1
|
Babiloni C, Arakaki X, Baez S, Barry RJ, Benussi A, Blinowska K, Bonanni L, Borroni B, Bayard JB, Bruno G, Cacciotti A, Carducci F, Carino J, Carpi M, Conte A, Cruzat J, D'Antonio F, Della Penna S, Del Percio C, De Sanctis P, Escudero J, Fabbrini G, Farina FR, Fraga FJ, Fuhr P, Gschwandtner U, Güntekin B, Guo Y, Hajos M, Hallett M, Hampel H, Hanoğlu L, Haraldsen I, Hassan M, Hatlestad-Hall C, Horváth AA, Ibanez A, Infarinato F, Jaramillo-Jimenez A, Jeong J, Jiang Y, Kamiński M, Koch G, Kumar S, Leodori G, Li G, Lizio R, Lopez S, Ferri R, Maestú F, Marra C, Marzetti L, McGeown W, Miraglia F, Moguilner S, Moretti DV, Mushtaq F, Noce G, Nucci L, Ochoa J, Onorati P, Padovani A, Pappalettera C, Parra MA, Pardini M, Pascual-Marqui R, Paulus W, Pizzella V, Prado P, Rauchs G, Ritter P, Salvatore M, Santamaria-García H, Schirner M, Soricelli A, Taylor JP, Tankisi H, Tecchio F, Teipel S, Kodamullil AT, Triggiani AI, Valdes-Sosa M, Valdes-Sosa P, Vecchio F, Vossel K, Yao D, Yener G, Ziemann U, Kamondi A. Alpha rhythm and Alzheimer's disease: Has Hans Berger's dream come true? Clin Neurophysiol 2025; 172:33-50. [PMID: 39978053 DOI: 10.1016/j.clinph.2025.02.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
In this "centenary" paper, an expert panel revisited Hans Berger's groundbreaking discovery of human restingstate electroencephalographic (rsEEG) alpha rhythms (8-12 Hz) in 1924, his foresight of substantial clinical applications in patients with "senile dementia," and new developments in the field, focusing on Alzheimer's disease (AD), the most prevalent cause of dementia in pathological aging. Clinical guidelines issued in 2024 by the US National Institute on Aging-Alzheimer's Association (NIA-AA) and the European Neuroscience Societies did not endorse routine use of rsEEG biomarkers in the clinical workup of older adults with cognitive impairment. Nevertheless, the expert panel highlighted decades of research from independent workgroups and different techniques showing consistent evidence that abnormalities in rsEEG delta, theta, and alpha rhythms (< 30 Hz) observed in AD patients correlate with wellestablished AD biomarkers of neuropathology, neurodegeneration, and cognitive decline. We posit that these abnormalities may reflect alterations in oscillatory synchronization within subcortical and cortical circuits, inducing cortical inhibitory-excitatory imbalance (in some cases leading to epileptiform activity) and vigilance dysfunctions (e.g., mental fatigue and drowsiness), which may impact AD patients' quality of life. Berger's vision of using EEG to understand and manage dementia in pathological aging is still actual.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy; San Raffaele of Cassino, Cassino, (FR), Italy.
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia; Global Brain Health Institute (GBHI), University of California, San Francisco, USA; Trinity College Dublin, Dublin, Ireland
| | - Robert J Barry
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong 2522, Australia
| | - Alberto Benussi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Katarzyna Blinowska
- Department of Biomedical Physics, Faculty of Physics, University of Warsaw, Poland; Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Laura Bonanni
- Department of Medicine, Aging Sciences University G. d'Annunzio of Chieti-Pescara Chieti 66100 Chieti, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia 25125, Italy
| | | | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Filippo Carducci
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - John Carino
- Clinical Neurophysiology, Royal Melbourne Hospital, Parkville, Melbourne, Australia
| | - Matteo Carpi
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Fabrizia D'Antonio
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Javier Escudero
- Institute for Imaging, Data and Communications, School of Engineering, University of Edinburgh, UK
| | - Giovanni Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Francesca R Farina
- The University of Chicago Division of the Biological Sciences 5841 S Maryland Avenue Chicago, IL 60637, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland
| | - Francisco J Fraga
- Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo André, Brazil
| | - Peter Fuhr
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Ute Gschwandtner
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital and The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China; Shenzhen Bay Laboratory, Shenzhen, China; Tianjin Huanhu Hospital, Tianjin, China
| | - Mihaly Hajos
- Cognito Therapeutics, Cambridge, MA, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 7D37, 10 Center Drive, Bethesda, MD 20892-1428, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013 Paris, France
| | - Lutfu Hanoğlu
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ira Haraldsen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mahmoud Hassan
- MINDIG, F-35000 Rennes, France; School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - András Attila Horváth
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Research Centre for Natural Sciences, HUN-REN, Budapest, Hungary
| | - Agustin Ibanez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland; Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina
| | | | - Alberto Jaramillo-Jimenez
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Grupo de Neurociencias de Antioquia (GNA), Universidad de Antioquia, Medellín, Colombia
| | - Jaeseung Jeong
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Yang Jiang
- Aging Brain and Cognition Laboratory, Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, USA; Sanders Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Maciej Kamiński
- Department of Biomedical Physics, Faculty of Physics, University of Warsaw, Poland
| | - Giacomo Koch
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sanjeev Kumar
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giorgio Leodori
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Gang Li
- Real World Evidence & Medical Value, Global Medical Affairs, Neurology, Eisai Inc., New Jersey, USA
| | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy; Oasi Research Institute - IRCCS, Troina, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Fernando Maestú
- Center For Cognitive and Computational Neuroscience, Complutense University of Madrid, Spain
| | - Camillo Marra
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy; Memory Clinic, Foundation Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Laura Marzetti
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Department of Engineering and Geology, "G. d'Annunzio" University of Chieti and Pescara, Pescara, Italy
| | - William McGeown
- Department of Psychological Sciences & Health, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, UK
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Davide V Moretti
- Alzheimer's Rehabilitation Operative Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Faisal Mushtaq
- School of Psychology, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK
| | | | - Lorenzo Nucci
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - John Ochoa
- Neurophysiology Laboratory GNA-GRUNECO. Universidad de Antioquia, Antioquia, Colombia
| | - Paolo Onorati
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy; Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy; Brain Health Center, University of Brescia, Brescia, Italy
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Mario Alfredo Parra
- Department of Psychological Sciences & Health, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, UK
| | - Matteo Pardini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Pascual-Marqui
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians University Munich, Munich, Germany; University Medical Center Göttingen, Göttingen, Germany
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Géraldine Rauchs
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, 14000 Caen, France
| | - Petra Ritter
- Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Berlin, Germany; Einstein Center Digital Future, Berlin, Germany
| | | | - Hernando Santamaria-García
- Pontificia Universidad Javeriana (PhD Program in Neuroscience), Bogotá, Colombia; Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Michael Schirner
- Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Berlin, Germany; Einstein Center Digital Future, Berlin, Germany
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Franca Tecchio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Roma, Italy
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Rostock, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Antonio Ivano Triggiani
- Neurophysiology of Epilepsy Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Pedro Valdes-Sosa
- Cuban Center for Neuroscience, Havana, Cuba; The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Fabrizio Vecchio
- Universidad de los Andes, Bogota, Colombia; Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Keith Vossel
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anita Kamondi
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary; Department of Neurosurgery and Neurointervention and Department of Neurology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Salamone EM, Carpi M, Noce G, Del Percio C, Lopez S, Lizio R, Jakhar D, Eldellaa A, Isaza VH, Bölükbaş B, Soricelli A, Salvatore M, Güntekin B, Yener G, Massa F, Arnaldi D, Famà F, Pardini M, Ferri R, Salemi M, Lanuzza B, Stocchi F, Vacca L, Coletti C, Marizzoni M, Taylor JP, Hanoğlu L, Yılmaz NH, Kıyı İ, Kula H, Frisoni GB, Cuoco S, Barone P, D'Anselmo A, Bonanni L, Biundo R, D'Antonio F, Bruno G, Giubilei F, Antonini A, Babiloni C. Abnormal electroencephalographic rhythms from quiet wakefulness to light sleep in Alzheimer's disease patients with mild cognitive impairment. Clin Neurophysiol 2025; 171:164-181. [PMID: 39914158 DOI: 10.1016/j.clinph.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/09/2024] [Accepted: 01/22/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Alzheimer's disease patients with mild cognitive impairment (ADMCI) show abnormal resting-state eyes-closed electroencephalographic (rsEEG) alpha rhythms (8-12 Hz) and may suffer from daytime sleepiness. Our exploratory study tested the hypothesis that they may present characteristic EEG rhythms from quiet wakefulness to light sleep during diurnal recordings. METHODS Datasets of 34 ADMCI and 22 matched healthy elderly (Nold) subjects were obtained from international archives. EEG recordings lasted approximately 30 min. Transitions of EEG activity from quiet wakefulness (alpha-dominant) to light sleep (theta-dominant ripples) were scored according to Hori's vigilance stages. Cortical source activities were computed using the eLORETA software. RESULTS ADMCI (t-ADMCI, N = 18) over Nold (t-Nold, N = 11) participants were characterized by greater frontal EEG delta source activities and a lesser reduction (reactivity) in the posterior alpha source activities from quiet wakefulness to ripples. Notably, EEG delta source activities during quiet wakefulness were also greater in the ADMCI group transitioning to light sleep as compared to patients without said vigilance reduction. CONCLUSIONS These results suggest that ADMCI patients with a greater susceptibility to daytime sleepiness may show characteristic EEG delta and alpha rhythms in the transition from quiet vigilance to daytime sleep. SIGNIFICANCE Our study showed a derangement of EEG rhythms during the transition to sleep possibly specific to AD.
Collapse
Affiliation(s)
- Enrico Michele Salamone
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Matteo Carpi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Ali Eldellaa
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Veronica Henao Isaza
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Burcu Bölükbaş
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Well-being Sciences, University of Naples Parthenope, Naples, Italy
| | - Marco Salvatore
- Department of Medical, Movement and Well-being Sciences, University of Naples Parthenope, Naples, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye; IBG: International Biomedicine and Genome Center, Izmir, Turkey
| | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Pardini
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | | | | | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - John Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nesrin Helvacı Yılmaz
- Medipol University Istanbul Parkinson's Disease and Movement Disorders Center (PARMER), Istanbul, Turkey
| | - İlayda Kıyı
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Hilal Kula
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sofia Cuoco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Anita D'Anselmo
- Department of Aging Medicine and Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Laura Bonanni
- Department of Aging Medicine and Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Roberta Biundo
- Department of Neuroscience, University of Padua, Padua (PD), Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padua (PD), Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy.
| |
Collapse
|
3
|
Paitel ER, Otteman CBD, Polking MC, Licht HJ, Nielson KA. Functional and effective EEG connectivity patterns in Alzheimer's disease and mild cognitive impairment: a systematic review. Front Aging Neurosci 2025; 17:1496235. [PMID: 40013094 PMCID: PMC11861106 DOI: 10.3389/fnagi.2025.1496235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Background Alzheimer's disease (AD) might be best conceptualized as a disconnection syndrome, such that symptoms may be largely attributable to disrupted communication between brain regions, rather than to deterioration within discrete systems. EEG is uniquely capable of directly and non-invasively measuring neural activity with precise temporal resolution; connectivity quantifies the relationships between such signals in different brain regions. EEG research on connectivity in AD and mild cognitive impairment (MCI), often considered a prodromal phase of AD, has produced mixed results and has yet to be synthesized for comprehensive review. Thus, we performed a systematic review of EEG connectivity in MCI and AD participants compared with cognitively healthy older adult controls. Methods We searched PsycINFO, PubMed, and Web of Science for peer-reviewed studies in English on EEG, connectivity, and MCI/AD relative to controls. Of 1,344 initial matches, 124 articles were ultimately included in the systematic review. Results The included studies primarily analyzed coherence, phase-locked, and graph theory metrics. The influence of factors such as demographics, design, and approach was integrated and discussed. An overarching pattern emerged of lower connectivity in both MCI and AD compared to healthy controls, which was most prominent in the alpha band, and most consistent in AD. In the minority of studies reporting greater connectivity, theta band was most commonly implicated in both AD and MCI, followed by alpha. The overall prevalence of alpha effects may indicate its potential to provide insight into nuanced changes associated with AD-related networks, with the caveat that most studies were during the resting state where alpha is the dominant frequency. When greater connectivity was reported in MCI, it was primarily during task engagement, suggesting compensatory resources may be employed. In AD, greater connectivity was most common during rest, suggesting compensatory resources during task engagement may already be exhausted. Conclusion The review highlighted EEG connectivity as a powerful tool to advance understanding of AD-related changes in brain communication. We address the need for including demographic and methodological details, using source space connectivity, and extending this work to cognitively healthy older adults with AD risk toward advancing early AD detection and intervention.
Collapse
Affiliation(s)
- Elizabeth R. Paitel
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Christian B. D. Otteman
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Mary C. Polking
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Henry J. Licht
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Kristy A. Nielson
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Maiella M, Mencarelli L, Casula EP, Borghi I, Assogna M, di Lorenzo F, Bonnì S, Pezzopane V, Martorana A, Koch G. Breakdown of TMS evoked EEG signal propagation within the default mode network in Alzheimer's disease. Clin Neurophysiol 2024; 167:177-188. [PMID: 39332078 DOI: 10.1016/j.clinph.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The neural activity of the Default Mode Network (DMN) is disrupted in patients with In Alzheimer's disease (AD). OBJECTIVES We used a novel multimodal approach to track neural signal propagation within the DMN in AD patients. METHODS Twenty mild to moderate AD patients were recruited. We used transcranial magnetic stimulation (TMS) pulses to probe with a millisecond time resolution the propagation of evoked electroencephalography (EEG) signal following the neural activation of the Precuneus (PC), which is a key hub area of the DMN. Moreover, functional and structural magnetic resonance imaging (MRI) data were collected to reconstruct individual features of the DMN. RESULTS In AD patients a probe TMS pulse applied over the PC evokes an increased local activity unmasking underlying hyperexcitability. In contrast, the EEG evoked neural signal did not propagate efficiently within the DMN showing a remarkable breakdown of signal propagation. fMRI and structural tractography showed that impaired signal propagation was related to the same connectivity matrices derived from DMN BOLD signal and transferred by specific white matter bundles forming the cingulum. These features were not detectable stimulating other areas (left dorsolateral prefrontal cortex) or for different networks (fronto-parietal network). Finally, connectivity breakdown was associated with cognitive impairment, as measured with the Clinical Dementia Rating Scale sum of boxes (CDR-SB). CONCLUSIONS TMS-EEG in AD shows both local hyperexcitability and a lack of signal propagation within the DMN. These neurophysiological features also correlate with structural and cognitive attributes of the patients. SIGNIFICANCE Neuronavigated TMS-EEG may be used as a novel neurophysiological biomarker of DMN connectivity in AD patients.
Collapse
Affiliation(s)
- Michele Maiella
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Mencarelli
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Elias P Casula
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ilaria Borghi
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | - Martina Assogna
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco di Lorenzo
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Sonia Bonnì
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Valentina Pezzopane
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | | | - Giacomo Koch
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy.
| |
Collapse
|
5
|
Smeralda CL, Pandit S, Turrini S, Reilly J, Palmisano A, Sprugnoli G, Hampel H, Benussi A, Borroni B, Press D, Rotenberg A, El Fakhri G, Koch G, Rossi S, Santarnecchi E. The role of parvalbumin interneuron dysfunction across neurodegenerative dementias. Ageing Res Rev 2024; 101:102509. [PMID: 39306248 DOI: 10.1016/j.arr.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Parvalbumin-positive (PV+) basket neurons are fast-spiking, non-adapting inhibitory interneurons whose oscillatory activity is essential for regulating cortical excitation/inhibition balance. Their dysfunction results in cortical hyperexcitability and gamma rhythm disruption, which have recently gained substantial traction as contributing factors as well as potential therapeutic targets for the treatment of Alzheimer's Disease (AD). Recent evidence indicates that PV+ cells are also impaired in Frontotemporal Dementia (FTD) and Dementia with Lewy bodies (DLB). However, no attempt has been made to integrate these findings into a coherent pathophysiological framework addressing the contribution of PV+ interneuron dysfunction to the generation of cortical hyperexcitability and gamma rhythm disruption in FTD and DLB. To fill this gap, we epitomized the most recent evidence on PV+ interneuron impairment in AD, FTD, and DLB, focusing on its contribution to the generation of cortical hyperexcitability and gamma oscillatory disruption and their interplay with misfolded protein accumulation, neuronal death, and clinical symptoms' onset. Our work deepens the current understanding concerning the role of PV+ interneuron dysfunction across neurodegenerative dementias, highlighting commonalities and differences among AD, FTD, and DLB, thus paving the way for identifying novel biomarkers and potential therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Carmelo Luca Smeralda
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Siddhartha Pandit
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonia Turrini
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, University of Bologna, Italy
| | - Julianne Reilly
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Giulia Sprugnoli
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniel Press
- Cognitive Neurology Unit, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Brookline, MA, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giacomo Koch
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Devenyi RA, Hamedani AG. Visual dysfunction in dementia with Lewy bodies. Curr Neurol Neurosci Rep 2024; 24:273-284. [PMID: 38907811 PMCID: PMC11258179 DOI: 10.1007/s11910-024-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE OF REVIEW To review the literature on visual dysfunction in dementia with Lewy bodies (DLB), including its mechanisms and clinical implications. RECENT FINDINGS Recent studies have explored novel aspects of visual dysfunction in DLB, including visual texture agnosia, mental rotation of 3-dimensional drawn objects, and reading fragmented letters. Recent studies have shown parietal and occipital hypoperfusion correlating with impaired visuoconstruction performance. While visual dysfunction in clinically manifest DLB is well recognized, recent work has focused on prodromal or mild cognitive impairment (MCI) due to Lewy body pathology with mixed results. Advances in retinal imaging have recently led to the identification of abnormalities such as parafoveal thinning in DLB. Patients with DLB experience impairment in color perception, form and object identification, space and motion perception, visuoconstruction tasks, and illusions in association with visual cortex and network dysfunction. These symptoms are associated with visual hallucinations, driving impairment, falls, and other negative outcomes.
Collapse
Affiliation(s)
- Ryan A Devenyi
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ali G Hamedani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Lopez S, Hampel H, Chiesa PA, Del Percio C, Noce G, Lizio R, Teipel SJ, Dyrba M, González-Escamilla G, Bakardjian H, Cavedo E, Lista S, Vergallo A, Lemercier P, Spinelli G, Grothe MJ, Potier MC, Stocchi F, Ferri R, Habert MO, Dubois B, Babiloni C. The association between posterior resting-state EEG alpha rhythms and functional MRI connectivity in older adults with subjective memory complaint. Neurobiol Aging 2024; 137:62-77. [PMID: 38431999 DOI: 10.1016/j.neurobiolaging.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Resting-state eyes-closed electroencephalographic (rsEEG) alpha rhythms are dominant in posterior cortical areas in healthy adults and are abnormal in subjective memory complaint (SMC) persons with Alzheimer's disease amyloidosis. This exploratory study in 161 SMC participants tested the relationships between those rhythms and seed-based resting-state functional magnetic resonance imaging (rs-fMRI) connectivity between thalamus and visual cortical networks as a function of brain amyloid burden, revealed by positron emission tomography and cognitive reserve, measured by educational attainment. The SMC participants were divided into 4 groups according to 2 factors: Education (Edu+ and Edu-) and Amyloid burden (Amy+ and Amy-). There was a statistical interaction (p < 0.05) between the two factors, and the subgroup analysis using estimated marginal means showed a positive association between the mentioned rs-fMRI connectivity and the posterior rsEEG alpha rhythms in the SMC participants with low brain amyloidosis and high CR (Amy-/Edu+). These results suggest that in SMC persons, early Alzheimer's disease amyloidosis may contrast the beneficial effects of cognitive reserve on neurophysiological oscillatory mechanisms at alpha frequencies and connectivity between the thalamus and visual cortical networks.
Collapse
Affiliation(s)
- Susanna Lopez
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Patrizia Andrea Chiesa
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Roberta Lizio
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE), Greifswald, Rostock, Germany
| | - Martin Dyrba
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Gabriel González-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hovagim Bakardjian
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Enrica Cavedo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France; Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Giuseppe Spinelli
- Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Greifswald, Rostock, Germany
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University, San Raffaele, Rome, Italy
| | | | - Marie-Odile Habert
- Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France; AP-HP, Pitié-Salpêtrière Hospital, Department of Nuclear Medicine, Paris F-75013, France
| | - Bruno Dubois
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; San Raffaele Cassino, Cassino, FR, Italy.
| |
Collapse
|
8
|
Babiloni C, Gentilini Cacciola E, Tucci F, Vassalini P, Chilovi A, Jakhar D, Musat AM, Salvatore M, Soricelli A, Stocchi F, Vacca L, Ferri R, Catania V, Mastroianni C, D'Ettorre G, Noce G. Resting-state EEG rhythms are abnormal in post COVID-19 patients with brain fog without cognitive and affective disorders. Clin Neurophysiol 2024; 161:159-172. [PMID: 38492271 DOI: 10.1016/j.clinph.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES Several persons experiencing post-covid-19 (post-COVID) with "brain fog" (e.g., fatigue, cognitive and psychiatric disorders, etc.) show abnormal resting-state electroencephalographic (rsEEG) rhythms reflecting a vigilance dysfunction. Here, we tested the hypothesis that in those post-COVID persons, abnormal rsEEG rhythms may occur even when cognitive and psychiatric disorders are absent. METHODS The experiments were performed on post-COVID participants about one year after hospitalization for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Inclusion criteria included a "brain fog" claim, no pre-infection, and actual organic chronic disease. Matched controls (no COVID) were also enrolled. All participants underwent clinical/neuropsychological assessment (including fatigue assessment) and rsEEG recordings. The eLORETA freeware estimated regional rsEEG cortical sources at individual delta (<4 Hz), theta (4-7 Hz), and alpha (8-13 Hz) bands. Beta (14-30 Hz) and gamma (30-40 Hz) bands were pre-fixed. RESULTS More than 90% of all post-COVID participants showed no cognitive or psychiatric disorders, and 75% showed ≥ 2 fatigue symptoms. The post-COVID group globally presented lower posterior rsEEG alpha source activities than the Control group. This effect was more significant in the long COVID-19 patients with ≥ 2 fatigue symptoms. CONCLUSIONS In post-COVID patients with no chronic diseases and cognitive/psychiatric disorders, "brain fog" can be associated with abnormal posterior rsEEG alpha rhythms and subjective fatigue. SIGNIFICANCE These abnormalities may be related to vigilance and allostatic dysfunctions.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer," Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy.
| | - Elio Gentilini Cacciola
- Department of Public Health and Infectious Diseases, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Erspamer," Sapienza University of Rome, Rome, Italy
| | - Paolo Vassalini
- Department of Public Health and Infectious Diseases, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Agnese Chilovi
- Department of Public Health and Infectious Diseases, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Erspamer," Sapienza University of Rome, Rome, Italy
| | - Andreea Maria Musat
- Department of Physiology and Pharmacology "Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | - Fabrizio Stocchi
- IRCCS San Raffaele Rome, Rome, Italy; Telematic University San Raffaele, Rome, Italy
| | | | | | | | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
9
|
Kim SK, Kim H, Kim SH, Kim JB, Kim L. Electroencephalography-based classification of Alzheimer's disease spectrum during computer-based cognitive testing. Sci Rep 2024; 14:5252. [PMID: 38438453 PMCID: PMC10912091 DOI: 10.1038/s41598-024-55656-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive disease leading to cognitive decline, and to prevent it, researchers seek to diagnose mild cognitive impairment (MCI) early. Particularly, non-amnestic MCI (naMCI) is often mistaken for normal aging as the representative symptom of AD, memory decline, is absent. Subjective cognitive decline (SCD), an intermediate step between normal aging and MCI, is crucial for prediction or early detection of MCI, which determines the presence of AD spectrum pathology. We developed a computer-based cognitive task to classify the presence or absence of AD pathology and stage within the AD spectrum, and attempted to perform multi-stage classification through electroencephalography (EEG) during resting and memory encoding state. The resting and memory-encoding states of 58 patients (20 with SCD, 10 with naMCI, 18 with aMCI, and 10 with AD) were measured and classified into four groups. We extracted features that could reflect the phase, spectral, and temporal characteristics of the resting and memory-encoding states. For the classification, we compared nine machine learning models and three deep learning models using Leave-one-subject-out strategy. Significant correlations were found between the existing neurophysiological test scores and performance of our computer-based cognitive task for all cognitive domains. In all models used, the memory-encoding states realized a higher classification performance than resting states. The best model for the 4-class classification was cKNN. The highest accuracy using resting state data was 67.24%, while it was 93.10% using memory encoding state data. This study involving participants with SCD, naMCI, aMCI, and AD focused on early Alzheimer's diagnosis. The research used EEG data during resting and memory encoding states to classify these groups, demonstrating the significance of cognitive process-related brain waves for diagnosis. The computer-based cognitive task introduced in the study offers a time-efficient alternative to traditional neuropsychological tests, showing a strong correlation with their results and serving as a valuable tool to assess cognitive impairment with reduced bias.
Collapse
Affiliation(s)
- Seul-Kee Kim
- Bionics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Hayom Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Hee Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Laehyun Kim
- Bionics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea.
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Babiloni C, Noce G, Tucci F, Jakhar D, Ferri R, Panerai S, Catania V, Soricelli A, Salvatore M, Nobili F, Arnaldi D, Famà F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Vacca L, Radicati F, Fuhr P, Gschwandtner U, Ransmayr G, Parnetti L, Marizzoni M, D'Antonio F, Bruno G, De Lena C, Güntekin B, Yıldırım E, Hanoğlu L, Yener G, Hünerli D, Taylor JP, Schumacher J, McKeith I, Frisoni GB, Antonini A, Ferreri F, Bonanni L, De Pandis MF, Del Percio C. Poor reactivity of posterior electroencephalographic alpha rhythms during the eyes open condition in patients with dementia due to Parkinson's disease. Neurobiol Aging 2024; 135:1-14. [PMID: 38142464 DOI: 10.1016/j.neurobiolaging.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Here, we hypothesized that the reactivity of posterior resting-state electroencephalographic (rsEEG) alpha rhythms during the transition from eyes-closed to -open condition might be lower in patients with Parkinson's disease dementia (PDD) than in patients with Alzheimer's disease dementia (ADD). A Eurasian database provided clinical-demographic-rsEEG datasets in 73 PDD patients, 35 ADD patients, and 25 matched cognitively unimpaired (Healthy) persons. The eLORETA freeware was used to estimate cortical rsEEG sources. Results showed substantial (greater than -10%) reduction (reactivity) in the posterior alpha source activities from the eyes-closed to the eyes-open condition in 88% of the Healthy seniors, 57% of the ADD patients, and only 35% of the PDD patients. In these alpha-reactive participants, there was lower reactivity in the parietal alpha source activities in the PDD group than in the healthy control seniors and the ADD patients. These results suggest that PDD patients show poor reactivity of mechanisms desynchronizing posterior rsEEG alpha rhythms in response to visual inputs. That neurophysiological biomarker may provide an endpoint for (non) pharmacological interventions for improving vigilance regulation in those patients.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy.
| | | | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Flavio Nobili
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences, CESI, and Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University San Raffaele, Rome, Italy
| | | | | | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland; Departments of Neurology and of Clinical Research, University Hospital Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland; Departments of Neurology and of Clinical Research, University Hospital Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology 2, Med Campus III, Faculty of Medicine, Johannes Kepler University, Kepler University Hospital, Krankenhausstr. 9, A-4020 Linz., Austria
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | - Duygu Hünerli
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Ian McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Angelo Antonini
- Unit and Study Center for Neurodegenerative diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | - Florinda Ferreri
- Unit and Study Center for Neurodegenerative diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Kucikova L, Kalabizadeh H, Motsi KG, Rashid S, O'Brien JT, Taylor JP, Su L. A systematic literature review of fMRI and EEG resting-state functional connectivity in Dementia with Lewy Bodies: Underlying mechanisms, clinical manifestation, and methodological considerations. Ageing Res Rev 2024; 93:102159. [PMID: 38056505 DOI: 10.1016/j.arr.2023.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/14/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Previous studies suggest that there may be important links between functional connectivity, disease mechanisms underpinning the Dementia with Lewy Body (DLB) and the key clinical symptoms, but the exact relationship remains unclear. We performed a systematic literature review to address this gap by summarising the research findings while critically considering the impact of methodological differences on findings. The main methodological choices of fMRI articles included data-driven, seed-based or regions of interest approaches, or their combinations. Most studies focused on examining large-scale resting-state networks, which revealed a consistent decrease in connectivity and some associations with non-cognitive symptoms. Although the inter-network connectivity showed mixed results, the main finding is consistent with theories positing disconnection between visual and attentional areas of the brain implicated in the aetiology of psychotic symptoms in the DLB. The primary methodological choice of EEG studies was implementing the phase lag index and using graph theory. The EEG studies revealed a consistent decrease in connectivity on alpha and beta frequency bands. While the overall trend of findings showed decreased connectivity, more subtle changes in the directionality of connectivity were observed when using a hypothesis-driven approach. Problems with cognition were also linked with greater functional connectivity disturbances. In summary, connectivity measures can capture brain disturbances in the DLB and remain crucial in uncovering the causal relationship between the networks' disorganisation and underlying mechanisms resulting in psychotic, motor, and cognitive symptoms of the DLB.
Collapse
Affiliation(s)
- Ludmila Kucikova
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Hoda Kalabizadeh
- Oxford Machine Learning in NeuroImaging Lab, OMNI, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | | | - Sidrah Rashid
- Academic Unit of Medical Education, University of Sheffield, Sheffield, United Kingdom
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Li Su
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom; Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
12
|
Hoy KE, Emonson MRL, Bailey NW, Rogers C, Coyle H, Stockman F, Fitzgerald PB. Gamma connectivity predicts response to intermittent theta burst stimulation in Alzheimer's disease: a randomized controlled trial. Neurobiol Aging 2023; 132:13-23. [PMID: 37717551 DOI: 10.1016/j.neurobiolaging.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023]
Abstract
There is growing evidence that neural network dysfunction is a likely proximate cause of cognitive impairment in Alzheimer's disease and may represent a promising therapeutic target. Here, we investigated whether a course of intermittent theta burst stimulation (iTBS) could modulate functional connectivity and cognition in mild to moderate Alzheimer's. In a double-blind parallel randomized sham-controlled trial, 58 participants were randomized to either active or sham iTBS. Stimulation was applied to the left dorsolateral prefrontal cortex, right dorsolateral prefrontal cortex, left posterior parietal cortex, and right posterior parietal cortex in every treatment session. Neurobiological (electroencephalography), cognitive, and behavioral functional assessments were undertaken at baseline and end of treatment. Cognitive and functional assessments were also conducted at 3 (blinded) and 6 month (active group only) follow-ups. Active iTBS increased resting-state gamma connectivity and improved delayed recall on an episodic memory task. Both baseline gamma connectivity and change in gamma connectivity predicted improved delayed recall following active treatment. These findings support future research into iTBS for Alzheimer's focusing on protocol optimization.
Collapse
Affiliation(s)
- Kate E Hoy
- The Bionics Institute of Australia, East Melbourne, Victoria, Australia; Department of Psychiatry, Central Clinical School, Monash University, Clayton, Victoria, Australia; Monarch Research Institute, Monarch Mental Health Group, Sydney, New South Wales, Australia.
| | - Melanie R L Emonson
- Department of Psychiatry, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Neil W Bailey
- Department of Psychiatry, Central Clinical School, Monash University, Clayton, Victoria, Australia; School of Medicine and Psychology, Australian National University, Canberra, Australian Capital Territory, Australia; Monarch Research Institute, Monarch Mental Health Group, Sydney, New South Wales, Australia
| | - Caitlyn Rogers
- Department of Psychiatry, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Hannah Coyle
- Department of Psychiatry, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Freya Stockman
- Department of Psychiatry, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Paul B Fitzgerald
- Department of Psychiatry, Central Clinical School, Monash University, Clayton, Victoria, Australia; School of Medicine and Psychology, Australian National University, Canberra, Australian Capital Territory, Australia; Monarch Research Institute, Monarch Mental Health Group, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Bae H, Kang MJ, Ha SW, Jeong DE, Lee K, Lim S, Min JY, Min KB. Association of plasma amyloid-β oligomerization with theta/beta ratio in older adults. Front Aging Neurosci 2023; 15:1291881. [PMID: 38106526 PMCID: PMC10722169 DOI: 10.3389/fnagi.2023.1291881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Background Oligomeric Aβ (OAβ) is a promising candidate marker for Alzheimer's disease (AD) diagnosis. Electroencephalography (EEG) is a potential tool for early detection of AD. Still, whether EEG power ratios, particularly the theta/alpha ratio (TAR) and theta/beta ratio (TBR), reflect Aβ burden-a primary mechanism underlying cognitive impairment and AD. This study investigated the association of TAR and TBR with amyloid burden in older adults based on MDS-OAβ levels. Methods 529 individuals (aged ≥60 years) were recruited. All participants underwent EEG (MINDD SCAN, Ybrain Inc., South Korea) and AlzOn™ test (PeopleBio Inc., Gyeonggi-do, Republic of Korea) for quantifying MDS-OAβ values in the plasma. EEG variables were log-transformed to normalize the data distribution. Using the MDS-OAβ cutoff value (0.78 ng/mL), all participants were classified into two groups: high MDS-OAβ and low MDS-OAβ. Results Participants with high MDS-OAβ levels had significantly higher TARs and TBRs than those with low MDS-OAβ levels. The log-transformed TBRs in the central lobe (β = 0.161, p = 0.0026), frontal lobe (β = 0.145, p = 0.0044), parietal lobe (β = 0.166, p = 0.0028), occipital lobe (β = 0.158, p = 0.0058), and temporal lobe (beta = 0.162, p = 0.0042) were significantly and positively associated with increases in MDS-OAβ levels. After adjusting for the Bonferroni correction, the TBRs in all lobe regions, except the occipital lobe, were significantly associated with increased MDS-OAβ levels. Conclusion We found a significant association of MDS-OAβ with TBR in older adults. This finding indicates that an increase in amyloid burden may be associated with an increase in the low-frequency band and a decrease in the relatively high-frequency band.
Collapse
Affiliation(s)
- Heewon Bae
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Sang-Won Ha
- Department of Neurology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Da-Eun Jeong
- Department of Neurology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Kiwon Lee
- Ybrain Research Institute, Seongnam-si, Republic of Korea
| | - Seungui Lim
- Ybrain Research Institute, Seongnam-si, Republic of Korea
| | - Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Kyoung-Bok Min
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Medical Research Center, Institute of Health Policy and Management, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Aoki Y, Kazui H, Pascual-Marqui RD, Bruña R, Yoshiyama K, Wada T, Kanemoto H, Suzuki Y, Suehiro T, Satake Y, Yamakawa M, Hata M, Canuet L, Ishii R, Iwase M, Ikeda M. Normalized Power Variance: A new Field Orthogonal to Power in EEG Analysis. Clin EEG Neurosci 2023; 54:611-619. [PMID: 35345930 DOI: 10.1177/15500594221088736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To date, electroencephalogram (EEG) has been used in the diagnosis of epilepsy, dementia, and disturbance of consciousness via the inspection of EEG waves and identification of abnormal electrical discharges and slowing of basic waves. In addition, EEG power analysis combined with a source estimation method like exact-low-resolution-brain-electromagnetic-tomography (eLORETA), which calculates the power of cortical electrical activity from EEG data, has been widely used to investigate cortical electrical activity in neuropsychiatric diseases. However, the recently developed field of mathematics "information geometry" indicates that EEG has another dimension orthogonal to power dimension - that of normalized power variance (NPV). In addition, by introducing the idea of information geometry, a significantly faster convergent estimator of NPV was obtained. Research into this NPV coordinate has been limited thus far. In this study, we applied this NPV analysis of eLORETA to idiopathic normal pressure hydrocephalus (iNPH) patients prior to a cerebrospinal fluid (CSF) shunt operation, where traditional power analysis could not detect any difference associated with CSF shunt operation outcome. Our NPV analysis of eLORETA detected significantly higher NPV values at the high convexity area in the beta frequency band between 17 shunt responders and 19 non-responders. Considering our present and past research findings about NPV, we also discuss the advantage of this application of NPV representing a sensitive early warning signal of cortical impairment. Overall, our findings demonstrated that EEG has another dimension - that of NPV, which contains a lot of information about cortical electrical activity that can be useful in clinical practice.
Collapse
Affiliation(s)
- Yasunori Aoki
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Psychiatry, Nippon Life Hospital, Osaka, Japan
| | - Hiroaki Kazui
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kochi, Japan
| | - Roberto D Pascual-Marqui
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| | - Ricardo Bruña
- UCM-UPM Centre for Biomedical Technology, Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Electrical Engineering, La Laguna University, Tenerife, Spain
| | - Kenji Yoshiyama
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamiki Wada
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Kanemoto
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukiko Suzuki
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Suehiro
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuto Satake
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Maki Yamakawa
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahiro Hata
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Leonides Canuet
- Neurology department, Nuestra Senora del Rosario hospital, Madrid, Spain
| | - Ryouhei Ishii
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Masao Iwase
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Özge A, Ghouri R, Öksüz N, Taşdelen B. Predictive factors for Alzheimer's disease progression: a comprehensive retrospective analysis of 3,553 cases with 211 months follow-up. Front Neurol 2023; 14:1239995. [PMID: 37693748 PMCID: PMC10484751 DOI: 10.3389/fneur.2023.1239995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Background There is conflicting data regarding the predictors of Alzheimer's Disease (AD), the most common form of dementia. The main objective of the study is to evaluate potential predictors of AD progression using a comprehensive follow-up dataset that includes functional/cognitive assessments, clinical and neuropsychiatric evaluations, and neuroimaging biomarkers such as hippocampal atrophy or white matter intensities (WMIs). Method A total of 161 AD cases were recruited from a dementia database consisting of individuals who consulted the Dementia Outpatient Clinic of the Neurology Department at Mersin University Medical Faculty between 2000 and 2022, under the supervision of the same senior author have at least 3 full evaluation follow-up visit including functional, clinical, biochemical, neuropsychological, and radiological screening. Data were exported and analyzed by experts accordingly. Results Mean follow-up duration of study sample was 71.66 ± 41.98, min 15 to max 211 months. The results showed a fast and slow progressive subgroup of our AD cases with a high sensitivity (Entropy = 0.836), with a close relationship with several cofactors and the level of disability upon admittance. Hippocampal atrophy and WMIs grading via Fazekas were found to be underestimated predictors of AD progression, and functional capacity upon admittance was also among the main stakeholders. Conclusion The study highlights the importance of evaluating multiple potential predictors for AD progression, including functional capacity upon admittance, hippocampal atrophy, and WMIs grading via Fazekas. Our findings provide insight into the complexity of AD progression and may contribute to the development of effective strategies for managing and treating AD.
Collapse
Affiliation(s)
- Aynur Özge
- Department of Neurology, School of Medicine, Mersin University, Mersin, Türkiye
| | - Reza Ghouri
- Department of Neurology, School of Medicine, Mersin University, Mersin, Türkiye
| | - Nevra Öksüz
- Department of Neurology, School of Medicine, Mersin University, Mersin, Türkiye
| | - Bahar Taşdelen
- Department of Biostatistics, School of Medicine, Mersin University, Mersin, Türkiye
| |
Collapse
|
16
|
Chu KT, Lei WC, Wu MH, Fuh JL, Wang SJ, French IT, Chang WS, Chang CF, Huang NE, Liang WK, Juan CH. A holo-spectral EEG analysis provides an early detection of cognitive decline and predicts the progression to Alzheimer's disease. Front Aging Neurosci 2023; 15:1195424. [PMID: 37674782 PMCID: PMC10477374 DOI: 10.3389/fnagi.2023.1195424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023] Open
Abstract
Aims Our aim was to differentiate patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) from cognitively normal (CN) individuals and predict the progression from MCI to AD within a 3-year longitudinal follow-up. A newly developed Holo-Hilbert Spectral Analysis (HHSA) was applied to resting state EEG (rsEEG), and features were extracted and subjected to machine learning algorithms. Methods A total of 205 participants were recruited from three hospitals, with CN (n = 51, MMSE > 26), MCI (n = 42, CDR = 0.5, MMSE ≥ 25), AD1 (n = 61, CDR = 1, MMSE < 25), AD2 (n = 35, CDR = 2, MMSE < 16), and AD3 (n = 16, CDR = 3, MMSE < 16). rsEEG was also acquired from all subjects. Seventy-two MCI patients (CDR = 0.5) were longitudinally followed up with two rsEEG recordings within 3 years and further subdivided into an MCI-stable group (MCI-S, n = 36) and an MCI-converted group (MCI-C, n = 36). The HHSA was then applied to the rsEEG data, and features were extracted and subjected to machine-learning algorithms. Results (a) At the group level analysis, the HHSA contrast of MCI and different stages of AD showed augmented amplitude modulation (AM) power of lower-frequency oscillations (LFO; delta and theta bands) with attenuated AM power of higher-frequency oscillations (HFO; beta and gamma bands) compared with cognitively normal elderly controls. The alpha frequency oscillation showed augmented AM power across MCI to AD1 with a reverse trend at AD2. (b) At the individual level of cross-sectional analysis, implementation of machine learning algorithms discriminated between groups with good sensitivity (Sen) and specificity (Spec) as follows: CN elderly vs. MCI: 0.82 (Sen)/0.80 (Spec), CN vs. AD1: 0.94 (Sen)/0.80 (Spec), CN vs. AD2: 0.93 (Sen)/0.90 (Spec), and CN vs. AD3: 0.75 (Sen)/1.00 (Spec). (c) In the longitudinal MCI follow-up, the initial contrasted HHSA between MCI-S and MCI-C groups showed significantly attenuated AM power of alpha and beta band oscillations. (d) At the individual level analysis of longitudinal MCI groups, deploying machine learning algorithms with the best seven features resulted in a sensitivity of 0.9 by the support vector machine (SVM) classifier, with a specificity of 0.8 yielded by the decision tree classifier. Conclusion Integrating HHSA into EEG signals and machine learning algorithms can differentiate between CN and MCI as well as also predict AD progression at the MCI stage.
Collapse
Affiliation(s)
- Kwo-Ta Chu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Yang-Ming Hospital, Taoyuan, Taiwan
| | - Weng-Chi Lei
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
| | - Ming-Hsiu Wu
- Division of Neurology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Long-Term Care and Health Promotion, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Isobel T. French
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Central University and Academia Sinica, Taipei, Taiwan
| | - Wen-Sheng Chang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Chi-Fu Chang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Norden E. Huang
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
- Key Laboratory of Data Analysis and Applications, First Institute of Oceanography, SOA, Qingdao, China
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Pellegrini F, Delorme A, Nikulin V, Haufe S. Identifying good practices for detecting inter-regional linear functional connectivity from EEG. Neuroimage 2023; 277:120218. [PMID: 37307866 PMCID: PMC10374983 DOI: 10.1016/j.neuroimage.2023.120218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Aggregating voxel-level statistical dependencies between multivariate time series is an important intermediate step when characterising functional connectivity (FC) between larger brain regions. However, there are numerous ways in which voxel-level data can be aggregated into inter-regional FC, and the advantages of each of these approaches are currently unclear. In this study we generate ground-truth data and compare the performances of various pipelines that estimate directed and undirected linear phase-to-phase FC between regions. We test the ability of several existing and novel FC analysis pipelines to identify the true regions within which connectivity was simulated. We test various inverse modelling algorithms, strategies to aggregate time series within regions, and connectivity metrics. Furthermore, we investigate the influence of the number of interactions, the signal-to-noise ratio, the noise mix, the interaction time delay, and the number of active sources per region on the ability of detecting phase-to-phase FC. Throughout all simulated scenarios, lowest performance is obtained with pipelines involving the absolute value of coherency. Further, the combination of dynamic imaging of coherent sources (DICS) beamforming with directed FC metrics that aggregate information across multiple frequencies leads to unsatisfactory results. Pipelines that show promising results with our simulated pseudo-EEG data involve the following steps: (1) Source projection using the linearly-constrained minimum variance (LCMV) beamformer. (2) Principal component analysis (PCA) using the same fixed number of components within every region. (3) Calculation of the multivariate interaction measure (MIM) for every region pair to assess undirected phase-to-phase FC, or calculation of time-reversed Granger Causality (TRGC) to assess directed phase-to-phase FC. We formulate recommendations based on these results that may increase the validity of future experimental connectivity studies. We further introduce the free ROIconnect plugin for the EEGLAB toolbox that includes the recommended methods and pipelines that are presented here. We show an exemplary application of the best performing pipeline to the analysis of EEG data recorded during motor imagery.
Collapse
Affiliation(s)
- Franziska Pellegrini
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany; Bernstein Center for Computational Neuroscience, Philippstraße 13, Berlin, 10117, Germany.
| | - Arnaud Delorme
- Swartz Center for Computational Neuroscience, 9500 Gilman Dr., La Jolla, California, 92903-0559, United States
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Stephanstraße 1a, Leipzig, 04103, Germany
| | - Stefan Haufe
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany; Bernstein Center for Computational Neuroscience, Philippstraße 13, Berlin, 10117, Germany; Technische Universität Berlin, Straße des 17. Juni 135, Berlin, 10623, Germany; Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestraße 2-12, Berlin, 10587, Germany
| |
Collapse
|
18
|
Berger M, Ryu D, Reese M, McGuigan S, Evered LA, Price CC, Scott DA, Westover MB, Eckenhoff R, Bonanni L, Sweeney A, Babiloni C. A Real-Time Neurophysiologic Stress Test for the Aging Brain: Novel Perioperative and ICU Applications of EEG in Older Surgical Patients. Neurotherapeutics 2023; 20:975-1000. [PMID: 37436580 PMCID: PMC10457272 DOI: 10.1007/s13311-023-01401-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/13/2023] Open
Abstract
As of 2022, individuals age 65 and older represent approximately 10% of the global population [1], and older adults make up more than one third of anesthesia and surgical cases in developed countries [2, 3]. With approximately > 234 million major surgical procedures performed annually worldwide [4], this suggests that > 70 million surgeries are performed on older adults across the globe each year. The most common postoperative complications seen in these older surgical patients are perioperative neurocognitive disorders including postoperative delirium, which are associated with an increased risk for mortality [5], greater economic burden [6, 7], and greater risk for developing long-term cognitive decline [8] such as Alzheimer's disease and/or related dementias (ADRD). Thus, anesthesia, surgery, and postoperative hospitalization have been viewed as a biological "stress test" for the aging brain, in which postoperative delirium indicates a failed stress test and consequent risk for later cognitive decline (see Fig. 3). Further, it has been hypothesized that interventions that prevent postoperative delirium might reduce the risk of long-term cognitive decline. Recent advances suggest that rather than waiting for the development of postoperative delirium to indicate whether a patient "passed" or "failed" this stress test, the status of the brain can be monitored in real-time via electroencephalography (EEG) in the perioperative period. Beyond the traditional intraoperative use of EEG monitoring for anesthetic titration, perioperative EEG may be a viable tool for identifying waveforms indicative of reduced brain integrity and potential risk for postoperative delirium and long-term cognitive decline. In principle, research incorporating routine perioperative EEG monitoring may provide insight into neuronal patterns of dysfunction associated with risk of postoperative delirium, long-term cognitive decline, or even specific types of aging-related neurodegenerative disease pathology. This research would accelerate our understanding of which waveforms or neuronal patterns necessitate diagnostic workup and intervention in the perioperative period, which could potentially reduce postoperative delirium and/or dementia risk. Thus, here we present recommendations for the use of perioperative EEG as a "predictor" of delirium and perioperative cognitive decline in older surgical patients.
Collapse
Affiliation(s)
- Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Duke South Orange Zone Room 4315B, Box 3094, Durham, NC, 27710, USA.
- Duke Aging Center, Duke University Medical Center, Durham, NC, USA.
- Duke/UNC Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, USA.
| | - David Ryu
- School of Medicine, Duke University, Durham, NC, USA
| | - Melody Reese
- Department of Anesthesiology, Duke University Medical Center, Duke South Orange Zone Room 4315B, Box 3094, Durham, NC, 27710, USA
- Duke Aging Center, Duke University Medical Center, Durham, NC, USA
| | - Steven McGuigan
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, School of Medicine, University of Melbourne, Melbourne, Australia
| | - Lisbeth A Evered
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, School of Medicine, University of Melbourne, Melbourne, Australia
- Weill Cornell Medicine, New York, NY, USA
| | - Catherine C Price
- Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - David A Scott
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, School of Medicine, University of Melbourne, Melbourne, Australia
| | - M Brandon Westover
- Department of Neurology, Beth Israel Deaconess Hospital, Boston, MA, USA
| | - Roderic Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Aoife Sweeney
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- San Raffaele of Cassino, Cassino, FR, Italy
| |
Collapse
|
19
|
Prado P, Mejía JA, Sainz‐Ballesteros A, Birba A, Moguilner S, Herzog R, Otero M, Cuadros J, Z‐Rivera L, O'Byrne DF, Parra M, Ibáñez A. Harmonized multi-metric and multi-centric assessment of EEG source space connectivity for dementia characterization. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12455. [PMID: 37424962 PMCID: PMC10329259 DOI: 10.1002/dad2.12455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Introduction Harmonization protocols that address batch effects and cross-site methodological differences in multi-center studies are critical for strengthening electroencephalography (EEG) signatures of functional connectivity (FC) as potential dementia biomarkers. Methods We implemented an automatic processing pipeline incorporating electrode layout integrations, patient-control normalizations, and multi-metric EEG source space connectomics analyses. Results Spline interpolations of EEG signals onto a head mesh model with 6067 virtual electrodes resulted in an effective method for integrating electrode layouts. Z-score transformations of EEG time series resulted in source space connectivity matrices with high bilateral symmetry, reinforced long-range connections, and diminished short-range functional interactions. A composite FC metric allowed for accurate multicentric classifications of Alzheimer's disease and behavioral variant frontotemporal dementia. Discussion Harmonized multi-metric analysis of EEG source space connectivity can address data heterogeneities in multi-centric studies, representing a powerful tool for accurately characterizing dementia.
Collapse
Affiliation(s)
- Pavel Prado
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Escuela de FonoaudiologíaFacultad de Odontología y Ciencias de la RehabilitaciónUniversidad San SebastiánSantiagoChile
| | - Jhony A. Mejía
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Departamento de Ingeniería BiomédicaUniversidad de Los AndesBogotáColombia
- Memory and Aging ClinicUniversity of CaliforniaSan FranciscoUnited States
| | - Agustín Sainz‐Ballesteros
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Cognitive Neuroscience Center (CNC)Universidad de San AndrésBuenos AiresArgentina
| | - Agustina Birba
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Cognitive Neuroscience Center (CNC)Universidad de San AndrésBuenos AiresArgentina
- Instituto Universitario de NeurocienciaUniversidad de La LagunaTenerifeSpain
- Facultad de PsicologíaUniversidad de La LagunaTenerifeSpain
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Cognitive Neuroscience Center (CNC)Universidad de San AndrésBuenos AiresArgentina
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Fundación para el Estudio de la Conciencia Humana (EcoH)Santiago de ChileChile
| | - Mónica Otero
- Facultad de Ingeniería, Arquitectura y DiseñoUniversidad San SebastiánSantiagoChile
- Centro BASAL Ciencia & Vida; Facultad de Ingeniería y TecnologíaUniversidad San SebastiánSantiago de ChileChile
| | - Jhosmary Cuadros
- Advanced Center for Electrical and Electronic Engineering (AC3E)Universidad Técnica Federico Santa MaríaValparaísoChile
| | - Lucía Z‐Rivera
- Advanced Center for Electrical and Electronic Engineering (AC3E)Universidad Técnica Federico Santa MaríaValparaísoChile
| | - Daniel Franco O'Byrne
- Center for Social and Cognitive Neuroscience (CSCN)School of PsychologyUniversidad Adolfo IbáñezSantiagoChile
| | - Mario Parra
- School of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Cognitive Neuroscience Center (CNC)Universidad de San AndrésBuenos AiresArgentina
- Center for Social and Cognitive Neuroscience (CSCN)School of PsychologyUniversidad Adolfo IbáñezSantiagoChile
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Global Brain Health Institute (GBHI)University of California San FranciscoCalifornia and Trinity College DublinDublinIreland
- Trinity College Dublin (TCD)DublinIreland
| |
Collapse
|
20
|
Jiang Z, Liu Y, Li W, Dai Y, Zou L. Integration of Simultaneous fMRI and EEG source localization in emotional decision problems. Behav Brain Res 2023; 448:114445. [PMID: 37094717 DOI: 10.1016/j.bbr.2023.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/08/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Simultaneous EEG-fMRI has been a powerful technique to understand the mechanism of the brain in recent years. In this paper, we develop an integrating method by integrating the EEG data into the fMRI data based on the parametric empirical Bayesian (PEB) model to improve the accuracy of the brain source location. The gambling task, a classic paradigm, is used for the emotional decision-making study in this paper. The proposed method was conducted on 21 participants, including 16 men and 5 women. Contrary to the previous method that only localizes the area widely distributed across the ventral striatum and orbitofrontal cortex, the proposed method localizes accurately at the orbital frontal cortex during the process of the brain's emotional decision-making. The activated brain regions extracted by source localization were mainly located in the prefrontal and orbitofrontal lobes; the activation of the temporal pole regions unrelated to reward processing disappeared, and the activation of the somatosensory cortex and motor cortex was significantly reduced. The log evidence shows that the integration of simultaneous fMRI and EEG method based on synchronized data evidence is 22420, the largest value among the three methods. The integration method always takes on a larger value of log evidence and describes a better performance in analysis associated with source localization. DATA AVAILABILITY: The data used in the current study are available from the corresponding authouponon reasonable request.
Collapse
Affiliation(s)
- Zhongyi Jiang
- School of Computer and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yin Liu
- School of Computer and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenjie Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Ling Zou
- School of Computer and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu 213164, China; School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
21
|
Lassi M, Fabbiani C, Mazzeo S, Burali R, Vergani AA, Giacomucci G, Moschini V, Morinelli C, Emiliani F, Scarpino M, Bagnoli S, Ingannato A, Nacmias B, Padiglioni S, Micera S, Sorbi S, Grippo A, Bessi V, Mazzoni A. Degradation of EEG microstates patterns in subjective cognitive decline and mild cognitive impairment: Early biomarkers along the Alzheimer's Disease continuum? Neuroimage Clin 2023; 38:103407. [PMID: 37094437 PMCID: PMC10149415 DOI: 10.1016/j.nicl.2023.103407] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
Alzheimer's disease (AD) pathological changes may begin up to decades earlier than the appearance of the first symptoms of cognitive decline. Subjective cognitive decline (SCD) could be the first pre-clinical sign of possible AD, which might be followed by mild cognitive impairment (MCI), the initial stage of clinical cognitive decline. However, the neural correlates of these prodromic stages are not completely clear yet. Recent studies suggest that EEG analysis tools characterizing the cortical activity as a whole, such as microstates and cortical regions connectivity, might support a characterization of SCD and MCI conditions. Here we test this approach by performing a broad set of analyses to identify the prominent EEG markers differentiating SCD (n = 57), MCI (n = 46) and healthy control subjects (HC, n = 19). We found that the salient differences were in the temporal structure of the microstates patterns, with MCI being associated with less complex sequences due to the altered transition probability, frequency and duration of canonic microstate C. Spectral content of EEG, network connectivity, and spatial arrangement of microstates were instead largely similar in the three groups. Interestingly, comparing properties of EEG microstates in different cerebrospinal fluid (CSF) biomarkers profiles, we found that canonic microstate C displayed significant differences in topography in AD-like profile. These results show that the progression of dementia might be associated with a degradation of the cortical organization captured by microstates analysis, and that this leads to altered transitions between cortical states. Overall, our approach paves the way for the use of non-invasive EEG recordings in the identification of possible biomarkers of progression to AD from its prodromal states.
Collapse
Affiliation(s)
- Michael Lassi
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy
| | - Carlo Fabbiani
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Salvatore Mazzeo
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Rachele Burali
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Alberto Arturo Vergani
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy
| | - Giulia Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Valentina Moschini
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Carmen Morinelli
- Dipartimento Neuromuscolo-scheletrico e degli organi di senso, Careggi University Hospital, 50134 Florence, Italy
| | - Filippo Emiliani
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Maenia Scarpino
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Benedetta Nacmias
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Sonia Padiglioni
- Regional Referral Centre for Relational Criticalities - Tuscany Region, 50139 Florence, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy; Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sandro Sorbi
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Antonello Grippo
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy.
| |
Collapse
|
22
|
Prado P, Moguilner S, Mejía JA, Sainz-Ballesteros A, Otero M, Birba A, Santamaria-Garcia H, Legaz A, Fittipaldi S, Cruzat J, Tagliazucchi E, Parra M, Herzog R, Ibáñez A. Source space connectomics of neurodegeneration: One-metric approach does not fit all. Neurobiol Dis 2023; 179:106047. [PMID: 36841423 PMCID: PMC11170467 DOI: 10.1016/j.nbd.2023.106047] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.
Collapse
Affiliation(s)
- Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Jhony A Mejía
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Departamento de Ingeniería Biomédica, Universidad de Los Andes, Bogotá, Colombia
| | | | - Mónica Otero
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile; Centro BASAL Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Agustina Birba
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Hernando Santamaria-Garcia
- PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia; Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Global Brain Health Institute, University of California San Francisco, San Francisco, California; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA -CONICET), Buenos Aires, Argentina
| | - Mario Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Fundación para el Estudio de la Conciencia Humana (EcoH), Chile
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia; Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
23
|
Adebisi AT, Veluvolu KC. Brain network analysis for the discrimination of dementia disorders using electrophysiology signals: A systematic review. Front Aging Neurosci 2023; 15:1039496. [PMID: 36936496 PMCID: PMC10020520 DOI: 10.3389/fnagi.2023.1039496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Background Dementia-related disorders have been an age-long challenge to the research and healthcare communities as their various forms are expressed with similar clinical symptoms. These disorders are usually irreversible at their late onset, hence their lack of validated and approved cure. Since their prodromal stages usually lurk for a long period of time before the expression of noticeable clinical symptoms, a secondary prevention which has to do with treating the early onsets has been suggested as the possible solution. Connectivity analysis of electrophysiology signals has played significant roles in the diagnosis of various dementia disorders through early onset identification. Objective With the various applications of electrophysiology signals, the purpose of this study is to systematically review the step-by-step procedures of connectivity analysis frameworks for dementia disorders. This study aims at identifying the methodological issues involved in such frameworks and also suggests approaches to solve such issues. Methods In this study, ProQuest, PubMed, IEEE Xplore, Springer Link, and Science Direct databases are employed for exploring the evolution and advancement of connectivity analysis of electrophysiology signals of dementia-related disorders between January 2016 to December 2022. The quality of assessment of the studied articles was done using Cochrane guidelines for the systematic review of diagnostic test accuracy. Results Out of a total of 4,638 articles found to have been published on the review scope between January 2016 to December 2022, a total of 51 peer-review articles were identified to completely satisfy the review criteria. An increasing trend of research in this domain is identified within the considered time frame. The ratio of MEG and EEG utilization found within the reviewed articles is 1:8. Most of the reviewed articles employed graph theory metrics for their analysis with clustering coefficient (CC), global efficiency (GE), and characteristic path length (CPL) appearing more frequently compared to other metrics. Significance This study provides general insight into how to employ connectivity measures for the analysis of electrophysiology signals of dementia-related disorders in order to better understand their underlying mechanism and their differential diagnosis.
Collapse
Affiliation(s)
- Abdulyekeen T. Adebisi
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Kalyana C. Veluvolu
- School of Electronics Engineering, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
24
|
Lopez S, Del Percio C, Lizio R, Noce G, Padovani A, Nobili F, Arnaldi D, Famà F, Moretti DV, Cagnin A, Koch G, Benussi A, Onofrj M, Borroni B, Soricelli A, Ferri R, Buttinelli C, Giubilei F, Güntekin B, Yener G, Stocchi F, Vacca L, Bonanni L, Babiloni C. Patients with Alzheimer's disease dementia show partially preserved parietal 'hubs' modeled from resting-state alpha electroencephalographic rhythms. Front Aging Neurosci 2023; 15:780014. [PMID: 36776437 PMCID: PMC9908964 DOI: 10.3389/fnagi.2023.780014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Graph theory models a network by its nodes (the fundamental unit by which graphs are formed) and connections. 'Degree' hubs reflect node centrality (the connection rate), while 'connector' hubs are those linked to several clusters of nodes (mainly long-range connections). Methods Here, we compared hubs modeled from measures of interdependencies of between-electrode resting-state eyes-closed electroencephalography (rsEEG) rhythms in normal elderly (Nold) and Alzheimer's disease dementia (ADD) participants. At least 5 min of rsEEG was recorded and analyzed. As ADD is considered a 'network disease' and is typically associated with abnormal rsEEG delta (<4 Hz) and alpha rhythms (8-12 Hz) over associative posterior areas, we tested the hypothesis of abnormal posterior hubs from measures of interdependencies of rsEEG rhythms from delta to gamma bands (2-40 Hz) using eLORETA bivariate and multivariate-directional techniques in ADD participants versus Nold participants. Three different definitions of 'connector' hub were used. Results Convergent results showed that in both the Nold and ADD groups there were significant parietal 'degree' and 'connector' hubs derived from alpha rhythms. These hubs had a prominent outward 'directionality' in the two groups, but that 'directionality' was lower in ADD participants than in Nold participants. Discussion In conclusion, independent methodologies and hub definitions suggest that ADD patients may be characterized by low outward 'directionality' of partially preserved parietal 'degree' and 'connector' hubs derived from rsEEG alpha rhythms.
Collapse
Affiliation(s)
- Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Roberta Lizio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Flavio Nobili
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy
| | - Dario Arnaldi
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy
| | - Davide V. Moretti
- Alzheimer’s Disease Rehabilitation Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Stroke Unit, Department of Neuroscience, Tor Vergata Policlinic, Rome, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University “G. D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Görsev Yener
- Department of Neurology, Dokuz Eylül University Medical School, Izmir, Türkiye
- Faculty of Medicine, Izmir University of Economics, Izmir, Türkiye
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Roma, Rome, Italy
- Telematic University San Raffaele, Rome, Italy
| | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Roma, Rome, Italy
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. D’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- San Raffaele of Cassino, Cassino, Italy
| |
Collapse
|
25
|
Habich A, Wahlund LO, Westman E, Dierks T, Ferreira D. (Dis-)Connected Dots in Dementia with Lewy Bodies-A Systematic Review of Connectivity Studies. Mov Disord 2023; 38:4-15. [PMID: 36253921 PMCID: PMC10092805 DOI: 10.1002/mds.29248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 01/21/2023] Open
Abstract
Studies on dementia with Lewy bodies (DLB) have mainly focused on the degeneration of distinct cortical and subcortical regions related to the deposition of Lewy bodies. In view of the proposed trans-synaptic spread of the α-synuclein pathology, investigating the disease only in this segregated fashion would be detrimental to our understanding of its progression. In this systematic review, we summarize findings on structural and functional brain connectivity in DLB, as connectivity measures may offer better insights on how the brain is affected by the spread of the pathology. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched Web of Science, PubMed, and SCOPUS for relevant articles published up to November 1, 2021. Of 1215 identified records, we selected and systematically reviewed 53 articles that compared connectivity features between patients with DLB and healthy controls. Structural and functional magnetic resonance imaging, positron emission tomography, single-positron emission computer tomography, and electroencephalography assessments of patients revealed widespread abnormalities within and across brain networks in DLB. Frontoparietal, default mode, and visual networks and their connections to other brain regions featured the most consistent disruptions, which were also associated with core clinical features and cognitive impairments. Furthermore, graph theoretical measures revealed disease-related decreases in local and global network efficiency. This systematic review shows that structural and functional connectivity characteristics in DLB may be particularly valuable at early stages, before overt brain atrophy can be observed. This knowledge may help improve the diagnosis and prognosis in DLB as well as pinpoint targets for future disease-modifying treatments. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Implication of EEG theta/alpha and theta/beta ratio in Alzheimer's and Lewy body disease. Sci Rep 2022; 12:18706. [PMID: 36333386 PMCID: PMC9636216 DOI: 10.1038/s41598-022-21951-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
We evaluated the patterns of quantitative electroencephalography (EEG) in patients with Alzheimer's disease (AD), Lewy body disease (LBD), and mixed disease. Sixteen patients with AD, 38 with LBD, 20 with mixed disease, and 17 control participants were recruited and underwent EEG. The theta/alpha ratio and theta/beta ratio were measured. The relationship of the log-transformed theta/alpha ratio (TAR) and theta/beta ratio (TBR) with the disease group, the presence of AD and LBD, and clinical symptoms were evaluated. Participants in the LBD and mixed disease groups had higher TBR in all lobes except for occipital lobe than those in the control group. The presence of LBD was independently associated with higher TBR in all lobes and higher central and parietal TAR, while the presence of AD was not. Among cognitively impaired patients, higher TAR was associated with the language, memory, and visuospatial dysfunction, while higher TBR was associated with the memory and frontal/executive dysfunction. Increased TBR in all lobar regions and temporal TAR were associated with the hallucinations, while cognitive fluctuations and the severity of Parkinsonism were not. Increased TBR could be a biomarker for LBD, independent of AD, while the presence of mixed disease could be reflected as increased TAR.
Collapse
|
27
|
Keller SM, Reyneke C, Gschwandtner U, Fuhr P. Information Contained in EEG Allows Characterization of Cognitive Decline in Neurodegenerative Disorders. Clin EEG Neurosci 2022:15500594221120734. [PMID: 36069039 DOI: 10.1177/15500594221120734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last few decades, electroencephalography (EEG) has evolved from being a method that purely relies on visual inspection into a quantitative method. Quantitative EEG, or QEEG, enables the assessment of neurological disorders based on spectral features, dynamic characterizations of EEG resting-state activity, brain connectivity analyzes or quantification of EEG signal complexity. The information contained in EEG is multidimensional: Electrodes, positioned at different scalp locations, provide a spatial dimension to the analysis of EEG while time provides a dynamic dimension: This multidimensional property of EEG makes its quantification a challenging task. In this narrative review we present quantitative models focused on different aspects of EEG: While microstate models focus more on the quantification of the dynamic aspects of EEG, spectral methods, connectivity analysis and entropy based models are more concerned with its spatial aspects. Nevertheless, these diverse approaches have provided neurophysiology based biomarkers, especially for monitoring and predicting the course of various neurodegenerative disorders. However, their translation into clinical practice crucially depends on the ability to automate the analysis of EEG in a user-friendly manner, without compromising on the validity of the provided results. Once this has been accomplished, EEG would provide an inexpensive and widely available method for monitoring disease progression, identifying patients at risk of neurodegeneration-especially before the onset of clinical symptoms, and predicting future cognition. For stratification of patients to clinical trials, EEG would allow shortening the trial duration and lowering the number of necessary participants by identifying patients at risk of fast cognitive decline.
Collapse
Affiliation(s)
- Sebastian M Keller
- Depts. of Neurology and of Clincial Research, Hospital of the University of Basel, Basel, Switzerland
| | - Cornelius Reyneke
- Depts. of Neurology and of Clincial Research, Hospital of the University of Basel, Basel, Switzerland
| | - Ute Gschwandtner
- Depts. of Neurology and of Clincial Research, Hospital of the University of Basel, Basel, Switzerland
| | - Peter Fuhr
- Depts. of Neurology and of Clincial Research, Hospital of the University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Spinelli G, Bakardjian H, Schwartz D, Potier MC, Habert MO, Levy M, Dubois B, George N. Theta Band-Power Shapes Amyloid-Driven Longitudinal EEG Changes in Elderly Subjective Memory Complainers At-Risk for Alzheimer's Disease. J Alzheimers Dis 2022; 90:69-84. [PMID: 36057818 DOI: 10.3233/jad-220204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) includes progressive symptoms spread along a continuum of preclinical and clinical stages. Although numerous studies uncovered the neuro-cognitive changes of AD, very little is known on the natural history of brain lesions and modifications of brain networks in elderly cognitively-healthy memory complainers at risk of AD for carrying pathophysiological biomarkers (amyloidopathy and tauopathy). OBJECTIVE We analyzed resting-state electroencephalography (EEG) of 318 cognitively-healthy subjective memory complainers from the INSIGHT-preAD cohort at the time of their first visit (M0) and two-years later (M24). METHODS Using 18F-florbetapir PET-scanner, subjects were stratified between amyloid negative (A-; n = 230) and positive (A+; n = 88) groups. Differences between A+ and A-were estimated at source-level in each band-power of the EEG spectrum. RESULTS At M0, we found an increase of theta power in the mid-frontal cortex in A+ compared to A-. No significant association was found between mid-frontal theta and the individuals' cognitive performance. At M24, theta power increased in A+ relative to A-individuals in the posterior cingulate cortex and the pre-cuneus. Alpha band revealed a peculiar decremental trend in posterior brain regions in the A+ relative to the A-group only at M24. Theta power increase over the mid-frontal and mid-posterior cortices suggests an hypoactivation of the default-mode network in the A+ individuals and a non-linear longitudinal progression at M24. CONCLUSION We provide the first source-level longitudinal evidence on the impact of brain amyloidosis on the EEG dynamics of a large-scale, monocentric cohort of elderly individuals at-risk for AD.
Collapse
Affiliation(s)
- Giuseppe Spinelli
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | - Hovagim Bakardjian
- AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | | | - Marie-Claude Potier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France
| | - Marie-Odile Habert
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Médecine Nucléaire, Paris, France.,Centre d'Acquisition et Traitement des Images (CATI), http://www.cati-neuroimaging.com
| | - Marcel Levy
- AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | - Bruno Dubois
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | - Nathalie George
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France
| | | |
Collapse
|
29
|
Ponomareva NV, Andreeva TV, Protasova M, Konovalov RN, Krotenkova MV, Kolesnikova EP, Malina DD, Kanavets EV, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Genetic association of apolipoprotein E genotype with EEG alpha rhythm slowing and functional brain network alterations during normal aging. Front Neurosci 2022; 16:931173. [PMID: 35979332 PMCID: PMC9376365 DOI: 10.3389/fnins.2022.931173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
The ε4 allele of the apolipoprotein E (APOE4+) genotype is a major genetic risk factor for Alzheimer’s disease (AD), but the mechanisms underlying its influence remain incompletely understood. The study aimed to investigate the possible effect of the APOE genotype on spontaneous electroencephalogram (EEG) alpha characteristics, resting-state functional MRI (fMRI) connectivity (rsFC) in large brain networks and the interrelation of alpha rhythm and rsFC characteristics in non-demented adults during aging. We examined the EEG alpha subband’s relative power, individual alpha peak frequency (IAPF), and fMRI rsFC in non-demented volunteers (age range 26–79 years) stratified by the APOE genotype. The presence of the APOE4+ genotype was associated with lower IAPF and lower relative power of the 11–13 Hz alpha subbands. The age related decrease in EEG IAPF was more pronounced in the APOE4+ carriers than in the APOE4+ non-carriers (APOE4-). The APOE4+ carriers had a stronger fMRI positive rsFC of the interhemispheric regions of the frontoparietal, lateral visual and salience networks than the APOE4– individuals. In contrast, the negative rsFC in the network between the left hippocampus and the right posterior parietal cortex was reduced in the APOE4+ carriers compared to the non-carriers. Alpha rhythm slowing was associated with the dysfunction of hippocampal networks. Our results show that in adults without dementia APOE4+ genotype is associated with alpha rhythm slowing and that this slowing is age-dependent. Our data suggest predominant alterations of inhibitory processes in large-scale brain network of non-demented APOE4+ carriers. Moreover, dysfunction of large-scale hippocampal network can influence APOE-related alpha rhythm vulnerability.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- *Correspondence: Natalya V. Ponomareva,
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Maria Protasova
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | | | | | | | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
- Brudnick Neuropsychiatric Research Institute (BNRI), University of Massachusetts Medical School, Worcester, MA, United States
- Evgeny I. Rogaev,
| |
Collapse
|
30
|
Babiloni C, Noce G, Di Bonaventura C, Lizio R, Eldellaa A, Tucci F, Salamone EM, Ferri R, Soricelli A, Nobili F, Famà F, Arnaldi D, Palma E, Cifelli P, Marizzoni M, Stocchi F, Bruno G, Di Gennaro G, Frisoni GB, Del Percio C. Alzheimer's Disease with Epileptiform EEG Activity: Abnormal Cortical Sources of Resting State Delta Rhythms in Patients with Amnesic Mild Cognitive Impairment. J Alzheimers Dis 2022; 88:903-931. [PMID: 35694930 DOI: 10.3233/jad-220442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients with amnesic mild cognitive impairment due to Alzheimer's disease (ADMCI) typically show a "slowing" of cortical resting-state eyes-closed electroencephalographic (rsEEG) rhythms. Some of them also show subclinical, non-convulsive, and epileptiform EEG activity (EEA) with an unclear relationship with that "slowing." OBJECTIVE Here we tested the hypothesis that the "slowing" of rsEEG rhythms is related to EEA in ADMCI patients. METHODS Clinical and instrumental datasets in 62 ADMCI patients and 38 normal elderly (Nold) subjects were available in a national archive. No participant had received a clinical diagnosis of epilepsy. The eLORETA freeware estimated rsEEG cortical sources. The area under the receiver operating characteristic curve (AUROCC) indexed the accuracy of eLORETA solutions in the classification between ADMCI-EEA and ADMCI-noEEA individuals. RESULTS EEA was observed in 15% (N = 8) of the ADMCI patients. The ADMCI-EEA group showed: 1) more abnormal Aβ 42 levels in the cerebrospinal fluid as compared to the ADMCI-noEEA group and 2) higher temporal and occipital delta (<4 Hz) rsEEG source activities as compared to the ADMCI-noEEA and Nold groups. Those source activities showed moderate accuracy (AUROCC = 0.70-0.75) in the discrimination between ADMCI-noEEA versus ADMCI-EEA individuals. CONCLUSION It can be speculated that in ADMCI-EEA patients, AD-related amyloid neuropathology may be related to an over-excitation in neurophysiological low-frequency (delta) oscillatory mechanisms underpinning cortical arousal and quiet vigilance.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| | | | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Neurosciences/Mental Health, Sapienza University of Rome, Rome, Italy
| | | | - Ali Eldellaa
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Enrico M Salamone
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Epilepsy Unit, Department of Neurosciences/Mental Health, Sapienza University of Rome, Rome, Italy
| | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Flavio Nobili
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy.,Department of Neuroscience (DiNOGMI), University of Genoa, Genoa, Italy
| | - Francesco Famà
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Pasteur Institute-Cenci Bolognetti Foundation, Rome, Italy
| | - Pierangelo Cifelli
- IRCCS Neuromed, Pozzilli, (IS), Italy.,Department of Applied and Biotechnological Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Giovanni B Frisoni
- Department of Applied and Biotechnological Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
31
|
REACTIVITY OF POSTERIOR CORTICAL ELECTROENCEPHALOGRAPHIC ALPHA RHYTHMS DURING EYES OPENING IN COGNITIVELY INTACT OLDER ADULTS AND PATIENTS WITH DEMENTIA DUE TO ALZHEIMER'S AND LEWY BODY DISEASES. Neurobiol Aging 2022; 115:88-108. [DOI: 10.1016/j.neurobiolaging.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 03/17/2022] [Accepted: 04/02/2022] [Indexed: 12/19/2022]
|
32
|
Gallo F, DeLuca V, Prystauka Y, Voits T, Rothman J, Abutalebi J. Bilingualism and Aging: Implications for (Delaying) Neurocognitive Decline. Front Hum Neurosci 2022; 16:819105. [PMID: 35185498 PMCID: PMC8847162 DOI: 10.3389/fnhum.2022.819105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
As a result of advances in healthcare, the worldwide average life expectancy is steadily increasing. However, this positive trend has societal and individual costs, not least because greater life expectancy is linked to higher incidence of age-related diseases, such as dementia. Over the past few decades, research has isolated various protective "healthy lifestyle" factors argued to contribute positively to cognitive aging, e.g., healthy diet, physical exercise and occupational attainment. The present article critically reviews neuroscientific evidence for another such factor, i.e., speaking multiple languages. Moreover, with multiple societal stakeholders in mind, we contextualize and stress the importance of the research program that seeks to uncover and understand potential connections between bilingual language experience and cognitive aging trajectories, inclusive of the socio-economic impact it can have. If on the right track, this is an important line of research because bilingualism has the potential to cross-over socio-economic divides to a degree other healthy lifestyle factors currently do not and likely cannot.
Collapse
Affiliation(s)
- Federico Gallo
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Vita-Salute San Raffaele University, Milan, Italy
| | - Vincent DeLuca
- PoLaR Lab, AcqVA Aurora Centre, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Yanina Prystauka
- PoLaR Lab, AcqVA Aurora Centre, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Toms Voits
- PoLaR Lab, AcqVA Aurora Centre, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jason Rothman
- PoLaR Lab, AcqVA Aurora Centre, UiT-The Arctic University of Norway, Tromsø, Norway
- Centro de Investigación Nebrija en Cognición (CINC), University Nebrija, Madrid, Spain
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Vita-Salute San Raffaele University, Milan, Italy
- PoLaR Lab, AcqVA Aurora Centre, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
33
|
Kielar A, Shah-Basak PP, Patterson DK, Jokel R, Meltzer JA. Electrophysiological abnormalities as indicators of early-stage pathology in Primary Progressive Aphasia (PPA): A case study in semantic variant PPA. Neurocase 2022; 28:110-122. [PMID: 35230912 DOI: 10.1080/13554794.2022.2039207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Language induced and spontaneous oscillatory activity was measured using MEG in a patient with the semantic variant of Primary Progressive Aphasia (svPPA) and 15 healthy controls.The patient showed oscillatory slowing in the left anterior temporal lobe (ATL) that extended into non-atrophied brain tissue in left and right frontal areas. The white matter connections were reduced to the left and right ATL and left frontal regions, exhibiting electrophysiological abnormalities. Altered diffusion metrics in all four language tracts, indicted compromised white matter integrity. Task-related and spontaneous oscillatory abnormalities can indicate early neurodegeneration in svPPA, providing promising targets for intervention.
Collapse
Affiliation(s)
- Aneta Kielar
- Department of Speech, Language and Hearing Sciences University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | | | - Dianne K Patterson
- Department of Speech, Language and Hearing Sciences University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Regina Jokel
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Jed A Meltzer
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
PARIETAL INTRAHEMISPHERIC SOURCE CONNECTIVITY OF RESTING-STATE ELECTROENCEPHALOGRAPHIC ALPHA RHYTHMS IS ABNORMAL IN NAÏVE HIV PATIENTS. Brain Res Bull 2022; 181:129-143. [DOI: 10.1016/j.brainresbull.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 11/23/2022]
|
35
|
Hoy KE, Emonson MRL, Bailey NW, Humble G, Coyle H, Rogers C, Fitzgerald PB. Investigating Neurophysiological Markers of Symptom Severity in Alzheimer's Disease. J Alzheimers Dis 2021; 85:309-321. [PMID: 34806601 DOI: 10.3233/jad-210401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a progressive decline in cognitive functioning for which there is a stark lack of effective treatments. Investigating the neurophysiological markers of symptom severity in AD may aid in the identification of alternative treatment targets. OBJECTIVE In the current study, we used a multimodal approach to investigate the association between functional connectivity (specifically between scalp electrodes placed over frontal and parietal regions) and symptom severity in AD, and to explore the relationship between connectivity and cortical excitability. METHODS 40 people with AD (25 mild severity, 15 moderate severity) underwent neurobiological assessment (resting state electroencephalography (EEG) and prefrontal transcranial magnetic stimulation (TMS) with EEG) and cognitive assessment. Neurobiological outcomes were resting state functional connectivity and TMS-evoked potentials. Cognitive outcomes were scores on the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental Status Examination, and a measure of episodic verbal learning. RESULTS Greater contralateral functional theta connectivity between frontal scalp electrodes and parietal scalp electrodes was associated with poorer cognitive performance. In addition, significant correlations were seen between the contralateral theta connectivity and the N100 and P60 TMS-evoked potentials measured from electrodes over the left dorsolateral prefrontal cortex. CONCLUSION Together these findings provide initial support for the use of a multimodal neurophysiological approaches to investigate potential therapeutic targets in AD. Suggestions for future research are discussed.
Collapse
Affiliation(s)
- Kate E Hoy
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Melanie R L Emonson
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Neil W Bailey
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Gregory Humble
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Hannah Coyle
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Caitlyn Rogers
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| |
Collapse
|
36
|
Ouchani M, Gharibzadeh S, Jamshidi M, Amini M. A Review of Methods of Diagnosis and Complexity Analysis of Alzheimer's Disease Using EEG Signals. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5425569. [PMID: 34746303 PMCID: PMC8566072 DOI: 10.1155/2021/5425569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023]
Abstract
This study will concentrate on recent research on EEG signals for Alzheimer's diagnosis, identifying and comparing key steps of EEG-based Alzheimer's disease (AD) detection, such as EEG signal acquisition, preprocessing function extraction, and classification methods. Furthermore, highlighting general approaches, variations, and agreement in the use of EEG identified shortcomings and guidelines for multiple experimental stages ranging from demographic characteristics to outcomes monitoring for future research. Two main targets have been defined based on the article's purpose: (1) discriminative (or detection), i.e., look for differences in EEG-based features across groups, such as MCI, moderate Alzheimer's disease, extreme Alzheimer's disease, other forms of dementia, and stable normal elderly controls; and (2) progression determination, i.e., look for correlations between EEG-based features and clinical markers linked to MCI-to-AD conversion and Alzheimer's disease intensity progression. Limitations mentioned in the reviewed papers were also gathered and explored in this study, with the goal of gaining a better understanding of the problems that need to be addressed in order to advance the use of EEG in Alzheimer's disease science.
Collapse
Affiliation(s)
- Mahshad Ouchani
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shahriar Gharibzadeh
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mahdieh Jamshidi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Morteza Amini
- Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
37
|
Yan Y, Zhao A, Ying W, Qiu Y, Ding Y, Wang Y, Xu W, Deng Y. Functional Connectivity Alterations Based on the Weighted Phase Lag Index: An Exploratory Electroencephalography Study on Alzheimer's Disease. Curr Alzheimer Res 2021; 18:513-522. [PMID: 34598666 DOI: 10.2174/1567205018666211001110824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/24/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Numerous electroencephalography (EEG) studies focus on the alteration of electrical activity in patients with Alzheimer's Disease (AD), but there are no consistent results especially regarding functional connectivity. We supposed that the weighted Phase Lag Index (w- PLI), as phase-based measures of functional connectivity, may be used as an auxiliary diagnostic method for AD. METHODS We enrolled 30 patients with AD, 30 patients with Mild Cognitive Impairment (MCI), and 30 Healthy Controls (HC). EEGs were recorded in all participants at baseline during relaxed wakefulness. Following EEG preprocessing, Power Spectral Density (PSD) and wPLI parameters were determined to further analyze whether they were correlated to cognitive scores. RESULTS In the patients with AD, the increased PSD in theta band was presented compared with MCI and HC groups, which was associated with disturbances of the directional, computational, and delayed memory capacity. Furthermore, the wPLI revealed a distinctly lower connection strength between frontal and distant areas in the delta band and a higher connection strength of the central and temporo-occipital region in the theta band for AD patients. Moreover,we found a significant negative correlation between theta functional connectivity and cognitive scores. CONCLUSION Increased theta PSD and decreased delta wPLI may be one of the earliest changes in AD and associated with disease severity. The parameter wPLI is a novel measurement of phase synchronization and has potentials in understanding underlying functional connectivity and aiding in the diagnostics of AD.
Collapse
Affiliation(s)
- Yi Yan
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aonan Zhao
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weina Ying
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qiu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Ding
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Miltiadous A, Tzimourta KD, Giannakeas N, Tsipouras MG, Afrantou T, Ioannidis P, Tzallas AT. Alzheimer's Disease and Frontotemporal Dementia: A Robust Classification Method of EEG Signals and a Comparison of Validation Methods. Diagnostics (Basel) 2021; 11:1437. [PMID: 34441371 PMCID: PMC8391578 DOI: 10.3390/diagnostics11081437] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia is the clinical syndrome characterized by progressive loss of cognitive and emotional abilities to a degree severe enough to interfere with daily functioning. Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 50-70% of total dementia cases. Another dementia type is frontotemporal dementia (FTD), which is associated with circumscribed degeneration of the prefrontal and anterior temporal cortex and mainly affects personality and social skills. With the rapid advancement in electroencephalogram (EEG) sensors, the EEG has become a suitable, accurate, and highly sensitive biomarker for the identification of neuronal and cognitive dynamics in most cases of dementia, such as AD and FTD, through EEG signal analysis and processing techniques. In this study, six supervised machine-learning techniques were compared on categorizing processed EEG signals of AD and FTD cases, to provide an insight for future methods on early dementia diagnosis. K-fold cross validation and leave-one-patient-out cross validation were also compared as validation methods to evaluate their performance for this classification problem. The proposed methodology accuracy scores were 78.5% for AD detection with decision trees and 86.3% for FTD detection with random forests.
Collapse
Affiliation(s)
- Andreas Miltiadous
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Kostakioi, 47 100 Arta, Greece; (A.M.); (N.G.)
| | - Katerina D. Tzimourta
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Western Macedonia, 50 100 Kozani, Greece; (K.D.T.); (M.G.T.)
| | - Nikolaos Giannakeas
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Kostakioi, 47 100 Arta, Greece; (A.M.); (N.G.)
| | - Markos G. Tsipouras
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Western Macedonia, 50 100 Kozani, Greece; (K.D.T.); (M.G.T.)
| | - Theodora Afrantou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece; (T.A.); (P.I.)
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece; (T.A.); (P.I.)
| | - Alexandros T. Tzallas
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Kostakioi, 47 100 Arta, Greece; (A.M.); (N.G.)
| |
Collapse
|
39
|
Gurja JP, Muthukrishnan SP, Tripathi M, Sharma R. Reduced Resting-State Cortical Alpha Connectivity Reflects Distinct Functional Brain Dysconnectivity in Alzheimer's Disease and Mild Cognitive Impairment. Brain Connect 2021; 12:134-145. [PMID: 34030487 DOI: 10.1089/brain.2020.0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Emerging evidence suggests distinct abnormal activity patterns during resting state in intrinsic functional brain networks in patients with neurodegenerative diseases, including Alzheimer's disease (AD) and mild cognitive impairment (MCI). This study aimed to identify the changes in the resting-state intracortical lagged phase synchronization derived from dense array electroencephalography (EEG) in AD and MCI. Methods: Resting-state current source density (CSD) and lagged phase synchronization between 84 regions of interest defined by Brodmann areas (BAs) for seven EEG frequency bands were investigated between the study groups (AD, MCI, and age-matched controls) using 128-channel EEG. Results: Reduced CSD and connectivity (large effect size, Cohen's d > 0.8) were found in AD and MCI compared with controls at alpha frequency. However, a positive correlation (r = 0.433; p = 0.044) of mini-mental state examination scores was found with BA 32-33 connectivity values in AD only. Conclusion: Reduced resting-state alpha 1 source connectivity in patient groups and correlation between attenuation of resting-state alpha 1 connectivity with cognitive decline in AD could indicate the disruption of inhibitory function of alpha rhythm leading to tonic unselective cortical excitation that affects attention and controlled access to stored information.
Collapse
Affiliation(s)
- John Preetham Gurja
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suriya Prakash Muthukrishnan
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
40
|
Babiloni C, Arakaki X, Azami H, Bennys K, Blinowska K, Bonanni L, Bujan A, Carrillo MC, Cichocki A, de Frutos-Lucas J, Del Percio C, Dubois B, Edelmayer R, Egan G, Epelbaum S, Escudero J, Evans A, Farina F, Fargo K, Fernández A, Ferri R, Frisoni G, Hampel H, Harrington MG, Jelic V, Jeong J, Jiang Y, Kaminski M, Kavcic V, Kilborn K, Kumar S, Lam A, Lim L, Lizio R, Lopez D, Lopez S, Lucey B, Maestú F, McGeown WJ, McKeith I, Moretti DV, Nobili F, Noce G, Olichney J, Onofrj M, Osorio R, Parra-Rodriguez M, Rajji T, Ritter P, Soricelli A, Stocchi F, Tarnanas I, Taylor JP, Teipel S, Tucci F, Valdes-Sosa M, Valdes-Sosa P, Weiergräber M, Yener G, Guntekin B. Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: Recommendations of an expert panel. Alzheimers Dement 2021; 17:1528-1553. [PMID: 33860614 DOI: 10.1002/alz.12311] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/25/2022]
Abstract
The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and "interrelatedness" at posterior alpha (8-12 Hz) and widespread delta (< 4 Hz) and theta (4-8 Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and "interrelatedness" rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,San Raffaele of Cassino, Cassino (FR), Italy
| | | | - Hamed Azami
- Department of Neurology and Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Karim Bennys
- Centre Mémoire de Ressources et de Recherche (CMRR), Centre Hospitalier, Universitaire de Montpellier, Montpellier, France
| | - Katarzyna Blinowska
- Institute of Biocybernetics, Warsaw, Poland.,Faculty of Physics University of Warsaw and Nalecz, Warsaw, Poland
| | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Ana Bujan
- Psychological Neuroscience Lab, School of Psychology, University of Minho, Minho, Portugal
| | - Maria C Carrillo
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago, Illinois, USA
| | - Andrzej Cichocki
- Skolkowo Institute of Science and Technology (SKOLTECH), Moscow, Russia.,Systems Research Institute PAS, Warsaw, Poland.,Nicolaus Copernicus University (UMK), Torun, Poland
| | - Jaisalmer de Frutos-Lucas
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Bruno Dubois
- Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), Paris, France.,ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Rebecca Edelmayer
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago, Illinois, USA
| | - Gary Egan
- Foundation Director of the Monash Biomedical Imaging (MBI) Research Facilities, Monash University, Clayton, Australia
| | - Stephane Epelbaum
- Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), Paris, France.,ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Javier Escudero
- School of Engineering, Institute for Digital Communications, The University of Edinburgh, Edinburgh, UK
| | - Alan Evans
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Francesca Farina
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Keith Fargo
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago, Illinois, USA
| | - Alberto Fernández
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Giovanni Frisoni
- IRCCS San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Harald Hampel
- GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Sorbonne University, Paris, France
| | | | - Vesna Jelic
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jaeseung Jeong
- Department of Bio and Brain Engineering/Program of Brain and Cognitive Engineering Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yang Jiang
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Maciej Kaminski
- Faculty of Physics University of Warsaw and Nalecz, Warsaw, Poland
| | - Voyko Kavcic
- Institute of Gerontology, Wayne State University, Detroit, Michigan, USA
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, UK
| | - Sanjeev Kumar
- Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Alice Lam
- MGH Epilepsy Service, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lew Lim
- Vielight Inc., Toronto, Ontario, Canada
| | | | - David Lopez
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Brendan Lucey
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
| | - William J McGeown
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Ian McKeith
- Newcastle upon Tyne, Translational and Clinical Research Institute, Newcastle University, UK
| | | | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - John Olichney
- UC Davis Department of Neurology and Center for Mind and Brain, Davis, California, USA
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Ricardo Osorio
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, New York, USA
| | | | - Tarek Rajji
- Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Petra Ritter
- Brain Simulation Section, Department of Neurology, Charité Universitätsmedizin and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Ioannis Tarnanas
- Global Brain Health Institute, University of California San Francisco, San Francisco, USA.,Global Brain Health Institute, Trinity College Dublin, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - John Paul Taylor
- Newcastle upon Tyne, Translational and Clinical Research Institute, Newcastle University, UK
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Pedro Valdes-Sosa
- Cuban Neuroscience Center, Havana, Cuba.,Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, BfArM), Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - Gorsev Yener
- Departments of Neurosciences and Department of Neurology, Dokuz Eylül University Medical School, Izmir, Turkey
| | - Bahar Guntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
41
|
Peláez Suárez AA, Berrillo Batista S, Pedroso Ibáñez I, Casabona Fernández E, Fuentes Campos M, Chacón LM. EEG-Derived Functional Connectivity Patterns Associated with Mild Cognitive Impairment in Parkinson's Disease. Behav Sci (Basel) 2021; 11:40. [PMID: 33806841 PMCID: PMC8005012 DOI: 10.3390/bs11030040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate EEG-derived functional connectivity (FC) patterns associated with mild cognitive impairment (MCI) in Parkinson's disease (PD). METHODS A sample of 15 patients without cognitive impairment (PD-WCI), 15 with MCI (PD-MCI), and 26 healthy subjects were studied. The EEG was performed in the waking functional state with eyes closed, for the functional analysis it was used the synchronization likelihood (SL) and graph theory (GT). RESULTS PD-MCI patients showed decreased FC in frequencies alpha, in posterior regions, and delta with a generalized distribution. Patients, compared to the healthy people, presented a decrease in segregation (lower clustering coefficient in alpha p = 0.003 in PD-MCI patients) and increased integration (shorter mean path length in delta (p = 0.004) and theta (p = 0.002) in PD-MCI patients). There were no significant differences in the network topology between the parkinsonian groups. In PD-MCI patients, executive dysfunction correlated positively with global connectivity in beta (r = 0.47) and negatively with the mean path length at beta (r = -0.45); alterations in working memory were negatively correlated with the mean path length at beta r = -0.45. CONCLUSIONS PD patients present alterations in the FC in all frequencies, those with MCI show less connectivity in the alpha and delta frequencies. The neural networks of the patients show a random topology, with a similar organization between patients with and without MCI. In PD-MCI patients, alterations in executive function and working memory are related to beta integration.
Collapse
Affiliation(s)
- Alejandro Armando Peláez Suárez
- Movement Disorders and Neurodegeneration Clinic, International Center for Neurological Restoration, Playa, Havana 11300, Cuba; (I.P.I.); (E.C.F.)
| | - Sheila Berrillo Batista
- Department of Clinical Neurophysiology, International Center for Neurological Restoration, Playa, Havana 11300, Cuba;
| | - Ivonne Pedroso Ibáñez
- Movement Disorders and Neurodegeneration Clinic, International Center for Neurological Restoration, Playa, Havana 11300, Cuba; (I.P.I.); (E.C.F.)
| | - Enrique Casabona Fernández
- Movement Disorders and Neurodegeneration Clinic, International Center for Neurological Restoration, Playa, Havana 11300, Cuba; (I.P.I.); (E.C.F.)
| | | | - Lilia Morales Chacón
- Department of Clinical Neurophysiology, International Center for Neurological Restoration, Playa, Havana 11300, Cuba;
| |
Collapse
|
42
|
Ruiz-Gómez SJ, Hornero R, Poza J, Santamaría-Vázquez E, Rodríguez-González V, Maturana-Candelas A, Gomez C. A new method to build multiplex networks using Canonical Correlation Analysis for the characterization of the Alzheimer's disease continuum. J Neural Eng 2021; 18. [PMID: 33395667 DOI: 10.1088/1741-2552/abd82c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The aim of this study was to solve one of the current limitations for the characterization of the brain network in the Alzheimer's disease (AD) continuum. Nowadays, frequency-dependent approaches have reached contradictory results depending on the frequency band under study, tangling the possible clinical interpretations. APPROACH To overcome this issue, we proposed a new method to build multiplex networks based on canonical correlation analysis (CCA). Our method determines two basis vectors using the source and electrodelevel frequency-specific network parameters for a reference group, and then project the results for the rest of the groups into these hyperplanes to make them comparable. It was applied to: (i) synthetic signals generated with a Kuramoto-based model; and (ii) a resting-state EEG database formed by recordings from 51 cognitively healthy controls, 51 mild cognitive impairment subjects, 51 mild AD patients, 50 moderate AD patients, and 50 severe AD patients. MAIN RESULTS Our results using synthetic signals showed that the interpretation of the proposed CCA-based multiplex parameters (multiplex average node degree, multiplex characteristic path length and multiplex clustering coefficient) can be analogous to their frequency-specific counterparts, as they displayed similar behaviors in terms of average connectivity, integration, and segregation. Findings using real EEG recordings revealed that dementia due to AD is characterized by a significant increase in average connectivity, and by a loss of integration and segregation. SIGNIFICANCE We can conclude that CCA can be used to build multiplex networks based from frequency-specific results, summarizing all the available information and avoiding the limitations of possible frequency-specific conflicts. Additionally, our method supposes a novel approach for the construction and analysis of multiplex networks during AD continuum.
Collapse
Affiliation(s)
- Saúl J Ruiz-Gómez
- Teoría de la señal y comunicaciones e Ingeniería telemática, Universidad de Valladolid, Paseo de Belén 15, Valladolid, Valladolid, 47011, SPAIN
| | - Roberto Hornero
- Biomedical Engineering Group, Universidad de Valladolid, ETSI Telecomunicacion, Paseo Belen 15, Valladolid, 47011, SPAIN
| | - Jesus Poza
- Communications and Signal Theory, Universidad de Valladolid, E.T.S. Ingenieros de Telecomunicacion, Paseo de Belen 15, 47011 - Valladolid, Valladolid, Valladolid, 47011, SPAIN
| | - Eduardo Santamaría-Vázquez
- Teoría de la Señal y Comunicaciones e Ingeniería Telemática, Universidad de Valladolid, Plaza de Santa Cruz, 8, Valladolid, Valladolid, 47002, SPAIN
| | - Víctor Rodríguez-González
- Teoría de la señal y comunicaciones e ingeniería telemática, Universidad de Valladolid, Paseo Belen 15, Valladolid, 47011, SPAIN
| | | | - Carlos Gomez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, E. T. S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén, 15, Valladolid, Valladolid, 47011, SPAIN
| |
Collapse
|
43
|
Smailovic U, Koenig T, Savitcheva I, Chiotis K, Nordberg A, Blennow K, Winblad B, Jelic V. Regional Disconnection in Alzheimer Dementia and Amyloid-Positive Mild Cognitive Impairment: Association Between EEG Functional Connectivity and Brain Glucose Metabolism. Brain Connect 2020; 10:555-565. [PMID: 33073602 PMCID: PMC7757561 DOI: 10.1089/brain.2020.0785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: The disconnection hypothesis of Alzheimer's disease (AD) is supported by growing neuroimaging and neurophysiological evidence of altered brain functional connectivity in cognitively impaired individuals. Brain functional modalities such as [18F]fluorodeoxyglucose positron-emission tomography ([18F]FDG-PET) and electroencephalography (EEG) measure different aspects of synaptic functioning, and can contribute to understanding brain connectivity disruptions in AD. Aim: This study investigated the relationship between cortical glucose metabolism and topographical EEG measures of brain functional connectivity in subjects along AD continuum. Methods: Patients diagnosed with mild cognitive impairment (MCI) and AD (n = 67), and stratified into amyloid-positive (n = 32) and negative (n = 10) groups according to cerebrospinal fluid Aβ42/40 ratio, were assessed with [18F]FDG-PET and resting-state EEG recordings. EEG-based neuroimaging analysis involved standardized low-resolution electromagnetic tomography (sLORETA), which estimates functional connectivity from cortical sources of electrical activity in a 3D head model. Results: Glucose hypometabolism in temporoparietal lobes was significantly associated with altered EEG functional connectivity of the same regions of interest in clinically diagnosed MCI and AD patients and in patients with biomarker-verified AD pathology. The correlative pattern of disrupted connectivity in temporoparietal lobes, as detected by EEG sLORETA analysis, included decreased instantaneous linear connectivity in fast frequencies and increased lagged linear connectivity in slow frequencies in relation to the activity of remaining cortex. Conclusions: Topographical EEG measures of functional connectivity detect regional dysfunction of AD-vulnerable brain areas as evidenced by association and spatial overlap with the cortical glucose hypometabolism in MCI and AD patients.
