1
|
Stauff E, Xu W, Kecskemethy HH, Langhans SA, Kandula VVR, Averill LW, Yue X. Tryptophan Kynurenine Pathway-Based Imaging Agents for Brain Disorders and Oncology-From Bench to Bedside. Biomolecules 2025; 15:47. [PMID: 39858441 PMCID: PMC11762981 DOI: 10.3390/biom15010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Tryptophan (Trp)-based radiotracers have excellent potential for imaging many different types of brain pathology because of their involvement with both the serotonergic and kynurenine (KYN) pathways. However, radiotracers specific to the kynurenine metabolism pathway are limited. In addition, historically Trp-based radiopharmaceuticals were synthesized with the short-lived isotope carbon-11. A newer generation of Trp-based imaging agents using the longer half-lived and commercially available isotopes, such as fluorine-18 and iodine-124, are being developed. The newly developed amino acid-based tracers have been demonstrated to have favorable radiochemical and imaging characteristics in pre-clinical studies. However, many barriers still exist in the clinical translation of KYN pathway-specific radiotracers.
Collapse
Affiliation(s)
- Erik Stauff
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Wenqi Xu
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Heidi H. Kecskemethy
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Division of Neurology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Lauren W. Averill
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Xuyi Yue
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Markova TZ, Ciampa CJ, Parent JH, LaPoint MR, D'Esposito M, Jagust WJ, Berry AS. Poorer aging trajectories are associated with elevated serotonin synthesis capacity. Mol Psychiatry 2023; 28:4390-4398. [PMID: 37460847 PMCID: PMC10792105 DOI: 10.1038/s41380-023-02177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 01/18/2024]
Abstract
The dorsal raphe nucleus (DRN) is one of the earliest targets of Alzheimer's disease-related tau pathology and is a major source of brain serotonin. We used [18F]Fluoro-m-tyrosine ([18F]FMT) PET imaging to measure serotonin synthesis capacity in the DRN in 111 healthy adults (18-85 years-old). Similar to reports in catecholamine systems, we found elevated serotonin synthesis capacity in older adults relative to young. To establish the structural and functional context within which serotonin synthesis capacity is elevated in aging, we examined relationships among DRN [18F]FMT net tracer influx (Ki) and longitudinal changes in cortical thickness using magnetic resonance imaging, longitudinal changes in self-reported depression symptoms, and AD-related tau and β-amyloid (Aβ) pathology using cross-sectional [18F]Flortaucipir and [11C]Pittsburgh compound-B PET respectively. Together, our findings point to elevated DRN [18F]FMT Ki as a marker of poorer aging trajectories. Older adults with highest serotonin synthesis capacity showed greatest temporal lobe cortical atrophy. Cortical atrophy was associated with increasing depression symptoms over time, and these effects appeared to be strongest in individuals with highest serotonin synthesis capacity. We did not find direct relationships between serotonin synthesis capacity and AD-related pathology. Exploratory analyses revealed nuanced effects of sex within the older adult group. Older adult females showed the highest DRN synthesis capacity and exhibited the strongest relationships between entorhinal cortex tau pathology and increasing depression symptoms. Together these findings reveal PET measurement of the serotonin system to be a promising marker of aging trajectories relevant to both AD and affective changes in older age.
Collapse
Affiliation(s)
| | | | | | - Molly R LaPoint
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | |
Collapse
|
3
|
Pais ML, Martins J, Castelo-Branco M, Gonçalves J. Sex Differences in Tryptophan Metabolism: A Systematic Review Focused on Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24066010. [PMID: 36983084 PMCID: PMC10057939 DOI: 10.3390/ijms24066010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Tryptophan (Tryp) is an essential amino acid and the precursor of several neuroactive compounds within the central nervous system (CNS). Tryp metabolism, the common denominator linking serotonin (5-HT) dysfunctions and neuroinflammation, is involved in several neuropsychiatric conditions, including neurological, neurodevelopmental, neurodegenerative, and psychiatric diseases. Interestingly, most of those conditions occur and progress in a sex-specific manner. Here, we explore the most relevant observations about the influence of biological sex on Tryp metabolism and its possible relation to neuropsychiatric diseases. Consistent evidence suggests that women have a higher susceptibility than men to suffer serotoninergic alterations due to changes in the levels of its precursor Tryp. Indeed, female sex bias in neuropsychiatric diseases is involved in a reduced availability of this amino acid pool and 5-HT synthesis. These changes in Tryp metabolism could lead to sexual dimorphism on the prevalence and severity of some neuropsychiatric disorders. This review identifies gaps in the current state of the art, thus suggesting future research directions. Specifically, there is a need for further research on the impact of diet and sex steroids, both involved in this molecular mechanism as they have been poorly addressed for this topic.
Collapse
Affiliation(s)
- Mariana Lapo Pais
- Doctoral Program in Biomedical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
4
|
Zhang Y, Yao S, Schmitt H, Becker B, Kendrick KM, Montag C. Molecular genetic associations between a prominent serotonin transporter gene polymorphism (5-HTTLPR/rs25531) and individual differences in tendencies toward autistic traits and generalized internet use disorder in China and Germany. Brain Behav 2022; 12:e2747. [PMID: 36106519 PMCID: PMC9575603 DOI: 10.1002/brb3.2747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The serotonin transporter polymorphism 5-HTTLPR is an extensively investigated genetic marker of autistic traits or autism spectrum disorder, and recently has also been studied in the realm of internet use disorder (IUD), yet the findings remain controversial. Therefore, the present study aimed to explore associations between 5-HTTLPR (also including SNP rs25531) and autistic traits/IUD tendencies and to assess whether the relationship between autistic traits and IUD tendencies varies by this genetic marker in participants from China and Germany. METHODS A total of 540 Chinese and 563 German subjects were genotyped for 5-HTTLPR/rs25531 and completed the Adult Autism Spectrum Quotient questionnaire and the short version of the Internet Addiction Test. RESULTS Carriers of the low expressing S'S' genotype (S, LG ) showed significantly higher levels of autistic traits than the high expressing allele (e.g. LA ) carriers in both samples. There was no significant effect of 5-HTTLPR/rs25531 on IUD either in the Chinese or Germany samples, whereas positive correlations between autistic traits and IUD varied by 5-HTTLPR/rs25531 genotypes and also differed between Chinese and German samples. In the Chinese sample, positive correlations were mainly driven by S'S' and S'L' carriers, while they were mainly determined by S'L' and L'L' carriers in the German sample. Further analyses revealed that the associations between autistic traits and IUD tended in parts to be more strongly pronounced in the complete German sample compared to the complete Chinese sample, and also varied depending on 5-HTTLPR/rs25531 genotypes (in S'S' carriers: China > Germany; in S'L' and L'L' carriers: China < Germany; both in terms of more positive associations). CONCLUSIONS Our findings suggest carriers of low expressing alleles (S, LG ) are more likely to show higher autistic traits in both Chinese and German samples. Furthermore, the present work shows that both 5-HTTLPR/rs25531 and cultural differences might be of relevance to understand associations between autistic traits and IUD tendencies, but this needs to be further backed up.
