1
|
Li J, Li J, Yu Y, Sun Y, Fu Y, Cai L, Shen W, Tan X, Wang N, Lu Y, Wang B. Data-driven discovery of midlife cardiometabolic profile associated with incident early-onset and late-onset dementia. Diabetes Obes Metab 2025; 27:2822-2832. [PMID: 40045775 DOI: 10.1111/dom.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Cardiometabolic risk factors have been associated with the risk of late-onset dementia. However, evidence regarding early-onset dementia was inconsistent, and the impact of clustered cardiometabolic risk factors was unclear. We aimed to investigate the associations of cardiometabolic profiles with incident early-onset and late-onset dementia. METHODS Among 289 494 UK Biobank participants, cluster analysis was built on 12 common cardiometabolic markers. Analyses were performed on those aged <65 years at baseline (n = 249 870) for early-onset dementia and those ≥65 at the end of follow-up (n = 191 213) for late-onset dementia. RESULTS During a median follow-up of 14.1 years, 279 early-onset dementia cases and 3167 late-onset dementia cases were documented. Among the five clusters of cardiometabolic profiles identified (cluster 1 [obesity-dyslipidemia pattern], cluster 2 [high blood pressure pattern], cluster 3 [high liver enzymes pattern], cluster 4 [inflammation pattern] and cluster 5 [relatively healthy pattern]), cluster 3 was significantly associated with higher risks of both early-onset and late-onset dementia; however, the risk estimate for early-onset dementia (hazard ratio 2.58, 95% CI 1.61-4.14) was larger than that for late-onset dementia (1.36, 1.09-1.71). Cluster 4 was associated with a higher risk of late-onset dementia (hazard ratio 1.39, 95% CI 1.13-1.72). No significant interactions were observed between cardiometabolic clusters and apolipoprotein E ε4 genotype. CONCLUSIONS Cardiometabolic patterns characterised by relatively high liver enzyme levels or systemic inflammation were associated with increased risks of early-onset and late-onset dementia. Identification of high-risk subgroups according to distinct cardiometabolic patterns might help develop more precise strategies for dementia prevention regardless of apolipoprotein E (APOE) ε4 status.
Collapse
Affiliation(s)
- Jiang Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqi Fu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingli Cai
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Shen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Tan
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Katsumi Y, Touroutoglou A, Brickhouse M, Eloyan A, Eckbo R, Zaitsev A, La Joie R, Lagarde J, Schonhaut D, Thangarajah M, Taurone A, Vemuri P, Jack CR, Dage JL, Nudelman KNH, Foroud T, Hammers DB, Ghetti B, Murray ME, Newell KL, Polsinelli AJ, Aisen P, Reman R, Beckett L, Kramer JH, Atri A, Day GS, Duara R, Graff‐Radford NR, Grant IM, Honig LS, Johnson ECB, Jones DT, Masdeu JC, Mendez MF, Musiek E, Onyike CU, Riddle M, Rogalski E, Salloway S, Sha S, Turner RS, Wingo TS, Wolk DA, Womack K, Carrillo MC, Rabinovici GD, Apostolova LG, Dickerson BC, the LEADS Consortium for the Alzheimer's Disease Neuroimaging Initiative. Dissociable spatial topography of cortical atrophy in early-onset and late-onset Alzheimer's disease: A head-to-head comparison of the LEADS and ADNI cohorts. Alzheimers Dement 2025; 21:e14489. [PMID: 39968692 PMCID: PMC11851163 DOI: 10.1002/alz.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 02/20/2025]
Abstract
INTRODUCTION Early-onset and late-onset Alzheimer's disease (EOAD and LOAD, respectively) have distinct clinical manifestations, with prior work based on small samples suggesting unique patterns of neurodegeneration. The current study performed a head-to-head comparison of cortical atrophy in EOAD and LOAD, using two large and well-characterized cohorts (LEADS and ADNI). METHODS We analyzed brain structural magnetic resonance imaging (MRI) data acquired from 377 sporadic EOAD patients and 317 sporadicLOAD patients who were amyloid positive and had mild cognitive impairment (MCI) or mild dementia (i.e., early-stage AD), along with cognitively unimpaired participants. RESULTS After controlling for the level of cognitive impairment, we found a double dissociation between AD clinical phenotype and localization/magnitude of atrophy, characterized by predominant neocortical involvement in EOAD and more focal anterior medial temporal involvement in LOAD. DISCUSSION Our findings point to the clinical utility of MRI-based biomarkers of atrophy in differentiating between EOAD and LOAD, which may be useful for diagnosis, prognostication, and treatment. HIGHLIGHTS Early-onset Alzheimer's disease (EOAD) and late-onset AD (LOAD) patients showed distinct and overlapping cortical atrophy patterns. EOAD patients showed prominent atrophy in widespread neocortical regions. LOAD patients showed prominent atrophy in the anterior medial temporal lobe. Regional atrophy was correlated with the severity of global cognitive impairment. Results were comparable when the sample was stratified for mild cognitive impairment (MCI) and dementia.
Collapse
|
3
|
Wu J, Wang J, Xiao Z, Lu J, Ma X, Zhou X, Wu Y, Liang X, Zheng L, Ding D, Zhang H, Guan Y, Zuo C, Zhao Q. Clinical characteristics and biomarker profile in early- and late-onset Alzheimer's disease: the Shanghai Memory Study. Brain Commun 2025; 7:fcaf015. [PMID: 39850631 PMCID: PMC11756380 DOI: 10.1093/braincomms/fcaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/12/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
Early-onset Alzheimer's disease constitutes ∼5-10% of Alzheimer's disease. Its clinical characteristics and biomarker profiles are not well documented. To compare the characteristics covering clinical, neuropsychological and biomarker profiles between patients with early- and late-onset Alzheimer's disease, we enrolled 203 patients (late-onset Alzheimer's disease = 99; early-onset Alzheimer's disease = 104) from a Chinese hospital-based cohort, the Shanghai Memory Study. A full panel of plasma biomarkers under the amyloid/tau/neurodegeneration framework including plasma amyloid beta 40, amyloid beta 42, total-tau, neurofilament light chain and phosphorylated tau 181 were assayed using ultra-sensitive Simoa technology. Seventy-five patients underwent an amyloid molecular positron emission tomography scan whereas 43 received comprehensive amyloid, Tau deposition and hypometabolism analysis. Clinical features, plasma and imaging biomarkers were compared cross-sectionally. Compared to those with late-onset Alzheimer's disease, patients with early-onset Alzheimer's disease presented more severe impairment in language function, lower frequency of APOE ɛ4 and lower levels of plasma neurofilament light chain (all P < 0.05). The plasma phosphorylated tau 181 concentration and phosphorylated tau 181/amyloid beta 42 ratios were higher in early-onset Alzheimer's disease than in late-onset Alzheimer's disease (all P < 0.05). More severe Tau deposition as indicated by 18F-florzolotau binding in the precuneus, posterior cingulate cortex and angular gyrus was observed in the early-onset Alzheimer's disease group. Plasma phosphorylated tau 181 was associated with earlier age at onset and domain-specific cognitive impairment, especially in patients with early-onset Alzheimer's disease. We concluded that patients with early-onset Alzheimer's disease differed from late-onset Alzheimer's disease in cognitive performance and biomarker profile. A higher burden of pathological tau was observed in early-onset Alzheimer's disease and was associated with earlier age at onset and more profound cognitive impairment.
Collapse
Affiliation(s)
- Jie Wu
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Zhenxu Xiao
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaying Lu
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Xiaoxi Ma
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaowen Zhou
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuhan Wu
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoniu Liang
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Li Zheng
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ding Ding
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huiwei Zhang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Yihui Guan
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Chuantao Zuo
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Qianhua Zhao
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200030, China
| |
Collapse
|
4
|
Salmon E, Collette F, Bastin C. Cerebral glucose metabolism in Alzheimer's disease. Cortex 2024; 179:50-61. [PMID: 39141935 DOI: 10.1016/j.cortex.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
18F-fluoro-deoxy-glucose positron emission tomography (FDG-PET) is a useful paraclinical exam for the diagnosis of Alzheimer's disease (AD). In this narrative review, we report seminal studies in clinically probable AD that have shown the importance of posterior brain metabolic decrease and the paradoxical variability of the hippocampal metabolism. The FDG-PET pattern was a sensitive indicator of AD in pathologically confirmed cases and it was used for differential diagnosis of dementia conditions. In prodromal AD, the AD FDG-PET pattern was observed in converters and predicted conversion. Automated data analysis techniques provided variable accuracy according to the reported indices and machine learning methods showed variable reliability of results. FDG-PET could confirm AD clinical heterogeneity and image data driven analyses identified hypometabolic subtypes with variable involvement of the hippocampus, reminiscent if the paradoxical FDG uptake. In studies dedicated to clinical and metabolic correlations, episodic memory was related to metabolism in the default mode network (and Papez's circuit) in prodromal and mild AD stages, and specific cognitive processes were associated to precisely distributed brain metabolism. Cerebral metabolic correlates of anosognosia could also be related to current neuropsychological models. AD FDG-PET pattern was reported in preclinical AD stages and related to cognition or to conversion to mild cognitive impairment (MCI). Using other biomarkers, the AD FDG-PET pattern was confirmed in AD participants with positive PET-amyloid. Intriguing observations reported increased metabolism related to brain amyloid and/or tau deposition. Preserved glucose metabolism sometimes appear as a compensation, but it was frequently detrimental and the nature of such a preservation of glucose metabolism remains an open question. Limbic metabolic involvement was frequently related to non-AD biomarkers profile and clinical stability, and it was reported in non-AD pathologies, such as the limbic predominant age-related encephalopathy (LATE). FDG-PET abnormalities observed in the absence of classical AD proteinopathies can be useful to search for pathological mechanisms and differential diagnosis of AD.
