1
|
Wang K, Smolker HR, Brown MS, Snyder HR, Cheng Y, Hankin BL, Banich MT. Intrinsic Functional Connectivity Associated with γ‑Aminobutyric Acid and Glutamate/Glutamine in the Lateral Prefrontal Cortex and Internalizing Psychopathology in Adolescents. Neurosci Bull 2025:10.1007/s12264-025-01408-1. [PMID: 40418518 DOI: 10.1007/s12264-025-01408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/27/2025] [Indexed: 05/27/2025] Open
Abstract
In this study, we systematically tested the hypothesis that during the critical developmental period of adolescence, on a macro scale, the concentrations of major excitatory and inhibitory neurotransmitters (glutamate/glutamine and γ‑aminobutyric acid [GABA]) in the dorsal and ventral lateral prefrontal cortex are associated with the brain's functional connectivity and an individual's psychopathology. Neurotransmitters were measured via magnetic resonance spectroscopy while functional connectivity was measured with resting-state fMRI (n = 121). Seed-based and network-based analyses revealed associations of neurotransmitter concentrations and functional connectivities between regions/networks that are connected to prefrontal cortices via structural connections that are thought to be under dynamic development during adolescence. These regions tend to be boundary areas between functional networks. Furthermore, several connectivities were found to be associated with individual's levels of internalizing psychopathology. These findings provide insights into specific neurochemical mechanisms underlying the brain's macroscale functional organization, its development during adolescence, and its potential associations with symptoms associated with internalizing psychopathology.
Collapse
Affiliation(s)
- Kai Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.
- School of Psychology, South China Normal University, Guangzhou, 510631, China.
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309‑0344, USA.
| | - Harry R Smolker
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309‑0344, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hannah R Snyder
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Yu Cheng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Benjamin L Hankin
- Psychology Department, University of Illinois-Urbana Champaign, Champaign, IL, 61820, USA
| | - Marie T Banich
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309‑0344, USA.
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309‑0345, USA.
| |
Collapse
|
2
|
van der Pal Z, Douw L, Genis A, van den Bergh D, Marsman M, Schrantee A, Blanken TF. Tell me why: A scoping review on the fundamental building blocks of fMRI-based network analysis. Neuroimage Clin 2025; 46:103785. [PMID: 40245454 DOI: 10.1016/j.nicl.2025.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Understanding complex brain-behaviour relationships in psychiatric and neurological conditions is crucial for advancing clinical insights. This review explores the current landscape of network estimation methods in the context of functional MRI (fMRI) based network neuroscience, focusing on static undirected network analysis. We focused on papers published in a single year (2022) and characterised what we consider the fundamental building blocks of network analysis: sample size, network size, association type, edge inclusion strategy, edge weights, modelling level, and confounding factors. We found that the most common methods across all included studies (n = 191) were the use of pairwise correlations to estimate the associations between brain regions (79.6 %), estimation of weighted networks (95.3 %), and estimation of the network at the individual level (86.9 %). Importantly, a substantial number of studies lacked comprehensive reporting on their methodological choices, hindering the synthesis of research findings within the field. This review underscores the critical need for careful consideration and transparent reporting of fMRI network estimation methodologies to advance our understanding of complex brain-behaviour relationships. By facilitating the integration between network neuroscience and network psychometrics, we aim to significantly enhance our clinical understanding of these intricate connections.
Collapse
Affiliation(s)
- Z van der Pal
- Amsterdam UMC location University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - L Douw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Boelelaan 1117, Amsterdam, the Netherlands
| | - A Genis
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - D van den Bergh
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - M Marsman
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - A Schrantee
- Amsterdam UMC location University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - T F Blanken
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands; University of Amsterdam, Department of Clinical Psychology, Nieuwe Achtergracht 129, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Tubiolo PN, Williams JC, Gil RB, Cassidy C, Haubold NK, Patel Y, Abeykoon SK, Zheng ZJ, Pham DT, Ojeil N, Bobchin K, Silver-Frankel EB, Perlman G, Weinstein JJ, Kellendonk C, Horga G, Slifstein M, Abi-Dargham A, Van Snellenberg JX. Translational Evidence for Dopaminergic Rewiring of the Basal Ganglia in Persons with Schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25324962. [PMID: 40236399 PMCID: PMC11998822 DOI: 10.1101/2025.03.31.25324962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Importance In prior work, a transgenic mouse model of the striatal dopamine dysfunction observed in persons with schizophrenia (PSZ) exhibited dopamine-related neuroplasticity in the basal ganglia. This phenotype has never been demonstrated in human PSZ. Objective To identify a specific dopamine-related alteration of basal ganglia connectivity via task-based and resting-state functional magnetic resonance imaging (fMRI), neuromelanin-sensitive MRI (NM-MRI), and positron emission tomography (PET), in unmedicated PSZ. Design This case-control study of unmedicated PSZ and healthy controls (HC) occurred between November 2014 and June 2018, with analyses performed between April 2023 and February 2025. Setting fMRI and NM-MRI were collected at New York State Psychiatric Institute. [11C]-(+)-PHNO PET was collected at Yale University. Participants Participants were aged 18-55, and demographically matched. PSZ were antipsychotic drug-naïve or drug-free for at least three weeks prior to recruitment. Main Outcomes and Measures 1) task-state and resting-state functional connectivity (FC) between dorsal caudate (DCa) and globus pallidus externus (GPe), 2) NM-MRI contrast ratio in substantia nigra voxels associated with psychotic symptom severity, and 3) baseline and amphetamine-induced change in [11C]-(+)-PHNO binding potential in DCa. Results 37 PSZ (mean±SD age, 32.7±12.7 years, 29.7% female) and 30 HC (32.5±9.7 years, 26.7% female) underwent resting-state fMRI; 29 PSZ (33.4±12.7 years, 31% female) and 29 HC (32.4±9.7 years, 31% female) underwent working memory task-based fMRI. 22 PSZ (35.1±13.9 years, 36.4% female) and 20 HC (29.4±8.5 years, 35% female) underwent NM-MRI. 7 PSZ (23.1±6.3 years, 57.1% female) and 4 HC (31.5±11.9 years, 25% female) underwent [11C]-(+)-PHNO PET with amphetamine challenge. PSZ displayed elevated task-state FC (0.11±0.10 versus 0.05±0.09 in HC; P=0.0252), which was associated with increased NM-MRI contrast ratio (β* [SE] = 0.40 [0.17]; P=0.023), decreased baseline D2 receptor availability (β* [SE] = -0.45 [0.17]; P=0.039), greater amphetamine-induced dopamine release (β* [SE] = -0.82 [0.27]; P=0.021), and worse task performance (β* [SE] = -0.31 [0.13]; P=0.020). Conclusions and Relevance This study provides in-vivo evidence of a dopamine-associated neural abnormality of DCa and GPe connectivity in unmedicated PSZ. This phenotype suggests a potential neurodevelopmental mechanism of working memory deficits in schizophrenia, representing a critical step towards developing treatments for cognitive deficits.
Collapse
Affiliation(s)
- Philip N. Tubiolo
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Scholars in BioMedical Sciences Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - John C. Williams
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Roberto B. Gil
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Clifford Cassidy
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Natalka K. Haubold
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Yash Patel
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Sameera K. Abeykoon
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Zu Jie Zheng
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- College of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203
| | - Dathy T. Pham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Najate Ojeil
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Kelly Bobchin
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Eilon B. Silver-Frankel
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Greg Perlman
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Jodi J. Weinstein
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
| | - Guillermo Horga
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Anissa Abi-Dargham
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Jared X. Van Snellenberg
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
4
|
Cauda F, Manuello J, Crocetta A, Duca S, Costa T, Liloia D. Meta-analytic connectivity perturbation analysis (MACPA): a new method for enhanced precision in fMRI connectivity analysis. Brain Struct Funct 2024; 230:17. [PMID: 39718568 DOI: 10.1007/s00429-024-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024]
Abstract
Co-activation of distinct brain areas provides a valuable measure of functional interaction, or connectivity, between them. One well-validated way to investigate the co-activation patterns of a precise area is meta-analytic connectivity modeling (MACM), which performs a seed-based meta-analysis on task-based functional magnetic resonance imaging (task-fMRI) data. While MACM stands as a powerful automated tool for constructing robust models of whole-brain human functional connectivity, its inherent limitation lies in its inability to capture the distinct interrelationships among multiple brain regions. Consequently, the connectivity patterns highlighted through MACM capture the direct relationship of the seed region with third brain regions, but also a (less informative) residual relationship between the third regions themselves. As a consequence of this, this technique does not allow to evaluate to what extent the observed connectivity pattern is really associated with the fact that the seed region is activated, or it just reflects spurious co-activations unrelated with it. In order to overcome this methodological gap, we introduce a meta-analytic Bayesian-based method, called meta-analytic connectivity perturbation analysis (MACPA), that allows to identify the unique contribution of a seed region in shaping whole-brain connectivity. We validate our method by analyzing one of the most complex and dynamic structures of the human brain, the amygdala, indicating that MACPA may be especially useful for delineating region-wise co-activation networks.
Collapse
Affiliation(s)
- Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy.
- Move'N'Brains Lab, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Yüksel Dal D, Yıldırım Z, Gürvit H, Kabakçıoğlu A, Acar B. Reorganization of brain connectivity across the spectrum of clinical cognitive decline. Neurol Sci 2024; 45:5719-5730. [PMID: 39078586 PMCID: PMC11554698 DOI: 10.1007/s10072-024-07688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
Clinical cognitive decline, leading to Alzheimer's Disease Dementia (ADD), has long been interpreted as a disconnection syndrome, hindering the information flow capacity of the brain, hence leading to the well-known symptoms of ADD. The structural and functional brain connectome analyses play a central role in studies of brain from this perspective. However, most current research implicitly assumes that the changes accompanying the progression of cognitive decline are monotonous in time, whether measured across the entire brain or in fixed cortical regions. We investigate the structural and functional connectivity-wise reorganization of the brain without such assumptions across the entire spectrum. We utilize nodal assortativity as a local topological measure of connectivity and follow a data-centric approach to identify and verify relevant local regions, as well as to understand the nature of underlying reorganization. The analysis of our preliminary experimental data points to statistically significant, hyper and hypo-assortativity regions that depend on the disease's stage, and differ for structural and functional connectomes. Our results suggest a new perspective into the dynamic, potentially a mix of degenerative and compensatory, topological alterations that occur in the brain as cognitive decline progresses.