Collapse
Affiliation(s)
- YingYing Zhang
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Helena Schmitt
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Kranz GS, Spies M, Vraka C, Kaufmann U, Klebermass EM, Handschuh PA, Ozenil M, Murgaš M, Pichler V, Rischka L, Nics L, Konadu ME, Ibeschitz H, Traub-Weidinger T, Wadsak W, Hahn A, Hacker M, Lanzenberger R. High-dose testosterone treatment reduces monoamine oxidase A levels in the human brain: A preliminary report. Psychoneuroendocrinology 2021; 133:105381. [PMID: 34416504 DOI: 10.1016/j.psyneuen.2021.105381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/22/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The sex hormones testosterone and estradiol influence brain structure and function and are implicated in the pathogenesis, prevalence and disease course of major depression. Recent research employing gender-affirming hormone treatment (GHT) of gender dysphoric individuals and utilizing positron emission tomography (PET) indicates increased serotonin transporter binding upon high-dosages of testosterone treatment. Here, we investigated the effects of GHT on levels of monoamine oxidase A (MAO-A), another key target of antidepressant treatment. Participants underwent PET with the radioligand [11C]harmine to assess cerebral MAO-A distribution volumes (VT) before and four months after initiation of GHT. By the time this study was terminated for technical reasons, 18 transgender individuals undergoing GHT (11 transmen, TM and 7 transwomen, TW) and 17 cis-gender subjects had been assessed. Preliminary analysis of available data revealed statistically significant MAO-A VT reductions in TM under testosterone treatment in six of twelve a priori defined regions of interest (middle frontal cortex (-10%), anterior cingulate cortex (-9%), medial cingulate cortex (-10.5%), insula (-8%), amygdala (-9%) and hippocampus (-8.5%, all p<0.05)). MAO-A VT did not change in TW receiving estrogen treatment. Despite the limited sample size, pronounced MAO-A VT reduction could be observed, pointing towards a potential effect of testosterone. Considering MAO-A's central role in regulation of serotonergic neurotransmission, changes to MAO-A VT should be further investigated as a possible mechanism by which testosterone mediates risk for, symptomatology of, and treatment response in affective disorders.
Collapse
Affiliation(s)
- Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR , China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Ulrike Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
| | - Eva-Maria Klebermass
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marius Ozenil
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Department of Pharmaceutical Chemistry, University of Vienna, Austria
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Melisande E Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Harald Ibeschitz
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
6
|
Sex and the serotonergic underpinnings of depression and migraine. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:117-140. [PMID: 33008520 DOI: 10.1016/b978-0-444-64123-6.00009-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most psychiatric disorders demonstrate sex differences in their prevalence and symptomatology, and in their response to treatment. These differences are particularly pronounced in mood disorders. Differences in sex hormone levels are among the most overt distinctions between males and females and are thus an intuitive underpinning for these clinical observations. In fact, treatment with estrogen and testosterone was shown to exert antidepressant effects, which underscores this link. Changes to monoaminergic signaling in general, and serotonergic transmission in particular, are understood as central components of depressive pathophysiology. Thus, modulation of the serotonin system may serve as a mechanism via which sex hormones exert their clinical effects in mental health disorders. Over the past 20 years, various experimental approaches have been applied to identify modes of influence of sex and sex hormones on the serotonin system. This chapter provides an overview of different molecular components of the serotonin system, followed by a review of studies performed in animals and in humans with the purpose of elucidating sex hormone effects. Particular emphasis will be placed on studies performed with positron emission tomography, a method that allows for human in vivo molecular imaging and, therefore, assessment of effects in a clinically representative context. The studies addressed in this chapter provide a wealth of information on the interaction between sex, sex hormones, and serotonin in the brain. In general, they offer evidence for the concept that the influence of sex hormones on various components of the serotonin system may serve as an underpinning for the clinical effects these hormones demonstrate.
Collapse
|
7
|
Maurex L, Zaboli G, Öhman A, Åsberg M, Leopardi R. The serotonin transporter gene polymorphism (5-HTTLPR) and affective symptoms among women diagnosed with borderline personality disorder. Eur Psychiatry 2020; 25:19-25. [DOI: 10.1016/j.eurpsy.2009.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 04/27/2009] [Accepted: 05/02/2009] [Indexed: 10/20/2022] Open
Abstract
AbstractGene variants of the serotonin transporter have been associated with vulnerability to affective disorders. In particular, the presence of one or two copies of the short (s) allele of the 5-HTTLPR polymorphism has been associated with reduced serotonin transporter expression and function, and vulnerability to affective disorders. To test for an association between variants of the serotonin transporter gene polymorphism (5-HTTLPR) and relevant clinical features of borderline personality disorder (BPD), a psychiatric disorder with symptoms characteristic for serotonin dysfunction, 77 women with BPD were genotyped in the 5-HTTLPR polymorphism. They rated their subjective experience of borderline-specific, depressive, anxious and obsessive-compulsive symptoms, and were interviewed about lifetime incidence of suicide attempts and self-harming acts. Carriers of two s alleles of the 5-HTTLPR reported more symptoms of borderline, depression, anxiety and obsessive-compulsive behaviours, but not of suicidal and self-injury behaviour, compared to carriers of a long (l) allele. This indicates that the 5-HTTLPR ss homozygous genotype might influence serotonin function affecting susceptibility to both borderline-specific, depressive, anxious and obsessive-compulsive symptoms in BPD, and leading to a more severe symptomatology related to these clinical features. Further, this suggests that 5-HTT gene variants may not be as influential on suicidal and self-injury behaviour in BPD.
Collapse
|
8
|
Silveira MM, Wittekindt SN, Mortazavi L, Hathaway BA, Winstanley CA. Investigating serotonergic contributions to cognitive effort allocation, attention, and impulsive action in female rats. J Psychopharmacol 2020; 34:452-466. [PMID: 31913079 DOI: 10.1177/0269881119896043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Individuals must frequently evaluate whether it is worth allocating cognitive effort for desired outcomes. Motivational deficits are a common feature of psychiatric illness such as major depression. Selective serotonin reuptake inhibitors are commonly used to treat this disorder, yet some data suggest these compounds are ineffective at treating amotivation, and may even exacerbate it. AIMS Here we used the rodent Cognitive Effort Task (rCET) to assess serotonergic (5-hydroxytryptamine, 5-HT) contributions to decision-making with cognitive effort costs. METHODS The rCET is a modified version of the 5-choice serial reaction time task, a well-validated test of visuospatial attention and impulse control. At the start of each rCET trial, rats chose one of two levers, which set the difficulty of an attentional challenge, namely the localization of a visual stimulus illuminated for 0.2 or 1 s on hard versus easy trials. Successful completion of hard trials was rewarded with double the sugar pellets. Twenty-four female Long-Evans rats were trained on the rCET and systemically administered the 5-HT1A agonist 8-OH-DPAT, the 5-HT2A antagonist M100907, the 5-HT2C agonist Ro-60-0175, as well as the 5-HT2C antagonist SB 242, 084. RESULTS 5-HT2A antagonism dose-dependently reduced premature responding, while 5-HT2C antagonism had the opposite effect. 8-OH-DPAT impaired accuracy of target detection at higher doses, while Ro-60-0175 dose-dependently improved accuracy on difficult trials. However, none of the drugs affected the rats' choice of the harder option. CONCLUSION When considered with existing work evaluating decision-making with physical effort costs, it appears that serotonergic signalling plays a minor role in guiding effort allocation.
Collapse
Affiliation(s)
- Mason M Silveira
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Sebastian N Wittekindt
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leili Mortazavi
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Brett A Hathaway
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Domingues K, Lima FB, Linder AE, Melleu FF, Poli A, Spezia I, Suman PR, Theindl LC, Lino de Oliveira C. Sexually dimorphic responses of rats to fluoxetine in the forced swimming test are unrelated to the function of the serotonin transporter in the brain. Synapse 2019; 74:e22130. [PMID: 31449695 DOI: 10.1002/syn.22130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/04/2023]
Abstract
Due to the prevalence of depression in women, female rats may be a better models for antidepressant research than males. In male rats, fluoxetine inhibited the serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) which is reducing the immobility time in the repeated forced swimming test (rFST). The performance of female rats in this test is unknown. In this study, responses of male and female rats in the rFST under chronic treatment with fluoxetine and the function of SERT in their brains were examined. Wistar rats received oral fluoxetine (females: 0, 1, 2.5, or 5 mg kg-1 day-1 ; males: 0 or 2.5 mg kg-1 day-1 ; in sucrose 10%, 1.5 ml/rat) 1 hr before the test daily for 12 days over the course of the rFST. rFST consisted of a 15 min pretest followed by 5 min sessions of swimming at 1 (test), 7 (retest 1), and 14 (retest 2) days later. SERT functioning was assessed by ex vivo assays of the frontal cortex and hippocampus of rats. Fluoxetine reduced immobility time of males in the rFST while it failed to do so in females. In vitro treatment with fluoxetine inhibited the uptake of 5-HT of both sexes similarly, while in vivo chronic administration of fluoxetine failed to do so. In summary, rats responded to the chronic treatment with fluoxetine in a sexually dimorphic fashion during the rFST despite the functioning of SERT in their brains remaining equally unchanged. Hence, our data suggest that sexually dimorphic responses to fluoxetine in rFST may be unrelated to the function of SERT in rat brains.
