures in cognitively normal adults remains unknown. We therefore set out to conduct a cross-sectional investigation to determine whether RNFL thickness is associated with brain structure volumes in nondemented older adults. METHODS We measured RNFL thickness by optical coherence tomography and brain structure volumes by 3 T magnetic resonance imaging. Cognitive function was assessed using the Chinese version of Repeatable Battery for the Assessment of Neurological Status. Pearson correlation was initially employed to screen for the potential associations among RNFL thickness, brain structure volumes and cognitive function. And then, multivariable linear regression models were conducted to further examine such associations adjusting for possible confounding factors, including age, sex, years of education and the estimated total intracranial volume (eTIV). RESULTS 113 participants (≥ 65 years old) were screened and 80 of them (mean age: 68 ± 5.3 years; 48% male) were included in the final analysis. RNFL thickness in temporal quadrant was associated with medial temporal lobes volumes [unadjusted: r = 0.155, P = 0.175; adjusted: β = 0.205 (0.014, 0.383), P = 0.035], and especially associated with the hippocampus volume [unadjusted: r = 0.213, P = 0.062; adjusted: β = 0.251 (0.060, 0.435), P = 0.011] after adjusted for age, sex, years of education and eTIV. Moreover, it showed that RNFL thickness in inferior quadrant [unadjusted: r = 0.221, P = 0.052; adjusted: β = 0.226 (0.010. 0.446), P = 0.041] was significantly associated with occipital lobes volumes after the adjustment of age, sex, years of education and eTIV, and selectively associated with the substructure of lingual gyrus volume [unadjusted: r = 0.223, P = 0.050; adjusted: β = 0.278 (0.058, 0.487), P = 0.014]. In addition, average RNFL thickness was associated with the cognitive domain of visuospatial/constructional [unadjusted: r = 0.114, P = 0.322; adjusted: β = 0.216 (0.006, 0.426), P = 0.044] after the adjustment in these nondemented older adults. CONCLUSIONS Quadrant-specific associations exist between RNFL thickness and brain regions vulnerable to aging or neurodegeneration in older adults with normal cognition. These findings would promote further investigations into using RNFL as a noninvasive and less expensive biomarker of neurocognitive aging and AD-related neurodegeneration.
Collapse
Affiliation(s)
- Zhongyong Shi
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Jingxiao Hu
- Soochow University School of Medicine, Suzhou 215006, PR China
| | - Lijuan Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Xinchun Mei
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Hailin Zheng
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Yupeng Chen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Meijuan Wang
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jing Cao
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Wei Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Ting Li
- Department of Geriatric Psychiatry, Shanghai, Changning Mental Health Center, Shanghai 200335, PR China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
32
|
Yoon SP, Thompson AC, Polascik BW, Calixte C, Burke JR, Petrella JR, Grewal DS, Fekrat S. Correlation of OCTA and Volumetric MRI in Mild Cognitive Impairment and Alzheimer's Disease. Ophthalmic Surg Lasers Imaging Retina 2020; 50:709-718. [PMID: 31755970 DOI: 10.3928/23258160-20191031-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/26/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUD AND OBJECTIVE To evaluate the relationship between retinal microvascular parameters on optical coherence tomography angiography (OCTA) and neurodegenerative changes assessed by measurement of brain volume on volumetric magnetic resonance imaging (MRI) in Alzheimer's disease (AD) and mild cognitive impairment (MCI). PATIENTS AND METHODS Sixteen subjects with AD and MCI underwent OCTA imaging (3 mm × 3 mm and 6 mm × 6 mm scans) and volumetric brain MRI imaging with automated volumetric segmentation and quantification. Spearman's correlation (ρ) was performed between forebrain parenchyma, cortical gray matter, inferolateral ventricle (ILV), lateral ventricle (LV), and hippocampus (HP) MRI volumes and vessel density (VD), along with perfusion density (PD) for the 6-mm circle, 6-mm ring, 3-mm circle, and 3-mm ring Early Treatment Diabetic Retinopathy Study regions of the superficial capillary plexus. RESULTS Thirty eyes of 16 patients (seven MCI and nine AD) with good-quality OCTA images were analyzed. ILV volume inversely correlated with the VD in the 6-mm circle (ρ = -0 .565, P = .028) and 3-mm ring (ρ = -0.569, P = .027) and PD in the 3-mm ring (ρ = -0.605, P = .0169). Forebrain, cortical gray matter, LV, and HP volumes did not significantly correlate with either VD or PD (P > .05). CONCLUSIONS In this pilot investigation, the authors found a significant correlation between reduction in the superficial capillary plexus VD and PD on OCTA and expansion of the ILV in MCI and AD. This relationship between the retinal microvasculature and cerebral volumetric changes deserves further investigation. [Ophthalmic Surg Lasers Imaging Retina. 2019;50:709-718.].