Collapse
Affiliation(s)
- Demet Yüksel Dal
- Department of Electrical & Electronics Engineering, Boğaziçi University, 34342, İstanbul, Turkey.
| | - Zerrin Yıldırım
- Department of Neurology, Bağılar Training and Research Hospital, 34212, İstanbul, Turkey
- Neuroimaging Unit, Hulusi Behçet Life Sciences Research Lab, İstanbul University, 34093, İstanbul, Turkey
| | - Hakan Gürvit
- Department of Neurology, Faculty of Medicine, İstanbul University, 34093, İstanbul, Turkey
- Neuroimaging Unit, Hulusi Behçet Life Sciences Research Lab, İstanbul University, 34093, İstanbul, Turkey
| | | | - Burak Acar
- Department of Electrical & Electronics Engineering, Boğaziçi University, 34342, İstanbul, Turkey
| |
Collapse
|
6
|
Zhang C, Ma Y, Qiao L, Zhang L, Liu M. Learning functional brain networks with heterogeneous connectivities for brain disease identification. Neural Netw 2024; 180:106660. [PMID: 39208458 DOI: 10.1016/j.neunet.2024.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Functional brain networks (FBNs), which are used to portray interactions between different brain regions, have been widely used to identify potential biomarkers of neurological and mental disorders. The FBNs estimated using current methods tend to be homogeneous, indicating that different brain regions exhibit the same type of correlation. This homogeneity limits our ability to accurately encode complex interactions within the brain. Therefore, to the best of our knowledge, in the present study, for the first time, we propose the existence of heterogeneous FBNs and introduce a novel FBN estimation model that adaptively assigns heterogeneous connections to different pairs of brain regions, thereby effectively encoding the complex interaction patterns in the brain. Specifically, we first construct multiple types of candidate correlations from different views or based on different methods and then develop an improved orthogonal matching pursuit algorithm to select at most one correlation for each brain region pair under the guidance of label information. These adaptively estimated heterogeneous FBNs were then used to distinguish subjects with neurological/mental disorders from healthy controls and identify potential biomarkers related to these disorders. Experimental results on real datasets show that the proposed scheme improves classification performance by 7.07% and 7.58% at the two sites, respectively, compared with the baseline approaches. This emphasizes the plausibility of the heterogeneity hypothesis and effectiveness of the heterogeneous connection assignment algorithm.
Collapse
Affiliation(s)
- Chaojun Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China; School of Computer Science and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Yunling Ma
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Lishan Qiao
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Zada Z, Goldstein A, Michelmann S, Simony E, Price A, Hasenfratz L, Barham E, Zadbood A, Doyle W, Friedman D, Dugan P, Melloni L, Devore S, Flinker A, Devinsky O, Nastase SA, Hasson U. A shared model-based linguistic space for transmitting our thoughts from brain to brain in natural conversations. Neuron 2024; 112:3211-3222.e5. [PMID: 39096896 PMCID: PMC11427153 DOI: 10.1016/j.neuron.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 08/05/2024]
Abstract
Effective communication hinges on a mutual understanding of word meaning in different contexts. We recorded brain activity using electrocorticography during spontaneous, face-to-face conversations in five pairs of epilepsy patients. We developed a model-based coupling framework that aligns brain activity in both speaker and listener to a shared embedding space from a large language model (LLM). The context-sensitive LLM embeddings allow us to track the exchange of linguistic information, word by word, from one brain to another in natural conversations. Linguistic content emerges in the speaker's brain before word articulation and rapidly re-emerges in the listener's brain after word articulation. The contextual embeddings better capture word-by-word neural alignment between speaker and listener than syntactic and articulatory models. Our findings indicate that the contextual embeddings learned by LLMs can serve as an explicit numerical model of the shared, context-rich meaning space humans use to communicate their thoughts to one another.
Collapse
Affiliation(s)
- Zaid Zada
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| | - Ariel Goldstein
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Department of Cognitive and Brain Sciences and Business School, Hebrew University, Jerusalem 9190501, Israel
| | - Sebastian Michelmann
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Erez Simony
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Faculty of Engineering, Holon Institute of Technology, Holon 5810201, Israel
| | - Amy Price
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Liat Hasenfratz
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Emily Barham
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Asieh Zadbood
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Werner Doyle
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel Friedman
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Patricia Dugan
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Lucia Melloni
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Sasha Devore
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Adeen Flinker
- Grossman School of Medicine, New York University, New York, NY 10016, USA; Tandon School of Engineering, New York University, New York, NY 10016, USA
| | - Orrin Devinsky
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Samuel A Nastase
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Uri Hasson
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
8
|
Gamgam G, Yıldırım Z, Kabakçıoğlu A, Gurvit H, Demiralp T, Acar B. Siamese Graph Convolutional Network quantifies increasing structure-function discrepancy over the cognitive decline continuum. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108290. [PMID: 38954916 DOI: 10.1016/j.cmpb.2024.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 05/09/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease dementia (ADD) is well known to induce alterations in both structural and functional brain connectivity. However, reported changes in connectivity are mostly limited to global/local network features, which have poor specificity for diagnostic purposes. Following recent advances in machine learning, deep neural networks, particularly Graph Neural Network (GNN) based approaches, have found applications in brain research as well. The majority of existing applications of GNNs employ a single network (uni-modal or structure/function unified), despite the widely accepted view that there is a nontrivial interdependence between the brain's structural connectivity and the neural activity patterns, which is hypothesized to be disrupted in ADD. This disruption is quantified as a discrepancy score by the proposed "structure-function discrepancy learning network" (sfDLN) and its distribution is studied over the spectrum of clinical cognitive decline. The measured discrepancy score is utilized as a diagnostic biomarker and is compared with state-of-the-art diagnostic classifiers. METHODS sfDLN is a GNN with a siamese architecture built on the hypothesis that the mismatch between structural and functional connectivity patterns increases over the cognitive decline spectrum, starting from subjective cognitive impairment (SCI), passing through a mid-stage mild cognitive impairment (MCI), and ending up with ADD. The structural brain connectome (sNET) built using diffusion MRI-based tractography and the novel, sparse (lean) functional brain connectome (ℓNET) built using fMRI are input to sfDLN. The siamese sfDLN is trained to extract connectome representations and a discrepancy (dissimilarity) score that complies with the proposed hypothesis and is blindly tested on an MCI group. RESULTS The sfDLN generated structure-function discrepancy scores show high disparity between ADD and SCI subjects. Leave-one-out experiments of SCI-ADD classification over a cohort of 42 subjects reach 88% accuracy, surpassing state-of-the-art GNN-based classifiers in the literature. Furthermore, a blind assessment over a cohort of 46 MCI subjects confirmed that it captures the intermediary character of the MCI group. GNNExplainer module employed to investigate the anatomical determinants of the observed discrepancy confirms that sfDLN attends to cortical regions neurologically relevant to ADD. CONCLUSION In support of our hypothesis, the harmony between the structural and functional organization of the brain degrades with increasing cognitive decline. This discrepancy, shown to be rooted in brain regions neurologically relevant to ADD, can be quantified by sfDLN and outperforms state-of-the-art GNN-based ADD classification methods when used as a biomarker.
Collapse
Affiliation(s)
- Gurur Gamgam
- VAVlab, Department of Electrical And Electronics Eng., Bogazici University, Istanbul, 34342, Turkiye
| | - Zerrin Yıldırım
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, 34093, Turkiye
| | | | - Hakan Gurvit
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkiye
| | - Tamer Demiralp
- Hulusi Behçet Life Sciences Research Lab., Istanbul University, Istanbul, 34093, Turkiye
| | - Burak Acar
- VAVlab, Department of Electrical And Electronics Eng., Bogazici University, Istanbul, 34342, Turkiye.
| |
Collapse
|
9
|
Chandra NK, Sitek KR, Chandrasekaran B, Sarkar A. Functional connectivity across the human subcortical auditory system using an autoregressive matrix-Gaussian copula graphical model approach with partial correlations. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00258. [PMID: 39421593 PMCID: PMC11485223 DOI: 10.1162/imag_a_00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The auditory system comprises multiple subcortical brain structures that process and refine incoming acoustic signals along the primary auditory pathway. Due to technical limitations of imaging small structures deep inside the brain, most of our knowledge of the subcortical auditory system is based on research in animal models using invasive methodologies. Advances in ultrahigh-field functional magnetic resonance imaging (fMRI) acquisition have enabled novel noninvasive investigations of the human auditory subcortex, including fundamental features of auditory representation such as tonotopy and periodotopy. However, functional connectivity across subcortical networks is still underexplored in humans, with ongoing development of related methods. Traditionally, functional connectivity is estimated from fMRI data with full correlation matrices. However, partial correlations reveal the relationship between two regions after removing the effects of all other regions, reflecting more direct connectivity. Partial correlation analysis is particularly promising in the ascending auditory system, where sensory information is passed in an obligatory manner, from nucleus to nucleus up the primary auditory pathway, providing redundant but also increasingly abstract representations of auditory stimuli. While most existing methods for learning conditional dependency structures based on partial correlations assume independently and identically Gaussian distributed data, fMRI data exhibit significant deviations from Gaussianity as well as high-temporal autocorrelation. In this paper, we developed an autoregressive matrix-Gaussian copula graphical model (ARMGCGM) approach to estimate the partial correlations and thereby infer the functional connectivity patterns within the auditory system while appropriately accounting for autocorrelations between successive fMRI scans. Our results show strong positive partial correlations between successive structures in the primary auditory pathway on each side (left and right), including between auditory midbrain and thalamus, and between primary and associative auditory cortex. These results are highly stable when splitting the data in halves according to the acquisition schemes and computing partial correlations separately for each half of the data, as well as across cross-validation folds. In contrast, full correlation-based analysis identified a rich network of interconnectivity that was not specific to adjacent nodes along the pathway. Overall, our results demonstrate that unique functional connectivity patterns along the auditory pathway are recoverable using novel connectivity approaches and that our connectivity methods are reliable across multiple acquisitions.