Collapse
Affiliation(s)
- Karolina Domingues
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Fernanda Barbosa Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Aurea Elizabeth Linder
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Fernando Falkenburger Melleu
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Anicleto Poli
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Inaê Spezia
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Patrick Remus Suman
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Laís Cristina Theindl
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Cilene Lino de Oliveira
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| |
Collapse
|
10
|
Anthenelli RM, Heffner JL, Blom TJ, Daniel BE, McKenna BS, Wand GS. Sex differences in the ACTH and cortisol response to pharmacological probes are stressor-specific and occur regardless of alcohol dependence history. Psychoneuroendocrinology 2018; 94:72-82. [PMID: 29763783 PMCID: PMC6411284 DOI: 10.1016/j.psyneuen.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/05/2018] [Accepted: 05/03/2018] [Indexed: 01/24/2023]
Abstract
Women and men differ in their risk for developing stress-related conditions such as alcohol use and anxiety disorders and there are gender differences in the typical sequence in which these disorders co-occur. However, the neural systems underlying these gender-biased psychopathologies and clinical course modifiers in humans are poorly understood and may involve both central and peripheral mechanisms regulating the limbic-hypothalamic-pituitary-adrenal axis. In the present randomized, double blind, placebo-controlled, triple-dummy crossover study, we juxtaposed a centrally-acting, citalopram (2 mg/unit BMI) neuroendocrine stimulation test with a peripherally-acting, dexamethasone (Dex) (1.5 mg)/corticotropin-releasing factor (CRF) (1 μg/kg) test in euthymic women (N = 38) and men (N = 44) with (54%) and without histories of alcohol dependence to determine whether sex, alcohol dependence or both influenced the adrenocorticotropic hormone (ACTH) and cortisol responses to the pharmacological challenges and to identify the loci of these effects. We found that central serotonergic mechanisms, along with differences in pituitary and adrenal sensitivity, mediated sexually-diergic ACTH and cortisol responses in a stressor-specific manner regardless of a personal history of alcohol dependence. Specifically, women exhibited a greater response to the Dex/CRF test than they did the citalopram test while men exhibited the opposite pattern of results. Women also had more robust ACTH, cortisol and body temperature responses to Dex/CRF than men, and exhibited a shift in their adrenal glands' sensitivity to ACTH as measured by the cortisol/log (ACTH) ratio during that session in contrast to the other test days. Our findings indicate that central serotonergic and peripheral mechanisms both play roles in mediating sexually dimorphic, stressor-specific endocrine responses in humans regardless of alcohol dependence history.
Collapse
Affiliation(s)
- Robert M. Anthenelli
- Department of Psychiatry, University of California, San Diego, Health Sciences, La Jolla, CA, United States,Corresponding author at: Pacific Treatment and Research Center, Department of Psychiatry (0603), University of California, San Diego, Health Sciences, 9500 Gilman Drive, La Jolla, CA, 92093-0603 United States. (R.M. Anthenelli)
| | | | - Thomas J. Blom
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Belinda E. Daniel
- Department of Psychiatry, University of California, San Diego, Health Sciences, La Jolla, CA, United States
| | - Benjamin S. McKenna
- Department of Psychiatry, University of California, San Diego, Health Sciences, La Jolla, CA, United States
| | - Gary S. Wand
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Zsido RG, Villringer A, Sacher J. Using positron emission tomography to investigate hormone-mediated neurochemical changes across the female lifespan: implications for depression. Int Rev Psychiatry 2017; 29:580-596. [PMID: 29199875 DOI: 10.1080/09540261.2017.1397607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ovarian hormones, particularly oestrogen and progesterone, undergo major fluctuations across the female lifespan. These hormone transition periods, such as the transition from pregnancy to postpartum, as well as the transition into menopause (perimenopause), are also known to be times of elevated susceptibility to depression. This study reviews how these transition periods likely influence neurochemical changes in the brain that result in disease vulnerability. While there are known associations between oestrogen/progesterone and different monoaminergic systems, the interactions and their potential implications for mood disorders are relatively unknown. Positron Emission Tomography (PET) allows for the in-vivo quantification of such neurochemical changes, and, thus, can provide valuable insight into how both subtle and dramatic shifts in hormones contribute to the elevated rates of depression during pre-menstrual, post-partum, and perimenopausal periods in a woman's life. As one better understands how to address the challenges of PET studies involving highly vulnerable populations, such as women who have recently given birth, one will gain the insight necessary to design and individualize treatment and therapy. Understanding the precise time-line in younger women when dramatic fluctuations in the hormonal milieu may contribute to brain changes may present a powerful opportunity to intervene before a vulnerable state develops into a diseased state in later life.
Collapse
Affiliation(s)
- Rachel G Zsido
- a Emotion NeuroimaGinG(EGG)-Lab , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,b Department of Neurology , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany
| | - Arno Villringer
- b Department of Neurology , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,c Clinic for Cognitive Neurology , University of Leipzig , Leipzig , Germany
| | - Julia Sacher
- a Emotion NeuroimaGinG(EGG)-Lab , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,b Department of Neurology , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,c Clinic for Cognitive Neurology , University of Leipzig , Leipzig , Germany
| |
Collapse
|
12
|
Assessing the interplay between multigenic and environmental influences on adolescent to adult pathways of antisocial behaviors. Dev Psychopathol 2017; 29:1947-1967. [DOI: 10.1017/s0954579417001511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe current investigation utilized a developmental psychopathology approach to test the hypothesis that multigenic (i.e., dopaminergic and serotonergic genes) and multienvironmental factors interactively contribute to developmental pathways of antisocial behavior (ASB). A sample of 8,834 Caucasian individuals from the National Longitudinal Study of Adolescent to Adult Health (Add Health) were used to (a) examine the developmental pathways of ASB from age 13 to 32 using growth mixture modeling, (b) compute weighted multigenic risk scores (Add Health MRS) for ASB from six well-characterized polymorphisms in dopamine and serotonin genes, and (c) test the interaction between the Add Health MRS and a measures of support (incorporating indicators of both positive and negative support from parents and schools). Four pathways of adolescent to adult ASB emerged from the growth mixture models: low, adolescence-peaked, high decline, and persistent. Add Health MRS predicted the persistent ASB pathway, but not other ASB pathways. Males with high Add Health MRS, but not low MRS, had significantly greater odds of being in the adolescence-peaked pathway relative to the low pathway at low levels of school connectedness. Nonfamilial environmental influences during adolescence may have a cumulative impact on the development of ASB, particularly among males with greater underlying genetic risks.