Collapse
Affiliation(s)
- Eric Salmon
- GIGA Research, CRC Human Imaging, University of Liege, Liege, Belgium.
| | - Fabienne Collette
- GIGA Research, CRC Human Imaging, University of Liege, Liege, Belgium.
| | - Christine Bastin
- GIGA Research, CRC Human Imaging, University of Liege, Liege, Belgium.
| |
Collapse
|
5
|
Wuestefeld A, Pichet Binette A, van Westen D, Strandberg O, Stomrud E, Mattsson-Carlgren N, Janelidze S, Smith R, Palmqvist S, Baumeister H, Berron D, Yushkevich PA, Hansson O, Spotorno N, Wisse LEM. Medial temporal lobe atrophy patterns in early-versus late-onset amnestic Alzheimer's disease. Alzheimers Res Ther 2024; 16:204. [PMID: 39285454 PMCID: PMC11403779 DOI: 10.1186/s13195-024-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfields and drivers of atrophy in amnestic EOAD is lacking. METHODS BioFINDER-2 participants with memory impairment, abnormal amyloid-β and tau-PET were included. Forty-one amnestic EOAD individuals ≤65 years and, as comparison, late-onset AD (aLOAD, ≥70 years, n = 154) and amyloid-β-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured. RESULTS AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups: aLOAD showed thinner entorhinal cortices than aEOAD; aEOAD showed thinner parietal regions than aLOAD. aEOAD showed lower white matter hyperintensities than aLOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity were found. CONCLUSIONS We found evidence for MTL atrophy in amnestic EOAD and overall similar levels to aLOAD of MTL tau pathology and co-pathologies.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden.
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Klinikgatan 13B, Lund, SE-22242, Sweden
- Image and Function, Skåne University Hospital, Lund, 22242, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Department of Neurology, Skåne University Hospital, Lund, 22242, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, 22184, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Laura E M Wisse
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Klinikgatan 13B, Lund, SE-22242, Sweden.
| |
Collapse
|
6
|
Kwapong WR, Tang F, Liu P, Zhang Z, Cao L, Feng Z, Yang S, Shu Y, Xu H, Lu Y, Zhao X, Chong B, Wu B, Liu M, Lei P, Zhang S. Choriocapillaris reduction accurately discriminates against early-onset Alzheimer's disease. Alzheimers Dement 2024; 20:4185-4198. [PMID: 38747519 PMCID: PMC11180859 DOI: 10.1002/alz.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION This study addresses the urgent need for non-invasive early-onset Alzheimer's disease (EOAD) prediction. Using optical coherence tomography angiography (OCTA), we present a choriocapillaris model sensitive to EOAD, correlating with serum biomarkers. METHODS Eighty-four EOAD patients and 73 controls were assigned to swept-source OCTA (SS-OCTA) or the spectral domain OCTA (SD-OCTA) cohorts. Our hypothesis on choriocapillaris predictive potential in EOAD was tested and validated in these two cohorts. RESULTS Both cohorts revealed diminished choriocapillaris signals, demonstrating the highest discriminatory capability (area under the receiver operating characteristic curve: SS-OCTA 0.913, SD-OCTA 0.991; P < 0.001). A sparser SS-OCTA choriocapillaris correlated with increased serum amyloid beta (Aβ)42, Aβ42/40, and phosphorylated tau (p-tau)181 levels (all P < 0.05). Apolipoprotein E status did not affect choriocapillaris measurement. DISCUSSION The choriocapillaris, observed in both cohorts, proves sensitive to EOAD diagnosis, and correlates with serum Aβ and p-tau181 levels, suggesting its potential as a diagnostic tool for identifying and tracking microvascular changes in EOAD. HIGHLIGHTS Optical coherence tomography angiography may be applied for non-invasive screening of Alzheimer's disease (AD). Choriocapillaris demonstrates high sensitivity and specificity for early-onset AD diagnosis. Microvascular dynamics abnormalities are associated with AD.
Collapse
Affiliation(s)
| | - Fei Tang
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Peng Liu
- Department of EmergencyWest China Hospital of Sichuan UniversityChengduP.R. China
| | - Ziyi Zhang
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Le Cao
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Zijuan Feng
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Shiyun Yang
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Yang Shu
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Heng Xu
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Ying Lu
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Xinjun Zhao
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Baochen Chong
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Bo Wu
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ming Liu
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Peng Lei
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Shuting Zhang
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
7
|
Wuestefeld A, Binette AP, van Westen D, Strandberg O, Stomrud E, Mattsson-Carlgren N, Janelidze S, Smith R, Palmqvist S, Baumeister H, Berron D, Yushkevich PA, Hansson O, Spotorno N, Wisse LEM. Medial temporal lobe atrophy patterns in early- versus late-onset amnestic Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.594976. [PMID: 38826333 PMCID: PMC11142072 DOI: 10.1101/2024.05.21.594976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfield volumes and drivers of atrophy in amnestic EOAD is lacking. Methods BioFINDER-2 participants with memory impairment, abnormal amyloid-β status and tau-PET were included. Forty-one EOAD individuals aged ≤65 years and, as comparison, late-onset AD (LOAD, ≥70 years, n=154) and Aβ-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured. Results AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups, although LOAD showed thinner entorhinal cortices compared to EOAD. EOAD showed lower WMH compared to LOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity was found. Conclusions We found in vivo evidence for MTL atrophy in amnestic EOAD and overall similar levels to LOAD of MTL tau pathology and co-pathologies.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, 22242 Lund, Sweden
- Image and Function, Skåne University Hospital, 22242 Lund Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Department of Neurology, Skåne University Hospital, 22242 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Paul A. Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia 19104, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Laura EM Wisse
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, 22242 Lund, Sweden
| |
Collapse
|
8
|
Iaccarino L, Llibre-Guerra JJ, McDade E, Edwards L, Gordon B, Benzinger T, Hassenstab J, Kramer JH, Li Y, Miller BL, Miller Z, Morris JC, Mundada N, Perrin RJ, Rosen HJ, Soleimani-Meigooni D, Strom A, Tsoy E, Wang G, Xiong C, Allegri R, Chrem P, Vazquez S, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Salloway S, Fox NC, Day GS, Gorno-Tempini ML, Boxer AL, La Joie R, Bateman R, Rabinovici GD. Molecular neuroimaging in dominantly inherited versus sporadic early-onset Alzheimer's disease. Brain Commun 2024; 6:fcae159. [PMID: 38784820 PMCID: PMC11114609 DOI: 10.1093/braincomms/fcae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Approximately 5% of Alzheimer's disease patients develop symptoms before age 65 (early-onset Alzheimer's disease), with either sporadic (sporadic early-onset Alzheimer's disease) or dominantly inherited (dominantly inherited Alzheimer's disease) presentations. Both sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease are characterized by brain amyloid-β accumulation, tau tangles, hypometabolism and neurodegeneration, but differences in topography and magnitude of these pathological changes are not fully elucidated. In this study, we directly compared patterns of amyloid-β plaque deposition and glucose hypometabolism in sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease individuals. Our analysis included 134 symptomatic sporadic early-onset Alzheimer's disease amyloid-Positron Emission Tomography (PET)-positive cases from the University of California, San Francisco, Alzheimer's Disease Research Center (mean ± SD age 59.7 ± 5.6 years), 89 symptomatic dominantly inherited Alzheimer's disease cases (age 45.8 ± 9.3 years) and 102 cognitively unimpaired non-mutation carriers from the Dominantly Inherited Alzheimer Network study (age 44.9 ± 9.2). Each group underwent clinical and cognitive examinations, 11C-labelled Pittsburgh Compound B-PET and structural MRI. 18F-Fluorodeoxyglucose-PET was also available for most participants. Positron Emission Tomography scans from both studies were uniformly processed to obtain a standardized uptake value ratio (PIB50-70 cerebellar grey reference and FDG30-60 pons reference) images. Statistical analyses included pairwise global and voxelwise group comparisons and group-independent component analyses. Analyses were performed also adjusting for covariates including age, sex, Mini-Mental State Examination, apolipoprotein ε4 status and average composite cortical of standardized uptake value ratio. Compared with dominantly inherited Alzheimer's disease, sporadic early-onset Alzheimer's disease participants were older at age of onset (mean ± SD, 54.8 ± 8.2 versus 41.9 ± 8.2, Cohen's d = 1.91), with more years of education (16.4 ± 2.8 versus 13.5 ± 3.2, d = 1) and more likely to be apolipoprotein ε4 carriers (54.6% ε4 versus 28.1%, Cramer's V = 0.26), but similar Mini-Mental State Examination (20.6 ± 6.1 versus 21.2 ± 7.4, d = 0.08). Sporadic early-onset Alzheimer's disease had higher global cortical Pittsburgh Compound B-PET binding (mean ± SD standardized uptake value ratio, 1.92 ± 0.29 versus 1.58 ± 0.44, d = 0.96) and greater global cortical 18F-fluorodeoxyglucose-PET hypometabolism (mean ± SD standardized uptake value ratio, 1.32 ± 0.1 versus 1.39 ± 0.19, d = 0.48) compared with dominantly inherited Alzheimer's disease. Fully adjusted comparisons demonstrated relatively higher Pittsburgh Compound B-PET standardized uptake value ratio in the medial occipital, thalami, basal ganglia and medial/dorsal frontal regions in dominantly inherited Alzheimer's disease versus sporadic early-onset Alzheimer's disease. Sporadic early-onset Alzheimer's disease showed relatively greater 18F-fluorodeoxyglucose-PET hypometabolism in Alzheimer's disease signature temporoparietal regions and caudate nuclei, whereas dominantly inherited Alzheimer's disease showed relatively greater hypometabolism in frontal white matter and pericentral regions. Independent component analyses largely replicated these findings by highlighting common and unique Pittsburgh Compound B-PET and 18F-fluorodeoxyglucose-PET binding patterns. In summary, our findings suggest both common and distinct patterns of amyloid and glucose hypometabolism in sporadic and dominantly inherited early-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jorge J Llibre-Guerra
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Eric McDade
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Brian Gordon
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jason Hassenstab
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - John C Morris
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - David Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elena Tsoy
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Guoqiao Wang
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Ricardo Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Patricio Chrem
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Silvia Vazquez
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin L Masters
- Department of Neuroscience, Florey Institute, The University of Melbourne, Melbourne 3052, Australia
| | - Martin R Farlow
- Neuroscience Center, Indiana University School of Medicine at Indianapolis, Indiana, IN 46202, USA
| | - Mathias Jucker
- DZNE-German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich 80539, Germany
- German Center for Neurodegenerative Diseases, Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Stephen Salloway
- Memory & Aging Program, Butler Hospital, Brown University in Providence, RI 02906, USA
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 33224, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Randall Bateman
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Li D, Xie Q, Xie J, Ni M, Wang J, Gao Y, Wang Y, Tang Q. Cerebrospinal Fluid Proteomics Identifies Potential Biomarkers for Early-Onset Alzheimer's Disease. J Alzheimers Dis 2024; 100:261-277. [PMID: 38848183 DOI: 10.3233/jad-240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Background Early-onset Alzheimer's disease (EOAD) exhibits a notable degree of heterogeneity as compared to late-onset Alzheimer's disease (LOAD). The proteins and pathways contributing to the pathophysiology of EOAD still need to be completed and elucidated. Objective Using correlation network analysis and machine learning to analyze cerebrospinal fluid (CSF) proteomics data to identify potential biomarkers and pathways associated with EOAD. Methods We employed mass spectrometry to conduct CSF proteomic analysis using the data-independent acquisition method in a Chinese cohort of 139 CSF samples, including 40 individuals with normal cognition (CN), 61 patients with EOAD, and 38 patients with LOAD. Correlation network analysis of differentially expressed proteins was performed to identify EOAD-associated pathways. Machine learning assisted in identifying crucial proteins differentiating EOAD. We validated the results in an Western cohort and examined the proteins expression by enzyme-linked immunosorbent assay (ELISA) in additional 9 EOAD, 9 LOAD, and 9 CN samples from our cohort. Results We quantified 2,168 CSF proteins. Following adjustment for age and sex, EOAD exhibited a significantly greater number of differentially expressed proteins than LOAD compared to CN. Additionally, our data indicates that EOAD may exhibit more pronounced synaptic dysfunction than LOAD. Three potential biomarkers for EOAD were identified: SH3BGRL3, LRP8, and LY6 H, of which SH3BGRL3 also accurately classified EOAD in the Western cohort. LY6 H reduction was confirmed via ELISA, which was consistent with our proteomic results. Conclusions This study provides a comprehensive profile of the CSF proteome in EOAD and identifies three potential EOAD biomarker proteins.
Collapse
Affiliation(s)
- Dazhi Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jikui Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Ni
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinliang Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuru Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yaxin Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Zhong S, Lou J, Ma K, Shu Z, Chen L, Li C, Ye Q, Zhou L, Shen Y, Ye X, Zhang J. Disentangling in-vivo microstructural changes of white and gray matter in mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. Brain Imaging Behav 2023; 17:764-777. [PMID: 37752311 DOI: 10.1007/s11682-023-00805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
The microstructural characteristics of white and gray matter in mild cognitive impairment (MCI) and the early-stage of Alzheimer's disease (AD) remain unclear. This study aimed to systematically identify the microstructural damages of MCI/AD in studies using neurite orientation dispersion and density imaging (NODDI), and explore their correlations with cognitive performance. Multiple databases were searched for eligible studies. The 10 eligible NODDI studies were finally included. Patients with MCI/AD showed overall significant reductions in neurite density index (NDI) of specific white matter structures in bilateral hemispheres (left hemisphere: -0.40 [-0.53, -0.27], P < 0.001; right: -0.33 [-0.47, -0.19], P < 0.001), involving the bilateral superior longitudinal fasciculus (SLF), uncinate fasciculus (UF), the left posterior thalamic radiation (PTR), and the left cingulum. White matter regions exhibited significant increased orientation dispersion index (ODI) (left: 0.25 [0.02, 0.48], P < 0.05; right: 0.27 [0.07, 0.46], P < 0.05), including the left cingulum, the right UF, and the bilateral parahippocampal cingulum (PHC), and PTR. Additionally, the ODI of gray matter showed significant reduction in bilateral hippocampi (left: -0.97 [-1.42, -0.51], P < 0.001; right: -0.90 [-1.35, -0.45], P < 0.001). The cognitive performance in MCI/AD was significantly associated with NDI (r = 0.50, P < 0.001). Our findings highlight the microstructural changes in MCI/AD were characterized by decreased fiber orientation dispersion in the hippocampus, and decreased neurite density and increased fiber orientation dispersion in specific white matter tracts, including the cingulum, UF, and PTR. Moreover, the decreased NDI may indicate the declined cognitive level of MCI/AD patients.
Collapse
Affiliation(s)
- Shuchang Zhong
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingjing Lou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ke Ma
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chao Li
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qing Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liang Zhou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ye Shen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jie Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Lv X, Cheng Z, Wang Q, Gao F, Dai L, Du C, Liu C, Xie Q, Shen Y, Shi J. High burdens of phosphorylated tau protein and distinct precuneus atrophy in sporadic early-onset Alzheimer's disease. Sci Bull (Beijing) 2023; 68:2817-2826. [PMID: 37919158 DOI: 10.1016/j.scib.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/16/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Early-onset Alzheimer's disease (EOAD) is a rare devastating subclassification of Alzheimer's disease (AD). EOAD affects individuals <65 years old, and accounts for 5%-10% of all AD cases. Previous studies on EOAD primarily focused on familial forms, whereas research on sporadic EOAD (sEOAD), which represents 85%-90% of EOAD cases, is limited. In this prospective cohort study, participants were recruited between 2018 and 2023 and included patients with sEOAD (n = 110), late-onset AD (LOAD, n = 89), young controls (YC, n = 50), and older controls (OC, n = 25). All AD patients fulfilled the diagnostic criteria based on biomarker evidence. Familial EOAD patients or non-AD dementia patients were excluded. Single molecule array technology was used to measure fluid biomarkers, including cerebrospinal fluid (CSF) and plasma amyloid beta (Aβ) 40, Aβ42, phosphorylated tau (P-tau) 181, total tau (T-tau), serum neurofilament light chain and glial fibrillary acidic protein (GFAP). Patients with sEOAD exhibited more severe executive function impairment and bilateral precuneus atrophy (P < 0.05, family-wise error corrected) than patients with LOAD. Patients with sEOAD showed elevated CSF and plasma P-tau181 levels (154.0 ± 81.2 pg/mL, P = 0.002; and 6.1 ± 2.3 pg/mL, P = 0.046). Moreover, precuneus atrophy was significantly correlated with serum GFAP levels in sEOAD (P < 0.001). Serum GFAP levels (area under the curve (AUC) = 96.0%, cutoff value = 154.3 pg/mL) displayed excellent diagnostic value in distinguishing sEOAD patients from the control group. These preliminary findings highlight the crucial role of tau protein phosphorylation in the pathogenesis and progression of sEOAD.
Collapse
Affiliation(s)
- Xinyi Lv
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhaozhao Cheng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qiong Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Feng Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Linbin Dai
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chen Du
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yong Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230001, China.
| | - Jiong Shi
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
12
|
Touroutoglou A, Katsumi Y, Brickhouse M, Zaitsev A, Eckbo R, Aisen P, Beckett L, Dage JL, Eloyan A, Foroud T, Ghetti B, Griffin P, Hammers D, Jack CR, Kramer JH, Iaccarino L, Joie RL, Mundada NS, Koeppe R, Kukull WA, Murray ME, Nudelman K, Polsinelli AJ, Rumbaugh M, Soleimani-Meigooni DN, Toga A, Vemuri P, Atri A, Day GS, Duara R, Graff-Radford NR, Honig LS, Jones DT, Masdeu JC, Mendez MF, Musiek E, Onyike CU, Riddle M, Rogalski E, Salloway S, Sha S, Turner RS, Wingo TS, Wolk DA, Womack K, Carrillo MC, Rabinovici GD, Apostolova LG, Dickerson BC. The Sporadic Early-onset Alzheimer's Disease Signature Of Atrophy: Preliminary Findings From The Longitudinal Early-onset Alzheimer's Disease Study (LEADS) Cohort. Alzheimers Dement 2023; 19 Suppl 9:S74-S88. [PMID: 37850549 PMCID: PMC10829523 DOI: 10.1002/alz.13466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) research has advanced our understanding of neurodegeneration in sporadic early-onset Alzheimer's disease (EOAD) but studies include small samples, mostly amnestic EOAD, and have not focused on developing an MRI biomarker. METHODS We analyzed MRI scans to define the sporadic EOAD-signature atrophy in a small sample (n = 25) of Massachusetts General Hospital (MGH) EOAD patients, investigated its reproducibility in the large longitudinal early-onset Alzheimer's disease study (LEADS) sample (n = 211), and investigated the relationship of the magnitude of atrophy with cognitive impairment. RESULTS The EOAD-signature atrophy was replicated across the two cohorts, with prominent atrophy in the caudal lateral temporal cortex, inferior parietal lobule, and posterior cingulate and precuneus cortices, and with relative sparing of the medial temporal lobe. The magnitude of EOAD-signature atrophy was associated with the severity of cognitive impairment. DISCUSSION The EOAD-signature atrophy is a reliable and clinically valid biomarker of AD-related neurodegeneration that could be used in clinical trials for EOAD. HIGHLIGHTS We developed an early-onset Alzheimer's disease (EOAD)-signature of atrophy based on magnetic resonance imaging (MRI) scans. EOAD signature was robustly reproducible across two independent patient cohorts. EOAD signature included prominent atrophy in parietal and posterior temporal cortex. The EOAD-signature atrophy was associated with the severity of cognitive impairment. EOAD signature is a reliable and clinically valid biomarker of neurodegeneration.
Collapse
Affiliation(s)
- Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yuta Katsumi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Brickhouse
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander Zaitsev
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan Eckbo
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, California, USA
| | - Laurel Beckett
- Department of Public Health Sciences, University of California - Davis, Davis, California, USA
| | - Jeffrey L Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ani Eloyan
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, Rhode Island, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bernardino Ghetti
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Percy Griffin
- Medical & Scientific Relations Division, Alzheimer's Association, Chicago, Illinois, USA
| | - Dustin Hammers
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joel H Kramer
- Department of Neurology, University of California - San Francisco, San Francisco, California, USA
| | - Leonardo Iaccarino
- Department of Neurology, University of California - San Francisco, San Francisco, California, USA
| | - Renaud La Joie
- Department of Neurology, University of California - San Francisco, San Francisco, California, USA
| | - Nidhi S Mundada
- Department of Neurology, University of California - San Francisco, San Francisco, California, USA
| | - Robert Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Walter A Kukull
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Kelly Nudelman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Angelina J Polsinelli
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Malia Rumbaugh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Arthur Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, California, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami, Florida, USA
| | | | - Lawrence S Honig
- Taub Institute and Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - David T Jones
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph C Masdeu
- Nantz National Alzheimer Center, Houston Methodist and Weill Cornell Medicine, Houston, Texas, USA
| | - Mario F Mendez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Erik Musiek
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Meghan Riddle
- Department of Neurology, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Emily Rogalski
- Department of Psychiatry and Behavioral Sciences, Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephen Salloway
- Department of Neurology, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Sharon Sha
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, California, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University, Washington, D.C., USA
| | - Thomas S Wingo
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle Womack
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maria C Carrillo
- Medical & Scientific Relations Division, Alzheimer's Association, Chicago, Illinois, USA
| | - Gil D Rabinovici
- Department of Neurology, University of California - San Francisco, San Francisco, California, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Llibre-Guerra JJ, Iaccarino L, Coble D, Edwards L, Li Y, McDade E, Strom A, Gordon B, Mundada N, Schindler SE, Tsoy E, Ma Y, Lu R, Fagan AM, Benzinger TLS, Soleimani-Meigooni D, Aschenbrenner AJ, Miller Z, Wang G, Kramer JH, Hassenstab J, Rosen HJ, Morris JC, Miller BL, Xiong C, Perrin RJ, Allegri R, Chrem P, Surace E, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Fox NC, Day G, Gorno-Tempini ML, Boxer AL, La Joie R, Rabinovici GD, Bateman R. Longitudinal clinical, cognitive and biomarker profiles in dominantly inherited versus sporadic early-onset Alzheimer's disease. Brain Commun 2023; 5:fcad280. [PMID: 37942088 PMCID: PMC10629466 DOI: 10.1093/braincomms/fcad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ε4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design.
Collapse
Affiliation(s)
| | - Leonardo Iaccarino
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dean Coble
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Lauren Edwards
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Amelia Strom
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Gordon
- Malinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Nidhi Mundada
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Elena Tsoy
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yinjiao Ma
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Ruijin Lu
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Tammie L S Benzinger
- Malinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO 63108, USA
| | - David Soleimani-Meigooni
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Zachary Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guoqiao Wang
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Joel H Kramer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Howard J Rosen
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John C Morris
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Bruce L Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
- Department of Pathology and Immunology, Washington University in St Louis, St. Louis, MO 63108, USA
| | - Ricardo Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Patricio Chrem
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Ezequiel Surace
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin L Masters
- Florey Institute, The University of Melbourne, Melbourne 3052, Australia
| | - Martin R Farlow
- Neuroscience Center, Indiana University School of Medicine at Indianapolis, IN 46202, USA
| | - Mathias Jucker
- DZNE-German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich 80539, Germany
- German Center for Neurodegenerative Diseases, Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| | - Gregory Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 33224, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gil D Rabinovici
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Randall Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| |
Collapse
|
14
|
Xu X, Ruan W, Liu F, Liu Q, Gai Y, Su Y, Liang Z, Sun X, Lan X. Characterizing Early-Onset Alzheimer Disease Using Multiprobe PET/MRI: An AT(N) Framework-Based Study. Clin Nucl Med 2023; 48:474-482. [PMID: 37075301 DOI: 10.1097/rlu.0000000000004663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE Early-onset Alzheimer disease (EOAD) is rare, highly heterogeneous, and associated with poor prognosis. This AT(N) Framework-based study aimed to compare multiprobe PET/MRI findings between EOAD and late-onset Alzheimer disease (LOAD) patients and explore potential imaging biomarkers for characterizing EOAD. METHODS Patients with AD who underwent PET/MRI in our PET center were retrospectively reviewed and grouped according to the age at disease onset: EOAD, younger than 60 years; and LOAD, 60 years or older. Clinical characteristics were recorded. All study patients had positive β-amyloid PET imaging; some patients also underwent 18 F-FDG and 18 F-florzolotau PET. Imaging of the EOAD and LOAD groups was compared using region-of-interest and voxel-based analysis. Correlation of onset age and regional SUV ratios were also evaluated. RESULTS One hundred thirty-three patients were analyzed (75 EOAD and 58 LOAD patients). Sex ( P = 0.515) and education ( P = 0.412) did not significantly differ between groups. Mini-Mental State Examination score was significantly lower in the EOAD group (14.32 ± 6.74 vs 18.67 ± 7.20, P = 0.004). β-Amyloid deposition did not significantly differ between groups. Glucose metabolism in the frontal, parietal, precuneus, temporal, occipital lobe, and supramarginal and angular gyri was significantly lower in the EOAD group (n = 49) than in the LOAD group (n = 44). In voxel-based morphometry analysis, right posterior cingulate/precuneus atrophy was more obvious in the EOAD ( P < 0.001), although no voxel survived family-wise error correction. Tau deposition in the precuneus, parietal lobe, and angular, supramarginal, and right middle frontal gyri was significantly higher in the EOAD group (n = 18) than in the LOAD group (n = 13). CONCLUSIONS Multiprobe PET/MRI showed that tau burden and neuronal damage are more severe in EOAD than in LOAD. Multiprobe PET/MRI may be useful to assess the pathologic characteristics of EOAD.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Su
- Departments of Neurology, Union Hospital, Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihou Liang
- Departments of Neurology, Union Hospital, Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
15
|
Kommaddi RP, Verma A, Muniz-Terrera G, Tiwari V, Chithanathan K, Diwakar L, Gowaikar R, Karunakaran S, Malo PK, Graff-Radford NR, Day GS, Laske C, Vöglein J, Nübling G, Ikeuchi T, Kasuga K, Ravindranath V. Sex difference in evolution of cognitive decline: studies on mouse model and the Dominantly Inherited Alzheimer Network cohort. Transl Psychiatry 2023; 13:123. [PMID: 37045867 PMCID: PMC10097702 DOI: 10.1038/s41398-023-02411-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Women carry a higher burden of Alzheimer's disease (AD) compared to men, which is not accounted entirely by differences in lifespan. To identify the mechanisms underlying this effect, we investigated sex-specific differences in the progression of familial AD in humans and in APPswe/PS1ΔE9 mice. Activity dependent protein translation and associative learning and memory deficits were examined in APPswe/PS1ΔE9 mice and wild-type mice. As a human comparator group, progression of cognitive dysfunction was assessed in mutation carriers and non-carriers from DIAN (Dominantly Inherited Alzheimer Network) cohort. Female APPswe/PS1ΔE9 mice did not show recall deficits after contextual fear conditioning until 8 months of age. Further, activity dependent protein translation and Akt1-mTOR signaling at the synapse were impaired in male but not in female mice until 8 months of age. Ovariectomized APPswe/PS1ΔE9 mice displayed recall deficits at 4 months of age and these were sustained until 8 months of age. Moreover, activity dependent protein translation was also impaired in 4 months old ovariectomized APPswe/PS1ΔE9 mice compared with sham female APPswe/PS1ΔE9 mice. Progression of memory impairment differed between men and women in the DIAN cohort as analyzed using linear mixed effects model, wherein men showed steeper cognitive decline irrespective of the age of entry in the study, while women showed significantly greater performance and slower decline in immediate recall (LOGIMEM) and delayed recall (MEMUNITS) than men. However, when the performance of men and women in several cognitive tasks (such as Wechsler's logical memory) are compared with the estimated year from expected symptom onset (EYO) we found no significant differences between men and women. We conclude that in familial AD patients and mouse models, females are protected, and the onset of disease is delayed as long as estrogen levels are intact.
Collapse
Affiliation(s)
- Reddy Peera Kommaddi
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| | - Aditi Verma
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Graciela Muniz-Terrera
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- The Department of Social Medicine, Ohio University, Athens, OH, 45701, USA
| | - Vivek Tiwari
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | | | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Ruturaj Gowaikar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Smitha Karunakaran
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Palash Kumar Malo
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Neill R Graff-Radford
- Department of Neurology, Mayo Clinic Florida, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Christoph Laske
- German Center for Neurodegenerative Diseases, Munich, Germany
- Section for Dementia Research, Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Vijayalakshmi Ravindranath
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
16
|
Sensi SL, Russo M, Tiraboschi P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer's disease and synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:187-218. [PMID: 36796942 DOI: 10.1016/b978-0-323-85538-9.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, β-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pietro Tiraboschi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
17
|
Sirkis DW, Bonham LW, Johnson TP, La Joie R, Yokoyama JS. Dissecting the clinical heterogeneity of early-onset Alzheimer's disease. Mol Psychiatry 2022; 27:2674-2688. [PMID: 35393555 PMCID: PMC9156414 DOI: 10.1038/s41380-022-01531-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is a rare but particularly devastating form of AD. Though notable for its high degree of clinical heterogeneity, EOAD is defined by the same neuropathological hallmarks underlying the more common, late-onset form of AD. In this review, we describe the various clinical syndromes associated with EOAD, including the typical amnestic phenotype as well as atypical variants affecting visuospatial, language, executive, behavioral, and motor functions. We go on to highlight advances in fluid biomarker research and describe how molecular, structural, and functional neuroimaging can be used not only to improve EOAD diagnostic acumen but also enhance our understanding of fundamental pathobiological changes occurring years (and even decades) before the onset of symptoms. In addition, we discuss genetic variation underlying EOAD, including pathogenic variants responsible for the well-known mendelian forms of EOAD as well as variants that may increase risk for the much more common forms of EOAD that are either considered to be sporadic or lack a clear autosomal-dominant inheritance pattern. Intriguingly, specific pathogenic variants in PRNP and MAPT-genes which are more commonly associated with other neurodegenerative diseases-may provide unexpectedly important insights into the formation of AD tau pathology. Genetic analysis of the atypical clinical syndromes associated with EOAD will continue to be challenging given their rarity, but integration of fluid biomarker data, multimodal imaging, and various 'omics techniques and their application to the study of large, multicenter cohorts will enable future discoveries of fundamental mechanisms underlying the development of EOAD and its varied clinical presentations.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
18
|
Kreisl WC, Lao PJ, Johnson A, Tomljanovic Z, Klein J, Polly K, Maas B, Laing KK, Chesebro AG, Igwe K, Razlighi QR, Honig LS, Yan X, Lee S, Mintz A, Luchsinger JA, Stern Y, Devanand DP, Brickman AM. Patterns of tau pathology identified with 18 F-MK-6240 PET imaging. Alzheimers Dement 2022; 18:272-282. [PMID: 34057284 PMCID: PMC8630090 DOI: 10.1002/alz.12384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Positron emission tomography (PET) imaging for neurofibrillary tau allows investigation of the in vivo spatiotemporal progression of Alzheimer's disease (AD) pathology. We evaluated the suitability of 18 F-MK-6240 in a clinical sample and determined the relationships among 18 F-MK-6240 binding, age, cognition, and cerebrospinal fluid (CSF)-based AD biomarkers. METHODS Participants (n = 101, 72 ± 9 years, 52% women) underwent amyloid PET, tau PET, structural T1-weighted magnetic resonance imaging, and neuropsychological evaluation. Twenty-one participants had lumbar puncture for CSF measurement of amyloid beta (Aβ)42 , tau, and phosphorylated tau (p-tau). RESULTS 18 F-MK-6240 recapitulated Braak staging and correlated with CSF tau and p-tau, normalized to Aβ42 . 18 F-MK-6240 negatively correlated with age across Braak regions in amyloid-positive participants, consistent with greater tau pathology in earlier onset AD. Domain-specific, regional patterns of 18 F-MK-6240 binding were associated with reduced memory, executive, and language performance, but only in amyloid-positive participants. DISCUSSION 18 F-MK-6240 can approximate Braak staging across the AD continuum and provide region-dependent insights into biomarker-based AD models.
Collapse
Affiliation(s)
- William Charles Kreisl
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Patrick J Lao
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Aubrey Johnson
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Zeljko Tomljanovic
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Julia Klein
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Krista Polly
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Benjamin Maas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Krystal K Laing
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Anthony G Chesebro
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Kay Igwe
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | | | - Lawrence S Honig
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Xinyu Yan
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Seonjoo Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - José A Luchsinger
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Yaakov Stern
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - D P Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Adam M Brickman
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| |
Collapse
|
19
|
Jang I, Li B, Riphagen JM, Dickerson BC, Salat DH. Multiscale structural mapping of Alzheimer's disease neurodegeneration. Neuroimage Clin 2022; 33:102948. [PMID: 35121307 PMCID: PMC8814667 DOI: 10.1016/j.nicl.2022.102948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 01/25/2023]
Abstract
The recently described biological framework of Alzheimer's disease (AD) emphasizes three types of pathology to characterize this disorder, referred to as the 'amyloid/tau/neurodegeneration' (A-T-N) status. The 'neurodegenerative' component is typically defined by atrophy measures derived from structural magnetic resonance imaging (MRI) such as hippocampal volume. Neurodegeneration measures from imaging are associated with disease symptoms and prognosis. Thus, sensitive image-based quantification of neurodegeneration in AD has an important role in a range of clinical and research operations. Although hippocampal volume is a sensitive metric of neurodegeneration, this measure is impacted by several clinical conditions other than AD and therefore lacks specificity. In contrast, selective regional cortical atrophy, known as the 'cortical signature of AD' provides greater specificity to AD pathology. Although atrophy is apparent even in the preclinical stages of the disease, it is possible that increased sensitivity to degeneration could be achieved by including tissue microstructural properties in the neurodegeneration measure. However, to facilitate clinical feasibility, such information should be obtainable from a single, short, noninvasive imaging protocol. We propose a multiscale MRI procedure that advances prior work through the quantification of features at both macrostructural (morphometry) and microstructural (tissue properties obtained from multiple layers of cortex and subcortical white matter) scales from a single structural brain image (referred to as 'multi-scale structural mapping'; MSSM). Vertex-wise partial least squares (PLS) regression was used to compress these multi-scale structural features. When contrasting patients with AD to cognitively intact matched older adults, the MSSM procedure showed substantially broader regional group differences including areas that were not statistically significant when using cortical thickness alone. Further, with multiple machine learning algorithms and ensemble procedures, we found that MSSM provides accurate detection of individuals with AD dementia (AUROC = 0.962, AUPRC = 0.976) and individuals with mild cognitive impairment (MCI) that subsequently progressed to AD dementia (AUROC = 0.908, AUPRC = 0.910). The findings demonstrate the critical advancement of neurodegeneration quantification provided through multiscale mapping. Future work will determine the sensitivity of this technique for accurately detecting individuals with earlier impairment and biomarker positivity in the absence of impairment.
Collapse
Affiliation(s)
- Ikbeom Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Binyin Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Joost M Riphagen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
20
|
Baseline MRI atrophy predicts 2-year cognitive outcomes in early-onset Alzheimer's disease. J Neurol 2021; 269:2573-2583. [PMID: 34665329 DOI: 10.1007/s00415-021-10851-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND MRI atrophy predicts cognitive status in AD. However, this relationship has not been investigated in early-onset AD (EOAD, < 65 years) patients with a biomarker-based diagnosis. METHODS Forty eight EOAD (MMSE ≥ 15; A + T + N +) and forty two age-matched healthy controls (HC; A - T - N -) from a prospective cohort underwent full neuropsychological assessment, 3T-MRI scan and lumbar puncture at baseline. Participants repeated the cognitive assessment annually. We used linear mixed models to investigate whether baseline cortical thickness (CTh) or subcortical volume predicts two-year cognitive outcomes in the EOAD group. RESULTS In EOAD, hemispheric CTh and ventricular volume at baseline were associated with global cognition, language and attentional/executive functioning 2 years later (p < 0.0028). Regional CTh was related to most cognitive outcomes (p < 0.0028), except verbal/visual memory subtests. Amygdalar volume was associated with letter fluency test (p < 0.0028). Hippocampal volume did not show significant associations. CONCLUSION Baseline hemispheric/regional CTh, ventricular and amygdalar volume, but not the hippocampus, predict two-year cognitive outcomes in EOAD.
Collapse
|
21
|
Contador J, Pérez-Millán A, Tort-Merino A, Balasa M, Falgàs N, Olives J, Castellví M, Borrego-Écija S, Bosch B, Fernández-Villullas G, Ramos-Campoy O, Antonell A, Bargalló N, Sanchez-Valle R, Sala-Llonch R, Lladó A. Longitudinal brain atrophy and CSF biomarkers in early-onset Alzheimer's disease. NEUROIMAGE-CLINICAL 2021; 32:102804. [PMID: 34474317 PMCID: PMC8405839 DOI: 10.1016/j.nicl.2021.102804] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/09/2023]
Abstract
There is evidence of longitudinal atrophy in posterior brain areas in early-onset Alzheimer's disease (EOAD; aged < 65 years), but no studies have been conducted in an EOAD cohort with fluid biomarkers characterization. We used 3T-MRI and Freesurfer 6.0 to investigate cortical and subcortical gray matter loss at two years in 12 EOAD patients (A + T + N + ) compared to 19 controls (A-T-N-) from the Hospital Clínic Barcelona cohort. We explored group differences in atrophy patterns and we correlated atrophy and baseline CSF-biomarkers levels in EOAD. We replicated the correlation analyses in 14 EOAD (A + T + N + ) and 55 late-onset AD (LOAD; aged ≥ 75 years; A + T + N + ) participants from the Alzheimer's disease Neuroimaging Initiative. We found that EOAD longitudinal atrophy spread with a posterior-to-anterior gradient and beyond hippocampus/amygdala. In EOAD, higher initial CSF NfL levels correlated with higher ventricular volumes at baseline. On the other hand, higher initial CSF Aβ42 levels (within pathological range) predicted higher rates of cortical loss in EOAD. In EOAD and LOAD subjects, higher CSF t-tau values at baseline predicted higher rates of subcortical atrophy. CSF p-tau did not show any significant correlation. In conclusion, posterior cortices, hippocampus and amygdala capture EOAD atrophy from early stages. CSF Aβ42 might predict cortical thinning and t-tau/NfL subcortical atrophy.
Collapse
Affiliation(s)
- José Contador
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Agnès Pérez-Millán
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Adrià Tort-Merino
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain; Atlantic Fellow for Equity in Brain Health, Global Brain Heath Institute
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain; Atlantic Fellow for Equity in Brain Health, Global Brain Heath Institute; Department of Neurology, Memory & Aging Center, Weill Institute for Neurosciences, University of California, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, USA
| | - Jaume Olives
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Magdalena Castellví
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Guadalupe Fernández-Villullas
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Oscar Ramos-Campoy
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Nuria Bargalló
- Image Diagnostic Centre, IDIBAPS, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Roser Sala-Llonch
- Institute of Neurosciences. Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, 08036, Spain; Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain.
| |
Collapse
|
22
|
Buckley RF. Recent Advances in Imaging of Preclinical, Sporadic, and Autosomal Dominant Alzheimer's Disease. Neurotherapeutics 2021; 18:709-727. [PMID: 33782864 PMCID: PMC8423933 DOI: 10.1007/s13311-021-01026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Observing Alzheimer's disease (AD) pathological changes in vivo with neuroimaging provides invaluable opportunities to understand and predict the course of disease. Neuroimaging AD biomarkers also allow for real-time tracking of disease-modifying treatment in clinical trials. With recent neuroimaging advances, along with the burgeoning availability of longitudinal neuroimaging data and big-data harmonization approaches, a more comprehensive evaluation of the disease has shed light on the topographical staging and temporal sequencing of the disease. Multimodal imaging approaches have also promoted the development of data-driven models of AD-associated pathological propagation of tau proteinopathies. Studies of autosomal dominant, early sporadic, and late sporadic courses of the disease have shed unique insights into the AD pathological cascade, particularly with regard to genetic vulnerabilities and the identification of potential drug targets. Further, neuroimaging markers of b-amyloid, tau, and neurodegeneration have provided a powerful tool for validation of novel fluid cerebrospinal and plasma markers. This review highlights some of the latest advances in the field of human neuroimaging in AD across these topics, particularly with respect to positron emission tomography and structural and functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital & Brigham and Women's, Harvard Medical School, Boston, MA, USA.
- Melbourne School of Psychological Sciences and Florey Institutes, University of Melbourne, Melbourne, VIC, Australia.
- Department of Neurology, Massachusetts General Hospital, 149 13th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
23
|
Ohba M, Kobayashi R, Kirii K, Fujita K, Kanezawa C, Hayashi H, Kawakatsu S, Otani K, Kanoto M, Suzuki K. Comparison of Alzheimer's disease patients and healthy controls in the easy Z-score imaging system with differential image reconstruction methods using SPECT/CT: verification using normal database of our institution. Ann Nucl Med 2021; 35:307-313. [PMID: 33394329 DOI: 10.1007/s12149-020-01562-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/29/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The easy Z-score imaging system (eZIS) analysis is used for the diagnosis of dementia by cerebral blood flow on single photon emission computed tomography (SPECT). Differences in the acquisition and reconstruction conditions in SPECT may affect the eZIS analysis results. The present study aimed to construct our institutional normal database (NDB) and Alzheimer's disease (AD)-specific volumes of interest (VOIs) in eZIS analysis, and to compare the differential diagnostic ability between healthy controls (HC) and patients with AD in the image reconstruction filtered back projection (FBP) and ordered subset expectation maximization (OSEM) methods. METHODS An NDB was constructed at our institution from 30 healthy individual using the FBP and OSEM reconstruction methods. We divided 51 HC and 51 AD patients into two groups, one for AD disease-specific VOI construction (HC, AD) and the other for NDB verification (HC, AD); image reconstruction was performed using FBP and OSEM. The areas of reduced blood flow in AD patients were compared with those of HC using the two types of image reconstruction methods. We used AD disease-specific VOI and NDB from each reconstruction method in eZIS analysis and compared the differential diagnostic ability for HC and AD with the different reconstruction methods. RESULTS Comparing the areas of reduced blood flow in AD patients using the different image reconstruction methods, OSEM showed decreased blood flow in the medial region of the temporal lobes compared to FBP. Comparing the differential diagnostic ability for HC and AD using eZIS, the Severity, Extent, and Ratio showed higher values in the analysis performed using OSEM image reconstruction compared to FBP. CONCLUSION With the 99mTc-ECD SPECT, the eZIS analysis equipped with our institutional AD-specific VOI and NDB using OSEM image reconstruction could distinguish HC from AD better than eZIS analysis using FBP image reconstruction. This study is registered in UMIN Clinical Trials Registry (UMIN-CTR) as UMIN study ID: UMIN000042362.
Collapse
Affiliation(s)
- Makoto Ohba
- Department of Radiology, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| | - Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Kazukuni Kirii
- Division of Diagnostic Radiology, Department of Radiology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Kyosuke Fujita
- Department of Radiology, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Chika Kanezawa
- Department of Radiology, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Hiroshi Hayashi
- Department of Psychiatry, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Koichi Otani
- Department of Psychiatry, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Masafumi Kanoto
- Division of Diagnostic Radiology, Department of Radiology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Koji Suzuki
- Department of Radiology, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| |
Collapse
|
24
|
Zhi N, Zhang L, Wang Y, Bai S, Geng J, Yu L, Cao W, Zhuang L, Zhou Y, Guan Y. Modified cerebral small vessel disease score is associated with vascular cognitive impairment after lacunar stroke. Aging (Albany NY) 2021; 13:9510-9521. [PMID: 33535189 PMCID: PMC8064168 DOI: 10.18632/aging.202438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 01/06/2023]
Abstract
We conducted a cross-sectional study to characterize the relationship between total and modified small vessel disease (SVD) score with vascular cognitive impairment (VCI). Patients (n = 157) between the ages of 50 and 85 years old who had suffered their first lacunar infarction were analyzed prospectively. Brain magnetic resonance imaging was performed to identify SVD manifestations, which were used to calculate total or modified SVD scores. Neuropsychological assessments measured cognitive function. Spearman correlation analysis demonstrated that the total and modified SVD scores were associated with overall cognition as well as with function in the executive and visuospatial domains. The associations remained significant in linear regression after adjusting for age, sex, education and vascular risk factors. Binary logistic regression and chi-squared trend tests revealed that VCI risk increased significantly with SVD burden based on the modified SVD score. Subsequent chi-squared testing demonstrated that the VCI rate was significantly higher in patients with a modified SVD score of 5-6 than in patients without any SVD burden. Our results suggest that both the total and modified SVD scores show a negative association with cognitive function, but the modified SVD score may be better at identifying patients at high VCI risk.
Collapse
Affiliation(s)
- Nan Zhi
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yao Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuwei Bai
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieli Geng
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenwei Cao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhuang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Planche V, Bouteloup V, Mangin JF, Dubois B, Delrieu J, Pasquier F, Blanc F, Paquet C, Hanon O, Gabelle A, Ceccaldi M, Annweiler C, Krolak-Salmon P, Habert MO, Fischer C, Chupin M, Béjot Y, Godefroy O, Wallon D, Sauvée M, Bourdel-Marchasson I, Jalenques I, Tison F, Chêne G, Dufouil C. Clinical relevance of brain atrophy subtypes categorization in memory clinics. Alzheimers Dement 2020; 17:641-652. [PMID: 33325121 DOI: 10.1002/alz.12231] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The clinical relevance of brain atrophy subtypes categorization in non-demented persons without a priori knowledge regarding their amyloid status or clinical presentation is unknown. METHODS A total of 2083 outpatients with either subjective cognitive complaint or mild cognitive impairment at study entry were followed during 4 years (MEMENTO cohort). Atrophy subtypes were defined using baseline magnetic resonance imaging (MRI) and previously described algorithms. RESULTS Typical/diffuse atrophy was associated with faster cognitive decline and the highest risk of developing dementia and Alzheimer's disease (AD) over time, both in the whole analytic sample and in amyloid-positive participants. Hippocampal-sparing and limbic-predominant atrophy were also associated with incident dementia, with faster cognitive decline in the limbic predominant atrophy group. Lewy body dementia was more frequent in the hippocampal-sparing and minimal/no atrophy groups. DISCUSSION Atrophy subtypes categorization predicted different subsequent patterns of cognitive decline and rates of conversion to distinct etiologies of dementia in persons attending memory clinics.
Collapse
Affiliation(s)
- Vincent Planche
- Univ. Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Vincent Bouteloup
- Univ. Bordeaux, Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux, France
| | - Jean-François Mangin
- Univ. Paris-Saclay, CEA, CNRS, Baobab, Neurospin, CATI multicenter neuroimaging platform, Gif-sur-Yvette, France
| | - Bruno Dubois
- Sorbonne-Université, Service des maladies cognitives et comportementales et Institut de la mémoire et de la maladie d'Alzheimer (IM2A), Hôpital de la Salpêtrière, AP-PH, Paris, France
| | - Julien Delrieu
- Departement de Gériatrie, Univ. Toulouse, Inserm U1027, Gérontopôle, CHU Purpan, Toulouse, France
| | - Florence Pasquier
- Univ. Lille, Inserm U1171, Centre Mémoire de Ressources et de Recherches, CHU Lille, DISTAlz, Lille, France
| | - Frédéric Blanc
- ICube laboratory, Departement de Gériatrie, Univ. Strasbourg, CNRS, UMR 7357, Fédération de Médecine Translationnelle de Strasbourg, Centre Mémoire de Ressources et de Recherches, Strasbourg, France
| | - Claire Paquet
- Univ. Paris, Inserm U1144, Groupe Hospitalier Lariboisière Fernand-Widal, AP-HP, Paris, France
| | - Olivier Hanon
- Univ. Paris Descartes Sorbonne Paris Cité, EA 4468, Service de Gériatrie, AP-HP, Hôpital Broca, Paris, France
| | - Audrey Gabelle
- Département de Neurologie, Univ. Montpellier, i-site MUSE, Inserm U1061, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences, CHU de Montpellier, Montpellier, France
| | - Matthieu Ceccaldi
- Département de Neurologie et de Neuropsychologie, Univ. Aix Marseille, Inserm UMR 1106, Institut de Neurosciences des Systèmes, Centre Mémoire de Ressources et de Recherches, AP-HM, Marseille, France
| | - Cédric Annweiler
- Département de Gériatrie, CHU d'Angers, Univ. Angers, UPRES EA 4638, Centre Mémoire de Ressources et de Recherches, Angers, France
| | - Pierre Krolak-Salmon
- Univ. Lyon, Inserm U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Centre Mémoire Ressource et Recherche de Lyon (CMRR), Hôpital des Charpennes, Hospices Civils de Lyon, Lyon, France
| | - Marie-Odile Habert
- Laboratoire d'Imagerie Biomédicale, Sorbonne-Université, CNRS, Inserm, CATI multicenter neuroimaging platform, AP-HP, Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Clara Fischer
- Univ. Paris-Saclay, CEA, CNRS, Baobab, Neurospin, CATI multicenter neuroimaging platform, Gif-sur-Yvette, France
| | - Marie Chupin
- Sorbonne-Université, Inserm U1127, CNRS UMR 7225, CATI multicenter neuroimaging platform, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Yannick Béjot
- Univ. Bourgogne, EA7460, Centre Mémoire de Ressources et de Recherches, CHU Dijon Bourgogne, Dijon, France
| | - Olivier Godefroy
- Laboratoire de Neurosciences Fonctionnelles et Pathologies, Univ. Picardie, UR UPJV4559, Service de Neurologie, CHU Amiens, Amiens, France
| | - David Wallon
- Departement de Neurologie, Univ. Normandie, UNIROUEN, Inserm U1245, CNR-MAJ, CHU de Rouen, Rouen, France
| | - Mathilde Sauvée
- Centre Mémoire de Ressources et de Recherches Grenoble Arc Alpin, Pôle de Psychiatrie et Neurologie, CHU Grenoble, Grenoble, France
| | - Isabelle Bourdel-Marchasson
- Univ. Bordeaux, Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux, France
- Univ. Bordeaux, CNRS UMR 5536, Centre de Résonance Magnétique des Systèmes Biologiques, Pole de gérontologie clinique, CHU de Bordeaux, Bordeaux, France
| | - Isabelle Jalenques
- Univ. Clermont Auvergne, Centre Mémoire de Ressources et de Recherches, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - François Tison
- Univ. Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Geneviève Chêne
- Univ. Bordeaux, Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Pôle de Sante Publique, CHU de Bordeaux, Bordeaux, France
| | - Carole Dufouil
- Univ. Bordeaux, Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Pôle de Sante Publique, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
26
|
Lesman-Segev OH, Edwards L, Rabinovici GD. Chronic Traumatic Encephalopathy: A Comparison with Alzheimer's Disease and Frontotemporal Dementia. Semin Neurol 2020; 40:394-410. [PMID: 32820492 DOI: 10.1055/s-0040-1715134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The clinical diagnosis of chronic traumatic encephalopathy (CTE) is challenging due to heterogeneous clinical presentations and overlap with other neurodegenerative dementias. Depending on the clinical presentation, the differential diagnosis of CTE includes Alzheimer's disease (AD), behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease, amyotrophic lateral sclerosis, primary mood disorders, posttraumatic stress disorder, and psychotic disorders. The aim of this article is to compare the clinical aspects, genetics, fluid biomarkers, imaging, treatment, and pathology of CTE to those of AD and bvFTD. A detailed clinical evaluation, neurocognitive assessment, and structural brain imaging can inform the differential diagnosis, while molecular biomarkers can help exclude underlying AD pathology. Prospective studies that include clinicopathological correlations are needed to establish tools that can more accurately determine the cause of neuropsychiatric decline in patients at risk for CTE.
Collapse
Affiliation(s)
- Orit H Lesman-Segev
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Lauren Edwards
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Department of Neurology, University of California San Francisco, San Francisco, California.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,Weill Neuroscience Institute, University of California San Francisco, San Francisco, California
| |
Collapse
|
27
|
Hayashi H, Kobayashi R, Kawakatsu S, Morioka D, Otani K. Utility of Easy Z-Score Imaging System-Assisted SPECT in Detecting Onset Age-Dependent Decreases in Cerebral Blood Flow in the Posterior Cingulate Cortex, Precuneus, and Parietal Lobe in Alzheimer's Disease with Amyloid Accumulation. Dement Geriatr Cogn Dis Extra 2020; 10:63-68. [PMID: 32774341 PMCID: PMC7383150 DOI: 10.1159/000507654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/02/2023] Open
Abstract
Background Easy Z-score imaging system (eZIS)-assisted SPECT accurately detects decreases in cerebral blood flow in the posterior cingulate cortex (PCC), precuneus, and parietal lobe, the cerebral regions deeply implicated in Alzheimer's disease (AD). Several studies suggested onset age-dependent decreases in cerebral blood flow in these regions in AD, but these studies did not screen for amyloid accumulation, suggesting inclusion of non-AD patients in their subjects. Objective By applying eZIS-SPECT to patients with amyloid deposition, it was the aim of this study to clarify onset age-dependent decreases in cerebral blood flow in the regions critical to AD. Methods We retrospectively analyzed eZIS-SPECT data on 34 AD patients with amyloid retention confirmed by 11C-Pittsburgh compound B-PET. The subjects were divided into an early-onset group (n = 16) and a late-onset group (n = 18). The three indicators of the eZIS that had discriminated between AD patients and normal controls in previous studies were compared between the two groups. Results The mean values for the respective indicators were significantly higher in the early-onset group than in the late-onset group. Also, the proportion of patients with abnormalities in all indicators was significantly higher in the early-onset group (93.8%) than in the late-onset group (50.0%). Conclusions The present study, applying eZIS-SPECT to amyloid-positive AD patients, suggests that reduced cerebral blood flow in the PCC, precuneus, and parietal lobe is more pronounced in the early-onset type than in the late-onset type of the disease.
Collapse
Affiliation(s)
- Hiroshi Hayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Daichi Morioka
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Koichi Otani
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
28
|
Does the CD33 rs3865444 Polymorphism Confer Susceptibility to Alzheimer’s Disease? J Mol Neurosci 2020; 70:851-860. [DOI: 10.1007/s12031-020-01507-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
29
|
Abstract
PURPOSE OF REVIEW Early-onset Alzheimer disease (AD) is defined as having an age of onset younger than 65 years. While early-onset AD is often overshadowed by the more common late-onset AD, recognition of the differences between early- and late-onset AD is important for clinicians. RECENT FINDINGS Early-onset AD comprises about 5% to 6% of cases of AD and includes a substantial percentage of phenotypic variants that differ from the usual amnestic presentation of typical AD. Characteristics of early-onset AD in comparison to late-onset AD include a larger genetic predisposition (familial mutations and summed polygenic risk), more aggressive course, more frequent delay in diagnosis, higher prevalence of traumatic brain injury, less memory impairment and greater involvement of other cognitive domains on presentation, and greater psychosocial difficulties. Neuroimaging features of early-onset AD in comparison to late-onset AD include greater frequency of hippocampal sparing and posterior neocortical atrophy, increased tau burden, and greater connectomic changes affecting frontoparietal networks rather than the default mode network. SUMMARY Early-onset AD differs substantially from late-onset AD, with different phenotypic presentations, greater genetic predisposition, and differences in neuropathologic burden and topography. Early-onset AD more often presents with nonamnestic phenotypic variants that spare the hippocampi and with greater tau burden in posterior neocortices. The early-onset AD phenotypic variants involve different neural networks than typical AD. The management of early-onset AD is similar to that of late-onset AD but with special emphasis on targeting specific cognitive areas and more age-appropriate psychosocial support and education.
Collapse
|
30
|
De Marco M, Ourselin S, Venneri A. Age and hippocampal volume predict distinct parts of default mode network activity. Sci Rep 2019; 9:16075. [PMID: 31690806 PMCID: PMC6831650 DOI: 10.1038/s41598-019-52488-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/08/2019] [Indexed: 01/20/2023] Open
Abstract
Group comparison studies have established that activity in the posterior part of the default-mode network (DMN) is down-regulated by both normal ageing and Alzheimer’s disease (AD). In this study linear regression models were used to disentangle distinctive DMN activity patterns that are more profoundly associated with either normal ageing or a structural marker of neurodegeneration. 312 datasets inclusive of healthy adults and patients were analysed. Days of life at scan (DOL) and hippocampal volume were used as predictors. Group comparisons confirmed a significant association between functional connectivity in the posterior cingulate/retrosplenial cortex and precuneus and both ageing and AD. Fully-corrected regression models revealed that DOL significantly predicted DMN strength in these regions. No such effect, however, was predicted by hippocampal volume. A significant positive association was found between hippocampal volumes and DMN connectivity in the right temporo-parietal junction (TPJ). These results indicate that postero-medial DMN down-regulation may not be specific to neurodegenerative processes but may be more an indication of brain vulnerability to degeneration. The DMN-TPJ disconnection is instead linked to the volumetric properties of the hippocampus, may reflect early-stage regional accumulation of pathology and might be of aid in the clinical detection of abnormal ageing.
Collapse
Affiliation(s)
- Matteo De Marco
- Department of Neuroscience, Medical School, University of Sheffield, Royal Hallamshire Hospital, Beech Hill Road, S10 2RX, Sheffield, UK
| | - Sebastien Ourselin
- Department of Imaging and Biomedical Engineering, King's College London, Strand, London, UK
| | - Annalena Venneri
- Department of Neuroscience, Medical School, University of Sheffield, Royal Hallamshire Hospital, Beech Hill Road, S10 2RX, Sheffield, UK.
| |
Collapse
|
31
|
Benvenutto A, Giusiano B, Koric L, Gueriot C, Didic M, Felician O, Guye M, Guedj E, Ceccaldi M. Imaging Biomarkers of Neurodegeneration in Alzheimer's Disease: Distinct Contributions of Cortical MRI Atrophy and FDG-PET Hypometabolism. J Alzheimers Dis 2019; 65:1147-1157. [PMID: 30124446 DOI: 10.3233/jad-180292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neurodegeneration biomarkers are routinely used in the diagnosis of Alzheimer's disease (AD). OBJECTIVE To evaluate the respective contributions of two neuroimaging biomarkers, structural MRI and 18FDG-PET, in the assessment of neurodegeneration in AD dementia. METHODS Patients with mild AD dementia diagnosed based on clinical and cerebrospinal fluid criteria and cognitively healthy subjects, from the Marseille cohort ADAge with cognitive, structural MRI and 18FDG-PET assessments, were included. Extent of atrophy on MRI and of hypometabolism on 18FDG-PET were individually evaluated in each patient using a voxel-based analysis on whole-brain approach and compared to healthy subjects. Patients were divided in distinct groups according to their atrophy extent on the one hand and to their hypometabolism extent on the other, then, to their imaging profile combining the extent of the two biomarkers. RESULTS Fifty-two patients were included. The MMSE score was significantly lower in the "Extensive hypometabolism" group than in the "Limited hypometabolism" group (respectively 19.5/30 versus 23/30). A lower Innotest Amyloid Tau Index was associated with an extensive hypometabolism (p = 0.04). There were more patients with low educational level in the "Extensive atrophy" group, while a higher educational level was more found in the "Limited atrophy" group (p = 0.005). CONCLUSION 18FDG-PET hypometabolism extent is associated with the pathological processes and clinical severity of AD, while MRI atrophy seems to be influenced by the cognitive reserve. In the context of mild AD dementia, these two biomarkers of neurodegeneration are thus not interchangeable and require to be considered in combination rather than in isolation.
Collapse
Affiliation(s)
- Agnès Benvenutto
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Bernard Giusiano
- Department of Public Health, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Institut de Neurosciences des Systèmes, Aix-Marseille Univ, INSERM UMR 1106, Marseille, France
| | - Lejla Koric
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Claude Gueriot
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Mira Didic
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Institut de Neurosciences des Systèmes, Aix-Marseille Univ, INSERM UMR 1106, Marseille, France
| | - Olivier Felician
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Institut de Neurosciences des Systèmes, Aix-Marseille Univ, INSERM UMR 1106, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, Timone University Hospital, CEMEREM, Marseille, France
| | - Eric Guedj
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France.,Department of Nuclear Medecine, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,CERIMED, Aix-Marseille Univ, Marseille, France
| | - Mathieu Ceccaldi
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Institut de Neurosciences des Systèmes, Aix-Marseille Univ, INSERM UMR 1106, Marseille, France
| |
Collapse
|
32
|
Beyer L, Schnabel J, Kazmierczak P, Ewers M, Schönecker S, Prix C, Meyer-Wilmes J, Unterrainer M, Catak C, Pogarell O, Perneczky R, Albert NL, Bartenstein P, Danek A, Buerger K, Levin J, Rominger A, Brendel M. Neuronal injury biomarkers for assessment of the individual cognitive reserve in clinically suspected Alzheimer's disease. NEUROIMAGE-CLINICAL 2019; 24:101949. [PMID: 31398553 PMCID: PMC6699250 DOI: 10.1016/j.nicl.2019.101949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 06/18/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Many predictive or influencing factors have emerged in investigations of the cognitive reserve model of patients with Alzheimer's disease (AD). For example, neuronal injury, which correlates with cognitive decline in AD, can be assessed by [18F]-fluorodeoxyglucose positron-emission-tomography (FDG-PET), structural magnetic resonance imaging (MRI) and total tau in cerebrospinal fluid (CSFt-tau), all according to the A/T/N-classification. The aim of this study was to calculate residual cognitive performance based on neuronal injury biomarkers as a surrogate of cognitive reserve, and to test the predictive value of this index for the individual clinical course. METHODS 110 initially mild cognitive impaired and demented subjects (age 71 ± 8 years) with a final diagnosis of AD dementia were assessed at baseline by clinical mini-mental-state-examination (MMSE), FDG-PET, MRI and CSFt-tau. All neuronal injury markers were tested for an association with clinical MMSE and the resulting residuals were correlated with years of education. We used multiple regression analysis to calculate the expected MMSE score based on neuronal injury biomarkers and covariates. The residuals of the partial correlation for each biomarker and the predicted residualized memory function were correlated with individual cognitive changes measured during clinical follow-up (27 ± 13 months). RESULTS FDG-PET correlated highly with clinical MMSE (R = -0.49, p < .01), whereas hippocampal atrophy to MRI (R = -0.15, p = .14) and CSFt-tau (R = -0.12, p = .22) showed only weak correlations. Residuals of all neuronal injury biomarker regressions correlated significantly with education level, indicating them to be surrogates of cognitive reserve. A positive residual was associated with faster cognitive deterioration at follow-up for the residuals of stand-alone FDG-PET (R = -0.36, p = .01) and the combined residualized memory function model (R = -0.35, p = .02). CONCLUSIONS These findings suggest that subjects with higher cognitive reserve had accumulated more pathology, which subsequently caused a faster cognitive decline over time. Together with previous findings suggesting that higher reserve is associated with slower cognitive decline, we propose a biphasic reserve effect, with an initially protective phase followed by more rapid decompensation once the protection is overwhelmed.
Collapse
Affiliation(s)
- Leonie Beyer
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Jonas Schnabel
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Philipp Kazmierczak
- Institute for Radiology, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Michael Ewers
- DZNE - German Center for Neurodegenerative Diseases, Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Sonja Schönecker
- Dept. of Neurology, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Catharina Prix
- Dept. of Neurology, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Johanna Meyer-Wilmes
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Marcus Unterrainer
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Cihan Catak
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Oliver Pogarell
- Dept. of Psychiatry, University Hospital of Munich, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - Robert Perneczky
- DZNE - German Center for Neurodegenerative Diseases, Feodor-Lynen-Straße 17, 81377 Munich, Germany; Dept. of Psychiatry, University Hospital of Munich, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College, Charing Cross Hospital, St Dunstan's Road, London W6 8RP, United Kingdom; West London Mental Health NHS Trust, 1 Armstrong Way, Southhall UB2 4SD, United Kingdom
| | - Nathalie L Albert
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Peter Bartenstein
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Adrian Danek
- Dept. of Neurology, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Katharina Buerger
- DZNE - German Center for Neurodegenerative Diseases, Feodor-Lynen-Straße 17, 81377 Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Axel Rominger
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; Dept. of Nuclear Medicine, University of Bern, Inselspital, Freiburgstraße 18, 3010 Bern, Switzerland; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| |
Collapse
|
33
|
Alladi S, Hachinski V. World dementia: One approach does not fit all. Neurology 2018; 91:264-270. [PMID: 29997191 DOI: 10.1212/wnl.0000000000005941] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/10/2018] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To highlight the broad global diversity in the diagnosis, management, and research of dementia in different regions of the world. METHODS A critical review of the limited literature from the global South compared with advances that have emerged from key studies in the West and observations from the authors' experiences. RESULTS The last several decades have witnessed major advances in dementia research and include an understanding of epidemiologic trends in the global burden of disease, the development of biomarkers for Alzheimer disease, the identification of novel therapeutic targets, and the recognition of the role of protective life-course experiential factors. For the effective translation of these research advances into societies, a "world approach" to dementia is vital. Developing societies substantially differ from Western countries in their attitudes toward dementia, as well as their clinical manifestations and risk factor profiles, marked by lower education and socioeconomic status, a higher cardiovascular disease burden, and genetic variability. Emerging evidence emphasizes the interaction among ethnicity, genetics, epigenetics, environment, culture, and neurobiology in influencing manifestations of dementia. Therefore, the investigation of dementia in diverse settings, including a more global perspective, is crucial for a comprehensive understanding of the condition as well as the identification of novel solutions. CONCLUSIONS A world approach to dementia provides an opportunity to understand, manage, coordinate, and begin to prevent dementia through an integrated approach based on firm scientific evidence.
Collapse
Affiliation(s)
- Suvarna Alladi
- From the Department of Neurology (S.A.), National Institute of Mental Health and Neurosciences, Bengaluru, India; and Department of Clinical Neurological Sciences (V.H.), University of Western Ontario, London, Canada
| | - Vladimir Hachinski
- From the Department of Neurology (S.A.), National Institute of Mental Health and Neurosciences, Bengaluru, India; and Department of Clinical Neurological Sciences (V.H.), University of Western Ontario, London, Canada.
| |
Collapse
|
34
|
Eckerström C, Klasson N, Olsson E, Selnes P, Rolstad S, Wallin A. Similar pattern of atrophy in early- and late-onset Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:253-259. [PMID: 29780870 PMCID: PMC5956802 DOI: 10.1016/j.dadm.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction Previous research on structural changes in early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD) have reported inconsistent findings. Methods In the present substudy of the Gothenburg MCI study, 1.5 T scans were used to estimate lobar and hippocampal volumes using FreeSurfer. Study participants (N = 145) included 63 patients with AD, (24 patients with EOAD [aged ≤65 years], 39 patients with LOAD [aged >65 years]), 25 healthy controls aged ≤65 years, and 57 healthy controls aged >65 years. Results Hippocampal atrophy is the most prominent feature of both EOAD and LOAD compared with controls. Direct comparison between EOAD and LOAD showed that the differences between the groups did not remain after correcting for age. Discussion Structurally, EOAD and LOAD does not seem to be different nosological entities. The difference in brain volumes between the groups compared with controls is likely due to age-related atrophy. Hippocampal atrophy is the most prominent feature of both early- and late-onset AD. No structural difference between early- and late-onset AD after adjusting for age. Early- and late-onset AD exhibits a similar pattern of atrophy.
Collapse
Affiliation(s)
- Carl Eckerström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Niklas Klasson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Erik Olsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sindre Rolstad
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Anders Wallin
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| |
Collapse
|
35
|
Fiford CM, Ridgway GR, Cash DM, Modat M, Nicholas J, Manning EN, Malone IB, Biessels GJ, Ourselin S, Carmichael OT, Cardoso MJ, Barnes J. Patterns of progressive atrophy vary with age in Alzheimer's disease patients. Neurobiol Aging 2018; 63:22-32. [PMID: 29220823 PMCID: PMC5805840 DOI: 10.1016/j.neurobiolaging.2017.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/14/2017] [Accepted: 11/06/2017] [Indexed: 01/18/2023]
Abstract
Age is not only the greatest risk factor for Alzheimer's disease (AD) but also a key modifier of disease presentation and progression. Here, we investigate how longitudinal atrophy patterns vary with age in mild cognitive impairment (MCI) and AD. Data comprised serial longitudinal 1.5-T magnetic resonance imaging scans from 153 AD, 339 MCI, and 191 control subjects. Voxel-wise maps of longitudinal volume change were obtained and aligned across subjects. Local volume change was then modeled in terms of diagnostic group and an interaction between group and age, adjusted for total intracranial volume, white-matter hyperintensity volume, and apolipoprotein E genotype. Results were significant at p < 0.05 with family-wise error correction for multiple comparisons. An age-by-group interaction revealed that younger AD patients had significantly faster atrophy rates in the bilateral precuneus, parietal, and superior temporal lobes. These results suggest younger AD patients have predominantly posterior progressive atrophy, unexplained by white-matter hyperintensity, apolipoprotein E, or total intracranial volume. Clinical trials may benefit from adapting outcome measures for patient groups with lower average ages, to capture progressive atrophy in posterior cortices.
Collapse
Affiliation(s)
- Cassidy M Fiford
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| | - Gerard R Ridgway
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Marc Modat
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | | | - Emily N Manning
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Ian B Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sebastien Ourselin
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | | | - M Jorge Cardoso
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Josephine Barnes
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| |
Collapse
|
36
|
Vanhoutte M, Semah F, Rollin Sillaire A, Jaillard A, Petyt G, Kuchcinski G, Maureille A, Delbeuck X, Fahmi R, Pasquier F, Lopes R. 18F-FDG PET hypometabolism patterns reflect clinical heterogeneity in sporadic forms of early-onset Alzheimer's disease. Neurobiol Aging 2017; 59:184-196. [PMID: 28882421 DOI: 10.1016/j.neurobiolaging.2017.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 01/23/2023]
Abstract
Until now, hypometabolic patterns and their correlations with neuropsychological performance have not been assessed as a function of the various presentations of sporadic early-onset Alzheimer's disease (EOAD). Here, we processed and analyzed the patients' metabolic maps at the vertex and voxel levels by using a nonparametric, permutation method that also regressed out the effects of cortical thickness and gray matter volume, respectively. The hypometabolism patterns in several areas of the brain were significantly correlated with the clinical manifestations. These areas included the paralimbic regions for typical presentations of sporadic EOAD. For atypical presentations, the hypometabolic regions included Broca's and Wernicke's areas and the pulvinar in language forms, bilateral primary and higher processing visual regions (with right predominance) in visuospatial forms, and the bilateral prefrontal cortex in executive forms. Similar hypometabolism patterns were also observed in a correlation analysis of the 18F-FDG PET data versus domain-specific, neuropsychological test scores. These heterogeneities might reflect different underlying pathophysiological processes in particular clinical presentations of sporadic EOAD and should be taken into account in future longitudinal and therapeutic studies.
Collapse
Affiliation(s)
| | - Franck Semah
- University Lille, INSERM U1171, CHU Lille, Lille, France; Department of Nuclear Medicine, CHU Lille, Lille, France
| | - Adeline Rollin Sillaire
- Department of Neurology, CHU Lille, Lille, France; University Lille, INSERM U1171, CHU Lille, Memory Center, DISTALZ, Lille, France
| | - Alice Jaillard
- University Lille, INSERM U1171, CHU Lille, Lille, France; Department of Nuclear Medicine, CHU Lille, Lille, France
| | - Grégory Petyt
- Department of Nuclear Medicine, CHU Lille, Lille, France
| | - Grégory Kuchcinski
- University Lille, INSERM U1171, CHU Lille, Lille, France; Department of Neuroradiology, CHU Lille, Lille, France
| | - Aurélien Maureille
- University Lille, INSERM U1171, CHU Lille, Memory Center, DISTALZ, Lille, France
| | - Xavier Delbeuck
- University Lille, INSERM U1171, CHU Lille, Memory Center, DISTALZ, Lille, France; Department of Neuropsychology, CHU Lille, Lille, France
| | - Rachid Fahmi
- Siemens Healthineers, Molecular Imaging, Knoxville, TN, USA
| | - Florence Pasquier
- University Lille, INSERM U1171, CHU Lille, Lille, France; Department of Neurology, CHU Lille, Lille, France; University Lille, INSERM U1171, CHU Lille, Memory Center, DISTALZ, Lille, France
| | - Renaud Lopes
- University Lille, INSERM U1171, CHU Lille, Lille, France; Department of Neuroradiology, CHU Lille, Lille, France
| |
Collapse
|