Collapse
Affiliation(s)
- Una Smailovic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Clinic for Cognitive Disorders, Karolinska University Hospital-Huddinge, Huddinge, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry and Sahlgrenska University Hospital, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Geriatrics, Karolinska University Hospital, Huddinge, Sweden
| | - Vesna Jelic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Clinic for Cognitive Disorders, Karolinska University Hospital-Huddinge, Huddinge, Sweden
| |
Collapse
|
44
|
Pascarelli MT, Del Percio C, De Pandis MF, Ferri R, Lizio R, Noce G, Lopez S, Rizzo M, Soricelli A, Nobili F, Arnaldi D, Famà F, Orzi F, Buttinelli C, Giubilei F, Salvetti M, Cipollini V, Franciotti R, Onofri M, Fuhr P, Gschwandtner U, Ransmayr G, Aarsland D, Parnetti L, Farotti L, Marizzoni M, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Yener G, Emek-Savaş DD, Triggiani AI, Paul Taylor J, McKeith I, Stocchi F, Vacca L, Hampel H, Frisoni GB, Bonanni L, Babiloni C. Abnormalities of resting-state EEG in patients with prodromal and overt dementia with Lewy bodies: Relation to clinical symptoms. Clin Neurophysiol 2020; 131:2716-2731. [PMID: 33039748 DOI: 10.1016/j.clinph.2020.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Here we tested if cortical sources of resting state electroencephalographic (rsEEG) rhythms may differ in sub-groups of patients with prodromal and overt dementia with Lewy bodies (DLB) as a function of relevant clinical symptoms. METHODS We extracted clinical, demographic and rsEEG datasets in matched DLB patients (N = 60) and control Alzheimer's disease (AD, N = 60) and healthy elderly (Nold, N = 60) seniors from our international database. The eLORETA freeware was used to estimate cortical rsEEG sources. RESULTS As compared to the Nold group, the DLB and AD groups generally exhibited greater spatially distributed delta source activities (DLB > AD) and lower alpha source activities posteriorly (AD > DLB). As compared to the DLB "controls", the DLB patients with (1) rapid eye movement (REM) sleep behavior disorders showed lower central alpha source activities (p < 0.005); (2) greater cognitive deficits exhibited higher parietal and central theta source activities as well as higher central, parietal, and occipital alpha source activities (p < 0.01); (3) visual hallucinations pointed to greater parietal delta source activities (p < 0.005). CONCLUSIONS Relevant clinical features were associated with abnormalities in spatial and frequency features of rsEEG source activities in DLB patients. SIGNIFICANCE Those features may be used as neurophysiological surrogate endpoints of clinical symptoms in DLB patients in future cross-validation prospective studies.
Collapse
Affiliation(s)
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Susanna Lopez
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Marco Rizzo
- Oasi Research Institute - IRCCS, Troina, Italy
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Flavio Nobili
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy; Neuromed: IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Virginia Cipollini
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Raffaella Franciotti
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marco Onofri
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology 2, Med Campus III, Faculty of Medicine, Johannes Kepler University, Kepler University Hospital, Krankenhausstr. 9, A-4020 Linz, Austria
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Lucia Farotti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Carlo De Lena
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Department of Psychology and Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | | | | | - Ian McKeith
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Harald Hampel
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Brain and Spine Institute (ICM), François Lhermitte Building, France
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; San Raffaele of Cassino, Cassino, FR, Italy.
| |
Collapse
|
45
|
The Role of EEG in the Diagnosis, Prognosis and Clinical Correlations of Dementia with Lewy Bodies-A Systematic Review. Diagnostics (Basel) 2020; 10:diagnostics10090616. [PMID: 32825520 PMCID: PMC7555753 DOI: 10.3390/diagnostics10090616] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Despite improvements in diagnostic criteria for dementia with Lewy bodies (DLB), the ability to discriminate DLB from Alzheimer’s disease (AD) and other dementias remains suboptimal. Electroencephalography (EEG) is currently a supportive biomarker in the diagnosis of DLB. We performed a systematic review to better clarify the diagnostic and prognostic role of EEG in DLB and define the clinical correlates of various EEG features described in DLB. MEDLINE, EMBASE, and PsycINFO were searched using search strategies for relevant articles up to 6 August 2020. We included 43 studies comparing EEG in DLB with other diagnoses, 42 of them included a comparison of DLB with AD, 10 studies compared DLB with Parkinson’s disease dementia, and 6 studies compared DLB with other dementias. The studies were visual EEG assessment (6), quantitative EEG (35) and event-related potential studies (2). The most consistent observation was the slowing of the dominant EEG rhythm (<8 Hz) assessed visually or through quantitative EEG, which was observed in ~90% of patients with DLB and only ~10% of patients with AD. Other findings based on qualitative rating, spectral power analyses, connectivity, microstate and machine learning algorithms were largely heterogenous due to differences in study design, EEG acquisition, preprocessing and analysis. EEG protocols should be standardized to allow replication and validation of promising EEG features as potential biomarkers in DLB.
Collapse
|
46
|
Rosenblum Y, Maidan I, Fahoum F, Giladi N, Bregman N, Shiner T, Mirelman A. Differential changes in visual and auditory event-related oscillations in dementia with Lewy bodies. Clin Neurophysiol 2020; 131:2357-2366. [PMID: 32828038 DOI: 10.1016/j.clinph.2020.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Aside from the cognitive impairment, patients with dementia with Lewy bodies (DLB) have a high frequency of visual hallucinations and a number of other vision-related symptoms, whereas auditory hallucinations are less frequent. To better understand the differential dysfunction of the visual network in DLB, we compared auditory and visual event-related potentials and oscillations in patients with DLB. METHODS Event-related potentials elicited by visual and auditory oddball tasks were recorded in 23 patients with DLB and 22 healthy controls and analyzed in time and time-frequency domain. RESULTS DLB patients had decreased theta band activity related to both early sensory and later cognitive processing in the visual, but not in the auditory task. Patients had lower delta and higher alpha and beta bands power related to later cognitive processing in both auditory and visual tasks. CONCLUSIONS In DLB visual event-related oscillations are characterized by a decrease in theta and lack of inhibition in alpha bands. SIGNIFICANCE Decreased theta and a lack of inhibition in alpha band power might be an oscillatory underpinning of some classical DLB symptoms such as fluctuations in attention and high-level visual disturbances and a potential marker of dysfunction of the visual system in DLB.
Collapse
Affiliation(s)
- Yevgenia Rosenblum
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Epilepsy Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Epilepsy Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Bregman
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tamara Shiner
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
47
|
Villa C, Lavitrano M, Salvatore E, Combi R. Molecular and Imaging Biomarkers in Alzheimer's Disease: A Focus on Recent Insights. J Pers Med 2020; 10:jpm10030061. [PMID: 32664352 PMCID: PMC7565667 DOI: 10.3390/jpm10030061] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease among the elderly, affecting millions of people worldwide and clinically characterized by a progressive and irreversible cognitive decline. The rapid increase in the incidence of AD highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods rely on measures of amyloid-β (Aβ), phosphorylated (p-tau) and total tau (t-tau) protein levels in the cerebrospinal fluid (CSF) aided by advanced neuroimaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI). However, the invasiveness of these procedures and the high cost restrict their utilization. Hence, biomarkers from biological fluids obtained using non-invasive methods and novel neuroimaging approaches provide an attractive alternative for the early diagnosis of AD. Such biomarkers may also be helpful for better understanding of the molecular mechanisms underlying the disease, allowing differential diagnosis or at least prolonging the pre-symptomatic stage in patients suffering from AD. Herein, we discuss the advantages and limits of the conventional biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (R.C.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Institute for the Experimental Endocrinology and Oncology, National Research Council (IEOS-CNR), 80131 Naples, Italy;
| | - Elena Salvatore
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy;
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (R.C.)
| |
Collapse
|
48
|
Babiloni C, Pascarelli MT, Lizio R, Noce G, Lopez S, Rizzo M, Ferri R, Soricelli A, Nobili F, Arnaldi D, Famà F, Orzi F, Buttinelli C, Giubilei F, Salvetti M, Cipollini V, Bonanni L, Franciotti R, Onofrj M, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Aarsland D, Parnetti L, Farotti L, Marizzoni M, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Yener G, Emek-Savaş DD, Triggiani AI, Taylor JP, McKeith I, Stocchi F, Vacca L, Hampel H, Frisoni GB, De Pandis MF, Del Percio C. Abnormal cortical neural synchronization mechanisms in quiet wakefulness are related to motor deficits, cognitive symptoms, and visual hallucinations in Parkinson's disease patients: an electroencephalographic study. Neurobiol Aging 2020; 91:88-111. [DOI: 10.1016/j.neurobiolaging.2020.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 11/25/2022]
|
49
|
Biere J, Okkersen K, van Alfen N, Kessels RPC, Gouw AA, van Dorst M, van Engelen B, Stam CJ, Raaphorst J. Characterization of EEG-based functional brain networks in myotonic dystrophy type 1. Clin Neurophysiol 2020; 131:1886-1895. [PMID: 32590320 DOI: 10.1016/j.clinph.2020.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE In the autosomal dominant, multisystem, chronic progressive disease myotonic dystrophy type 1 (DM1), cognitive deficits may originate from disrupted functional brain networks. We aimed to use network analysis of resting-state electro-encephalography (EEG) recordings of patients with DM1 and matched unaffected controls to investigate changes in network organization in large-scale functional brain networks and correlations with cognitive deficits. METHODS In this cross-sectional study, 28 adult patients with genetically confirmed DM1 and 26 age-, sex- and education-matched unaffected controls underwent resting-state EEG and neuropsychological assessment. We calculated the Phase Lag Index (PLI) to determine EEG frequency-dependent functional connectivity between brain regions. Functional brain networks were characterized by applying concepts from graph theory and compared between-groups. Network topology was evaluated using the minimum spanning tree (MST). We evaluated correlations between network metrics and neuropsychological tests that showed statistically significant between-group differences. RESULTS Functional connectivity estimated as whole-brain median PLI for DM1 patients versus healthy controls was higher in theta band (0.141 [0.050] versus 0.125 [0.018], p = 0.029), and lower in the upper alpha band (0.154 [0.048] versus 0.182 [0.073], p = 0.038), respectively. Functional MST-constructed networks in DM1 patients were significantly dissimilar from healthy controls in the delta, (p = 0.009); theta, (p = 0.009); lower alpha, (p = 0.036); and upper alpha, (p = 0.008) bands. In evaluation of local MST network measures, trends toward networks with higher global integration in the theta band and lower global integration in the upper alpha band were observed. Compared to unaffected controls, DM1 patients performed worse on tests of attention, motor function, executive function and visuospatial memory. Visuospatial memory correlated with the global median PLI in the upper alpha band; the Stroop interference test correlated with betweenness centrality in this band. CONCLUSION This study supports the hypothesis that brain changes in DM1 give rise to disrupted functional network organization, as modelled with EEG-based networks. Further study may help unravel the relations with clinical brain-related DM1 symptoms. SIGNIFICANCE EEG network analysis has potential to help understand brain related DM1 phenotypes. FUNDING This work was supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 305697 (OPTIMISTIC) and the Marigold Foundation.
Collapse
Affiliation(s)
- Joost Biere
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Kees Okkersen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Nens van Alfen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Roy P C Kessels
- Department of Neuropsychology and Rehabilitation Psychology, Radboud University Medical Center, Nijmegen, the Netherlands; Center for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands; Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands.
| | - Alida A Gouw
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Maud van Dorst
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands.
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Cornelis J Stam
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Joost Raaphorst
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology, Academic University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
50
|
Ponomareva N, Andreeva T, Protasova M, Konovalov R, Krotenkova M, Malina D, Mitrofanov A, Fokin V, Illarioshkin S, Rogaev E. Genetic Association Between Alzheimer's Disease Risk Variant of the PICALM Gene and EEG Functional Connectivity in Non-demented Adults. Front Neurosci 2020; 14:324. [PMID: 32372909 PMCID: PMC7177435 DOI: 10.3389/fnins.2020.00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Genome wide association studies (GWAS) have identified and validated the association of the PICALM genotype with Alzheimer's disease (AD). The PICALM rs3851179 A allele is thought to have a protective effect, whereas the G allele appears to confer risk for AD. The influence of the PICALM genotype on brain functional connectivity in non-demented subjects remains largely unknown. We examined the association of the PICALM rs3851179 genotype with the characteristics of lagged linear connectivity (LLC) of resting EEG sources in 104 non-demented adults younger than 60 years of age. The EEG analysis was performed using exact low-resolution brain electromagnetic tomography (eLORETA) freeware (Pascual-Marqui et al., 2011). We found that the carriers of the A PICALM allele (PICALM AA and AG genotypes) had higher widespread interhemispheric LLC of alpha sources compared to the carriers of the GG PICALM allele. An exploratory correlation analysis showed a moderate positive association between the alpha LLC interhemispheric characteristics and the corpus callosum size and between the alpha interhemispheric LLC characteristics and the Luria word memory scores. These results suggest that the PICALM rs3851179 A allele provides protection against cognitive decline by facilitating neurophysiological reserve capacities in non-demented adults. In contrast, lower functional connectivity in carriers of the AD risk variant, PICALM GG, suggests early functional alterations in alpha rhythm networks.
Collapse
Affiliation(s)
- Natalya Ponomareva
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Andreeva
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Protasova
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Rodion Konovalov
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Krotenkova
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Daria Malina
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mitrofanov
- Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | - Vitaly Fokin
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | | | - Evgeny Rogaev
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|