Collapse
|
13
|
Labonté B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, Scarpa JR, Moy G, Loh YHE, Cahill M, Lorsch ZS, Hamilton PJ, Calipari ES, Hodes GE, Issler O, Kronman H, Pfau M, Obradovic ALJ, Dong Y, Neve RL, Russo S, Kazarskis A, Tamminga C, Mechawar N, Turecki G, Zhang B, Shen L, Nestler EJ. Sex-specific transcriptional signatures in human depression. Nat Med 2017; 23:1102-1111. [PMID: 28825715 DOI: 10.1038/nm.4386] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/17/2017] [Indexed: 02/08/2023]
Abstract
Major depressive disorder (MDD) is a leading cause of disease burden worldwide. While the incidence, symptoms and treatment of MDD all point toward major sex differences, the molecular mechanisms underlying this sexual dimorphism remain largely unknown. Here, combining differential expression and gene coexpression network analyses, we provide a comprehensive characterization of male and female transcriptional profiles associated with MDD across six brain regions. We overlap our human profiles with those from a mouse model, chronic variable stress, and capitalize on converging pathways to define molecular and physiological mechanisms underlying the expression of stress susceptibility in males and females. Our results show a major rearrangement of transcriptional patterns in MDD, with limited overlap between males and females, an effect seen in both depressed humans and stressed mice. We identify key regulators of sex-specific gene networks underlying MDD and confirm their sex-specific impact as mediators of stress susceptibility. For example, downregulation of the female-specific hub gene Dusp6 in mouse prefrontal cortex mimicked stress susceptibility in females, but not males, by increasing ERK signaling and pyramidal neuron excitability. Such Dusp6 downregulation also recapitulated the transcriptional remodeling that occurs in prefrontal cortex of depressed females. Together our findings reveal marked sexual dimorphism at the transcriptional level in MDD and highlight the importance of studying sex-specific treatments for this disorder.
Collapse
Affiliation(s)
- Benoit Labonté
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Olivia Engmann
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Immanuel Purushothaman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Caroline Menard
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Junshi Wang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunfeng Tan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph R Scarpa
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory Moy
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yong-Hwee E Loh
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Cahill
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zachary S Lorsch
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter J Hamilton
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erin S Calipari
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Georgia E Hodes
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Orna Issler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hope Kronman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madeline Pfau
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aleksandar L J Obradovic
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Scott Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Kazarskis
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carol Tamminga
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naguib Mechawar
- Department of Psychiatry, McGill University, Montreal, Québec, Canada.,McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montreal, Québec, Canada.,McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
14
|
Tuominen L, Miettunen J, Cannon DM, Drevets WC, Frokjaer VG, Hirvonen J, Ichise M, Jensen PS, Keltikangas-Järvinen L, Klaver JM, Knudsen GM, Takano A, Suhara T, Hietala J. Neuroticism Associates with Cerebral in Vivo Serotonin Transporter Binding Differently in Males and Females. Int J Neuropsychopharmacol 2017; 20:963-970. [PMID: 29020405 PMCID: PMC5716061 DOI: 10.1093/ijnp/pyx071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/03/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Neuroticism is a major risk factor for affective disorders. This personality trait has been hypothesized to associate with synaptic availability of the serotonin transporter, which critically controls serotonergic tone in the brain. However, earlier studies linking neuroticism and serotonin transporter have failed to produce converging findings. Because sex affects both the serotonergic system and the risk that neuroticism poses to the individual, sex may modify the association between neuroticism and serotonin transporter, but this question has not been investigated by previous studies. METHODS Here, we combined data from 4 different positron emission tomography imaging centers to address whether neuroticism is related to serotonin transporter binding in vivo. The data set included serotonin transporter binding potential values from the thalamus and striatum and personality scores from 91 healthy males and 56 healthy females. We specifically tested if the association between neuroticism and serotonin transporter is different in females and males. RESULTS We found that neuroticism and thalamic serotonin transporter binding potentials were associated in both males and females, but with opposite directionality. Higher neuroticism associated with higher serotonin transporter binding potential in males (standardized beta 0.292, P=.008), whereas in females, higher neuroticism associated with lower serotonin transporter binding potential (standardized beta -0.288, P=.014). CONCLUSIONS The finding is in agreement with recent studies showing that the serotonergic system is involved in affective disorders differently in males and females and suggests that contribution of thalamic serotonin transporter to the risk of affective disorders depends on sex.
Collapse
Affiliation(s)
- Lauri Tuominen
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala),Correspondence: Lauri Tuominen, MD, PhD, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, 149 13th St, Charlestown, MA 02129 ()
| | - Jouko Miettunen
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Dara M Cannon
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Wayne C Drevets
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Vibe G Frokjaer
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Jussi Hirvonen
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Masanori Ichise
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Peter S Jensen
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Liisa Keltikangas-Järvinen
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Jacqueline M Klaver
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Gitte M Knudsen
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Akihiro Takano
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Tetsuya Suhara
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| | - Jarmo Hietala
- Turku PET Centre, Turku University Hospital, Turku, Finland (Drs Tuominen, Hirvonen, and Hietala); Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA (Dr Tuominen); Center for Life Course Health Research, University of Oulu, Finland & Medical Research Center (MRC) Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland (Dr Miettunen); Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland (Dr Cannon); Janssen Research & Development, LLC, of Johnson & Johnson, Titusville, NJ (Dr Drevets); Neurobiology Research Unit, Rigshospitalet, Denmark (Dr Knudsen); Center for Integrated Molecular Brain Imaging, Rigshospitalet, Denmark (Dr Frokjaer and Mr Jensen); Department of Radiology, University of Turku, Turku, Finland (Dr Hirvonen); Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Ichise, Takano, and Suhara); IBS, Unit of Personality, Work and Health Psychology, University of Helsinki, Helsinki, Finland (Dr Keltikangas-Järvinen); Department of Psychology, Southern Illinois University, Carbondale, Illinois (Dr Klaver); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (Dr Knudsen); Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Takano); Department of Psychiatry, University of Turku, Turku, Finland (Dr Hietala)
| |
Collapse
|
15
|
Mavrogiorgou P, Enzi B, Klimm AK, Köhler E, Roser P, Norra C, Juckel G. Serotonergic modulation of orbitofrontal activity and its relevance for decision making and impulsivity. Hum Brain Mapp 2016; 38:1507-1517. [PMID: 27862593 DOI: 10.1002/hbm.23468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/25/2016] [Accepted: 11/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The orbitofrontal cortex seems to play a crucial role in reward-guided learning and decision making, especially for impulsive choice procedures including delayed reward discounting. The central serotonergic system is closely involved in the regulation of impulsivity, but how the serotonergic firing rate and release, best investigated by the loudness dependence of auditory evoked potentials (LDAEP), interact with orbitofrontal activity is still unknown. METHODS Twenty healthy volunteers (11 males, 9 females, 31.3 ± 10.6 years old) were studied in a 3T MRI scanner (Philips, Hamburg, Germany) during a delay discounting task, after their LDAEP was recorded using a 32 electrodes EEG machine (Brain Products, Munich, Germany). RESULTS Significant positive correlations were only found between the LDAEP and the medial orbitofrontal part of the superior frontal gyrus (SFG/MO) [Δ immediate reward - delayed reward] for the right (r = 0.519; P = 0.019) and left side (r = 0.478; P = 0.033). This relationship was stronger for females compared with males. Orbitofrontal activity was also related to the Barratt Impulsivity Scale. CONCLUSIONS This study revealed that low serotonergic activity as measured by a strong LDAEP was related to a high fMRI signal intensity of SFG/MO during immediate reward behavior which is related to impulsivity. Since this relationship was only found for the infralimbic medial and not for the middle or lateral part of the orbitofrontal cortex, an exclusive projection tract of the serotonergic system to this cortical region can be assumed to regulate impulsive reward-orientated decision making. Hum Brain Mapp 38:1507-1517, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paraskevi Mavrogiorgou
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Björn Enzi
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Ann-Kristin Klimm
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Elke Köhler
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Patrik Roser
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Christine Norra
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| |
Collapse
|
16
|
Noto B, Klempin F, Alenina N, Bader M, Fink H, Sander SE. Increased adult neurogenesis in mice with a permanent overexpression of the postsynaptic 5-HT 1A receptor. Neurosci Lett 2016; 633:246-251. [DOI: 10.1016/j.neulet.2016.09.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
|
17
|
Thanos PK, Malave L, Delis F, Mangine P, Kane K, Grunseich A, Vitale M, Greengard P, Volkow ND. Knockout ofp11attenuates the acquisition and reinstatement of cocaine conditioned place preference in male but not in female mice. Synapse 2016; 70:293-301. [DOI: 10.1002/syn.21904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Lauren Malave
- Department of Biology; City College of New York; New York New York
| | - Foteini Delis
- Department of Pharmacology, School of Medicine; University of Ioannina; Ioannina Greece
| | - Paul Mangine
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Katie Kane
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Adam Grunseich
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Melissa Vitale
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience; the Rockefeller University; New York New York
| | - Nora D. Volkow
- Laboratory of Neuroimaging; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health; Bethesda Maryland
| |
Collapse
|
18
|
Steenbergen L, Jongkees BJ, Sellaro R, Colzato LS. Tryptophan supplementation modulates social behavior: A review. Neurosci Biobehav Rev 2016; 64:346-58. [DOI: 10.1016/j.neubiorev.2016.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/09/2023]
|
19
|
Kaufman J, DeLorenzo C, Choudhury S, Parsey RV. The 5-HT1A receptor in Major Depressive Disorder. Eur Neuropsychopharmacol 2016; 26:397-410. [PMID: 26851834 PMCID: PMC5192019 DOI: 10.1016/j.euroneuro.2015.12.039] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023]
Abstract
Major Depressive Disorder (MDD) is a highly prevalent psychiatric diagnosis that is associated with a high degree of morbidity and mortality. This debilitating disorder is currently one of the leading causes of disability nationwide and is predicted to be the leading cause of disease burden by the year 2030. A large body of previous research has theorized that serotonergic dysfunction, specifically of the serotonin (5-HT) 1A receptor, plays a key role in the development of MDD. The purpose of this review is to describe the evolution of our current understanding of the serotonin 1A (5-HT1A) receptor and its role in the pathophysiology MDD through the discussion of animal, post-mortem, positron emission tomography (PET), pharmacologic and genetic studies.
Collapse
Affiliation(s)
- Joshua Kaufman
- Stony Brook University, Stony Brook, NY 11794, United States.
| | | | - Sunia Choudhury
- Stony Brook University, Stony Brook, NY 11794, United States
| | - Ramin V Parsey
- Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
20
|
Quantification of the Serotonin 1A Receptor Using PET: Identification of a Potential Biomarker of Major Depression in Males. Neuropsychopharmacology 2015; 40:1692-9. [PMID: 25578798 PMCID: PMC4915251 DOI: 10.1038/npp.2015.15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/13/2014] [Accepted: 12/09/2014] [Indexed: 01/26/2023]
Abstract
Multiple lines of research have implicated the serotonin 1A (5-HT1A) receptor in major depressive disorder (MDD). Despite this, quantification of 5-HT1A is yet to yield a clinically relevant MDD biomarker. One reason may be that reported sex differences in the serotonergic system confound the comparison between diagnostic groups. Therefore, this study sought to determine whether differences in 5-HT1A binding between depressed and control subjects are affected by sex. Using positron emission tomography (PET), serotonin 1A binding was quantified in 50 patients with MDD (34 female, 16 male) and 57 healthy controls (32 female, 25 male). The subjects' 5-HT1A density (BPF, equal to the product of the density of available receptors and tracer affinity), was determined by using the PET tracer [carbonyl-C-11]-WAY-100635, a selective 5-HT1A antagonist. Results indicated that male MDD subjects had a 67.0% higher BPF across 13 brain regions compared with male controls (df=103, p<0.0001). The greatest difference between MDD subjects and controls was in the raphe (132%, p=0.000). Furthermore, by using a threshold, male controls can be distinguished from depressed males with high sensitivity and specificity (both >80%). In females, the separation between diagnostic groups yields much lower sensitivity and specificity. This data therefore suggests a specific biosignature for MDD in males. Identification of such a biosignature could provide a deeper understanding of depression pathology, help identify those at highest risk, and aid in the development of new therapies. Further, these findings suggest that combining male and female cohorts may not be optimal for some MDD studies.
Collapse
|
21
|
Pascale E, Ferraguti G, Codazzo C, Passarelli F, Mancinelli R, Bonvicini C, Bruno SM, Lucarelli M, Ceccanti M. Alcohol dependence and serotonin transporter functional polymorphisms 5-HTTLPR and rs25531 in an Italian population. Alcohol Alcohol 2015; 50:259-65. [PMID: 25770138 DOI: 10.1093/alcalc/agv014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/10/2015] [Indexed: 12/16/2022] Open
Abstract
AIMS The role of the serotonin transporter gene (SLC6A4) in alcohol dependence (AD) is still unclear. In this paper, we have evaluated the association of the SLC6A4 gene polymorphisms 5-HTTLPR and rs25531 in AD and assessed the polymorphic patterns both in alcoholics and in healthy people of an Italian population. METHODS Genotyping of the 5-HTTLPR (L/S) and rs25531 (A/G) polymorphisms of the SLC6A4 gene was performed on 403 alcoholics outpatients and 427 blood donors. RESULTS Comparing AD and control populations and taking into account statistical correction for multiple testing, we found no statistically significant differences for 5-HTTLPR (L/S) and rs25531 polymorphisms in terms of either genotypes or alleles frequencies. By univariate ANOVA, a statistically significant difference was found in the onset of AD: the mean age of onset resulted to be of 25.4 years in males in respect to 28.1 in females. In particular in males, the early AD onset was different, in a statistically significant manner, depending on the presence of at least one S or Lg allele (24.6 years) in respect to La homozygotes (27.5 years) (P = 0.03). CONCLUSIONS These findings suggest that genetic factors contribute, together with gender and age, to the onset differences in alcohol-dependent phenotypes.
Collapse
Affiliation(s)
- Esterina Pascale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Rome, Italy
| | - Giampiero Ferraguti
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Claudia Codazzo
- Centro Riferimento Alcologico Regione Lazio, Sapienza University, Rome, Italy
| | | | - Rosanna Mancinelli
- Centro Nazionale Sostanze Chimiche, Istituto Superiore di Sanità, Rome, Italy
| | | | - Sabina Maria Bruno
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Marco Lucarelli
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University, Rome, Italy
| |
Collapse
|
22
|
Kamson DO, Lee TJ, Varadarajan K, Robinette NL, Muzik O, Chakraborty PK, Snyder M, Barger GR, Mittal S, Juhász C. Clinical significance of tryptophan metabolism in the nontumoral hemisphere in patients with malignant glioma. J Nucl Med 2014; 55:1605-10. [PMID: 25189339 DOI: 10.2967/jnumed.114.141002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED α-(11)C-methyl-L-tryptophan (AMT) PET allows evaluation of brain serotonin synthesis and can also track upregulation of the immunosuppressive kynurenine pathway in tumor tissue. Increased AMT uptake is a hallmark of World Health Organization grade III-IV gliomas. Our recent study also suggested decreased frontal cortical AMT uptake in glioma patients contralateral to the tumor. The clinical significance of extratumoral tryptophan metabolism has not been established. In the present study, we investigated clinical correlates of tryptophan metabolic abnormalities in the nontumoral hemisphere of glioma patients. METHODS Standardized AMT uptake values (SUVs) and the uptake rate constant of AMT (K [mL/g/min], a measure proportional to serotonin synthesis in nontumoral gray matter) were quantified in the frontal and temporal cortex and thalamus in the nontumoral hemisphere in 77 AMT PET scans of 66 patients (41 men, 25 women; mean age ± SD, 55 ± 15 y) with grade III-IV gliomas. These AMT values were determined before treatment in 35 and after treatment in 42 patients and were correlated with clinical variables and survival. RESULTS AMT uptake in the thalamus showed a moderate age-related increase before treatment (SUV, r = 0.39, P = 0.02) but decrease after treatment (K, r = -0.33, P = 0.057). Women had higher thalamic SUVs before treatment (P = 0.037) and higher thalamic (P = 0.013) and frontal cortical K values (P = 0.023) after treatment. In the posttreatment glioma group, high thalamic SUVs and high thalamocortical SUV ratios were associated with short survival in Cox regression analysis. The thalamocortical ratio remained strongly prognostic (P < 0.01) when clinical predictors, including age, glioma grade, and time since radiotherapy, were entered in the regression model. Long interval between radiotherapy and posttreatment AMT PET as well as high radiation dose affecting the thalamus were associated with lower contralateral thalamic or cortical AMT uptake values. CONCLUSION These observations provide evidence for altered tryptophan uptake in contralateral cortical and thalamic brain regions in glioma patients after initial therapy, suggesting treatment effects on the serotonergic system. Low thalamic tryptophan uptake appears to be a strong, independent predictor of long survival in patients with previous glioma treatment.
Collapse
Affiliation(s)
- David O Kamson
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan Department of Pediatrics, Wayne State University, Detroit, Michigan
| | - Tiffany J Lee
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan
| | - Kaushik Varadarajan
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan
| | - Natasha L Robinette
- Department of Radiology, Wayne State University, Detroit, Michigan Karmanos Cancer Institute, Detroit, Michigan
| | - Otto Muzik
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan Department of Pediatrics, Wayne State University, Detroit, Michigan Department of Radiology, Wayne State University, Detroit, Michigan Department of Neurology, Wayne State University, Detroit, Michigan
| | - Pulak K Chakraborty
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan Department of Radiology, Wayne State University, Detroit, Michigan
| | | | - Geoffrey R Barger
- Karmanos Cancer Institute, Detroit, Michigan Department of Neurology, Wayne State University, Detroit, Michigan
| | - Sandeep Mittal
- Karmanos Cancer Institute, Detroit, Michigan Department of Neurosurgery, Wayne State University, Detroit, Michigan; and Department of Oncology, Wayne State University, Detroit, Michigan
| | - Csaba Juhász
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan Department of Pediatrics, Wayne State University, Detroit, Michigan Karmanos Cancer Institute, Detroit, Michigan Department of Neurology, Wayne State University, Detroit, Michigan
| |
Collapse
|
23
|
Booij L, Soucy JP, Young SN, Regoli M, Gravel P, Diksic M, Leyton M, Pihl RO, Benkelfat C. Brain serotonin synthesis in MDMA (ecstasy) polydrug users: an alpha-[11
C]methyl-l
-tryptophan study. J Neurochem 2014; 131:634-44. [DOI: 10.1111/jnc.12826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/30/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Linda Booij
- Department of Psychology; Queen's University; Kingston Ontario Canada
- Department of Psychiatry; McGill University; Montreal Quebec Canada
- Sainte-Justine Hospital Research Center; University of Montreal; Montreal Quebec Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Simon N. Young
- Department of Psychiatry; McGill University; Montreal Quebec Canada
| | - Martine Regoli
- Department of Psychiatry; McGill University; Montreal Quebec Canada
| | - Paul Gravel
- Department of Psychiatry; McGill University; Montreal Quebec Canada
| | - Mirko Diksic
- McConnell Brain Imaging Centre; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
- Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
| | - Marco Leyton
- Department of Psychiatry; McGill University; Montreal Quebec Canada
- McConnell Brain Imaging Centre; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
- Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
- Department of Psychology; McGill University; Montreal Quebec Canada
| | - Robert O. Pihl
- Department of Psychiatry; McGill University; Montreal Quebec Canada
- Department of Psychology; McGill University; Montreal Quebec Canada
| | - Chawki Benkelfat
- Department of Psychiatry; McGill University; Montreal Quebec Canada
- McConnell Brain Imaging Centre; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
- Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
| |
Collapse
|
24
|
Affiliation(s)
- Jean Schoenen
- Headache Research Unit, University of Liège, Citadelle Hospital, Liege, Belgium
| |
Collapse
|
25
|
Sakai Y, Nishikawa M, Diksic M, Aubé M. α-[11C] methyl-L tryptophan-PET as a surrogate for interictal cerebral serotonin synthesis in migraine without aura. Cephalalgia 2013; 34:165-73. [DOI: 10.1177/0333102413506126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Alteration in central serotonin biology has been implicated in migraine, and serotonin (5-HT) agonists have been available for more than a decade in the treatment of that condition. Objectives To test this hypothesis, we studied in vivo using positron-emission tomography (PET) and α-[11C] methyl-L-tryptophan (α-[11C]MTrp) as a surrogate marker of cerebral 5-HT synthetic rate before and after administration of eletriptan in migraine and control subjects. Methods Six nonmenopausal female migraine subjects with migraine without aura (MoA) and six nonmenopausal age-matched female control subjects were scanned at baseline and after oral administration of 40 mg of eletriptan. Migraine subjects at the time of PET had to have been headache free for a minimum of three days. Images of (α-[11C]MTrp) brain trapping were colocalized with individual MRI images in three dimensions and analyzed. Results There was no difference in baseline cerebral global 5-HT synthesis between migraine and control subjects. After administration of eletriptan, there was a striking global reduction in cerebral 5-HT synthesis (K*) in the migraine group and in 22 regions of interest (ROIs). In control subjects, no significant changes were found in global cerebral 5-HT synthesis (K*) or in any of the ROIs. Conclusions These findings suggest in migraine an interictal alteration in the regulation mechanisms of cerebral 5-HT synthesis.
Collapse
Affiliation(s)
- Y Sakai
- Montreal Neurological Institute, and Department of Neurology and Neurosurgery, McGill University, Canada
- Present address: Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Japan
| | - M Nishikawa
- Montreal Neurological Institute, and Department of Neurology and Neurosurgery, McGill University, Canada
- Present address: Department of Social Education, Kawamura Gakuen Woman's University, Japan
| | - M Diksic
- Montreal Neurological Institute, and Department of Neurology and Neurosurgery, McGill University, Canada
| | - M Aubé
- Montreal Neurological Institute, and Department of Neurology and Neurosurgery, McGill University, Canada
| |
Collapse
|
26
|
Wooten DW, Hillmer AT, Moirano JM, Tudorascu DL, Ahlers EO, Slesarev MS, Barnhart TE, Mukherjee J, Schneider ML, Christian BT. 5-HT1A sex based differences in Bmax, in vivo KD, and BPND in the nonhuman primate. Neuroimage 2013; 77:125-32. [PMID: 23537936 DOI: 10.1016/j.neuroimage.2013.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/27/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022] Open
Abstract
UNLABELLED Serotonin (5-HT) dysfunction has been implicated in neuropsychiatric illnesses and may play a pivotal role in the differential prevalence of depression between the sexes. Previous PET studies have revealed sex-based differences in 5-HT1A binding potential (BPND). The binding potential is a function of the radioligand-receptor affinity (1/KDapp), and receptor density (Bmax). In this work, we use a multiple-injection (MI) PET protocol and the 5-HT1A receptor antagonist, [(18)F]mefway, to compare sex-based differences of in vivo affinity, Bmax, and BPND in rhesus monkeys. METHODS PET [(18)F]mefway studies were performed on 17 (6m, 11f) rhesus monkeys using a 3-injection protocol that included partial saturation injections of mefway. Compartmental modeling was performed using a model to account for non-tracer doses of mefway for the estimation of KDapp and Bmax. BPND estimates were also acquired from the first injection (high specific activity [(18)F]mefway, 90-minute duration) for comparison using the cerebellum (CB) as a reference region. Regions of interest were selected in 5-HT1A binding regions of the hippocampus (Hp), dorsal anterior cingulate cortex (dACC), amygdala (Am), and raphe nuclei (RN). RESULTS Female subjects displayed significantly (*p<0.05) lower KDapp in the Hp (-32%), Am (-38%), and RN (-37%). Only the Hp displayed significant differences in Bmax with females having a Bmax of -29% compared to males. Male subjects demonstrated significantly lower BPND measurements in the Am (14%) and RN (29%). CONCLUSION These results suggest that the higher BPND values found in females are the result of lower [(18)F]mefway KDapp. Although a more experimentally complex measurement, separate assay of KDapp and Bmax provides a more sensitive measure than BPND to identify the underlying differences between females and males in 5-HT1A function.
Collapse
Affiliation(s)
- Dustin W Wooten
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang J, Dennis KA, Darling RD, Alzghoul L, Paul IA, Simpson KL, Lin RCS. Neonatal citalopram exposure decreases serotonergic fiber density in the olfactory bulb of male but not female adult rats. Front Cell Neurosci 2013; 7:67. [PMID: 23675318 PMCID: PMC3650517 DOI: 10.3389/fncel.2013.00067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/22/2013] [Indexed: 12/26/2022] Open
Abstract
Manipulation of serotonin (5HT) during early development has been shown to induce long-lasting morphological changes within the raphe nuclear complex and serotonergic circuitry throughout the brain. Recent studies have demonstrated altered raphe-derived 5HT transporter (SERT) immunoreactive axonal expression in several cortical target sites after brief perinatal exposure to selective 5HT reuptake inhibitors such as citalopram (CTM). Since the serotonergic raphe nuclear complex projects to the olfactory bulb (OB) and perinatal 5HT disruption has been shown to disrupt olfactory behaviors, the goal of this study was to further investigate such developmental effects in the OB of CTM exposed animals. Male and female rat pups were exposed to CTM from postnatal day 8–21. After animals reach adulthood (>90 days), OB tissue sections were processed immunohistochemically for SERT antiserum. Our data revealed that the density of the SERT immunoreactive fibers decreased ~40% in the OB of CTM exposed male rats, but not female rats. Our findings support a broad and long-lasting change throughout most of the 5HT system, including the OB, after early manipulation of 5HT. Because dysfunction of the early 5HT system has been implicated in the etiology of neurodevelopmental disorders such as autism spectrum disorders (ASDs), these new findings may offer insight into the abnormal olfactory perception often noted in patients with ASD.
Collapse
Affiliation(s)
- Junlin Zhang
- Department of Neurobiology and Anatomical Sciences, The University of Mississippi Medical Center Jackson, MS, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Pardo-Lozano R, Farré M, Yubero-Lahoz S, O’Mathúna B, Torrens M, Mustata C, Pérez-Mañá C, Langohr K, Cuyàs E, Carbó M, de la Torre R. Clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"): the influence of gender and genetics (CYP2D6, COMT, 5-HTT). PLoS One 2012; 7:e47599. [PMID: 23112822 PMCID: PMC3480420 DOI: 10.1371/journal.pone.0047599] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/18/2012] [Indexed: 11/28/2022] Open
Abstract
The synthetic psychostimulant MDMA (±3,4-methylenedioxymethamphetamine, ecstasy) acts as an indirect serotonin, dopamine, and norepinephrine agonist and as a mechanism-based inhibitor of the cytochrome P-450 2D6 (CYP2D6). It has been suggested that women are more sensitive to MDMA effects than men but no clinical experimental studies have satisfactorily evaluated the factors contributing to such observations. There are no studies evaluating the influence of genetic polymorphism on the pharmacokinetics (CYP2D6; catechol-O-methyltransferase, COMT) and pharmacological effects of MDMA (serotonin transporter, 5-HTT; COMT). This clinical study was designed to evaluate the pharmacokinetics and physiological and subjective effects of MDMA considering gender and the genetic polymorphisms of CYP2D6, COMT, and 5-HTT. A total of 27 (12 women) healthy, recreational users of ecstasy were included (all extensive metabolizers for CYP2D6). A single oral weight-adjusted dose of MDMA was administered (1.4 mg/kg, range 75–100 mg) which was similar to recreational doses. None of the women were taking oral contraceptives and the experimental session was performed during the early follicular phase of their menstrual cycle. Principal findings show that subjects reached similar MDMA plasma concentrations, and experienced similar positive effects, irrespective of gender or CYP2D6 (not taking into consideration poor or ultra-rapid metabolizers) or COMT genotypes. However, HMMA plasma concentrations were linked to CYP2D6 genotype (higher with two functional alleles). Female subjects displayed more intense physiological (heart rate, and oral temperature) and negative effects (dizziness, sedation, depression, and psychotic symptoms). Genotypes of COMT val158met or 5-HTTLPR with high functionality (val/val or l/*) determined greater cardiovascular effects, and with low functionality (met/* or s/s) negative subjective effects (dizziness, anxiety, sedation). In conclusion, the contribution of MDMA pharmacokinetics following 1.4 mg/kg MDMA to the gender differences observed in drug effects appears to be negligible or even null. In contrast, 5-HTTLPR and COMT val158met genotypes play a major role.
Collapse
Affiliation(s)
- Ricardo Pardo-Lozano
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Parc de Salut Mar, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Magí Farré
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Parc de Salut Mar, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- * E-mail:
| | - Samanta Yubero-Lahoz
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Parc de Salut Mar, Barcelona, Spain
- Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| | - Brian O’Mathúna
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Parc de Salut Mar, Barcelona, Spain
| | - Marta Torrens
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Disorders by Use of Substances Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), INAD-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Cristina Mustata
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Parc de Salut Mar, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Clara Pérez-Mañá
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Parc de Salut Mar, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Klaus Langohr
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Parc de Salut Mar, Barcelona, Spain
- Department of Statistics and Operational Research, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Elisabet Cuyàs
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Parc de Salut Mar, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marcel·lí Carbó
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Parc de Salut Mar, Barcelona, Spain
- Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| | - Rafael de la Torre
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Parc de Salut Mar, Barcelona, Spain
- Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03), CIBEROBN, Santiago de Compostela, Spain
| |
Collapse
|
29
|
van den Bos R, Homberg J, de Visser L. A critical review of sex differences in decision-making tasks: focus on the Iowa Gambling Task. Behav Brain Res 2012; 238:95-108. [PMID: 23078950 DOI: 10.1016/j.bbr.2012.10.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/04/2012] [Accepted: 10/06/2012] [Indexed: 12/28/2022]
Abstract
It has been observed that men and women show performance differences in the Iowa Gambling Task (IGT), a task of decision-making in which subjects through exploration learn to differentiate long-term advantageous from long-term disadvantageous decks of cards: men choose more cards from the long-term advantageous decks than women within the standard number of 100 trials. Here, we aim at discussing psychological mechanisms and neurobiological substrates underlying sex differences in IGT-like decision-making. Our review suggests that women focus on both win-loss frequencies and long-term pay-off of decks, while men focus on long-term pay-off. Furthermore, women may be more sensitive to occasional losses in the long-term advantageous decks than men. As a consequence hereof, women need 40-60 trials in addition before they reach the same level of performance as men. These performance differences are related to differences in activity in the orbitofrontal cortex and dorsolateral prefrontal cortex as well as in serotonergic activity and left-right hemispheric activity. Sex differences in orbitofrontal cortex activity may be due to organisational effects of gonadal hormones early in life. The behavioural and neurobiological differences in the IGT between men and women are an expression of more general sex differences in the regulation of emotions. We discuss these findings in the context of sex differences in information processing related to evolutionary processes. Furthermore we discuss the relationship between these findings and real world decision-making.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
30
|
Jaworska N, Blier P, Fusee W, Knott V. Scalp- and sLORETA-derived loudness dependence of auditory evoked potentials (LDAEPs) in unmedicated depressed males and females and healthy controls. Clin Neurophysiol 2012; 123:1769-78. [DOI: 10.1016/j.clinph.2012.02.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/06/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
31
|
Munro CA, Workman CI, Kramer E, Hermann C, Ma Y, Dhawan V, Chaly T, Eidelberg D, Smith GS. Serotonin modulation of cerebral glucose metabolism: sex and age effects. Synapse 2012; 66:955-64. [PMID: 22836227 DOI: 10.1002/syn.21590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/12/2012] [Accepted: 07/18/2012] [Indexed: 01/11/2023]
Abstract
The serotonin system is implicated in a variety of psychiatric disorders whose clinical presentation and response to treatment differ between males and females, as well as with aging. However, human neurobiological studies are limited. Sex differences in the cerebral metabolic response to an increase in serotonin concentrations were measured, as well as the effect of aging, in men compared to women. Thirty-three normal healthy individuals (14 men/19 women, age range 20-79 years) underwent two resting positron emission tomography studies with the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose ([(18)F]-FDG) after placebo and selective serotonin reuptake inhibitor (SSRI, citalopram) infusions on two separate days. Results indicated that women demonstrated widespread areas of increased cortical glucose metabolism with fewer areas of decrease in metabolism in response to citalopram. Men, in contrast, demonstrated several regions of decreased cortical metabolism, but no regions of increased metabolism. Age was associated with greater increases in women and greater decreases in men in most brain regions. These results support prior studies indicating that serotonin function differs in men and women across the lifespan. Future studies aimed at characterizing the influences of age and sex on the serotonin system in patients with psychiatric disorders are needed to elucidate the relationship between sex and age differences in brain chemistry and associated differences in symptom presentation and treatment response.