Collapse
|
33
|
Jorge L, Canário N, Quental H, Bernardes R, Castelo-Branco M. Is the Retina a Mirror of the Aging Brain? Aging of Neural Retina Layers and Primary Visual Cortex Across the Lifespan. Front Aging Neurosci 2020; 11:360. [PMID: 31998115 PMCID: PMC6961569 DOI: 10.3389/fnagi.2019.00360] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023] Open
Abstract
How aging concomitantly modulates the structural integrity of the brain and retina in healthy individuals remains an outstanding question. Given the strong bottom-up retinocortical connectivity, it is important to study how these structures co-evolve during healthy aging in order to unravel mechanisms that may affect the physiological integrity of both structures. For the 56 participants in the study, primary visual cortex (BA17), as well as frontal, parietal and temporal regions thicknesses were measured in T1-weighted magnetic resonance imaging (MRI), and retinal macular thickness (10 neuroretinal layers) was measured by optical coherence tomography (OCT) imaging. We investigated the statistical association of these measures and their age dependence. We found an age-related decay of primary visual cortical thickness that was significantly correlated with a decrease in global and multiple layer retinal thicknesses. The atrophy of both structures might jointly account for the decline of various visual capacities that accompany the aging process. Furthermore, associations with other cortical regions suggest that retinal status may index cortical integrity in general.
Collapse
Affiliation(s)
- Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Hugo Quental
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Rui Bernardes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
34
|
den Haan J, van de Kreeke JA, Konijnenberg E, ten Kate M, den Braber A, Barkhof F, van Berckel BN, Teunissen CE, Scheltens P, Visser PJ, Verbraak FD, Bouwman FH. Retinal thickness as a potential biomarker in patients with amyloid-proven early- and late-onset Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:463-471. [PMID: 31249859 PMCID: PMC6584766 DOI: 10.1016/j.dadm.2019.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction Retinal thickness measured with optical coherence tomography has been proposed as a noninvasive biomarker for Alzheimer's disease (AD). We therefore measured retinal thickness in well-characterized AD and control participants, considering ophthalmological confounders. Methods We included 57 amyloid-proven AD cases and 85 cognitively normal, amyloid-negative controls. All subjects underwent retinal thickness measurements with spectral domain optical coherence tomography and an ophthalmological assessment to exclude ocular disease. Results Retinal thickness did not discriminate cases from controls, including stratified analyses for early- versus late-onset AD. We found significant associations between macular thickness and global cortical atrophy [β -0.358; P = .01] and parietal cortical atrophy on magnetic resonance imaging [β -0.371; P < .01] in AD cases. Discussion In this study, representing the largest optical coherence tomography cohort with amyloid-proven AD cases, we show that retinal thickness does not discriminate AD from controls, despite evident changes on clinical, neuroimaging, and CSF measures, querying the use of retinal thickness measurements as an AD biomarker.
Collapse
Affiliation(s)
- Jurre den Haan
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jacoba A. van de Kreeke
- Department of Ophthalmology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Elles Konijnenberg
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mara ten Kate
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anouk den Braber
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- UCL Institutes of Neurology and Healthcare Engineering, London, UK
| | - Bart N. van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E. Teunissen
- Department of Clinical Chemistry, Neurochemistry Lab and Biobank, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter Jelle Visser
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Alzheimer Center, School for Mental Health and Neuroscience (MHeNS), University Medical Centre, Maastricht, the Netherlands
| | - Frank D. Verbraak
- Department of Ophthalmology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Femke H. Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Spatial analysis of thickness changes in ten retinal layers of Alzheimer's disease patients based on optical coherence tomography. Sci Rep 2019; 9:13000. [PMID: 31506524 PMCID: PMC6737098 DOI: 10.1038/s41598-019-49353-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/24/2019] [Indexed: 12/22/2022] Open
Abstract
The retina is an attractive source of biomarkers since it shares many features with the brain. Thickness differences in 10 retinal layers between 19 patients with mild Alzheimer’s disease (AD) and a control group of 24 volunteers were investigated. Retinal layers were automatically segmented and their thickness at each scanned point was measured, corrected for tilt and spatially normalized. When the mean thickness of entire layers was compared between patients and controls, only the outer segment layer of patients showed statistically significant thinning. However, when the layers were compared point-by point, patients showed statistically significant thinning in irregular regions of total retina and nerve fiber, ganglion cell, inner plexiform, inner nuclear and outer segment layers. Our method, based on random field theory, provides a precise delimitation of regions where total retina and each of its layers show a statistically significant thinning in AD patients. All layers, except inner nuclear and outer segments, showed thickened regions. New analytic methods have shown that thinned regions are interspersed with thickened ones in all layers, except inner nuclear and outer segments. Across different layers we found a statistically significant trend of the thinned regions to overlap and of the thickened ones to avoid overlapping.
Collapse
|
36
|
Tao R, Lu Z, Ding D, Fu S, Hong Z, Liang X, Zheng L, Xiao Y, Zhao Q. Perifovea retinal thickness as an ophthalmic biomarker for mild cognitive impairment and early Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:405-414. [PMID: 31206006 PMCID: PMC6558027 DOI: 10.1016/j.dadm.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction The aim of this study was to investigate retinal thickness as a biomarker for identifying patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Methods The retinal thickness, utilizing the spectral domain optical coherence tomography, was compared among 73 patients with AD, 51 patients with MCI, 67 cognitive normal control (NC) subjects. Results The retinal thickness of ganglion cell complex and peripapillary retinal nerve fiber layer decreased in both AD and MCI patients, in comparison with NC subjects (AD vs. NC, P < .01; MCI vs. NC, P < .01). The inner retinal layers in macular area in MCI exhibited significant thinning compared with NC (P < .001). Remarkable association was found between the retinal thickness and brain volume (P < .05). Better correlation was seen between the inner perifovea retinal thickness and the hippocampal and entorhinal cortex volume (r: 0.427–0.644, P < .01). Discussion The retinal thickness, especially the inner retinal layer thickness, is a potentially early AD marker indicating neurodegeneration.
Collapse
Affiliation(s)
- Rui Tao
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaozeng Lu
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ding Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuhao Fu
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Hong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiqin Xiao
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Grewal DS, Fekrat S, Fine HF. Is OCT Angiography Useful in Neurodegenerative Diseases? Ophthalmic Surg Lasers Imaging Retina 2019; 50:269-273. [DOI: 10.3928/23258160-20190503-02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Owoyele BV, Ayilara OG. Coconut oil protects against light-induced retina degeneration in male Wistar rats. PATHOPHYSIOLOGY 2019; 26:89-95. [DOI: 10.1016/j.pathophys.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 11/26/2022] Open
|
39
|
Gemelli H, Fidalgo TM, Gracitelli CPB, de Andrade EP. Retinal nerve fiber layer analysis in cocaine users. Psychiatry Res 2019; 271:226-229. [PMID: 30502559 DOI: 10.1016/j.psychres.2018.11.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 10/16/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022]
Abstract
Cocaine is a well-known factor of tissue ischemia and may be related to thinning of the inner retinal layers. The present study aimed to evaluate and determine whether cocaine users show retinal nerve fiber layer (RNFL) thinning by means of spectral-domain optical coherence tomography. A group of 17 cocaine users and 18 non-users were recruited for complete ophthalmologic examination. Spectral domain optical coherence tomography (Cirrus OCT) was used to evaluate peripapillary RNFL and macular thickness. The average RNFL measurement in the cocaine users group was significantly thinner compared to the control group. Subjects in the cocaine users group showed significant thinning in the nasal, superior and inferior quadrant. There were no significant differences in macular thickness or in the temporal quadrant between the two groups. This study supports further research with larger sample sizes to precisely determine the effect of cocaine on the RNFL.
Collapse
Affiliation(s)
- Henrique Gemelli
- Department of Ophthalmology, Hospital do Servidor Público Estadual Francisco Morato de Oliveira, São Paulo, Brazil.
| | - Thiago M Fidalgo
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina P B Gracitelli
- Department of Ophthalmology and Visual Science, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Eric Pinheiro de Andrade
- Department of Ophthalmology, Hospital do Servidor Público Estadual Francisco Morato de Oliveira, São Paulo, Brazil
| |
Collapse
|
40
|
Jones AR, Robbs CM, Edwards CG, Walk AM, Thompson SV, Reeser GE, Holscher HD, Khan NA. Retinal Morphometric Markers of Crystallized and Fluid Intelligence Among Adults With Overweight and Obesity. Front Psychol 2018; 9:2650. [PMID: 30622502 PMCID: PMC6309102 DOI: 10.3389/fpsyg.2018.02650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the relationship between retinal morphometric measures and intellectual abilities among adults with overweight and obesity. Methods: Adults between 25 and 45 years (N = 55, 38 females) with overweight or obesity (BMI ≥ 25.0 kg/m2) underwent an optical coherence tomography (OCT) scan to assess retinal nerve fiber layer (RNFL) volume, ganglion cell layer (GCL) volume, macular volume, and central foveal thickness. Dual-Energy X-ray absorptiometry was used to assess whole-body adiposity (% Fat). The Kaufman Brief Intelligence Test-2 was used to assess general intelligence (IQ), fluid, and crystallized intelligence. Hierarchical linear regression analyses were performed to examine relationships between adiposity and intelligence measures following adjustment of relevant demographic characteristics and degree of adiposity (i.e., % Fat). Results: Although initial bivariate correlations indicated that % Fat was inversely related to fluid intelligence, this relationship was mitigated by inclusion of other demographic factors, including age, sex, and education level. Regression analyses for primary outcomes revealed that RNFL was positively related to IQ and fluid intelligence. However, only GCL was positively related to crystallized intelligence. Conclusion: This work provides novel data linking specific retinal morphometric measures - assessed using OCT - to intellectual abilities among adults with overweight and obesity. Clinical Trial Registration: www.clinicaltrials.gov, identifier NCT02740439.
Collapse
Affiliation(s)
- Alicia R. Jones
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Connor M. Robbs
- College of Liberal Arts and Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Caitlyn G. Edwards
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Anne M. Walk
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sharon V. Thompson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ginger E. Reeser
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hannah D. Holscher
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Naiman A. Khan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
41
|
Méndez-Gómez JL, Pelletier A, Rougier MB, Korobelnik JF, Schweitzer C, Delyfer MN, Catheline G, Monfermé S, Dartigues JF, Delcourt C, Helmer C. Association of Retinal Nerve Fiber Layer Thickness With Brain Alterations in the Visual and Limbic Networks in Elderly Adults Without Dementia. JAMA Netw Open 2018; 1:e184406. [PMID: 30646353 PMCID: PMC6324371 DOI: 10.1001/jamanetworkopen.2018.4406] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPORTANCE The eye is a sensory organ that is easily accessible for imaging techniques, allowing the measurement of the retinal nerve fiber layer (RNFL) thickness. The eye is part of the central nervous system, and its neurons may be susceptible to degeneration; therefore, changes in the RNFL thickness may reflect microstructural and volume alterations in the brain. OBJECTIVE To explore the association between the peripapillary RNFL thickness and brain alterations in the visual and limbic networks in elderly people without dementia. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional analysis of the Three-City/Antioxydants, Lipides Essentiels, Nutrition et Maladies Oculaires (Alienor) Study cohort (April 2009 to December 2010). The dates of analysis were July 2017 to August 2018. The setting was a population-based study in France. The brain volume analysis included 104 participants, and the diffusion tensor imaging analysis included 79 participants. MAIN OUTCOMES AND MEASURES Global RNFL was assessed by spectral-domain optical coherence tomography. Brain volumes were assessed via T1-weighted magnetic resonance imaging by measurement of the global white and gray matter fractions and the hippocampal fraction. Brain microstructural alterations were assessed with diffusion tensor imaging at the level of the posterior thalamic radiations, the limbic system tracts (the fornix and cingulum bundles), and the posterior limb of the internal capsule (control region). Linear regression models adjusted for several confounders were performed. RESULTS Among a total of 104 participants, the mean (SD) age was 80.8 (3.9) years, and the cohort was 56.7% women (n = 59). The mean (SD) global RNFL thickness was 89.3 (12.9) µm. A thicker RNFL was associated with a greater hippocampal fraction (quantity of increase β = 0.013; 95% CI, 0.001-0.025 per 10-μm increase in the RNFL thickness) and better diffusion tensor imaging variables in the global cingulum (mean diffusivity β = -0.007; 95% CI, -0.015 to -0.000) and the hippocampal part of the cingulum (mean diffusivity β = -0.009; 95% CI, -0.016 to -0.002 and radial diffusivity β = -0.010; 95% CI, -0.018 to -0.002) and the posterior thalamic radiations (fractional anisotropy β = 0.008; 95% CI, 0.000-0.017). No significant associations were found with other magnetic resonance imaging volumes or with other diffusion tensor imaging variables. In particular, there was no significant association with the control region of interest. CONCLUSIONS AND RELEVANCE Results of this study suggest that in elderly individuals without dementia, a thicker RNFL was associated with better magnetic resonance imaging variables both in a region that included the visual pathways and in regions particularly involved in the neurodegenerative processes of Alzheimer disease.
Collapse
Affiliation(s)
- Juan Luis Méndez-Gómez
- University Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, Unité Mixte de Recherche (UMR) 1219, Bordeaux, France
| | - Amandine Pelletier
- University Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, Unité Mixte de Recherche (UMR) 1219, Bordeaux, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Bordeaux, France
| | - Marie-Bénédicte Rougier
- University Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, Unité Mixte de Recherche (UMR) 1219, Bordeaux, France
- Ophthalmology, University Hospital, Bordeaux, France
| | - Jean-François Korobelnik
- University Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, Unité Mixte de Recherche (UMR) 1219, Bordeaux, France
- Ophthalmology, University Hospital, Bordeaux, France
| | - Cédric Schweitzer
- University Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, Unité Mixte de Recherche (UMR) 1219, Bordeaux, France
- Ophthalmology, University Hospital, Bordeaux, France
| | - Marie-Noëlle Delyfer
- University Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, Unité Mixte de Recherche (UMR) 1219, Bordeaux, France
- Ophthalmology, University Hospital, Bordeaux, France
| | - Gwenaëlle Catheline
- Centre National de la Recherche Scientifique (CNRS), Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Bordeaux, France
- École Pratique des Hautes Études (EPHE), Paris Sciences et Lettres (PSL) Research University, Bordeaux, France
| | | | - Jean-François Dartigues
- University Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, Unité Mixte de Recherche (UMR) 1219, Bordeaux, France
- Memory Consultation, Centre Mémoire de Ressource et de Recherche (CMRR), University Hospital, Bordeaux, France
| | - Cécile Delcourt
- University Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, Unité Mixte de Recherche (UMR) 1219, Bordeaux, France
| | - Catherine Helmer
- University Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, Unité Mixte de Recherche (UMR) 1219, Bordeaux, France
- Clinical Epidemiology Unit, INSERM, Centre d'Investigation Clinique (CIC) 1401, Bordeaux, France
| |
Collapse
|
42
|
Mutlu U, Ikram MK, Roshchupkin GV, Bonnemaijer PWM, Colijn JM, Vingerling JR, Niessen WJ, Ikram MA, Klaver CCW, Vernooij MW. Thinner retinal layers are associated with changes in the visual pathway: A population-based study. Hum Brain Mapp 2018; 39:4290-4301. [PMID: 29935103 DOI: 10.1002/hbm.24246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 01/23/2023] Open
Abstract
Increasing evidence shows that thinner retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL), assessed on optical coherence tomography (OCT), are reflecting global brain atrophy. Yet, little is known on the relation of these layers with specific brain regions. Using voxel-based analysis, we aimed to unravel specific brain regions associated with these retinal layers. We included 2,235 persons (mean age: 67.3 years, 55% women) from the Rotterdam Study (2007-2012) who had gradable retinal OCT images and brain magnetic resonance imaging (MRI) scans, including diffusion tensor (DT) imaging. Thicknesses of peripapillary RNFL and perimacular GCL were measured using an automated segmentation algorithm. Voxel-based morphometry protocols were applied to process DT-MRI data. We investigated the association between retinal layer thickness with voxel-wise gray matter density and white matter microstructure by performing linear regression models. We found that thinner RNFL and GCL were associated with lower gray matter density in the visual cortex, and with lower fractional anisotropy and higher mean diffusivity in white matter tracts that are part of the optic radiation. Furthermore, thinner GCL was associated with lower gray matter density of the thalamus. Thinner RNFL and GCL are associated with gray and white matter changes in the visual pathway suggesting that retinal thinning on OCT may be specifically associated with changes in the visual pathway rather than with changes in the global brain. These findings may serve as a basis for understanding visual symptoms in elderly patients, patients with Alzheimer's disease, or patients with posterior cortical atrophy.
Collapse
Affiliation(s)
- Unal Mutlu
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mohammad K Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gennady V Roshchupkin
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pieter W M Bonnemaijer
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johanna M Colijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johannes R Vingerling
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Mohammad A Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Ward ME, Gelfand JM, Lui LY, Ou Y, Green AJ, Stone K, Pedula KL, Cummings SR, Yaffe K. Reduced contrast sensitivity among older women is associated with increased risk of cognitive impairment. Ann Neurol 2018; 83:730-738. [PMID: 29518257 PMCID: PMC5947874 DOI: 10.1002/ana.25196] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Several cross-sectional studies have reported an association between visual contrast sensitivity (a functional measure of low contrast vision) and poor cognitive performance or dementia, but no studies have investigated this association prospectively in a population-based cohort with final adjudication of mild cognitive impairment (MCI)/dementia. METHODS In a prospective, community-based study of aging women (Study of Osteoporotic Fractures), we analyzed whether visual contrast sensitivity was associated with increased risk of MCI or dementia and/or worse performance on various cognitive tests assessed 10 years later. Contrast sensitivity was assessed at baseline in each eye using a VISTECH VCTS 6500 wall chart. MCI/dementia was adjudicated by an expert panel. Multivariate logistic and linear regression models were analyzed. RESULTS Of 1,352 white (88.2%) and African American (11.8%) women with a mean age of 77.7 years (standard deviation = 3.3), 536 (39.6%) went on to develop MCI/dementia over 10 years. MCI/dementia risk was more than doubled (odds ratio = 2.16, 95% confidence interval = 1.58-2.96) in women with the lowest quartile of contrast sensitivity compared to the highest (p < 0.0001 for the linear trend). Reduced baseline contrast sensitivity was also associated with lower performance on several cognitive measures assessed 10 years later. INTERPRETATION Among older women, reduced contrast sensitivity is associated with a greater risk of MCI/dementia. These findings suggest that visual system neurodegeneration or dysfunction may parallel or precede dementia-related cortical or subcortical degeneration, and that contrast sensitivity testing may be useful in identifying aging adults at high risk for dementia. Ann Neurol 2018;83:730-738.
Collapse
Affiliation(s)
- Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Jeffrey M. Gelfand
- Division of Neuroinflammation and Glial Biology, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
| | - Li-Yung Lui
- Research Institute, California Pacific Medical Center, San Francisco, CA
| | - Yvonne Ou
- Department of Ophthalmology, University of California San Francisco, CA
| | - Ari J. Green
- Division of Neuroinflammation and Glial Biology, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
- Department of Ophthalmology, University of California San Francisco, CA
| | - Katie Stone
- Research Institute, California Pacific Medical Center, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Kathryn L. Pedula
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon
| | - Steven R. Cummings
- Department of Medicine, University of California, San Francisco, California and California Pacific Medical Center, San Francisco, CA
| | - Kristine Yaffe
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California
- Departments of Psychiatry and Epidemiology, University of California, San Francisco and the San Francisco VA Medical Center, San Francisco, California
| |
Collapse
|
44
|
Mutlu U, Bonnemaijer PW, Ikram MA, Colijn JM, Cremers LG, Buitendijk GH, Vingerling JR, Niessen WJ, Vernooij MW, Klaver CC, Ikram MK. Retinal neurodegeneration and brain MRI markers: the Rotterdam Study. Neurobiol Aging 2017; 60:183-191. [DOI: 10.1016/j.neurobiolaging.2017.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
|
45
|
Retinal thickness correlates with parietal cortical atrophy in early-onset Alzheimer's disease and controls. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 10:49-55. [PMID: 29201990 PMCID: PMC5699891 DOI: 10.1016/j.dadm.2017.10.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction The retina may reflect Alzheimer's disease (AD) neuropathological changes and is easily visualized with optical coherence tomography (OCT). Retinal thickness decrease has been correlated to AD, however, without information on amyloid status. We correlated retinal (layer) thickness to AD biomarkers in amyloid-positive early-onset AD (EOAD) patients and amyloid-negative controls. Methods We measured macular thickness and peripapillary retinal nerve fiber layer thickness with OCT in 15 EOAD patients and 15 controls and correlated retinal thickness to visual rating scores for atrophy on magnetic resonance imaging. Results Total macular thickness correlated to parietal cortical atrophy in both groups (Spearman ρ -0.603, P = .001). Macular and peripapillary retinal nerve fiber layer thicknesses were not significantly decreased in EOAD compared to controls. Discussion Retinal thickness does not discriminate EOAD from controls but is correlated to parietal cortical atrophy in both groups. These findings may suggest reflection of cerebral cortical changes in the retina, independent of amyloid.
Collapse
|