Collapse
Affiliation(s)
- Noirrit Kiran Chandra
- The University of Texas at Dallas, Department of Mathematical Sciences, Richardson, TX 76010, USA
| | - Kevin R. Sitek
- Northwestern University, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Evanston, IL 60208, USA
| | - Bharath Chandrasekaran
- Northwestern University, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Evanston, IL 60208, USA
| | - Abhra Sarkar
- The University of Texas at Austin, Department of Statistics and Data Sciences, Austin, TX 78712, USA
| |
Collapse
|
10
|
Du Y, Fang S, He X, Calhoun VD. A survey of brain functional network extraction methods using fMRI data. Trends Neurosci 2024; 47:608-621. [PMID: 38906797 DOI: 10.1016/j.tins.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Functional network (FN) analyses play a pivotal role in uncovering insights into brain function and understanding the pathophysiology of various brain disorders. This paper focuses on classical and advanced methods for deriving brain FNs from functional magnetic resonance imaging (fMRI) data. We systematically review their foundational principles, advantages, shortcomings, and interrelations, encompassing both static and dynamic FN extraction approaches. In the context of static FN extraction, we present hypothesis-driven methods such as region of interest (ROI)-based approaches as well as data-driven methods including matrix decomposition, clustering, and deep learning. For dynamic FN extraction, both window-based and windowless methods are surveyed with respect to the estimation of time-varying FN and the subsequent computation of FN states. We also discuss the scope of application of the various methods and avenues for future improvements.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, China.
| | - Songke Fang
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Xingyu He
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Askarinejad SE, Poline JB, Mitsis GD. Investigation of the Effect of Physiological Artifacts on Task-based Functional Connectivity: A Simulation Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40040207 DOI: 10.1109/embc53108.2024.10781953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Functional connectivity is commonly used for studying functional interactions among brain regions. However, its results are affected by noise and/or physiological artifacts, especially when computed using blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals. In this study, we assessed the effect of these artifacts by simulating physiological and BOLD fMRI signals during resting and task conditions and quantifying the resulting functional connectivity results patterns by well established methods (full and partial correlation). Our results reveal that the regions with similar physiological response functions were adversely affected by physiological artifacts. Notably, functional connectivity values computed during task execution exhibited lower errors compared to those computed during the rest period. Furthermore, the results computed using the partial correlation method consistently yielded lower errors compared to those computed using full correlation. Overall, our findings quantitatively characterize the impact of physiological artifacts on functional connectivity patterns and emphasize the importance of method choice in mitigating the impact of artifacts.
Collapse
|
12
|
Chen Y, Lin SC, Zhou Y, Carmichael O, Müller HG, Wang JL. Gradient synchronization for multivariate functional data, with application to brain connectivity. J R Stat Soc Series B Stat Methodol 2024; 86:694-713. [PMID: 39005888 PMCID: PMC11239314 DOI: 10.1093/jrsssb/qkad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 07/16/2024]
Abstract
Quantifying the association between components of multivariate random curves is of general interest and is a ubiquitous and basic problem that can be addressed with functional data analysis. An important application is the problem of assessing functional connectivity based on functional magnetic resonance imaging (fMRI), where one aims to determine the similarity of fMRI time courses that are recorded on anatomically separated brain regions. In the functional brain connectivity literature, the static temporal Pearson correlation has been the prevailing measure for functional connectivity. However, recent research has revealed temporally changing patterns of functional connectivity, leading to the study of dynamic functional connectivity. This motivates new similarity measures for pairs of random curves that reflect the dynamic features of functional similarity. Specifically, we introduce gradient synchronization measures in a general setting. These similarity measures are based on the concordance and discordance of the gradients between paired smooth random functions. Asymptotic normality of the proposed estimates is obtained under regularity conditions. We illustrate the proposed synchronization measures via simulations and an application to resting-state fMRI signals from the Alzheimer's Disease Neuroimaging Initiative and they are found to improve discrimination between subjects with different disease status.
Collapse
Affiliation(s)
- Yaqing Chen
- Department of Statistics, Rutgers University, New Brunswick, New Jersey, USA
| | - Shu-Chin Lin
- Department of Statistics, University of California, Davis, Davis, California, USA
| | - Yang Zhou
- Department of Statistics, University of California, Davis, Davis, California, USA
| | - Owen Carmichael
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Hans-Georg Müller
- Department of Statistics, University of California, Davis, Davis, California, USA
| | - Jane-Ling Wang
- Department of Statistics, University of California, Davis, Davis, California, USA
| |
Collapse
|
13
|
Marrelec G, Giron A. Multilevel testing of constraints induced by structural equation modeling in fMRI effective connectivity analysis: A proof of concept. Magn Reson Imaging 2024; 109:294-303. [PMID: 38280493 DOI: 10.1016/j.mri.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
In functional MRI (fMRI), effective connectivity analysis aims at inferring the causal influences that brain regions exert on one another. A common method for this type of analysis is structural equation modeling (SEM). We here propose a novel method to test the validity of a given model of structural equation. Given a structural model in the form of a directed graph, the method extracts the set of all constraints of conditional independence induced by the absence of links between pairs of regions in the model and tests for their validity in a Bayesian framework, either individually (constraint by constraint), jointly (e.g., by gathering all constraints associated with a given missing link), or globally (i.e., all constraints associated with the structural model). This approach has two main advantages. First, it only tests what is testable from observational data and does allow for false causal interpretation. Second, it makes it possible to test each constraint (or group of constraints) separately and, therefore, quantify in what measure each constraint (or, e..g., missing link) is respected in the data. We validate our approach using a simulation study and illustrate its potential benefits through the reanalysis of published data.
Collapse
Affiliation(s)
- Guillaume Marrelec
- Laboratoire d'imagerie biomédicale, LIB, Sorbonne Université, CNRS, INSERM, F-75006 Paris, France.
| | - Alain Giron
- Laboratoire d'imagerie biomédicale, LIB, Sorbonne Université, CNRS, INSERM, F-75006 Paris, France
| |
Collapse
|
14
|
Morgado F, Vandewouw MM, Hammill C, Kelley E, Crosbie J, Schachar R, Ayub M, Nicolson R, Georgiades S, Arnold P, Iaboni A, Kushki A, Taylor MJ, Anagnostou E, Lerch JP. Behaviour-correlated profiles of cerebellar-cerebral functional connectivity observed in independent neurodevelopmental disorder cohorts. Transl Psychiatry 2024; 14:173. [PMID: 38570480 PMCID: PMC10991387 DOI: 10.1038/s41398-024-02857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
The cerebellum, through its connectivity with the cerebral cortex, plays an integral role in regulating cognitive and affective processes, and its dysregulation can result in neurodevelopmental disorder (NDD)-related behavioural deficits. Identifying cerebellar-cerebral functional connectivity (FC) profiles in children with NDDs can provide insight into common connectivity profiles and their correlation to NDD-related behaviours. 479 participants from the Province of Ontario Neurodevelopmental Disorders (POND) network (typically developing = 93, Autism Spectrum Disorder = 172, Attention Deficit/Hyperactivity Disorder = 161, Obsessive-Compulsive Disorder = 53, mean age = 12.2) underwent resting-state functional magnetic resonance imaging and behaviour testing (Social Communication Questionnaire, Toronto Obsessive-Compulsive Scale, and Child Behaviour Checklist - Attentional Problems Subscale). FC components maximally correlated to behaviour were identified using canonical correlation analysis. Results were then validated by repeating the investigation in 556 participants from an independent NDD cohort provided from a separate consortium (Healthy Brain Network (HBN)). Replication of canonical components was quantified by correlating the feature vectors between the two cohorts. The two cerebellar-cerebral FC components that replicated to the greatest extent were correlated to, respectively, obsessive-compulsive behaviour (behaviour feature vectors, rPOND-HBN = -0.97; FC feature vectors, rPOND-HBN = -0.68) and social communication deficit contrasted against attention deficit behaviour (behaviour feature vectors, rPOND-HBN = -0.99; FC feature vectors, rPOND-HBN = -0.78). The statistically stable (|z| > 1.96) features of the FC feature vectors, measured via bootstrap re-sampling, predominantly comprised of correlations between cerebellar attentional and control network regions and cerebral attentional, default mode, and control network regions. In both cohorts, spectral clustering on FC loading values resulted in subject clusters mixed across diagnostic categories, but no cluster was significantly enriched for any given diagnosis as measured via chi-squared test (p > 0.05). Overall, two behaviour-correlated components of cerebellar-cerebral functional connectivity were observed in two independent cohorts. This suggests the existence of generalizable cerebellar network differences that span across NDD diagnostic boundaries.
Collapse
Affiliation(s)
- Felipe Morgado
- Dept. Medical Biophysics, University of Toronto, Toronto, Canada.
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada.
| | - Marlee M Vandewouw
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Christopher Hammill
- Data Science & Advanced Analytics, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | | | - Jennifer Crosbie
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Russell Schachar
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Muhammad Ayub
- Department of Psychiatry, University College London, London, UK
| | - Robert Nicolson
- Department of Psychiatry, University of Western Ontario, London, Canada
- Lawson Research Institute, London, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
- Offord Centre for Child Studies, McMaster University, Hamilton, Canada
| | - Paul Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
| | - Alana Iaboni
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Azadeh Kushki
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Margot J Taylor
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| |
Collapse
|
15
|
Shirzadi S, Dadgostar M, Einalou Z, Erdoğan SB, Akin A. Sex based differences in functional connectivity during a working memory task: an fNIRS study. Front Psychol 2024; 15:1207202. [PMID: 38390414 PMCID: PMC10881810 DOI: 10.3389/fpsyg.2024.1207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Differences in corticocerebral structure and function between males and females and their effects on behavior and the prevalence of various neuropsychiatric disorders have been considered as a fundamental topic in various fields of neuroscience. Recent studies on working memory (WM) reported the impact of sex on brain connectivity patterns, which reflect the important role of functional connectivity in the sex topic. Working memory, one of the most important cognitive tasks performed by regions of the PFC, can provide evidence regarding the presence of a difference between males and females. The present study aimed to assess sex differences in brain functional connectivity during working memory-related tasks by using functional near-infrared spectroscopy (fNIRS). In this regard, nine males and nine females completed a dual n-back working memory task with two target inputs of color and location stimuli in three difficulty levels (n = 0, 1, 2). Functional connectivity matrices were extracted for each subject for each memory load level. Females made less errors than males while spending more time performing the task for all workload levels except in 0-back related to the color stimulus, where the reaction time of females was shorter than males. The results of functional connectivity reveal the inverse behavior of two hemispheres at different memory workload levels between males and females. In the left hemisphere, males exhibited stronger connectivity compared to the females, while stronger connectivity was observed in the females' right hemisphere. Furthermore, an inverse trend was detected in the channel pairs with significant connectivity in the right hemisphere of males (falling) and females (rising) by enhancing working memory load level. Considering both behavioral and functional results for two sexes demonstrated a better performance in females due to the more effective use of the brain. The results indicate that sex affects functional connectivity between different areas in both hemispheres of the brain during cognitive tasks of varying difficulty levels although the general impression is that spatial capabilities are considered as a performance of the brain's right hemisphere. These results reinforce the presence of a sex effect in the functional imaging studies of hemodynamic function and emphasize the importance of evaluating brain network connectivity for achieving a better scientific understanding of sex differences.