Collapse
Affiliation(s)
- Cynthia A Munro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Booij L, Turecki G, Leyton M, Gravel P, Lopez De Lara C, Diksic M, Benkelfat C. Tryptophan hydroxylase(2) gene polymorphisms predict brain serotonin synthesis in the orbitofrontal cortex in humans. Mol Psychiatry 2012; 17:809-17. [PMID: 21747395 DOI: 10.1038/mp.2011.79] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brain regional serotonin synthesis can be estimated in vivo using positron emission tomography (PET) and α-[((11))C]methyl-L-tryptophan ((11)C-AMT) trapping (K*) as a proxy. Recently, we reported evidence of lower normalized (11)C-AMT trapping in the orbitofrontal cortex (OBFC) of subjects meeting the criteria for an impulsive and/or aggressive behavioral phenotype. In this study, we examined whether part of the variance in OBFC serotonin synthesis is related to polymorphisms of the gene that encodes for the indoleamine's rate-limiting enzyme in the brain, tryptophan hydroxylase-2 (TPH(2)). In all, 46 healthy controls had PET (11)C-AMT scans and were genotyped for 11 single-nucleotide polymorphisms (SNPs) distributed across the TPH(2) gene and its 5' upstream region. Several TPH(2) SNPs were associated with lower normalized blood-to-brain clearance of (11)C-AMT in the OBFC. Dose-effect relationships were found for two variants (rs6582071 and rs4641527, respectively, located in the 5' upstream region and intron 1) that have previously been associated with suicide. Associations in the OBFC remained statistically significant in a mixed larger sample of patients and controls. These results suggest that in humans, genetic factors might partly account for variations in serotonin synthesis in the OBFC.
Collapse
Affiliation(s)
- L Booij
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Mujakovic S, ter Linde JJ, de Wit NJ, van Marrewijk CJ, Fransen GA, Onland-Moret NC, Laheij RJ, Muris JW, Grobbee DE, Samsom M, Jansen JB, Knottnerus A, Numans ME. Serotonin receptor 3A polymorphism c.-42C > T is associated with severe dyspepsia. BMC MEDICAL GENETICS 2011; 12:140. [PMID: 22014438 PMCID: PMC3213216 DOI: 10.1186/1471-2350-12-140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 10/20/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND The association between anxiety and depression related traits and dyspepsia may reflect a common genetic predisposition. Furthermore, genetic factors may contribute to the risk of having increased visceral sensitivity, which has been implicated in dyspeptic symptom generation. Serotonin (5-HT) modulates visceral sensitivity by its action on 5-HT3 receptors. Interestingly, a functional polymorphism in HTR3A, encoding the 5-HT3 receptor A subunit, has been reported to be associated with depression and anxiety related traits. A functional polymorphism in the serotonin transporter (5-HTT), which terminates serotonergic signalling, was also found associated with these psychiatric comorbidities and increased visceral sensitivity in irritable bowel syndrome, which coexistence is associated with higher dyspeptic symptom severity. We investigated the association between these functional polymorphisms and dyspeptic symptom severity. METHODS Data from 592 unrelated, Caucasian, primary care patients with dyspepsia participating in a randomised clinical trial comparing step-up and step-down antacid drug treatment (The DIAMOND trial) were analysed. Patients were genotyped for HTR3A c.-42C > T SNP and the 44 bp insertion/deletion polymorphism in the 5-HTT promoter (5-HTTLPR). Intensity of 8 dyspeptic symptoms at baseline was assessed using a validated questionnaire (0 = none; 6 = very severe). Sum score ≥20 was defined severe dyspepsia. RESULTS HTR3A c.-42T allele carriers were more prevalent in patients with severe dyspepsia (OR 1.50, 95% CI 1.06-2.20). This association appeared to be stronger in females (OR 2.05, 95% CI 1.25-3.39) and patients homozygous for the long (L) variant of the 5-HTTLPR genotype (OR 2.00, 95% CI 1.01-3.94). Females with 5-HTTLPR LL genotype showed the strongest association (OR = 3.50, 95% CI = 1.37-8.90). CONCLUSIONS The HTR3A c.-42T allele is associated with severe dyspeptic symptoms. The stronger association among patients carrying the 5-HTTLPR L allele suggests an additive effect of the two polymorphisms. These results support the hypothesis that diminished 5-HT3 mediated antinociception predisposes to increased visceral sensitivity of the gastrointestinal tract. Moreover, the HTR3A c.-42C > T and 5-HTTLPR polymorphisms likely represent predisposing genetic variants in common to psychiatric morbidity and dyspepsia.
Collapse
Affiliation(s)
- Suhreta Mujakovic
- University Medical Centre Utrecht, Department of Gastroenterology & Hepatology, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oliva JL, Leung S, Croft RJ, O'Neill BV, Stout JC, Nathan PJ. Evidence for sex differences in the loudness dependence of the auditory evoked potential in humans. Hum Psychopharmacol 2011; 26:172-6. [PMID: 21455974 DOI: 10.1002/hup.1187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The loudness dependence of the auditory evoked potential (LDAEP) has been suggested as a marker of the serotonin system, although studies directly examining the relationship between acute changes in serotonin and the LDAEP have been inconsistent. Given the reported sex dichotomy in serotonin neurotransmission, this study examined if there are sex differences in the LDAEP. METHODS Data from 65 healthy participants from four independent studies were pooled, and their N1/P2 slopes were quantified. RESULTS Mean N1/P2 slopes for female participants were higher than those for male participants (p < 0.0001). CONCLUSION These findings suggest that the LDAEP is modulated by sex potentially because of differences in serotonergic neurotransmission, and these differences may account for some of the inconsistent findings linking serotonin function and LDAEP.
Collapse
Affiliation(s)
- Jessica L Oliva
- School of Psychology and Psychiatry, Monash University, Melbourne, VIC, Australia
| | | | | | | | | | | |
Collapse
|
35
|
The relationship between the acute cerebral metabolic response to citalopram and chronic citalopram treatment outcome. Am J Geriatr Psychiatry 2011; 19:53-63. [PMID: 21218565 PMCID: PMC3058257 DOI: 10.1097/jgp.0b013e3181eafde4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Given the challenges in the clinical management of geriatric depression, research over the past decade has focused on developing early neurobiological markers of antidepressant treatment response. This study tested the hypothesis that lower baseline glucose metabolism and greater acute cerebral metabolic responses to a single, intravenous (IV) dose of the selective serotonin reuptake inhibitor (SSRI) citalopram would be associated with greater improvement of depressive symptoms after 12 weeks of citalopram treatment in geriatric depression. METHODS sixteen geriatric depressed patients underwent two scans to measure cerebral glucose metabolism after administration of either a saline placebo or citalopram infusion (40 mg, IV). Then, the patients were treated with the oral citalopram medication for 12 weeks. RESULTS greater improvement of depressive symptoms was associated with lower baseline metabolism in anterior cingulate, superior, middle, and inferior frontal gyri (bilaterally), inferior parietal lobule (bilaterally), precuneus (right), insula (left), parahippocampal gyrus (right), caudate (bilaterally), and putamen (left) regions. