1
|
Zareba MR, Davydova T, Palomar-García MÁ, Adrián-Ventura J, Costumero V, Visser M. Subjective sleep quality in healthy young adults moderates associations of sensitivity to punishment and reward with functional connectivity of regions relevant for insomnia disorder. Sleep Med 2025; 131:106527. [PMID: 40279980 DOI: 10.1016/j.sleep.2025.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Chronic unhealthy sleeping behaviours are a major risk factor for the emergence of mood and anxiety disorders. Nevertheless, we are still lacking understanding why some individuals are more prone than others to affective dysregulation caused by sleep disruption. With preliminary evidence suggesting that brain activity during positive and negative emotional processing might play an important modulating role, we conducted whole-brain resting-state functional connectivity analyses in a large cohort of healthy young adults (N = 155). Using regions consistently affected in insomnia disorder as seeds, we investigated sleep quality-related neural connectivity patterns that were both insensitive and sensitive to the interactions with individual measures of reward and punishment processing, additionally assessing the links with indices of emotional health. The majority of the findings reflected interactions between sleep quality and reinforcement sensitivity, with the opposite associations reported in the good and poor sleepers. One of such connections, the coupling between precentral gyrus and posterior insula, was additionally negatively linked to trait anxiety, with the lowest connectivity values observed in poor sleepers with higher sensitivity to punishment. In turn, the only finding associated solely with sleep quality, i.e. coupling between subgenual anterior cingulate cortex and thalamus, was also related to the habitual use of emotion suppression strategies. As such, the present study provides evidence that reinforcement sensitivity plays an essential role in understanding the associations of poor sleep quality with brain connectivity and emotional health, hinting at a potential link that may help explain individual differences in susceptibility to sleep-related affective dysregulation.
Collapse
Affiliation(s)
- Michal Rafal Zareba
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, 12071, Castellón de la Plana, Spain.
| | - Tatiana Davydova
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, 12071, Castellón de la Plana, Spain
| | | | - Jesús Adrián-Ventura
- Department of Psychology and Sociology, University of Zaragoza, 44003, Teruel, Spain
| | - Victor Costumero
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, 12071, Castellón de la Plana, Spain
| | - Maya Visser
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, 12071, Castellón de la Plana, Spain
| |
Collapse
|
2
|
Bi C, Zheng X, Zhang Y, Zhou S, Song J, Shang H, Shen B. NDDRF 2.0: An update and expansion of risk factor knowledge base for personalized prevention of neurodegenerative diseases. Alzheimers Dement 2025; 21:e70282. [PMID: 40371632 PMCID: PMC12079438 DOI: 10.1002/alz.70282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Neurodegenerative diseases (NDDs) are chronic diseases caused by brain neuron degeneration, requiring systematic integration of risk factors to address their heterogeneity. Established in 2021, Knowledgebase of Risk Factors for Neurodegenerative Diseases (NDDRF) was the first knowledge base to consolidate NDD risk factors. NDDRF 2.0 expands focus to modifiable lifestyle-related factors, enhancing utility for NDD prevention. METHODS Data from the past 4 years were comprehensively updated, while lifestyle factors were manually collected and filtered from 1975 to 2024. Each factor was embedded with International Classification of Diseases codes and clinical stage annotations, and then re-standardized, classified, and annotated in accordance with the Unified Medical Language System Semantic Network. RESULTS NDDRF 2.0 encompasses 1971 risk factors classified under 151 subcategories across 20 NDDs, including 536 lifestyle-related factors covering six major categories and is freely accessible at http://sysbio.org.cn/NDDRF/. DISCUSSION As the first lifestyle-specific and holistic knowledge base for NDDs, NDDRF 2.0 offers structured and deep phenotype information, enabling personalized prevention strategies and clinical decision support. HIGHLIGHTS An enhanced lifestyle-specific and holistic knowledge base (Knowledgebase of Risk Factors for Neurodegenerative Diseases [NDDRF] 2.0) was built for neurodegenerative diseases (NDDs). NDDRF 2.0 provides detailed categorization and deep phenotypes to support targeted NDD prevention. NDDRF 2.0 provides a knowledge-driven resource that facilitates personalized risk assessment and proactive health management. NDDRF 2.0 provides clinicians, researchers, and at-risk populations with knowledge to develop and implement effective risk prevention strategies. NDDRF 2.0 can be used to build chatbots by enhancing large language models in the future.
Collapse
Affiliation(s)
- Cheng Bi
- Department of Neurology and Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Xin Zheng
- Department of Neurology and Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yuxin Zhang
- Department of Neurology and Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | | | - Jie Song
- Department of Neurology and Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Huifang Shang
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Bairong Shen
- Department of Neurology and Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 PMCID: PMC11954810 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
4
|
Vacca S, Suri JS, Saba L. SBM vs VBM for highlighting similarities and differences between chronotype and Parkinson's MRI scans: a preliminary analysis. Int J Neurosci 2025; 135:203-212. [PMID: 38064505 DOI: 10.1080/00207454.2023.2292958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 02/04/2025]
Abstract
OBJECTIVE Voxel-Based Morphometry (VBM) and Source-Based Morphometry (SBM) are widely used techniques for analyzing structural Magnetic Resonance Imaging (MRI) data. VBM compares differences in gray and white matter volume, density, or concentration voxel-wise, while SBM identifies patterns of structural variation using independent component analysis. This study aims to compare the performance of VBM and SBM in detecting differences in brain structure across Parkinson's patients and healthy controls, grouped based on their chronotype. METHODS Thirty-three subjects were divided into three groups: a Parkinson's Group (PG), an Early Chronotype Group (EG), and a Late Chronotype Group (LG). Circadian preference, daytime sleepiness, and sleep quality were assessed, and MRI data were acquired using a 3 T scanner. SBM and VBM were used to test differences and similarities in MRI scans and chronotypes. RESULTS Results from SBM revealed significant clusters surviving the analysis, with the 1st component for the PG-EG and the 4th component for the PG-LG analysis showing the lowest p-value (< 0.05). Denser gray matter volume (GMV) or white matter volume (WMV) was observed in the Middle Frontal Gyrus and the Lentiform Nucleus through Talairach Coordinates analysis. CONCLUSIONS This study emphasizes the importance of selecting appropriate methods for analyzing structural MRI data. VBM is effective in identifying local differences in brain structure, while SBM provides a more comprehensive view of structural variation, detecting patterns not captured by VBM. Future studies should consider utilizing both VBM and SBM to fully characterize brain structural differences in diverse clinical and cognitive populations. Further studies, with larger sample sizes and more balanced genders, genomic analysis, disease severity and duration, as well as medications' effect, are warranted.
Collapse
Affiliation(s)
- Sebastiano Vacca
- School of Medicine and Surgery, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, United States and Advanced Knowledge Engineering Centre, Global Biomedical Technologies Inc. (GBTI), Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), Cagliari, Italy
| |
Collapse
|
5
|
Yin Z, Yang Z, Liu Y, Zhao L, Liang F. Oxidative stress and neurodegenerative diseases: a bidirectional Mendelian randomization study. Nutr Neurosci 2025; 28:107-115. [PMID: 38753998 DOI: 10.1080/1028415x.2024.2352195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Oxidative stress (OS) has been linked to neurodegenerative diseases in numerous epidemiological studies; however, whether it is a pathogenesis or a downstream factor remains controversial. METHODS A two-sample bidirectional Mendelian randomization (MR) analysis was implemented to examine evidence of causality of 15 OS injury markers with 3 major neurodegenerative diseases using available genome-wide association studies statistics. As a main approach, inverse-variance weighted (IVW) analysis was performed. The weighted-median (WM) analysis was used to validate the relationship. In order to investigate the existence of horizontal pleiotropy and correct the IVW estimate, the Radial MR approach was applied. To gauge the consistency and robustness of the findings, several sensitivity and pleiotropy analyses were used. For this analysis, p < 0.05 indicates a nominally causal association; according to the Bonferroni correction test, p < 0.0011 indicates a statistically significant causal association. RESULTS Via IVW and WM, in directional MR, it was genetically predicted that zinc was nominally causally correlated with the risk of Parkinson's disease but not after Bonferroni correction test; alpha-tocopherol was nominally causally correlated with the risk of Amyotrophic lateral sclerosis (ALS) but not after Bonferroni correction test; furthermore, in reverse MR, it was genetically predicted that Alzheimer's disease was causally correlated with uric acid but not after Bonferroni correction test. These above findings were stable across sensitivity and pleiotropy analyses. CONCLUSIONS Based on the current study, there is no authentic genetic causal association between OS biomarkers and neurodegenerative diseases. The complex relationship is required to be confirmed in future experimental research.
Collapse
Affiliation(s)
- Zihan Yin
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, People's Republic of China
| | - Zuoqin Yang
- Acupuncture Department, Traditional Chinese Medicine Hospital of Pidu district, Chengdu, People's Republic of China
| | - Yiwei Liu
- Rehabilitation Department, the West China Hospital, Chengdu, People's Republic of China
| | - Ling Zhao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, People's Republic of China
| | - Fanrong Liang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Cajochen C, Schmidt C. The Circadian Brain and Cognition. Annu Rev Psychol 2025; 76:115-141. [PMID: 39441908 DOI: 10.1146/annurev-psych-022824-043825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Circadian rhythms are inherent to living organisms from single cells to humans and operate on a genetically determined cycle of approximately 24 hours. These endogenous rhythms are aligned with the external light/dark cycle of the Earth's rotation and offer the advantage of anticipating environmental changes. Circadian rhythms act directly on human cognition and indirectly through their fundamental influence on sleep/wake cycles. The strength of the circadian regulation of performance depends on the accumulated sleep debt and the cognitive domain, and it has been suggested to involve the activation of ascending arousal systems and their interaction with attention and other cognitive processes. In addition, attention-related cortical responses show extensive circadian rhythms, the phases of which vary across brain regions. This review discusses the impact of the circadian system on sleep/wake regulation and cognitive performance. It further addresses the health implications of circadian disruption, particularly in relation to mental and neurological disorders.
Collapse
Affiliation(s)
- Christian Cajochen
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel, Switzerland
- Centre for Chronobiology, Department for Adult Psychiatry, Psychiatric Hospital of the University of Basel, Basel, Switzerland;
| | - Christina Schmidt
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
- Sleep & Chronobiology Laboratory, GIGA-Research, CRC Human Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Cavaillès C, Andrews SJ, Leng Y, Chatterjee A, Daghlas I, Yaffe K. Causal Associations of Sleep Apnea With Alzheimer Disease and Cardiovascular Disease: A Bidirectional Mendelian Randomization Analysis. J Am Heart Assoc 2024; 13:e033850. [PMID: 39258525 PMCID: PMC11935638 DOI: 10.1161/jaha.123.033850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/26/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Sleep apnea (SA) has been linked to an increased risk of dementia in numerous observational studies; whether this is driven by neurodegenerative, vascular, or other mechanisms is not clear. We sought to examine the bidirectional causal relationships between SA, Alzheimer disease (AD), coronary artery disease (CAD), and ischemic stroke using Mendelian randomization. METHODS AND RESULTS Using summary statistics from 4 recent, large genome-wide association studies of SA (n=523 366), AD (n=94 437), CAD (n=1 165 690), and stroke (n=1 308 460), we conducted bidirectional 2-sample Mendelian randomization analyses. Our primary analytic method was fixed-effects inverse variance-weighted (IVW) Mendelian randomization; diagnostics tests and sensitivity analyses were conducted to verify the robustness of the results. We identified a significant causal effect of SA on the risk of CAD (odds ratio [ORIVW]=1.35 per log-odds increase in SA liability [95% CI=1.25-1.47]) and stroke (ORIVW=1.13 [95% CI=1.01-1.25]). These associations were somewhat attenuated after excluding single-nucleotide polymorphisms associated with body mass index (ORIVW=1.26 [95% CI=1.15-1.39] for CAD risk; ORIVW=1.08 [95% CI=0.96-1.22] for stroke risk). SA was not causally associated with a higher risk of AD (ORIVW=1.14 [95% CI=0.91-1.43]). We did not find causal effects of AD, CAD, or stroke on risk of SA. CONCLUSIONS These results suggest that SA increased the risk of CAD, and the identified causal association with stroke risk may be confounded by body mass index. Moreover, no causal effect of SA on AD risk was found. Future studies are warranted to investigate cardiovascular pathways between sleep disorders, including SA, and dementia.
Collapse
Affiliation(s)
- Clémence Cavaillès
- Department of Psychiatry and Behavioral SciencesUniversity of California San FranciscoSan FranciscoCA
| | - Shea J. Andrews
- Department of Psychiatry and Behavioral SciencesUniversity of California San FranciscoSan FranciscoCA
| | - Yue Leng
- Department of Psychiatry and Behavioral SciencesUniversity of California San FranciscoSan FranciscoCA
| | | | - Iyas Daghlas
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCA
| | - Kristine Yaffe
- Department of Psychiatry and Behavioral SciencesUniversity of California San FranciscoSan FranciscoCA
- San Francisco Veterans Affairs Health Care SystemSan FranciscoCA
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCA
- Department of EpidemiologyUniversity of California San FranciscoSan FranciscoCA
| |
Collapse
|
8
|
Xiong Y, Tvedt J, Åkerstedt T, Cadar D, Wang HX. Impact of sleep duration and sleep disturbances on the incidence of dementia and Alzheimer's disease: A 10-year follow-up study. Psychiatry Res 2024; 333:115760. [PMID: 38301285 DOI: 10.1016/j.psychres.2024.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
The nature of the relationship between sleep problems and dementia remains unclear. This study investigated the relationship between sleep measures and dementia in older adults (≥ 65) using data from the English Longitudinal Study of Ageing (ELSA) and further investigated the causal association in Mendelian randomization (MR) analysis. In total of 7,223 individuals, 5.7 % developed dementia (1.7 % Alzheimer's disease (AD)) within an average of 8 (± 2.9) years. Cox regression models and MR were employed. Long sleep duration (>8 h) was associated with 64 % increased risk of incident dementia and 2-fold high risk of AD compared to ideal sleep duration (7-8 h). This association was particularly evident in older-older adults (≥70 years) and those who consumed alcohol. Short sleep duration (<7 h) was associated with lower risk of incident dementia among older-older but higher risk among younger-older adults. Sleep disturbances and perceived sleep quality were not associated with dementia or AD. The MR study did not reveal causal associations between sleep duration and dementia. These findings suggest that self-reported short sleep in younger-older and long sleep in older-older adults and those with frequent alcohol consumption are associated with dementia. Early detection of these sleep patterns may help identify individuals at higher dementia risk.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Tvedt
- Division of Psychobiology and Epidemiology, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Torbjörn Åkerstedt
- Division of Psychobiology and Epidemiology, Department of Psychology, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dorina Cadar
- Centre for Dementia Studies, Department of Neuroscience, Brighton and Sussex Medical School, Brighton, United Kingdom; Department of Behavioural Science and Health, University College London, London, United Kingdom
| | - Hui-Xin Wang
- Division of Psychobiology and Epidemiology, Department of Psychology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
9
|
Fei CJ, Li ZY, Ning J, Yang L, Wu BS, Kang JJ, Liu WS, He XY, You J, Chen SD, Yu H, Huang ZL, Feng JF, Yu JT, Cheng W. Exome sequencing identifies genes associated with sleep-related traits. Nat Hum Behav 2024; 8:576-589. [PMID: 38177695 DOI: 10.1038/s41562-023-01785-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024]
Abstract
Sleep is vital for human health and has a moderate heritability. Previous genome-wide association studies have limitations in capturing the role of rare genetic variants in sleep-related traits. Here we conducted a large-scale exome-wide association study of eight sleep-related traits (sleep duration, insomnia symptoms, chronotype, daytime sleepiness, daytime napping, ease of getting up in the morning, snoring and sleep apnoea) among 450,000 participants from UK Biobank. We identified 22 new genes associated with chronotype (ADGRL4, COL6A3, CLK4 and KRTAP3-3), daytime sleepiness (ST3GAL1 and ANKRD12), daytime napping (PLEKHM1, ANKRD12 and ZBTB21), snoring (WDR59) and sleep apnoea (13 genes). Notably, 20 of these genes were confirmed to be significantly associated with sleep disorders in the FinnGen cohort. Enrichment analysis revealed that these discovered genes were enriched in circadian rhythm and central nervous system neurons. Phenotypic association analysis showed that ANKRD12 was associated with cognition and inflammatory traits. Our results demonstrate the value of large-scale whole-exome analysis in understanding the genetic architecture of sleep-related traits and potential biological mechanisms.
Collapse
Affiliation(s)
- Chen-Jie Fei
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Yu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Jing Ning
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huan Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| |
Collapse
|
10
|
Keenan RJ, Daykin H, Metha J, Cornthwaite-Duncan L, Wright DK, Clarke K, Oberrauch S, Brian M, Stephenson S, Nowell CJ, Allocca G, Barnham KJ, Hoyer D, Jacobson LH. Orexin 2 receptor antagonism sex-dependently improves sleep/wakefulness and cognitive performance in tau transgenic mice. Br J Pharmacol 2024; 181:87-106. [PMID: 37553894 DOI: 10.1111/bph.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Tau pathology contributes to a bidirectional relationship between sleep disruption and neurodegenerative disease. Tau transgenic rTg4510 mice model tauopathy symptoms, including sleep/wake disturbances, which manifest as marked hyperarousal. This phenotype can be prevented by early transgene suppression; however, whether hyperarousal can be rescued after onset is unknown. EXPERIMENTAL APPROACH Three 8-week experiments were conducted with wild-type and rTg4510 mice after age of onset of hyperarousal (4.5 months): (1) Tau transgene suppression with doxycycline (200 ppm); (2) inactive phase rapid eye movement (REM) sleep enhancement with the dual orexin receptor antagonist suvorexant (50 mg·kg-1 ·day-1 ); or (3) Active phase non-NREM (NREM) and REM sleep enhancement using the selective orexin 2 (OX2 ) receptor antagonist MK-1064 (40 mg·kg-1 ·day-1 ). Sleep was assessed using polysomnography, cognition using the Barnes maze, and tau pathology using immunoblotting and/or immunohistochemistry. KEY RESULTS Tau transgene suppression improved tauopathy and hippocampal-dependent spatial memory, but did not modify hyperarousal. Pharmacological rescue of REM sleep deficits did not improve spatial memory or tau pathology. In contrast, normalising hyperarousal by increasing both NREM and REM sleep via OX2 receptor antagonism restored spatial memory, independently of tauopathy, but only in male rTg4510 mice. OX2 receptor antagonism induced only short-lived hypnotic responses in female rTg4510 mice and did not improve spatial memory, indicating a tau- and sex-dependent disruption of OX2 receptor signalling. CONCLUSIONS AND IMPLICATIONS Pharmacologically reducing hyperarousal corrects tau-induced sleep/wake and cognitive deficits. Tauopathy causes sex-dependent disruptions of OX2 receptor signalling/function, which may have implications for choice of hypnotic therapeutics in tauopathies.
Collapse
Affiliation(s)
- Ryan J Keenan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Daykin
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy Metha
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Finance, Faculty of Business and Economics, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda Cornthwaite-Duncan
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kyra Clarke
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sara Oberrauch
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Maddison Brian
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Stephenson
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Giancarlo Allocca
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Somnivore Inc. Ltd Pty, Bacchus Marsh, Victoria, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Paz V, Dashti HS, Burgess S, Garfield V. Selection of genetic instruments in Mendelian randomisation studies of sleep traits. Sleep Med 2023; 112:342-351. [PMID: 37956646 PMCID: PMC7615498 DOI: 10.1016/j.sleep.2023.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
This review explores the criteria used for the selection of genetic instruments of sleep traits in the context of Mendelian randomisation studies. This work was motivated by the fact that instrument selection is the most important decision when designing a Mendelian randomisation study. As far as we are aware, no review has sought to address this to date, even though the number of these studies is growing rapidly. The review is divided into the following sections which are essential for genetic instrument selection: 1) Single-gene region vs polygenic analysis; 2) Polygenic analysis: biologically-vs statistically-driven approaches; 3) P-value; 4) Linkage disequilibrium clumping; 5) Sample overlap; 6) Type of exposure; 7) Total (R2) and average strength (F-statistic) metrics; 8) Number of single-nucleotide polymorphisms; 9) Minor allele frequency and palindromic variants; 10) Confounding. Our main aim is to discuss how instrumental choice impacts analysis and compare the strategies that Mendelian randomisation studies of sleep traits have used. We hope that our review will enable more researchers to take a more considered approach when selecting genetic instruments for sleep exposures.
Collapse
Affiliation(s)
- Valentina Paz
- Instituto de Psicología Clínica, Facultad de Psicología, Universidad de la República, Tristán Narvaja, 1674, Montevideo, 11200, Uruguay; MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK.
| | - Hassan S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA; Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Edwards 4-410C, Boston, MA, 02114, USA
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK; Department of Public Health and Primary Care, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK
| | - Victoria Garfield
- MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| |
Collapse
|
12
|
Li T, Xie Y, Tao S, Zou L, Yang Y, Tao F, Wu X. Prospective study of the association between chronotype and cardiometabolic risk among Chinese young adults. BMC Public Health 2023; 23:1966. [PMID: 37821856 PMCID: PMC10566129 DOI: 10.1186/s12889-023-16902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND The association of evening chronotype with cardiometabolic disease has been well established. However, the extent to which circadian rhythm disturbances independently result in risk remains unclear. This study aimed to investigate the cross-sectional and prospective longitudinal associations between chronotype and cardiometabolic risk among Chinese young adults. METHODS From April to May 2019, a total of 1 135 young adults were selected to complete the self-administered questionnaire, and 744 fasting blood samples were collected to quantify cardiometabolic parameters. From April to May 2021, 340 fasting blood samples were collected to quantify cardiometabolic parameters. The Morning and Evening Questionnaire 5 (MEQ-5) was used to assess chronotype. The cardiometabolic (CM)-risk score was the sum of standardized Z scores based on gender for the 5 indicators: waist circumference (WC), mean arterial pressure (MAP), triglyceride (TG), homeostasis model assessment for insulin resistance (HOMA-IR), and high-density lipoprotein cholesterol (HDL-C), where the HDL-C is multiplied by-1. The generalized linear model was used to determine the cross-sectional and prospective longitudinal associations between chronotype and each cardiometabolic parameter. RESULTS Cross-sectional association analysis showed that lower MEQ-5 scores were correlated with higher fasting insulin (β=-1.420, 95%CI: -2.386~-0.453), higher HOMA-IR (β=-0.301, 95%CI: -0.507~-0.095), and higher CM risk score (β=-0.063, 95%CI: -0.122~-0.003), even after adjustment for covariates. Prospective longitudinal association analysis also showed that lower MEQ-5 scores were associated with 2 years later higher fasting glucose (β=-0.018, 95%CI: -0.034~-0.003), higher fasting insulin (β=-0.384, 95%CI: -0.766~-0.003), higher HOMA-IR (β=-0.089, 95%CI: -0.176~-0.002), and higher CM-risk score (β=-0.109, 95%CI: -0.214~-0.003) after adjustment for covariates. CONCLUSIONS Evening chronotype was significantly correlated with higher CM risk among young adults. Our findings suggest that biologically and socially affected sleep timing misalignment is a contributing factor to cardiovascular disease risk.
Collapse
Affiliation(s)
- Tingting Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yang Xie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Shuman Tao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Liwei Zou
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yajuan Yang
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, 230601, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
13
|
Paz V, Dashti HS, Garfield V. Is there an association between daytime napping, cognitive function, and brain volume? A Mendelian randomization study in the UK Biobank. Sleep Health 2023; 9:786-793. [PMID: 37344293 DOI: 10.1016/j.sleh.2023.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES Daytime napping has been associated with cognitive function and brain health in observational studies. However, it remains elusive whether these associations are causal. Using Mendelian randomization, we studied the relationship between habitual daytime napping and cognition and brain structure. METHODS Data were from UK Biobank (maximum n = 378,932 and mean age = 57 years). Our exposure (daytime napping) was instrumented using 92 previously identified genome-wide, independent genetic variants (single-nucleotide polymorphisms, SNPs). Our outcomes were total brain volume, hippocampal volume, reaction time, and visual memory. Inverse-variance weighted was implemented, with sensitivity analyses (Mendelian randomization-Egger and Weighted Median Estimator) for horizontal pleiotropy. We tested different daytime napping instruments to ensure the robustness of our results. RESULTS Using Mendelian randomization, we found an association between habitual daytime napping and larger total brain volume (unstandardized ß = 15.80 cm3 and 95% CI = 0.25; 31.34) but not hippocampal volume (ß = -0.03 cm3 and 95% CI = -0.13;0.06), reaction time (expß = 1.01 and 95% CI = 1.00;1.03), or visual memory (expß = 0.99 and 95% CI = 0.94;1.05). Additional analyses with 47 SNPs (adjusted for excessive daytime sleepiness), 86 SNPs (excluding sleep apnea), and 17 SNPs (no sample overlap with UK Biobank) were largely consistent with our main findings. No evidence of horizontal pleiotropy was found. CONCLUSIONS Our findings suggest a modest causal association between habitual daytime napping and larger total brain volume. Future studies could focus on the associations between napping and other cognitive or brain outcomes and replication of these findings using other datasets and methods.
Collapse
Affiliation(s)
- Valentina Paz
- Instituto de Psicología Clínica, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay; MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, London, UK.
| | - Hassan S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute, Merkin Building, Cambridge, MA, USA; Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Victoria Garfield
- MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
14
|
Thangaleela S, Sivamaruthi BS, Kesika P, Mariappan S, Rashmi S, Choeisoongnern T, Sittiprapaporn P, Chaiyasut C. Neurological Insights into Sleep Disorders in Parkinson's Disease. Brain Sci 2023; 13:1202. [PMID: 37626558 PMCID: PMC10452387 DOI: 10.3390/brainsci13081202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a common multidimensional neurological disorder characterized by motor and non-motor features and is more prevalent in the elderly. Sleep disorders and cognitive disturbances are also significant characteristics of PD. Sleep is an important physiological process for normal human cognition and physical functioning. Sleep deprivation negatively impacts human physical, mental, and behavioral functions. Sleep disturbances include problems falling asleep, disturbances occurring during sleep, abnormal movements during sleep, insufficient sleep, and excessive sleep. The most recognizable and known sleep disorders, such as rapid-eye-movement behavior disorder (RBD), insomnia, excessive daytime sleepiness (EDS), restless legs syndrome (RLS), sleep-related breathing disorders (SRBDs), and circadian-rhythm-related sleep-wake disorders (CRSWDs), have been associated with PD. RBD and associated emotional disorders are common non-motor symptoms of PD. In individuals, sleep disorders and cognitive impairment are important prognostic factors for predicting progressing neurodegeneration and developing dementia conditions in PD. Studies have focused on RBD and its associated neurological changes and functional deficits in PD patients. Other risks, such as cognitive decline, anxiety, and depression, are related to RBD. Sleep-disorder diagnosis is challenging, especially in identifying the essential factors that disturb the sleep-wake cycle and the co-existence of other concomitant sleep issues, motor symptoms, and breathing disorders. Focusing on sleep patterns and their disturbances, including genetic and other neurochemical changes, helps us to better understand the central causes of sleep alterations and cognitive functions in PD patients. Relations between α-synuclein aggregation in the brain and gender differences in sleep disorders have been reported. The existing correlation between sleep disorders and levels of α-synuclein in the cerebrospinal fluid indicates the risk of progression of synucleinopathies. Multidirectional approaches are required to correlate sleep disorders and neuropsychiatric symptoms and diagnose sensitive biomarkers for neurodegeneration. The evaluation of sleep pattern disturbances and cognitive impairment may aid in the development of novel and effective treatments for PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Subramanian Rashmi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| |
Collapse
|
15
|
Yin Z, Chen J, Xia M, Zhang X, Li Y, Chen Z, Bao Q, Zhong W, Yao J, Wu K, Zhao L, Liang F. Assessing causal relationship between circulating cytokines and age-related neurodegenerative diseases: a bidirectional two-sample Mendelian randomization analysis. Sci Rep 2023; 13:12325. [PMID: 37516812 PMCID: PMC10387057 DOI: 10.1038/s41598-023-39520-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023] Open
Abstract
Numerous studies have reported that circulating cytokines (CCs) are linked to age-related neurodegenerative diseases (ANDDs); however, there is a lack of systematic investigation for the causal association. A two-sample bidirectional Mendelian Randomisation (MR) method was utilized to evaluate the causal effect. We applied genetic variants correlated with concentrations of CCs from a genome-wide association study meta-analysis (n = 8293) as instrumental variables. Summary data of three major ANDDs [Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS)] were identified from the IEU OpenGWAS platform (n = 627, 266). Inverse-variance weighted method is the main approach to analyse causal effect, and MR results are verified by several sensitivity and pleiotropy analyses. In directional MR, it suggested that several CCs were nominally correlated with the risk of ANDDs, with a causal odds ratio (OR) of Interleukin (IL)-5 of 0.909 for AD; OR of IL-2 of 1.169 for PD; and OR of Beta nerve growth factor of 1.142 for ALS). In reverse MR, there were some suggestively causal effects of ANDDs on CCs (AD on increased Basic fibroblast growth factor and IL-12 and decreased Stem cell growth factor beta; PD on decreased Monokine induced by interferon-gamma; ALS on decreased Basic fibroblast growth factor and IL-17). The findings were stable across sensitivity and pleiotropy analyses. However, after Bonferroni correction, there is no statistically significant association between CCs and ANDDs. Through the genetic epidemiological approach, our study assessed the role and presented possible causal associations between CCs and ANDDs. Further studies are warranted to verify the causal associations.
Collapse
Affiliation(s)
- Zihan Yin
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Jiao Chen
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Manze Xia
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Xinyue Zhang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Yaqin Li
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Zhenghong Chen
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Qiongnan Bao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Wanqi Zhong
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Jin Yao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Kexin Wu
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Ling Zhao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China.
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China.
| | - Fanrong Liang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China.
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China.
| |
Collapse
|
16
|
Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener 2023; 12:8. [PMID: 36782262 PMCID: PMC9926748 DOI: 10.1186/s40035-023-00340-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at multiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neurodegenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclinical and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize circadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep disorders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidirectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.
Collapse
|
17
|
Strizhitskaya O, Petrash M, Golubitskaya D, Kuzmina M, Krupina K, Shchukin A, Engelgardt E. Futurization of Aging: Subjective Beliefs and Effects. Behav Sci (Basel) 2022; 13:bs13010004. [PMID: 36661576 PMCID: PMC9855098 DOI: 10.3390/bs13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Aging in the face of an increasing population and growing life expectancy is considered one of the major demographic challenges in modern society. Previous research has revealed that quality of life in aging could significantly differ depending on the resources one possesses. However, little attention has been given to the mechanisms of formation of these resources and the role of intentionality. In the present study, we identified 22 strategies that favor a better life quality in aging and analyzed them from the perspective of subjective beliefs and reported performance. Our sample was adults (n = 72) aged 57-65, living in St. Petersburg, Russia. The results showed that although participants were aware of the strategies that favor aging, their reported performance ranged on a scale from average to infrequent use of these strategies. We found that subjective beliefs about the role of psychological resources for better aging predicted higher scores on subjective beliefs about the role of lifestyle resources and the reported performance of psychological resources. Our results suggest that there is a gap between subjective beliefs about the controllability of aging processes and the transformation of these beliefs into real performance.
Collapse
|
18
|
SIRT1 activation and its circadian clock control: a promising approach against (frailty in) neurodegenerative disorders. Aging Clin Exp Res 2022; 34:2963-2976. [DOI: 10.1007/s40520-022-02257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/14/2022] [Indexed: 11/01/2022]
|
19
|
Sonti S, Grant SFA. Leveraging genetic discoveries for sleep to determine causal relationships with common complex traits. Sleep 2022; 45:zsac180. [PMID: 35908176 PMCID: PMC9548675 DOI: 10.1093/sleep/zsac180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/16/2022] [Indexed: 01/04/2023] Open
Abstract
Sleep occurs universally and is a biological necessity for human functioning. The consequences of diminished sleep quality impact physical and physiological systems such as neurological, cardiovascular, and metabolic processes. In fact, people impacted by common complex diseases experience a wide range of sleep disturbances. It is challenging to uncover the underlying molecular mechanisms responsible for decreased sleep quality in many disease systems owing to the lack of suitable sleep biomarkers. However, the discovery of a genetic component to sleep patterns has opened a new opportunity to examine and understand the involvement of sleep in many disease states. It is now possible to use major genomic resources and technologies to uncover genetic contributions to many common diseases. Large scale prospective studies such as the genome wide association studies (GWAS) have successfully revealed many robust genetic signals associated with sleep-related traits. With the discovery of these genetic variants, a major objective of the community has been to investigate whether sleep-related traits are associated with disease pathogenesis and other health complications. Mendelian Randomization (MR) represents an analytical method that leverages genetic loci as proxy indicators to establish causal effect between sleep traits and disease outcomes. Given such variants are randomly inherited at birth, confounding bias is eliminated with MR analysis, thus demonstrating evidence of causal relationships that can be used for drug development and to prioritize clinical trials. In this review, we outline the results of MR analyses performed to date on sleep traits in relation to a multitude of common complex diseases.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Human Genetics and Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
20
|
Li S, Liu B, Li QH, Zhang Y, Zhang H, Gao S, Wang L, Wang T, Han Z, Liu G, Wang K. Evaluating the Bidirectional Causal Association Between Daytime Napping and Alzheimer’s Disease Using Mendelian Randomization. J Alzheimers Dis 2022; 89:1315-1322. [DOI: 10.3233/jad-220497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Until now, both cross-sectional and longitudinal studies have identified controversial findings about the association between daytime napping and Alzheimer’s disease (AD) or cognitive decline. Therefore, it remains unclear about the causal association between daytime napping and AD or cognitive decline. Objective: We aim to investigate the causal association between daytime napping and AD. Methods: Here, we conduct a bidirectional Mendelian randomization (MR) analysis to investigate the causal association between daytime napping and AD using large-scale GWAS datasets from daytime napping including 452,633 individuals of European ancestry and AD including 35,274 AD and 59,163 controls of European ancestry. A total of five MR methods are selected including inverse-variance weighted (IVW), weighted median, MR-Egger, MR-PRESSO, and contamination mixture method. Results: MR analysis highlights significant causal association of AD with daytime napping using IVW (beta = -0.006, 95% CI [–0.009, –0.002], p = 2.00E-03), but no significant causal association of daytime napping with AD using IVW (OR = 0.76, 95% CI 0.53-1.10, p = 1.40E-01). Conclusion: Our bidirectional MR analysis demonstrates the causal effect of AD on daytime napping. However, there is no causal effect of daytime napping on AD. Our current findings are consistent with recent evidence from other MR studies that highlight little evidence supporting a causal effect of sleep traits on AD and support the causal effect of AD on sleep traits.
Collapse
Affiliation(s)
- Sijie Li
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Centerfor Brain Disorders, Capital Medical University, Beijing, China
| | - Bian Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qing-hao Li
- Children’s Center, the Affiliated Taian City Centeral Hospital of Qingdao University, Taian, Shandong, China
| | - Yan Zhang
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Haihua Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Centerfor Brain Disorders, Capital Medical University, Beijing, China
| | - Shan Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Centerfor Brain Disorders, Capital Medical University, Beijing, China
| | - Longcai Wang
- Department of Anesthesiology, TheAffiliated Hospital of Weifang Medical University, Weifang, China
| | - Tao Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Zhifa Han
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy ofMedical Sciences, Beijing, China
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Centerfor Brain Disorders, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Key Laboratoryof Cerebral Microcirculation in Universities of Shandong; Departmentof Neurology, Second Affiliated Hospital; Shandong First MedicalUniversity & Shandong Academy of Medical Sciences, Taian, Shandong, China
- Beijing Key Laboratory of HypoxiaTranslational Medicine, National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Wang
- Children’s Center, the Affiliated Taian City Centeral Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
21
|
Di H, Zhu Y, Xia W, Meng X, Zhang M, Xu M, Feng J, Tian Q, He Y, Cao S, Lu Z. Bidirectional Mendelian randomization to explore the causal relationships between Sleep traits, Parkinson's disease and Amyotrophic lateral sclerosis. Sleep Med 2022; 96:42-49. [PMID: 35594779 DOI: 10.1016/j.sleep.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/22/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Sleep disturbances have been linked with Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS) in observational studies, and the comorbidity of PD and ALS has been reported in clinical case reports, but the causalities remain unclear. This study aims to examine bidirectional causal relationships between sleep traits, PD and ALS. METHODS Bidirectional two sample Mendelian randomisation (MR) analyses were conducted, with data from individuals of mainly European ancestry. Genetic instruments were obtained from the largest published genome-wide association studies (GWAS) concerning various sleep traits, PD and ALS. MR estimates from each genetic instrument were combined by inverse variance weighted method, with alternate methods (eg, weighted median, MR Egger, MR-PRESSO) and statistical graphs to assess horizontal pleiotropy and remove outliers. RESULTS MR analysis failed to observe any causal association between sleep disorders and PD, but found a possible causal effect of PD risk on ALS risk (odds ratio [OR] = 1.07; 95% CI: 1.01-1.14, P < 0.01), albeit with a horizontal pleiotropy. Furthermore, MR analyses indicated that excessive daytime sleepiness (EDS) (OR = 2.29; 95% CI: 1.04-5.03, P = 0.04) contributed to a modest increase in risk of ALS, but the reverse causalities were not significant. Higher risk of ALS may be associated with being a "morning person" (OR = 1.03, P = 0.02), a longer sleep duration (OR = 1.01, P < 0.01), and a mean of 9 h or more total sleep duration (β = 0.02, P = 0.04). CONCLUSIONS Aided by large-scale GWAS, a shortage of evidence supporting causal relationships of sleep traits and PD risk, while significant evidence supports that EDS, higher PD risk may causally influence ALS risk. Future researches are required to explore the underlying pathological mechanism as well as the clinically significance, and replicate our findings using independent samples when data become available.
Collapse
Affiliation(s)
- Hongkun Di
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zhu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenqi Xia
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Meng
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingye Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minzhi Xu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Feng
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingfeng Tian
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan He
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shiyi Cao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zuxun Lu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Julian TH, Boddy S, Islam M, Kurz J, Whittaker KJ, Moll T, Harvey C, Zhang S, Snyder MP, McDermott C, Cooper-Knock J, Shaw PJ. A review of Mendelian randomization in amyotrophic lateral sclerosis. Brain 2022; 145:832-842. [PMID: 34791088 PMCID: PMC9050546 DOI: 10.1093/brain/awab420] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a relatively common and rapidly progressive neurodegenerative disease that, in the majority of cases, is thought to be determined by a complex gene-environment interaction. Exponential growth in the number of performed genome-wide association studies combined with the advent of Mendelian randomization is opening significant new opportunities to identify environmental exposures that increase or decrease the risk of amyotrophic lateral sclerosis. Each of these discoveries has the potential to shape new therapeutic interventions. However, to do so, rigorous methodological standards must be applied in the performance of Mendelian randomization. We have reviewed Mendelian randomization studies performed in amyotrophic lateral sclerosis to date. We identified 20 Mendelian randomization studies, including evaluation of physical exercise, adiposity, cognitive performance, immune function, blood lipids, sleep behaviours, educational attainment, alcohol consumption, smoking and type 2 diabetes mellitus. We have evaluated each study using gold standard methodology supported by the Mendelian randomization literature and the STROBE-Mendelian randomization checklist. Where discrepancies exist between Mendelian randomization studies, we suggest the underlying reasons. A number of studies conclude that there is a causal link between blood lipids and risk of amyotrophic lateral sclerosis; replication across different datasets and even different populations adds confidence. For other putative risk factors, such as smoking and immune function, Mendelian randomization studies have provided cause for doubt. We highlight the use of positive control analyses in choosing exposure single nucleotide polymorphisms (SNPs) to make up the Mendelian randomization instrument, use of SNP clumping to avoid false positive results due to SNPs in linkage and the importance of multiple testing correction. We discuss the implications of survival bias for study of late age of onset diseases such as amyotrophic lateral sclerosis and make recommendations to mitigate this potentially important confounder. For Mendelian randomization to be useful to the amyotrophic lateral sclerosis field, high methodological standards must be applied to ensure reproducibility. Mendelian randomization is already an impactful tool, but poor-quality studies will lead to incorrect interpretations by a field that includes non-statisticians, wasted resources and missed opportunities.
Collapse
Affiliation(s)
- Thomas H Julian
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sarah Boddy
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mahjabin Islam
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Julian Kurz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Katherine J Whittaker
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Calum Harvey
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher McDermott
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Grover S, Sharma M. Sleep, Pain, and Neurodegeneration: A Mendelian Randomization Study. Front Neurol 2022; 13:765321. [PMID: 35585838 PMCID: PMC9108392 DOI: 10.3389/fneur.2022.765321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Our aim was to determine whether the genetic liability to sleep and pain-related traits have a causal effect on risk of neurodegeneration in individuals of predominantly European ancestry. We selected five neurodegenerative disorders, namely, age-related macular degeneration (AMD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Parkinson's disease (PD). Sleep duration (SD), short sleep (SS), long sleep (LS), chronotype (CHR), morning person (MP), insomnia (INS), and multisite chronic pain (MCP) were considered as exposures. We conducted Mendelian randomization (MR) using an inverse-variance weighted (IVW) method to compute causal effect estimates using latest available GWAS data sets. The MP phenotype was observed as the strongest risk factor for genetic liability to AMD (ORIVW = 1.192; 95% CI 1.078, 1.318, P = 0.0007). We observed suggestive evidence of risky effects of CHR on AMD (P = 0.0034), SS on AD (P = 0.0044), and INS on ALS (P = 0.0123). However, we failed to observe any role of pain. The results were robust on sensitivity analyses. Our study highlighted the role of MP as a risk factor for AMD.
Collapse
Affiliation(s)
- Sandeep Grover
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|