Collapse
Affiliation(s)
- Sima Shirzadi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Dadgostar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Zahra Einalou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Sinem Burcu Erdoğan
- Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ata Akin
- Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
16
|
Thompson E, Schroder A, He T, Shand C, Soskic S, Oxtoby NP, Barkhof F, Alexander DC, for the Alzheimer’s Disease Neuroimaging Initiative. Combining multimodal connectivity information improves modelling of pathology spread in Alzheimer's disease. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-19. [PMID: 38947941 PMCID: PMC11211996 DOI: 10.1162/imag_a_00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 07/02/2024]
Abstract
Cortical atrophy and aggregates of misfolded tau proteins are key hallmarks of Alzheimer's disease. Computational models that simulate the propagation of pathogens between connected brain regions have been used to elucidate mechanistic information about the spread of these disease biomarkers, such as disease epicentres and spreading rates. However, the connectomes that are used as substrates for these models are known to contain modality-specific false positive and false negative connections, influenced by the biases inherent to the different methods for estimating connections in the brain. In this work, we compare five types of connectomes for modelling both tau and atrophy patterns with the network diffusion model, which are validated against tau PET and structural MRI data from individuals with either mild cognitive impairment or dementia. We then test the hypothesis that a joint connectome, with combined information from different modalities, provides an improved substrate for the model. We find that a combination of multimodal information helps the model to capture observed patterns of tau deposition and atrophy better than any single modality. This is validated with data from independent datasets. Overall, our findings suggest that combining connectivity measures into a single connectome can mitigate some of the biases inherent to each modality and facilitate more accurate models of pathology spread, thus aiding our ability to understand disease mechanisms, and providing insight into the complementary information contained in different measures of brain connectivity.
Collapse
Affiliation(s)
- Elinor Thompson
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Anna Schroder
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Tiantian He
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Cameron Shand
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Sonja Soskic
- UCL Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Neil P. Oxtoby
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Frederik Barkhof
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, the Netherlands
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Daniel C. Alexander
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | | |
Collapse
|
17
|
Vahdat S, Landelle C, Lungu O, De Leener B, Doyon J, Baniasad F. FASB: an integrated processing pipeline for Functional Analysis of simultaneous Spinal cord-Brain fMRI. RESEARCH SQUARE 2024:rs.3.rs-3889284. [PMID: 38352433 PMCID: PMC10862948 DOI: 10.21203/rs.3.rs-3889284/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Simultaneous functional magnetic resonance imaging (fMRI) of the spinal cord and brain represents a powerful method for examining both ascending sensory and descending motor pathways in humans in vivo . However, its image acquisition protocols, and processing pipeline are less well established. This limitation is mainly due to technical difficulties related to spinal cord fMRI, and problems with the logistics stemming from a large field of view covering both brain and cervical cord. Here, we propose an acquisition protocol optimized for both anatomical and functional images, as well as an optimized integrated image processing pipeline, which consists of a novel approach for automatic modeling and mitigating the negative impact of spinal voxels with low temporal signal to noise ratio (tSNR). We validate our integrated pipeline, named FASB, using simultaneous fMRI data acquired during the performance of a motor task, as well as during resting-state conditions. We demonstrate that FASB outperforms the current spinal fMRI processing methods in three domains, including motion correction, registration to the spinal cord template, and improved detection power of the group-level analysis by removing the effects of participant-specific low tSNR voxels, typically observed at the disk level. Using FASB, we identify significant task-based activations in the expected sensorimotor network associated with a unilateral handgrip force production task across the entire central nervous system, including the contralateral sensorimotor cortex, thalamus, striatum, cerebellum, brainstem, as well as ipsilateral ventral horn at C5-C8 cervical levels. Additionally, our results show significant task-based functional connectivity between the key sensory and motor brain areas and the dorsal and ventral horns of the cervical cord. Overall, our proposed acquisition protocol and processing pipeline provide a robust method for characterizing the activation and functional connectivity of distinct cortical, subcortical, brainstem and spinal cord regions in humans.
Collapse
|
18
|
Lei D, Zhang T, Wu Y, Li W, Li X. Autism spectrum disorder diagnosis based on deep unrolling-based spatial constraint representation. Med Biol Eng Comput 2023; 61:2829-2842. [PMID: 37486440 DOI: 10.1007/s11517-023-02859-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/25/2023] [Indexed: 07/25/2023]
Abstract
Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease.
Collapse
Affiliation(s)
- Dajiang Lei
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Tao Zhang
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yue Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Weisheng Li
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xinwei Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China.
| |
Collapse
|
19
|
Böhmer J, Reinhardt P, Garbusow M, Marxen M, Smolka MN, Zimmermann US, Heinz A, Bzdok D, Friedel E, Kruschwitz JD, Walter H. Aberrant functional brain network organization is associated with relapse during 1-year follow-up in alcohol-dependent patients. Addict Biol 2023; 28:e13339. [PMID: 37855075 DOI: 10.1111/adb.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/12/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Alcohol dependence (AD) is a debilitating disease associated with high relapse rates even after long periods of abstinence. Thus, elucidating neurobiological substrates of relapse risk is fundamental for the development of novel targeted interventions that could promote long-lasting abstinence. In the present study, we analysed resting-state functional magnetic resonance imaging (rsfMRI) data from a sample of recently detoxified patients with AD (n = 93) who were followed up for 12 months after rsfMRI assessment. Specifically, we employed graph theoretic analyses to compare functional brain network topology and functional connectivity between future relapsers (REL, n = 59), future abstainers (ABS, n = 28) and age- and gender-matched controls (CON, n = 83). Our results suggest increased whole-brain network segregation, decreased global network integration and overall blunted connectivity strength in REL compared with CON. Conversely, we found evidence for a comparable network architecture in ABS relative to CON. At the nodal level, REL exhibited decreased integration and decoupling between multiple brain systems compared with CON, encompassing regions associated with higher-order executive functions, sensory and reward processing. Among patients with AD, increased coupling between nodes implicated in reward valuation and salience attribution constitutes a particular risk factor for future relapse. Importantly, aberrant network organization in REL was consistently associated with shorter abstinence duration during follow-up, portending to a putative neural signature of relapse risk in AD. Future research should further evaluate the potential diagnostic value of the identified changes in network topology and functional connectivity for relapse prediction at the individual subject level.
Collapse
Affiliation(s)
- Justin Böhmer
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Pablo Reinhardt
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Maria Garbusow
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Marxen
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
- Collaborative Research Centre (SFB 940) "Volition and Cognitive Control", Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
- Collaborative Research Centre (SFB 940) "Volition and Cognitive Control", Technische Universität Dresden, Dresden, Germany
| | - Ulrich S Zimmermann
- Department of Addiction Medicine and Psychotherapy, kbo-Isar-Amper-Klinikum München-Ost, Haar, Germany
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, Canada
| | - Eva Friedel
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Johann D Kruschwitz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Collaborative Research Centre (SFB 940) "Volition and Cognitive Control", Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Collaborative Research Centre (SFB 940) "Volition and Cognitive Control", Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Jin H, Verma P, Jiang F, Nagarajan SS, Raj A. Bayesian inference of a spectral graph model for brain oscillations. Neuroimage 2023; 279:120278. [PMID: 37516373 PMCID: PMC10840584 DOI: 10.1016/j.neuroimage.2023.120278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023] Open
Abstract
The relationship between brain functional connectivity and structural connectivity has caught extensive attention of the neuroscience community, commonly inferred using mathematical modeling. Among many modeling approaches, spectral graph model (SGM) is distinctive as it has a closed-form solution of the wide-band frequency spectra of brain oscillations, requiring only global biophysically interpretable parameters. While SGM is parsimonious in parameters, the determination of SGM parameters is non-trivial. Prior works on SGM determine the parameters through a computational intensive annealing algorithm, which only provides a point estimate with no confidence intervals for parameter estimates. To fill this gap, we incorporate the simulation-based inference (SBI) algorithm and develop a Bayesian procedure for inferring the posterior distribution of the SGM parameters. Furthermore, using SBI dramatically reduces the computational burden for inferring the SGM parameters. We evaluate the proposed SBI-SGM framework on the resting-state magnetoencephalography recordings from healthy subjects and show that the proposed procedure has similar performance to the annealing algorithm in recovering power spectra and the spatial distribution of the alpha frequency band. In addition, we also analyze the correlations among the parameters and their uncertainty with the posterior distribution which cannot be done with annealing inference. These analyses provide a richer understanding of the interactions among biophysical parameters of the SGM. In general, the use of simulation-based Bayesian inference enables robust and efficient computations of generative model parameter uncertainties and may pave the way for the use of generative models in clinical translation applications.
Collapse
Affiliation(s)
- Huaqing Jin
- Department of Radiology and Biomedical Imaging University of California San Francisco, San Francisco, CA, USA
| | - Parul Verma
- Department of Radiology and Biomedical Imaging University of California San Francisco, San Francisco, CA, USA
| | - Fei Jiang
- Department of Epidemiology and Biostatistics University of California San Francisco, San Francisco, CA, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging University of California San Francisco, San Francisco, CA, USA.
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
St-Onge F, Javanray M, Pichet Binette A, Strikwerda-Brown C, Remz J, Spreng RN, Shafiei G, Misic B, Vachon-Presseau É, Villeneuve S. Functional connectome fingerprinting across the lifespan. Netw Neurosci 2023; 7:1206-1227. [PMID: 37781144 PMCID: PMC10473304 DOI: 10.1162/netn_a_00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/24/2023] [Indexed: 10/03/2023] Open
Abstract
Systematic changes have been observed in the functional architecture of the human brain with advancing age. However, functional connectivity (FC) is also a powerful feature to detect unique "connectome fingerprints," allowing identification of individuals among their peers. Although fingerprinting has been robustly observed in samples of young adults, the reliability of this approach has not been demonstrated across the lifespan. We applied the fingerprinting framework to the Cambridge Centre for Ageing and Neuroscience cohort (n = 483 aged 18 to 89 years). We found that individuals are "fingerprintable" (i.e., identifiable) across independent functional MRI scans throughout the lifespan. We observed a U-shape distribution in the strength of "self-identifiability" (within-individual correlation across modalities), and "others-identifiability" (between-individual correlation across modalities), with a decrease from early adulthood into middle age, before improving in older age. FC edges contributing to self-identifiability were not restricted to specific brain networks and were different between individuals across the lifespan sample. Self-identifiability was additionally associated with regional brain volume. These findings indicate that individual participant-level identification is preserved across the lifespan despite the fact that its components are changing nonlinearly.
Collapse
Affiliation(s)
- Frédéric St-Onge
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Mohammadali Javanray
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Jordana Remz
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - R. Nathan Spreng
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Golia Shafiei
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Étienne Vachon-Presseau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, Canada
| | - Sylvia Villeneuve
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
22
|
Tang Q, Lu Y, Cai B, Wang Y. Functional Connectivity Networks with Latent Distributions for Mild Cognitive Impairment Identification. J Digit Imaging 2023; 36:2113-2124. [PMID: 37369942 PMCID: PMC10501984 DOI: 10.1007/s10278-023-00872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This work presents a novel approach to estimate brain functional connectivity networks via generative learning. Due to the complexity and variability of rs-fMRI signal, we consider it as a random variable, and utilize variational autoencoder networks to encode it as a confidence distribution in the latent space rather than as a fixed vector, so as to establish the relationship between them. First, the mean time series of each brain region of interest is mapped into a multivariate Gaussian distribution. The correlation between two brain regions is measured by the Jensen-Shannon divergence that describes the statistical similarity between two probability distributions, and then the adjacency matrix is created to indicate the functional connectivity strength of pairwise brain regions. Meanwhile, our findings show that the adjacency matrices obtained at VAE latent spaces of different dimensionalities have good complementarity for MCI identification in precision and recall, and the classification performance can be further boosted by an efficient cascade of classifiers. This proposal constructs brain functional networks from a statistical modeling standpoint, improving the statistical ability of population data and the generalization ability of observation data variability. We evaluate the proposed framework over the task of identifying subjects with MCI from normal controls, and the experimental results on the public dataset show that our method significantly outperforms both the baseline and current state-of-the-art methods.
Collapse
Affiliation(s)
- Qiling Tang
- School of Biomedical Engineering, South Central Minzu University, Wuhan, 430074, China.
| | - Yuhong Lu
- School of Biomedical Engineering, South Central Minzu University, Wuhan, 430074, China
| | - Bilian Cai
- School of Biomedical Engineering, South Central Minzu University, Wuhan, 430074, China
| | - Yan Wang
- School of Biomedical Engineering, South Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
23
|
Ling Q, Liu A, Li Y, Mi T, Chan P, Liu Y, Chen X. Homogeneous-Multiset-CCA-Based Brain Covariation and Contravariance Connectivity Network Modeling. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3556-3565. [PMID: 37682656 DOI: 10.1109/tnsre.2023.3310340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that the activities of voxels contained in each brain region are similar, ignoring their possible variations. Additionally, pairwise correlation analysis is often adopted with more attention to positive relationships, while joint interactions at the network level as well as anti-correlations are less investigated. In this paper, to provide a new strategy for regional activity representation and brain connectivity modeling, a novel homogeneous multiset canonical correlation analysis (HMCCA) model is proposed, which enforces sign constraints on the weights of voxels to guarantee homogeneity within each brain region. It is capable of obtaining regional representative signals and constructing covariation and contravariance networks simultaneously, at both group and subject levels. Validations on two sessions of fMRI data verified its reproducibility and reliability when dealing with brain connectivity networks. Further experiments on subjects with and without Parkinson's disease (PD) revealed significant alterations in brain connectivity patterns, which were further associated with clinical scores and demonstrated superior prediction ability, indicating its potential in clinical practice.
Collapse
|
24
|
Voldsbekk I, Kjelkenes R, Dahl A, Holm MC, Lund MJ, Kaufmann T, Tamnes CK, Andreassen OA, Westlye LT, Alnæs D. Delineating disorder-general and disorder-specific dimensions of psychopathology from functional brain networks in a developmental clinical sample. Dev Cogn Neurosci 2023; 62:101271. [PMID: 37348146 PMCID: PMC10439505 DOI: 10.1016/j.dcn.2023.101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
The interplay between functional brain network maturation and psychopathology during development remains elusive. To establish the structure of psychopathology and its neurobiological mechanisms, mapping of both shared and unique functional connectivity patterns across developmental clinical populations is needed. We investigated shared associations between resting-state functional connectivity and psychopathology in children and adolescents aged 5-21 (n = 1689). Specifically, we used partial least squares (PLS) to identify latent variables (LV) between connectivity and both symptom scores and diagnostic information. We also investigated associations between connectivity and each diagnosis specifically, controlling for other diagnosis categories. PLS identified five significant LVs between connectivity and symptoms, mapping onto the psychopathology hierarchy. The first LV resembled a general psychopathology factor, followed by dimensions of internalising- externalising, neurodevelopment, somatic complaints, and thought problems. Another PLS with diagnostic data revealed one significant LV, resembling a cross-diagnostic case-control pattern. The diagnosis-specific PLS identified a unique connectivity pattern for autism spectrum disorder (ASD). All LVs were associated with distinct patterns of functional connectivity. These dimensions largely replicated in an independent sample (n = 420) from the same dataset, as well as to an independent cohort (n = 3504). This suggests that covariance in developmental functional brain networks supports transdiagnostic dimensions of psychopathology.
Collapse
Affiliation(s)
- Irene Voldsbekk
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway.
| | - Rikka Kjelkenes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Andreas Dahl
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Madelene C Holm
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Martina J Lund
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, & Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, & Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Kristiania University College, Oslo, Norway
| |
Collapse
|
25
|
Yu Y, Gratton C, Smith DM. From correlation to communication: Disentangling hidden factors from functional connectivity changes. Netw Neurosci 2023; 7:411-430. [PMID: 37397894 PMCID: PMC10312287 DOI: 10.1162/netn_a_00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/02/2022] [Indexed: 01/11/2024] Open
Abstract
While correlations in the BOLD fMRI signal are widely used to capture functional connectivity (FC) and its changes across contexts, its interpretation is often ambiguous. The entanglement of multiple factors including local coupling of two neighbors and nonlocal inputs from the rest of the network (affecting one or both regions) limits the scope of the conclusions that can be drawn from correlation measures alone. Here we present a method of estimating the contribution of nonlocal network input to FC changes across different contexts. To disentangle the effect of task-induced coupling change from the network input change, we propose a new metric, "communication change," utilizing BOLD signal correlation and variance. With a combination of simulation and empirical analysis, we demonstrate that (1) input from the rest of the network accounts for a moderate but significant amount of task-induced FC change and (2) the proposed "communication change" is a promising candidate for tracking the local coupling in task context-induced change. Additionally, when compared to FC change across three different tasks, communication change can better discriminate specific task types. Taken together, this novel index of local coupling may have many applications in improving our understanding of local and widespread interactions across large-scale functional networks.
Collapse
Affiliation(s)
- Yuhua Yu
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Derek M. Smith
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Mason SL, Junges L, Woldman W, Facer-Childs ER, de Campos BM, Bagshaw AP, Terry JR. Classification of human chronotype based on fMRI network-based statistics. Front Neurosci 2023; 17:1147219. [PMID: 37342462 PMCID: PMC10277557 DOI: 10.3389/fnins.2023.1147219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Chronotype-the relationship between the internal circadian physiology of an individual and the external 24-h light-dark cycle-is increasingly implicated in mental health and cognition. Individuals presenting with a late chronotype have an increased likelihood of developing depression, and can display reduced cognitive performance during the societal 9-5 day. However, the interplay between physiological rhythms and the brain networks that underpin cognition and mental health is not well-understood. To address this issue, we use rs-fMRI collected from 16 people with an early chronotype and 22 people with a late chronotype over three scanning sessions. We develop a classification framework utilizing the Network Based-Statistic methodology, to understand if differentiable information about chronotype is embedded in functional brain networks and how this changes throughout the day. We find evidence of subnetworks throughout the day that differ between extreme chronotypes such that high accuracy can occur, describe rigorous threshold criteria for achieving 97.3% accuracy in the Evening and investigate how the same conditions hinder accuracy for other scanning sessions. Revealing differences in functional brain networks based on extreme chronotype suggests future avenues of research that may ultimately better characterize the relationship between internal physiology, external perturbations, brain networks, and disease.
Collapse
Affiliation(s)
- Sophie L. Mason
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Wessel Woldman
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Elise R. Facer-Childs
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
- Danny Frawley Centre for Health and Wellbeing, Melbourne, VIC, Australia
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom
| | | | - Andrew P. Bagshaw
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - John R. Terry
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Jin H, Verma P, Jiang F, Nagarajan S, Raj A. Bayesian Inference of a Spectral Graph Model for Brain Oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530704. [PMID: 36909647 PMCID: PMC10002745 DOI: 10.1101/2023.03.01.530704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The relationship between brain functional connectivity and structural connectivity has caught extensive attention of the neuroscience community, commonly inferred using mathematical modeling. Among many modeling approaches, spectral graph model (SGM) is distinctive as it has a closed-form solution of the wide-band frequency spectra of brain oscillations, requiring only global biophysically interpretable parameters. While SGM is parsimonious in parameters, the determination of SGM parameters is non-trivial. Prior works on SGM determine the parameters through a computational intensive annealing algorithm, which only provides a point estimate with no confidence intervals for parameter estimates. To fill this gap, we incorporate the simulation-based inference (SBI) algorithm and develop a Bayesian procedure for inferring the posterior distribution of the SGM parameters. Furthermore, using SBI dramatically reduces the computational burden for inferring the SGM parameters. We evaluate the proposed SBI-SGM framework on the resting-state magnetoencephalography recordings from healthy subjects and show that the proposed procedure has similar performance to the annealing algorithm in recovering power spectra and the spatial distribution of the alpha frequency band. In addition, we also analyze the correlations among the parameters and their uncertainty with the posterior distribution which can not be done with annealing inference. These analyses provide a richer understanding of the interactions among biophysical parameters of the SGM. In general, the use of simulation-based Bayesian inference enables robust and efficient computations of generative model parameter uncertainties and may pave the way for the use of generative models in clinical translation applications.
Collapse
Affiliation(s)
- Huaqing Jin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA San Francisco, CA
| | - Parul Verma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA San Francisco, CA
| | - Fei Jiang
- Department of Epidemiology and Biostatistics, University of California San Francisco, USA San Francisco, CA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA San Francisco, CA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA San Francisco, CA
| |
Collapse
|
28
|
Chao THH, Lee B, Hsu LM, Cerri DH, Zhang WT, Wang TWW, Ryali S, Menon V, Shih YYI. Neuronal dynamics of the default mode network and anterior insular cortex: Intrinsic properties and modulation by salient stimuli. SCIENCE ADVANCES 2023; 9:eade5732. [PMID: 36791185 PMCID: PMC9931216 DOI: 10.1126/sciadv.ade5732] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/19/2023] [Indexed: 05/26/2023]
Abstract
The default mode network (DMN) is critical for self-referential mental processes, and its dysfunction is implicated in many neuropsychiatric disorders. However, the neurophysiological properties and task-based functional organization of the rodent DMN are poorly understood, limiting its translational utility. Here, we combine fiber photometry with functional magnetic resonance imaging (fMRI) and computational modeling to characterize dynamics of putative rat DMN nodes and their interactions with the anterior insular cortex (AI) of the salience network. Our analysis revealed neuronal activity changes in AI and DMN nodes preceding fMRI-derived DMN activations and cyclical transitions between brain network states. Furthermore, we demonstrate that salient oddball stimuli suppress the DMN and enhance AI neuronal activity and that the AI causally inhibits the retrosplenial cortex, a prominent DMN node. These findings elucidate the neurophysiological foundations of the rodent DMN, its spatiotemporal dynamical properties, and modulation by salient stimuli, paving the way for future translational studies.
Collapse
Affiliation(s)
- Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Byeongwook Lee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Domenic Hayden Cerri
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei-Ting Zhang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Weaver C, Xiao L, Lindquist MA. Single-index models with functional connectivity network predictors. Biostatistics 2022; 24:52-67. [PMID: 33948617 PMCID: PMC9748592 DOI: 10.1093/biostatistics/kxab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single-index model wherein response variables and sparse functional connectivity network valued predictors are linked by an unspecified smooth function in order to accommodate potentially nonlinear relationships. We exploit the network structure of functional connectivity by imposing meaningful sparsity constraints, which lead not only to the identification of association of interactions between regions with the response but also the assessment of whether or not the functional connectivity associated with a brain region is related to the response variable. We demonstrate the effectiveness of the proposed model in simulation studies and in an application to a resting-state fMRI data set from the Human Connectome Project to model fluid intelligence and sex and to identify predictive links between brain regions.
Collapse
Affiliation(s)
- Caleb Weaver
- Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27606, USA
| | - Luo Xiao
- Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27606, USA
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Zhang G, Cai B, Zhang A, Tu Z, Xiao L, Stephen JM, Wilson TW, Calhoun VD, Wang YP. Detecting abnormal connectivity in schizophrenia via a joint directed acyclic graph estimation model. Neuroimage 2022; 260:119451. [PMID: 35842099 PMCID: PMC11573435 DOI: 10.1016/j.neuroimage.2022.119451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/14/2022] [Accepted: 07/03/2022] [Indexed: 01/10/2023] Open
Abstract
Functional connectivity (FC) between brain region has been widely studied and linked with cognition and behavior of an individual. FC is usually defined as the correlation or partial correlation of fMRI blood oxygen level-dependent (BOLD) signals between two brain regions. Although FC has been effective to understand brain organization, it cannot reveal the direction of interactions. Many directed acyclic graph (DAG) based methods have been applied to study the directed interactions but their performance was limited by the small sample size while high dimensionality of the available data. By enforcing group regularization and utilizing samples from both case and control groups, we propose a joint DAG model to estimate the directed FC. We first demonstrate that the proposed model is efficient and accurate through a series of simulation studies. We then apply it to the case-control study of schizophrenia (SZ) with data collected from the MIND Clinical Imaging Consortium (MCIC). We have successfully identified decreased functional integration, disrupted hub structures and characteristic edges (CtEs) in SZ patients. Those findings have been confirmed by previous studies with some identified to be potential markers for SZ patients. A comparison of the results between the directed FC and undirected FC showed substantial differences in the selected features. In addition, we used the identified features based on directed FC for the classification of SZ patients and achieved better accuracy than using undirected FC or raw features, demonstrating the advantage of using directed FC for brain network analysis.
Collapse
Affiliation(s)
- Gemeng Zhang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Biao Cai
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Aiying Zhang
- New York State Psychiatry Institute and Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Zhuozhuo Tu
- UBTECH Sydney Artificial Intelligence Centre, The University of Sydney, NSW 2006, Australia
| | - Li Xiao
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Julia M Stephen
- Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Ln, Boys Town, NE 68010, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30030 USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
31
|
Fomins A, Sych Y, Helmchen F. Conservative significance testing of tripartite statistical relations in multivariate neural data. Netw Neurosci 2022; 6:1243-1274. [PMID: 38800452 PMCID: PMC11117094 DOI: 10.1162/netn_a_00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/14/2022] [Indexed: 05/29/2024] Open
Abstract
An important goal in systems neuroscience is to understand the structure of neuronal interactions, frequently approached by studying functional relations between recorded neuronal signals. Commonly used pairwise measures (e.g., correlation coefficient) offer limited insight, neither addressing the specificity of estimated neuronal interactions nor potential synergistic coupling between neuronal signals. Tripartite measures, such as partial correlation, variance partitioning, and partial information decomposition, address these questions by disentangling functional relations into interpretable information atoms (unique, redundant, and synergistic). Here, we apply these tripartite measures to simulated neuronal recordings to investigate their sensitivity to noise. We find that the considered measures are mostly accurate and specific for signals with noiseless sources but experience significant bias for noisy sources.We show that permutation testing of such measures results in high false positive rates even for small noise fractions and large data sizes. We present a conservative null hypothesis for significance testing of tripartite measures, which significantly decreases false positive rate at a tolerable expense of increasing false negative rate. We hope our study raises awareness about the potential pitfalls of significance testing and of interpretation of functional relations, offering both conceptual and practical advice.
Collapse
Affiliation(s)
- Aleksejs Fomins
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Switzerland
| | - Yaroslav Sych
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Experimental Neurology Center, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
- Present address: Institute of Cellular and Integrative Neurosciences, University of Strasbourg and CNRS, Strasbourg, France
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Switzerland
| |
Collapse
|
32
|
Ali R, Li H, Dillman JR, Altaye M, Wang H, Parikh NA, He L. A self-training deep neural network for early prediction of cognitive deficits in very preterm infants using brain functional connectome data. Pediatr Radiol 2022; 52:2227-2240. [PMID: 36131030 PMCID: PMC9574648 DOI: 10.1007/s00247-022-05510-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Deep learning has been employed using brain functional connectome data for evaluating the risk of cognitive deficits in very preterm infants. Although promising, training these deep learning models typically requires a large amount of labeled data, and labeled medical data are often very difficult and expensive to obtain. OBJECTIVE This study aimed to develop a self-training deep neural network (DNN) model for early prediction of cognitive deficits at 2 years of corrected age in very preterm infants (gestational age ≤32 weeks) using both labeled and unlabeled brain functional connectome data. MATERIALS AND METHODS We collected brain functional connectome data from 343 very preterm infants at a mean (standard deviation) postmenstrual age of 42.7 (2.5) weeks, among whom 103 children had a cognitive assessment at 2 years (i.e. labeled data), and the remaining 240 children had not received 2-year assessments at the time this study was conducted (i.e. unlabeled data). To develop a self-training DNN model, we built an initial student model using labeled brain functional connectome data. Then, we applied the trained model as a teacher model to generate pseudo-labels for unlabeled brain functional connectome data. Next, we combined labeled and pseudo-labeled data to train a new student model. We iterated this procedure to obtain the best student model for the early prediction task in very preterm infants. RESULTS In our cross-validation experiments, the proposed self-training DNN model achieved an accuracy of 71.0%, a specificity of 71.5%, a sensitivity of 70.4% and an area under the curve of 0.75, significantly outperforming transfer learning models through pre-training approaches. CONCLUSION We report the first self-training prognostic study in very preterm infants, efficiently utilizing a small amount of labeled data with a larger share of unlabeled data to aid the model training. The proposed technique is expected to facilitate deep learning with insufficient training data.
Collapse
Affiliation(s)
- Redha Ali
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH, 45229, USA
| | - Hailong Li
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH, 45229, USA
- Center for Artificial Intelligence in Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Prevention of Neurodevelopmental Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH, 45229, USA
- Center for Artificial Intelligence in Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Center for Prevention of Neurodevelopmental Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hui Wang
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH, 45229, USA
- MR Clinical Science, Philips, Cincinnati, OH, USA
| | - Nehal A Parikh
- Center for Prevention of Neurodevelopmental Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili He
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH, 45229, USA.
- Center for Artificial Intelligence in Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Prevention of Neurodevelopmental Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
33
|
Chen AA, Srinivasan D, Pomponio R, Fan Y, Nasrallah IM, Resnick SM, Beason-Held LL, Davatzikos C, Satterthwaite TD, Bassett DS, Shinohara RT, Shou H. Harmonizing functional connectivity reduces scanner effects in community detection. Neuroimage 2022; 256:119198. [PMID: 35421567 PMCID: PMC9202339 DOI: 10.1016/j.neuroimage.2022.119198] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Community detection on graphs constructed from functional magnetic resonance imaging (fMRI) data has led to important insights into brain functional organization. Large studies of brain community structure often include images acquired on multiple scanners across different studies. Differences in scanner can introduce variability into the downstream results, and these differences are often referred to as scanner effects. Such effects have been previously shown to significantly impact common network metrics. In this study, we identify scanner effects in data-driven community detection results and related network metrics. We assess a commonly employed harmonization method and propose new methodology for harmonizing functional connectivity that leverage existing knowledge about network structure as well as patterns of covariance in the data. Finally, we demonstrate that our new methods reduce scanner effects in community structure and network metrics. Our results highlight scanner effects in studies of brain functional organization and provide additional tools to address these unwanted effects. These findings and methods can be incorporated into future functional connectivity studies, potentially preventing spurious findings and improving reliability of results.
Collapse
Affiliation(s)
- Andrew A Chen
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Dhivya Srinivasan
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond Pomponio
- Department of Biostatistics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilya M Nasrallah
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lifespan Informatics & Neuroimaging Center, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Nuerology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haochang Shou
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Predicting brain structural network using functional connectivity. Med Image Anal 2022; 79:102463. [PMID: 35490597 DOI: 10.1016/j.media.2022.102463] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/06/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
Abstract
Uncovering the non-trivial brain structure-function relationship is fundamentally important for revealing organizational principles of human brain. However, it is challenging to infer a reliable relationship between individual brain structure and function, e.g., the relations between individual brain structural connectivity (SC) and functional connectivity (FC). Brain structure-function displays a distributed and heterogeneous pattern, that is, many functional relationships arise from non-overlapping sets of anatomical connections. This complex relation can be interwoven with widely existed individual structural and functional variations. Motivated by the advances of generative adversarial network (GAN) and graph convolutional network (GCN) in the deep learning field, in this work, we proposed a multi-GCN based GAN (MGCN-GAN) to infer individual SC based on corresponding FC by automatically learning the complex associations between individual brain structural and functional networks. The generator of MGCN-GAN is composed of multiple multi-layer GCNs which are designed to model complex indirect connections in brain network. The discriminator of MGCN-GAN is a single multi-layer GCN which aims to distinguish the predicted SC from real SC. To overcome the inherent unstable behavior of GAN, we designed a new structure-preserving (SP) loss function to guide the generator to learn the intrinsic SC patterns more effectively. Using Human Connectome Project (HCP) dataset and Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset as test beds, our MGCN-GAN model can generate reliable individual SC from FC. This result implies that there may exist a common regulation between specific brain structural and functional architectures across different individuals.
Collapse
|
35
|
López-Madrona VJ, Medina Villalon S, Badier JM, Trébuchon A, Jayabal V, Bartolomei F, Carron R, Barborica A, Vulliémoz S, Alario FX, Bénar CG. Magnetoencephalography can reveal deep brain network activities linked to memory processes. Hum Brain Mapp 2022; 43:4733-4749. [PMID: 35766240 PMCID: PMC9491290 DOI: 10.1002/hbm.25987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Recording from deep neural structures such as hippocampus noninvasively and yet with high temporal resolution remains a major challenge for human neuroscience. Although it has been proposed that deep neuronal activity might be recordable during cognitive tasks using magnetoencephalography (MEG), this remains to be demonstrated as the contribution of deep structures to MEG recordings may be too small to be detected or might be eclipsed by the activity of large‐scale neocortical networks. In the present study, we disentangled mesial activity and large‐scale networks from the MEG signals thanks to blind source separation (BSS). We then validated the MEG BSS components using intracerebral EEG signals recorded simultaneously in patients during their presurgical evaluation of epilepsy. In the MEG signals obtained during a memory task involving the recognition of old and new images, we identified with BSS a putative mesial component, which was present in all patients and all control subjects. The time course of the component selectively correlated with stereo‐electroencephalography signals recorded from hippocampus and rhinal cortex, thus confirming its mesial origin. This finding complements previous studies with epileptic activity and opens new possibilities for using MEG to study deep brain structures in cognition and in brain disorders.
Collapse
Affiliation(s)
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | | | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.,APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | | | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | | | - Serge Vulliémoz
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine Geneva, Geneva, Switzerland
| | | | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
36
|
Abstract
Recent advances in imaging and tracing technology provide increasingly detailed reconstructions of brain connectomes. Concomitant analytic advances enable rigorous identification and quantification of functionally important features of brain network architecture. Null models are a flexible tool to statistically benchmark the presence or magnitude of features of interest, by selectively preserving specific architectural properties of brain networks while systematically randomizing others. Here we describe the logic, implementation and interpretation of null models of connectomes. We introduce randomization and generative approaches to constructing null networks, and outline a taxonomy of network methods for statistical inference. We highlight the spectrum of null models - from liberal models that control few network properties, to conservative models that recapitulate multiple properties of empirical networks - that allow us to operationalize and test detailed hypotheses about the structure and function of brain networks. We review emerging scenarios for the application of null models in network neuroscience, including for spatially embedded networks, annotated networks and correlation-derived networks. Finally, we consider the limits of null models, as well as outstanding questions for the field.
Collapse
|
37
|
Jiang X, Zhou Y, Zhang Y, Zhang L, Qiao L, De Leone R. Estimating High-Order Brain Functional Networks in Bayesian View for Autism Spectrum Disorder Identification. Front Neurosci 2022; 16:872848. [PMID: 35573311 PMCID: PMC9094041 DOI: 10.3389/fnins.2022.872848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Brain functional network (BFN) has become an increasingly important tool to understand the inherent organization of the brain and explore informative biomarkers of neurological disorders. Pearson’s correlation (PC) is the most widely accepted method for constructing BFNs and provides a basis for designing new BFN estimation schemes. Particularly, a recent study proposes to use two sequential PC operations, namely, correlation’s correlation (CC), for constructing the high-order BFN. Despite its empirical effectiveness in identifying neurological disorders and detecting subtle changes of connections in different subject groups, CC is defined intuitively without a solid and sustainable theoretical foundation. For understanding CC more rigorously and providing a systematic BFN learning framework, in this paper, we reformulate it in the Bayesian view with a prior of matrix-variate normal distribution. As a result, we obtain a probabilistic explanation of CC. In addition, we develop a Bayesian high-order method (BHM) to automatically and simultaneously estimate the high- and low-order BFN based on the probabilistic framework. An efficient optimization algorithm is also proposed. Finally, we evaluate BHM in identifying subjects with autism spectrum disorder (ASD) from typical controls based on the estimated BFNs. Experimental results suggest that the automatically learned high- and low-order BFNs yield a superior performance over the artificially defined BFNs via conventional CC and PC.
Collapse
Affiliation(s)
- Xiao Jiang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
- School of Science and Technology, University of Camerino, Camerino, Italy
| | - Yueying Zhou
- College of Computer Science and Technology, Nanjing University of Aeronautics, Nanjing, China
| | - Yining Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Limei Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, China
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
- *Correspondence: Lishan Qiao,
| | - Renato De Leone
- School of Science and Technology, University of Camerino, Camerino, Italy
- Renato De Leone,
| |
Collapse
|
38
|
Shahhosseini Y, Miranda MF. Functional Connectivity Methods and Their Applications in fMRI Data. ENTROPY 2022; 24:e24030390. [PMID: 35327901 PMCID: PMC8946919 DOI: 10.3390/e24030390] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023]
Abstract
The availability of powerful non-invasive neuroimaging techniques has given rise to various studies that aim to map the human brain. These studies focus on not only finding brain activation signatures but also on understanding the overall organization of functional communication in the brain network. Based on the principle that distinct brain regions are functionally connected and continuously share information with each other, various approaches to finding these functional networks have been proposed in the literature. In this paper, we present an overview of the most common methods to estimate and characterize functional connectivity in fMRI data. We illustrate these methodologies with resting-state functional MRI data from the Human Connectome Project, providing details of their implementation and insights on the interpretations of the results. We aim to guide researchers that are new to the field of neuroimaging by providing the necessary tools to estimate and characterize brain circuitry.
Collapse
|
39
|
Many heads are better than one: A multiscale neural information feature fusion framework for spatial route selections decoding from multichannel neural recordings of pigeons. Brain Res Bull 2022; 184:1-12. [DOI: 10.1016/j.brainresbull.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
|
40
|
Dall'Orso S, Arichi T, Fitzgibbon SP, Edwards AD, Burdet E, Muceli S. Development of functional organization within the sensorimotor network across the perinatal period. Hum Brain Mapp 2022; 43:2249-2261. [PMID: 35088920 PMCID: PMC8996360 DOI: 10.1002/hbm.25785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
In the mature human brain, the neural processing related to different body parts is reflected in patterns of functional connectivity, which is strongest between functional homologs in opposite cortical hemispheres. To understand how this organization is first established, we investigated functional connectivity between limb regions in the sensorimotor cortex in 400 preterm and term infants aged across the equivalent period to the third trimester of gestation (32–45 weeks postmenstrual age). Masks were obtained from empirically derived functional responses in neonates from an independent data set. We demonstrate the early presence of a crude but spatially organized functional connectivity, that rapidly matures across the preterm period to achieve an adult‐like configuration by the normal time of birth. Specifically, connectivity was strongest between homolog regions, followed by connectivity between adjacent regions (different limbs but same hemisphere) already in the preterm brain, and increased with age. These changes were specific to the sensorimotor network. Crucially, these trajectories were strongly dependent on age more than age of birth. This demonstrates that during the perinatal period the sensorimotor cortex undergoes preprogrammed changes determining the functional movement organization that are not altered by preterm birth in absence of brain injury.
Collapse
Affiliation(s)
- Sofia Dall'Orso
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London.,Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK.,Paediatric Neurosciences, Evelina London Children's Hospital, St. Thomas' Hospital, London, UK.,Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London.,Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK
| | - Silvia Muceli
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London
| |
Collapse
|
41
|
Li X, Zhu Q, Vanduffel W. Submillimeter fMRI reveals an extensive, fine-grained and functionally-relevant scene-processing network in monkeys. Prog Neurobiol 2022; 211:102230. [DOI: 10.1016/j.pneurobio.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
|
42
|
Mekki Y, Guillemot V, Lemaitre H, Carrion-Castillo A, Forkel S, Frouin V, Philippe C. The genetic architecture of language functional connectivity. Neuroimage 2021; 249:118795. [PMID: 34929384 DOI: 10.1016/j.neuroimage.2021.118795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
Language is a unique trait of the human species, of which the genetic architecture remains largely unknown. Through language disorders studies, many candidate genes were identified. However, such complex and multifactorial trait is unlikely to be driven by only few genes and case-control studies, suffering from a lack of power, struggle to uncover significant variants. In parallel, neuroimaging has significantly contributed to the understanding of structural and functional aspects of language in the human brain and the recent availability of large scale cohorts like UK Biobank have made possible to study language via image-derived endophenotypes in the general population. Because of its strong relationship with task-based fMRI (tbfMRI) activations and its easiness of acquisition, resting-state functional MRI (rsfMRI) have been more popularised, making it a good surrogate of functional neuronal processes. Taking advantage of such a synergistic system by aggregating effects across spatially distributed traits, we performed a multivariate genome-wide association study (mvGWAS) between genetic variations and resting-state functional connectivity (FC) of classical brain language areas in the inferior frontal (pars opercularis, triangularis and orbitalis), temporal and inferior parietal lobes (angular and supramarginal gyri), in 32,186 participants from UK Biobank. Twenty genomic loci were found associated with language FCs, out of which three were replicated in an independent replication sample. A locus in 3p11.1, regulating EPHA3 gene expression, is found associated with FCs of the semantic component of the language network, while a locus in 15q14, regulating THBS1 gene expression is found associated with FCs of the perceptual-motor language processing, bringing novel insights into the neurobiology of language.
Collapse
Affiliation(s)
- Yasmina Mekki
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France.
| | - Vincent Guillemot
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Hervé Lemaitre
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | | | - Stephanie Forkel
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | - Vincent Frouin
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France
| | - Cathy Philippe
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France.
| |
Collapse
|
43
|
Berro DH, Lemée JM, Leiber LM, Emery E, Menei P, Ter Minassian A. Overt speech critically changes lateralization index and did not allow determination of hemispheric dominance for language: an fMRI study. BMC Neurosci 2021; 22:74. [PMID: 34852787 PMCID: PMC8638205 DOI: 10.1186/s12868-021-00671-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Pre-surgical mapping of language using functional MRI aimed principally to determine the dominant hemisphere. This mapping is currently performed using covert linguistic task in way to avoid motion artefacts potentially biasing the results. However, overt task is closer to natural speaking, allows a control on the performance of the task, and may be easier to perform for stressed patients and children. However, overt task, by activating phonological areas on both hemispheres and areas involved in pitch prosody control in the non-dominant hemisphere, is expected to modify the determination of the dominant hemisphere by the calculation of the lateralization index (LI). Objective Here, we analyzed the modifications in the LI and the interactions between cognitive networks during covert and overt speech task. Methods Thirty-three volunteers participated in this study, all but four were right-handed. They performed three functional sessions consisting of (1) covert and (2) overt generation of a short sentence semantically linked with an audibly presented word, from which we estimated the “Covert” and “Overt” contrasts, and a (3) resting-state session. The resting-state session was submitted to spatial independent component analysis to identify language network at rest (LANG), cingulo-opercular network (CO), and ventral attention network (VAN). The LI was calculated using the bootstrapping method. Results The LI of the LANG was the most left-lateralized (0.66 ± 0.38). The LI shifted from a moderate leftward lateralization for the Covert contrast (0.32 ± 0.38) to a right lateralization for the Overt contrast (− 0.13 ± 0.30). The LI significantly differed from each other. This rightward shift was due to the recruitment of right hemispheric temporal areas together with the nodes of the CO. Conclusion Analyzing the overt speech by fMRI allowed improvement in the physiological knowledge regarding the coordinated activity of the intrinsic connectivity networks. However, the rightward shift of the LI in this condition did not provide the basic information on the hemispheric language dominance. Overt linguistic task cannot be recommended for clinical purpose when determining hemispheric dominance for language. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00671-y.
Collapse
Affiliation(s)
- David Hassanein Berro
- Department of Neurosurgery, University Hospital of Caen Normandy, Avenue de la Côte de Nacre, 14000, Caen, France. .,Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France. .,INSERM, CRCINA, Team 17, IRIS building, Angers, France.
| | - Jean-Michel Lemée
- INSERM, CRCINA, Team 17, IRIS building, Angers, France.,Department of Neurosurgery, University Hospital of Angers, Angers, France
| | | | - Evelyne Emery
- Department of Neurosurgery, University Hospital of Caen Normandy, Avenue de la Côte de Nacre, 14000, Caen, France.,INSERM, UMR-S U1237, PhIND group, GIP Cyceron, Caen, France
| | - Philippe Menei
- INSERM, CRCINA, Team 17, IRIS building, Angers, France.,Department of Neurosurgery, University Hospital of Angers, Angers, France
| | - Aram Ter Minassian
- Department of Anesthesiology, University Hospital of Angers, Angers, France.,LARIS, ISISV team, University of Angers, Angers, France
| |
Collapse
|
44
|
Hall SA, Bell RP, Davis SW, Towe SL, Ikner TP, Meade CS. Human immunodeficiency virus-related decreases in corpus callosal integrity and corresponding increases in functional connectivity. Hum Brain Mapp 2021; 42:4958-4972. [PMID: 34382273 PMCID: PMC8449114 DOI: 10.1002/hbm.25592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
People living with human immunodeficiency virus (PLWH) often have neurocognitive impairment. However, findings on HIV-related differences in brain network function underlying these impairments are inconsistent. One principle frequently absent from these reports is that brain function is largely emergent from brain structure. PLWH commonly have degraded white matter; we hypothesized that functional communities connected by degraded white matter tracts would show abnormal functional connectivity. We measured white matter integrity in 69 PLWH and 67 controls using fractional anisotropy (FA) in 24 intracerebral white matter tracts. Then, among tracts with degraded FA, we identified gray matter regions connected to these tracts and measured their functional connectivity during rest. Finally, we identified cognitive impairment related to these structural and functional connectivity systems. We found HIV-related decreased FA in the corpus callosum body (CCb), which coordinates activity between the left and right hemispheres, and corresponding increases in functional connectivity. Finally, we found that individuals with impaired cognitive functioning have lower CCb FA and higher CCb functional connectivity. This result clarifies the functional relevance of the corpus callosum in HIV and provides a framework in which abnormal brain function can be understood in the context of abnormal brain structure, which may both contribute to cognitive impairment.
Collapse
Affiliation(s)
- Shana A. Hall
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Ryan P. Bell
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Simon W. Davis
- Department of NeurologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Sheri L. Towe
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Taylor P. Ikner
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Christina S. Meade
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
45
|
Guo T, Zhang Y, Xue Y, Qiao L, Shen D. Brain Function Network: Higher Order vs. More Discrimination. Front Neurosci 2021; 15:696639. [PMID: 34497485 PMCID: PMC8419271 DOI: 10.3389/fnins.2021.696639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Brain functional network (BFN) has become an increasingly important tool to explore individual differences and identify neurological/mental diseases. For estimating a "good" BFN (with more discriminative information for example), researchers have developed various methods, in which the most popular and simplest is Pearson's correlation (PC). Despite its empirical effectiveness, PC only encodes the low-order (second-order) statistics between brain regions. To model high-order statistics, researchers recently proposed to estimate BFN by conducting two sequential PCs (denoted as PC 2 in this paper), and found that PC 2-based BFN can provide additional information for group difference analysis. This inspires us to think about (1) what will happen if continuing the correlation operation to construct much higher-order BFN by PC n (n>2), and (2) whether the higher-order correlation will result in stronger discriminative ability. To answer these questions, we use PC n -based BFNs to predict individual differences (Female vs. Male) as well as identify subjects with mild cognitive impairment (MCI) from healthy controls (HCs). Through experiments, we have the following findings: (1) with the increase of n, the discriminative ability of PC n -based BFNs tends to decrease; (2) fusing the PC n -based BFNs (n>1) with the PC 1-based BFN can generally improve the sensitivity for MCI identification, but fail to help the classification accuracy. In addition, we empirically find that the sequence of BFN adjacency matrices estimated by PC n (n = 1,2,3,⋯ ) will converge to a binary matrix with elements of ± 1.
Collapse
Affiliation(s)
- Tingting Guo
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Yining Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Yanfang Xue
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.,Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.,Department of Artificial Intelligence, Korea University, Seoul, South Korea
| |
Collapse
|
46
|
Gorbach T, Lundquist A, de Luna X, Nyberg L, Salami A. A Hierarchical Bayesian Mixture Model Approach for Analysis of Resting-State Functional Brain Connectivity: An Alternative to Thresholding. Brain Connect 2021; 10:202-211. [PMID: 32308015 PMCID: PMC7310299 DOI: 10.1089/brain.2020.0740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This article proposes a Bayesian hierarchical mixture model to analyze functional brain connectivity where mixture components represent “positively connected” and “non-connected” brain regions. Such an approach provides a data-informed separation of reliable and spurious connections in contrast to arbitrary thresholding of a connectivity matrix. The hierarchical structure of the model allows simultaneous inferences for the entire population as well as for each individual subject. A new connectivity measure, the posterior probability of a given pair of brain regions of a specific subject to be connected given the observed correlation of regions' activity, can be computed from the model fit. The posterior probability reflects the connectivity of a pair of regions relative to the overall connectivity pattern of an individual, which is overlooked in traditional correlation analyses. This article demonstrates that using the posterior probability might diminish the effect of spurious connections on inferences, which is present when a correlation is used as a connectivity measure. In addition, simulation analyses reveal that the sparsification of the connectivity matrix using the posterior probabilities might outperform the absolute thresholding based on correlations. Therefore, we suggest that posterior probability might be a beneficial measure of connectivity compared with the correlation. The applicability of the introduced method is exemplified by a study of functional resting-state brain connectivity in older adults.
Collapse
Affiliation(s)
- Tetiana Gorbach
- Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Anders Lundquist
- Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Xavier de Luna
- Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
47
|
Xue Y, Zhang Y, Zhang L, Lee SW, Qiao L, Shen D. Learning Brain Functional Networks with Latent Temporal Dependency for MCI Identification. IEEE Trans Biomed Eng 2021; 69:590-601. [PMID: 34347591 DOI: 10.1109/tbme.2021.3102015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractResting-state functional magnetic resonance imaging (rs-fMRI) has become a popular non-invasive way of diagnosing neurological disorders or their early stages by probing functional connectivity between different brain regions of interest (ROIs) across subjects. In the past decades, researchers have proposed many methods to estimate brain functional networks (BFNs) based on blood-oxygen-level-dependent (BOLD) signals captured by rs-fMRI. However, most of the existing methods estimate BFNs under the assumption that signals are independently sampled, which ignores the temporal dependency and sequential order of different time points (or volumes). To address this problem, in this paper, we first propose a novel BFN estimation model by introducing a latent variable to control the sequence of volumes for encoding the temporal dependency and sequential information of signals into the estimated BFNs. Then, we develop an efficient learning algorithm to solve the proposed model by the alternating optimization scheme. To verify the effectiveness of the proposed method, the estimated BFNs are used to identify subjects with mild cognitive impairment (MCIs) from normal controls (NCs). Experimental results show that our method outperforms the baseline methods in the sense of classification performance.
Collapse
|
48
|
Qiu Y, Zhou XH. Inference on Multi-level Partial Correlations Based on Multi-subject Time Series Data. J Am Stat Assoc 2021. [DOI: 10.1080/01621459.2021.1917417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yumou Qiu
- Department of Statistics, Iowa State University, Ames, IA
| | - Xiao-Hua Zhou
- Beijing International Center for Mathematical Research, Department of Biostatistics, and National Engineering Lab for Big Data Analysis and Applications, Peking University, Beijing, China
| |
Collapse
|
49
|
Ranciati S, Roverato A, Luati A. Fused graphical lasso for brain networks with symmetries. J R Stat Soc Ser C Appl Stat 2021. [DOI: 10.1111/rssc.12514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Saverio Ranciati
- Department of Statistical Sciences University of Bologna Bologna Italy
| | - Alberto Roverato
- Department of Statistical Sciences University of Padova Padova Italy
| | - Alessandra Luati
- Department of Statistical Sciences University of Bologna Bologna Italy
| |
Collapse
|
50
|
Akın A. fNIRS-derived neurocognitive ratio as a biomarker for neuropsychiatric diseases. NEUROPHOTONICS 2021; 8:035008. [PMID: 34604439 PMCID: PMC8482313 DOI: 10.1117/1.nph.8.3.035008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/16/2021] [Indexed: 05/03/2023]
Abstract
Significance: Clinical use of fNIRS-derived features has always suffered low sensitivity and specificity due to signal contamination from background systemic physiological fluctuations. We provide an algorithm to extract cognition-related features by eliminating the effect of background signal contamination, hence improving the classification accuracy. Aim: The aim in this study is to investigate the classification accuracy of an fNIRS-derived biomarker based on global efficiency (GE). To this end, fNIRS data were collected during a computerized Stroop task from healthy controls and patients with migraine, obsessive compulsive disorder, and schizophrenia. Approach: Functional connectivity (FC) maps were computed from [HbO] time series data for neutral (N), congruent (C), and incongruent (I) stimuli using the partial correlation approach. Reconstruction of FC matrices with optimal choice of principal components yielded two independent networks: cognitive mode network (CM) and default mode network (DM). Results: GE values computed for each FC matrix after applying principal component analysis (PCA) yielded strong statistical significance leading to a higher specificity and accuracy. A new index, neurocognitive ratio (NCR), was computed by multiplying the cognitive quotients (CQ) and ratio of GE of CM to GE of DM. When mean values of NCR ( N C R ¯ ) over all stimuli were computed, they showed high sensitivity (100%), specificity (95.5%), and accuracy (96.3%) for all subjects groups. Conclusions: N C R ¯ can reliable be used as a biomarker to improve the classification of healthy to neuropsychiatric patients.
Collapse
Affiliation(s)
- Ata Akın
- Acibadem University, Department of Medical Engineering, Ataşehir, Istanbul, Turkey
- Address all correspondence to Ata Akn,
| |
Collapse
|