1
|
Dzianok P, Wojciechowski J, Wolak T, Kublik E. Alzheimer's disease-like features in resting state EEG/fMRI of cognitively intact and healthy middle-aged APOE/ PICALM risk carriers. J Alzheimers Dis 2025; 104:509-524. [PMID: 40095677 DOI: 10.1177/13872877251317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundGenetic susceptibility is a primary factor contributing to etiology of late-onset Alzheimer's disease (LOAD). The exact mechanisms and timeline through which APOE/PICALM influence brain functions and contribute to LOAD remain unidentified. This includes their effects on individuals prior to the development of the disease.ObjectiveTo investigate the effects of APOE and PICALM risk genes on brain health and function in non-demented individuals. This study aims to differentiate the combined risk effects of both genes from the risk associated solely with APOE, and to examine how PICALM alleles influence the risk linked to APOE.MethodsAPOE/PICALM alleles were assessed to determine the genetic risk of LOAD in 79 healthy, middle-aged participants who underwent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. The resting-state signal was analyzed to estimate relative spectral power, complexity (Higuchi's algorithm), and connectivity (coherence in EEG and independent component analysis-based connectivity in fMRI).ResultsThe main findings indicated that individuals at risk for LOAD exhibited reduced signal complexity and the so-called "slowing of EEG" which are well-known EEG markers of Alzheimer's disease. Additionally, these individuals showed altered functional connectivity in fMRI (within attention-related areas).ConclusionsRisk alleles of APOE/PICALM may affect brain integrity and function prior to the clinical onset of the disease.
Collapse
Affiliation(s)
- Patrycja Dzianok
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Wojciechowski
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Tomasz Wolak
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Ewa Kublik
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Li T, Fili M, Mohammadiarvejeh P, Dawson A, Hu G, Willette AA. Associations of Coffee and Tea Consumption on Neural Network Connectivity: Unveiling the Role of Genetic Factors in Alzheimer's Disease Risk. Nutrients 2024; 16:4303. [PMID: 39770924 PMCID: PMC11677865 DOI: 10.3390/nu16244303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Coffee and tea are widely consumed beverages, but their long-term effects on cognitive function and aging remain largely unexplored. Lifestyle interventions, particularly dietary habits, offer promising strategies for enhancing cognitive performance and preventing cognitive decline. METHODS This study utilized data from the UK Biobank cohort (n = 12,025) to examine the associations between filtered coffee, green tea, and standard tea consumption and neural network functional connectivity across seven resting-state networks. We focused on networks spanning prefrontal and occipital areas that are linked to complex cognitive and behavioral functions. Linear mixed models were used to assess the main effects of coffee and tea consumption, as well as their interactions with Apolipoprotein E (APOE) genetic risk-the strongest genetic risk factor for Alzheimer's disease (AD). RESULTS Higher filtered coffee consumption was associated with increased functional connectivity in several networks, including Motor Execution, Sensorimotor, Fronto-Cingular, and a Prefrontal + 'What' Pathway Network. Similarly, greater green tea intake was associated with enhanced connectivity in the Extrastriate Visual and Primary Visual Networks. In contrast, higher standard tea consumption was linked to reduced connectivity in networks such as Memory Consolidation, Motor Execution, Fronto-Cingular, and the "What" Pathway + Prefrontal Network. The APOE4 genotype and family history of AD influenced the relationship between coffee intake and connectivity in the Memory Consolidation Network. Additionally, the APOE4 genotype modified the association between standard tea consumption and connectivity in the Sensorimotor Network. CONCLUSIONS The distinct patterns of association between coffee, green tea, and standard tea consumption and resting-state brain activity may provide insights into AD-related brain changes. The APOE4 genotype, in particular, appears to play a significant role in modulating these relationships. These findings enhance our knowledge of how commonly consumed beverages may influence cognitive function and potentially AD risk among older adults.
Collapse
Affiliation(s)
- Tianqi Li
- Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA;
| | - Mohammad Fili
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
| | - Parvin Mohammadiarvejeh
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA
| | - Alice Dawson
- Chestnut Health Systems, Lighthouse Institute, Chicago, IL 60610, USA;
| | - Guiping Hu
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
| | - Auriel A. Willette
- Department of Neurology, Rutgers University, New Brunswick, NJ 08854, USA
| |
Collapse
|
3
|
Honea RA, Wilkins H, Hunt SL, Kueck PJ, Burns JM, Swerdlow RH, Morris JK. TOMM40 may mediate GFAP, neurofilament light Protein, pTau181, and brain morphometry in aging. AGING BRAIN 2024; 7:100134. [PMID: 39760103 PMCID: PMC11699468 DOI: 10.1016/j.nbas.2024.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
A growing amount of data has implicated the TOMM40 gene in the risk for Alzheimer's disease (AD), neurodegeneration, and accelerated aging. No studies have investigated the relationship of TOMM40 rs2075650 ('650) on the structural complexity of the brain or plasma markers of neurodegeneration. We used a comprehensive approach to quantify the impact of TOMM40 '650 on brain morphology and multiple cortical attributes in cognitively unimpaired (CU) individuals. We also tested whether the presence of the risk allele, G, of TOMM40 '650 was associated with plasma markers of amyloid, tau, and neurodegeneration and if there were interactions with age and sex, controlling for the effects of APOE ε4. We found that the TOMM40 '650 G-allele was associated with decreased sulcal depth, increased gyrification index, and decreased gray matter volume. NfL, GFAP, and pTau181 had independent and age-associated increases in individuals with a G-allele. Our data suggest that TOMM40 '650 is associated with aging-related plasma biomarkers and brain structure variation in temporal-limbic circuits.
Collapse
Affiliation(s)
- Robyn A. Honea
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Heather Wilkins
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Suzanne L. Hunt
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Paul J. Kueck
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jill K. Morris
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
4
|
Du Y, Yuan Z, Sui J, Calhoun VD. Common and unique brain aging patterns between females and males quantified by large-scale deep learning. Hum Brain Mapp 2024; 45:e70005. [PMID: 39225381 PMCID: PMC11369911 DOI: 10.1002/hbm.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
There has been extensive evidence that aging affects human brain function. However, there is no complete picture of what brain functional changes are mostly related to normal aging and how aging affects brain function similarly and differently between males and females. Based on resting-state brain functional connectivity (FC) of 25,582 healthy participants (13,373 females) aged 49-76 years from the UK Biobank project, we employ deep learning with explainable AI to discover primary FCs related to progressive aging and reveal similarity and difference between females and males in brain aging. Using a nested cross-validation scheme, we conduct 4200 deep learning models to classify all paired age groups on the main data for females and males separately and then extract gender-common and gender-specific aging-related FCs. Next, we validate those FCs using additional 21,000 classifiers on the independent data. Our results support that aging results in reduced brain functional interactions for both females and males, primarily relating to the positive connectivity within the same functional domain and the negative connectivity between different functional domains. Regions linked to cognitive control show the most significant age-related changes in both genders. Unique aging effects in males and females mainly involve the interaction between cognitive control and the default mode, vision, auditory, and frontoparietal domains. Results also indicate females exhibit faster brain functional changes than males. Overall, our study provides new evidence about common and unique patterns of brain aging in females and males.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information TechnologyShanxi UniversityTaiyuanChina
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data ScienceGeorgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Zhen Yuan
- School of Computer and Information TechnologyShanxi UniversityTaiyuanChina
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data ScienceGeorgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
5
|
Li T, Steibel JP, Willette AA. Vitamin B6, B12, and Folate's Influence on Neural Networks in the UK Biobank Cohort. Nutrients 2024; 16:2050. [PMID: 38999798 PMCID: PMC11243472 DOI: 10.3390/nu16132050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND One-carbon metabolism coenzymes may influence brain aging in cognitively unimpaired adults. METHODS Baseline data were used from the UK Biobank cohort. Estimated intake of vitamin B6, B12, and folate was regressed onto neural network functional connectivity in five resting-state neural networks. Linear mixed models tested coenzyme main effects and interactions with Alzheimer's disease (AD) risk factors. RESULTS Increased B6 and B12 estimated intake were linked with less functional connectivity in most networks, including the posterior portion of the Default Mode Network. Conversely, higher folate was related to more connectivity in similar networks. AD family history modulated these associations: Increased estimated intake was positively associated with stronger connectivity in the Primary Visual Network and Posterior Default Mode Network in participants with an AD family history. In contrast, increased vitamin B12 estimated intake was associated with less connectivity in the Primary Visual Network and the Cerebello-Thalamo-Cortical Network in those without an AD family history. CONCLUSIONS The differential patterns of association between B vitamins and resting-state brain activity may be important in understanding AD-related changes in the brain. Notably, AD family history appears to play a key role in modulating these relationships.
Collapse
Affiliation(s)
- Tianqi Li
- Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA;
| | - Juan Pedro Steibel
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
| | - Auriel A. Willette
- Department of Neurology, Rutgers University, New Brunswick, NJ 07101, USA
| |
Collapse
|
6
|
Di Stolfo G, Mastroianno S, Soldato N, Massaro RS, De Luca G, Seripa D, Urbano M, Gravina C, Greco A, Siena P, Ciccone MM, Guaricci AI, Forleo C, Carella M, Potenza DR. The Role of TOMM40 in Cardiovascular Mortality and Conduction Disorders: An Observational Study. J Clin Med 2024; 13:3177. [PMID: 38892888 PMCID: PMC11172937 DOI: 10.3390/jcm13113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Aims: TOMM40 single nucleotide polymorphism (SNP) rs2075650 consists of allelic variation c.275-31A > G and it has been linked to Alzheimer disease, apolipoprotein and cholesterol levels and other risk factors. However, data on its role in cardiovascular disorders are lacking. The first aim of the study is to evaluate mortality according to TOMM40 genotype in a cohort of selected patients affected by advanced atherosclerosis. Second aim was to investigate the relationship between Xg and AA alleles and the presence of conduction disorders and implantation of defibrillator (ICD) or pacemaker (PM) in our cohort. Materials and Methods: We enrolled 276 patients (mean age 70.16 ± 7.96 years) affected by hemodynamic significant carotid stenosis and/or ischemia of the lower limbs of II or III stadium Fontaine. We divided the population into two groups according to the genotype (Xg and AA carriers). We evaluated several electrocardiographic and echocardiographic parameters, including heart rate, rhythm, presence of right and left bundle branch block (LBBB and RBBB), PR interval, QRS duration and morphology, QTc interval, and left ventricular ejection fraction (LVEF). We clinically followed these patients for 82.53 ± 30.02 months and we evaluated the incidence of cardiovascular events, number of deaths and PM/ICD implantations. Results: We did not find a difference in total mortality between Xg and AA carriers (16.3 % vs. 19.4%; p = 0.62). However, we found a higher mortality for fatal cardiovascular events in Xg carriers (8.2% vs. 4.4%; HR = 4.53, 95% CI 1.179-17.367; p = 0.04) with respect to AA carriers. We noted a higher percentage of LBBB in Xg carriers (10.2% vs. 3.1%, p = 0.027), which was statistically significant. Presence of right bundle branch block (RBBB) was also higher in Xg (10.2% vs. 4.4%, p = 0.10), but without reaching statistically significant difference compared to AA patients. We did not observe significant differences in heart rate, presence of sinus rhythm, number of device implantations, PR and QTc intervals, QRS duration and LVEF between the two groups. At the time of enrolment, we observed a tendency for device implant in Xg carriers at a younger age compared to AA carriers (58.50 ± 0.71 y vs. 72.14 ± 11.11 y, p = 0.10). During the follow-up, we noted no statistical difference for new device implantations in Xg respect to AA carriers (8.2% vs. 3.5%; HR = 2.384, 95% CI 0.718-7.922; p = 0.156). The tendency to implant Xg at a younger age compared to AA patients was confirmed during follow-up, but without reaching a significant difference(69.50 ± 2.89 y vs. 75.63 ± 8.35 y, p = 0.074). Finally, we pointed out that Xg carriers underwent device implantation 7.27 ± 4.43 years before AA (65.83 ± 6.11 years vs. 73.10 ± 10.39 years) and that difference reached a statistically significant difference (p = 0.049) when we considered all patients, from enrollment to follow-up. Conclusions: In our study we observed that TOMM40 Xg patients affected by advanced atherosclerosis have a higher incidence of developing fatal cardiovascular events, higher incidence of LBBB and an earlier age of PM or ICD implantations, as compared to AA carriers. Further studies will be needed to evaluate the genomic contribution of TOMM40 SNPs to cardiovascular deaths and cardiac conduction diseases.
Collapse
Affiliation(s)
- Giuseppe Di Stolfo
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Sandra Mastroianno
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Nicolò Soldato
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Raimondo Salvatore Massaro
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Giovanni De Luca
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Davide Seripa
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Maria Urbano
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Carolina Gravina
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Antonio Greco
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Paola Siena
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Marco Matteo Ciccone
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Cinzia Forleo
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| | - Domenico Rosario Potenza
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| |
Collapse
|
7
|
Li T, Willette AA, Wang Q, Pollpeter A, Larsen BA, Mohammadiarvejeh P, Fili M. Alzheimer's Disease Genetic Influences Impact the Associations between Diet and Resting-State Functional Connectivity: A Study from the UK Biobank. Nutrients 2023; 15:3390. [PMID: 37571327 PMCID: PMC10420831 DOI: 10.3390/nu15153390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Red wine and dairy products have been staples in human diets for a long period. However, the impact of red wine and dairy intake on brain network activity remains ambiguous and requires further investigation. METHODS This study investigated the associations between dairy and red wine consumption and seven neural networks' connectivity with functional magnetic resonance imaging (fMRI) data from a sub-cohort of the UK Biobank database. Linear mixed models were employed to regress dairy and red wine consumption against the intrinsic functional connectivity for each neural network. Interactions with Alzheimer's disease (AD) risk factors, including apolipoprotein E4 (APOE4) genotype, TOMM40 genotype, and family history of AD, were also assessed. RESULT More red wine consumption was associated with enhanced connectivity in the central executive function network and posterior default mode network. Greater milk intake was correlated with more left executive function network connectivity, while higher cheese consumption was linked to reduced posterior default mode network connectivity. For participants without a family history of Alzheimer's disease (AD), increased red wine consumption was positively correlated with enhanced left executive function network connectivity. In contrast, participants with a family history of AD displayed diminished network connectivity in relation to their red wine consumption. The association between cheese consumption and neural network connectivity was influenced by APOE4 status, TOMM40 status, and family history, exhibiting contrasting patterns across different subgroups. CONCLUSION The findings of this study indicate that family history modifies the relationship between red wine consumption and network strength. The interaction effects between cheese intake and network connectivity may vary depending on the presence of different genetic factors.
Collapse
Affiliation(s)
- Tianqi Li
- Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, 1109 HNSB, 2302 Osborn Drive Ames, Ames, IA 50011, USA
| | - Auriel A. Willette
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Qian Wang
- Department of Food Science and Human Nutrition, College of Human Sciences, Iowa State University, Ames, IA 50011, USA;
| | - Amy Pollpeter
- Bioinformatics and Computational Biology Graduate Program, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Brittany A. Larsen
- Neuroscience Graduate Program, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Parvin Mohammadiarvejeh
- Department of Industrial and Manufacturing Systems Engineering, College of Engineering, Iowa State University, Ames, IA 50011, USA; (P.M.); (M.F.)
| | - Mohammad Fili
- Department of Industrial and Manufacturing Systems Engineering, College of Engineering, Iowa State University, Ames, IA 50011, USA; (P.M.); (M.F.)
| |
Collapse
|
8
|
Caldwell JZ, Isenberg N. The aging brain: risk factors and interventions for long term brain health in women. Curr Opin Obstet Gynecol 2023; 35:169-175. [PMID: 36912325 PMCID: PMC10023345 DOI: 10.1097/gco.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE OF REVIEW Poor cognitive aging and dementia pose a significant public health burden, and women face unique risks compared to men. Recent research highlights the role of genetics, menopause, chronic disease, and lifestyle in risk and resilience in women's cognitive aging. This work suggests avenues for clinical action at midlife that may change the course of brain health in aging. RECENT FINDINGS Studies indicate women's risk for poor cognitive aging relates in part to hormone changes at menopause, a time when memory, brain structure and function, and Alzheimer's pathology may be observed in women and not men. Medical and lifestyle risks including diabetes, hypertension, and low physical activity also contribute to women's unique risks. At the same time, literature on resilience suggests women may benefit from lifestyle and chronic disease intervention, possibly more than men. Current studies emphasize the importance of interacting genetic and lifestyle risks, and effects of social determinants of health. SUMMARY Women have greater risk than men for poor cognitive aging; however, by treating the whole person, including genetics, lifestyle, and social environment, clinicians have an opportunity to support healthy cognitive aging in women and reduce the future public health burden of dementia.
Collapse
Affiliation(s)
- Jessica Z.K. Caldwell
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave., Las Vegas, NV 89106
| | - Nancy Isenberg
- Providence Swedish Center for Healthy Aging, Swedish Neuroscience Institute, 1600 E. Jefferson St. A Level, Seattle, WA 98122
| |
Collapse
|
9
|
TOMM40 Genetic Variants Cause Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24044085. [PMID: 36835494 PMCID: PMC9962462 DOI: 10.3390/ijms24044085] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Translocase of outer mitochondrial membrane 40 (TOMM40) is located in the outer membrane of mitochondria. TOMM40 is essential for protein import into mitochondria. TOMM40 genetic variants are believed to increase the risk of Alzheimer's disease (AD) in different populations. In this study, three exonic variants (rs772262361, rs157581, and rs11556505) and three intronic variants (rs157582, rs184017, and rs2075650) of the TOMM40 gene were identified from Taiwanese AD patients using next-generation sequencing. Associations between the three TOMM40 exonic variants and AD susceptibility were further evaluated in another AD cohort. Our results showed that rs157581 (c.339T > C, p.Phe113Leu, F113L) and rs11556505 (c.393C > T, p.Phe131Leu, F131L) were associated with an increased risk of AD. We further utilized cell models to examine the role of TOMM40 variation in mitochondrial dysfunction that causes microglial activation and neuroinflammation. When expressed in BV2 microglial cells, the AD-associated mutant (F113L) or (F131L) TOMM40 induced mitochondrial dysfunction and oxidative stress-induced activation of microglia and NLRP3 inflammasome. Pro-inflammatory TNF-α, IL-1β, and IL-6 released by mutant (F113L) or (F131L) TOMM40-activated BV2 microglial cells caused cell death of hippocampal neurons. Taiwanese AD patients carrying TOMM40 missense (F113L) or (F131L) variants displayed an increased plasma level of inflammatory cytokines IL-6, IL-18, IL-33, and COX-2. Our results provide evidence that TOMM40 exonic variants, including rs157581 (F113L) and rs11556505 (F131L), increase the AD risk of the Taiwanese population. Further studies suggest that AD-associated mutant (F113L) or (F131L) TOMM40 cause the neurotoxicity of hippocampal neurons by inducing the activation of microglia and NLRP3 inflammasome and the release of pro-inflammatory cytokines.
Collapse
|
10
|
Chen J, Shi B, Li Y, Feng Y, Ni J, Shi J, Luo C, Wang J, Tian J. An AS-qPCR-based method for the detection of Alzheimer's disease-related SNPs. J Cell Biochem 2023; 124:118-126. [PMID: 36436137 DOI: 10.1002/jcb.30350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is one of the most serious neurodegenerative diseases in the world and has a strong genetic predisposition. At present, there is still no effective method for the early diagnosis and prevention of AD. Accumulating evidence shows the association of several loci with AD risk, such as apolipoprotein E (APOE) and translocase of outer mitochondrial membrane 40 (TOMM40). However, for routine disease diagnosis in clinics, genotype detection methods based on gene sequencing technology are time-consuming and excessively costly. Thus, in this study, we developed a high-sensitivity, low-cost, and convenient single nucleotide polymorphism (SNP) detection assay method based on allele-specific quantitative polymerase chain reaction (AS-qPCR) technology, which can be used to determine the SNP genotype in APOE and TOMM40. A total of 40 patients were recruited from the outpatient department of the memory clinic of Dongzhimen Hospital, Beijing University of Chinese Medicine. The SNP detection assay method includes three steps. First, positive plasmids with different genotypes (TT/CC/TC) in APOE rs429358, rs7412, and TOMM40 rs11556505 were prepared. Second, 3'-T/3'-C primers were designed to amplify these positive plasmids for each SNP site. Finally, we calculated the log10 of the copy number ratio for each positive plasmid, and the genotype interpretation interval was established. Based on this method, we investigated whether the SNPs in 40 patients could be accurately calculated using AS-qPCR technology. The accuracy of SNP detection was verified by PCR-Pooling sequencing. The results showed that SNP genotypes assessed by AS-qPCR technology corresponded perfectly to the results obtained by conventional DNA sequencing. We have developed a genotype detection method for AD based on AS-qPCR, which can be performed easily, rapidly, accurately, and at low cost. The method will contribute to the early diagnosis of patients with late-onset Alzheimer's and the detection of large clinical samples in the future.
Collapse
Affiliation(s)
- Jing Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Bingjie Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yihao Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yaru Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jingnian Ni
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute of Beijing University of Chinese Medicine, Shenzhen, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute of Beijing University of Chinese Medicine, Shenzhen, China
| | - Jinzhou Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Stephen TL, Breningstall B, Suresh S, McGill CJ, Pike CJ. APOE genotype and biological sex regulate astroglial interactions with amyloid plaques in Alzheimer's disease mice. J Neuroinflammation 2022; 19:286. [PMID: 36457019 PMCID: PMC9714101 DOI: 10.1186/s12974-022-02650-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022] Open
Abstract
The most significant genetic risk factor for developing late-onset Alzheimer's disease (AD) is the ε4 allele of apolipoprotein E (APOE4). APOE genotype and biological sex are key modulators of microglial and astroglial function, which exert multiple effects on AD pathogenesis. Here, we show astroglial interactions with amyloid plaques in the EFAD transgenic mouse model of AD. Using confocal microscopy, we observed significantly lower levels of astrocytic plaque coverage and plaque compaction (beneficial effects of glial barrier formation) with APOE4 genotype and female sex. Conversely, neurite damage and astrocyte activation in the plaque environment were significantly higher in APOE4 carriers and female mice. Astrocyte coverage of plaques was highest in APOE3 males and poorest in APOE4 females. Collectively, our findings provide new insights into the roles of astroglia and highlight the importance of addressing independent and interactive effects of APOE genotype and biological sex in understanding processes contributing to AD pathogenesis.
Collapse
Affiliation(s)
- T. L. Stephen
- grid.42505.360000 0001 2156 6853Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191 USA
| | - B. Breningstall
- grid.42505.360000 0001 2156 6853Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191 USA
| | - S. Suresh
- grid.42505.360000 0001 2156 6853Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191 USA
| | - C. J. McGill
- grid.42505.360000 0001 2156 6853Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191 USA
| | - C. J. Pike
- grid.42505.360000 0001 2156 6853Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191 USA
| |
Collapse
|
12
|
Chen S, Sarasua SM, Davis NJ, DeLuca JM, Boccuto L, Thielke SM, Yu CE. TOMM40 genetic variants associated with healthy aging and longevity: a systematic review. BMC Geriatr 2022; 22:667. [PMID: 35964003 PMCID: PMC9375314 DOI: 10.1186/s12877-022-03337-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Healthy aging relies on mitochondrial functioning because this organelle provides energy and diminishes oxidative stress. Single nucleotide polymorphisms (SNPs) in TOMM40, a critical gene that produces the outer membrane protein TOM40 of mitochondria, have been associated with mitochondrial dysfunction and neurodegenerative processes. Yet it is not clear whether or how the mitochondria may impact human longevity. We conducted this review to ascertain which SNPs have been associated with markers of healthy aging. Methods Using the PRISMA methodology, we conducted a systematic review on PubMed and Embase databases to identify associations between TOMM40 SNPs and measures of longevity and healthy aging. Results Twenty-four articles were selected. The TOMM40 SNPs rs2075650 and rs10524523 were the two most commonly identified and studied SNPs associated with longevity. The outcomes associated with the TOMM40 SNPs were changes in BMI, brain integrity, cognitive functions, altered inflammatory network, vulnerability to vascular risk factors, and longevity. Discussions Our systematic review identified multiple TOMM40 SNPs potentially associated with healthy aging. Additional research can help to understand mechanisms in aging, including resilience, prevention of disease, and adaptation to the environment.
Collapse
Affiliation(s)
- Sunny Chen
- Geriatric Research, Education, and Clinical Center, Puget Sound VA Medical Center, VA Puget Sound Healthcare System, 1660 S Columbian Way, Seattle, WA, 98108, USA. .,Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, USA.
| | - Sara M Sarasua
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, USA
| | - Nicole J Davis
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, USA
| | - Jane M DeLuca
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, USA
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, USA
| | - Stephen M Thielke
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Chang-En Yu
- Geriatric Research, Education, and Clinical Center, Puget Sound VA Medical Center, VA Puget Sound Healthcare System, 1660 S Columbian Way, Seattle, WA, 98108, USA.,Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Chen H, Chen F, Jiang Y, Zhang L, Hu G, Sun F, Zhang M, Ji Y, Chen Y, Che G, Zhou X, Zhang Y. A Review of ApoE4 Interference Targeting Mitophagy Molecular Pathways for Alzheimer's Disease. Front Aging Neurosci 2022; 14:881239. [PMID: 35669462 PMCID: PMC9166238 DOI: 10.3389/fnagi.2022.881239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is one of the major worldwide causes of dementia that is characterized by irreversible decline in learning, memory loss, and behavioral impairments. Mitophagy is selective autophagy through the clearance of aberrant mitochondria, specifically for degradation to maintain energy generation and neuronal and synaptic function in the brain. Accumulating evidence shows that defective mitophagy is believed to be as one of the early and prominent features in AD pathogenesis and has drawn attention in the recent few years. APOE ε4 allele is the greatest genetic determinant for AD and is widely reported to mediate detrimental effects on mitochondria function and mitophagic process. Given the continuity of the physiological process, this review takes the mitochondrial dynamic and mitophagic core events into consideration, which highlights the current knowledge about the molecular alterations from an APOE-genotype perspective, synthesizes ApoE4-associated regulations, and the cross-talk between these signaling, along with the focuses on general autophagic process and several pivotal processes of mitophagy, including mitochondrial dynamic (DRP1, MFN-1), mitophagic induction (PINK1, Parkin). These may shed new light on the link between ApoE4 and AD and provide novel insights for promising mitophagy-targeted therapeutic strategies for AD.
Collapse
Affiliation(s)
- Huiyi Chen
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ying Jiang
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Lu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guizhen Hu
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Furong Sun
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Che
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejian University School of Medicine, Hangzhou, China
| | - Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|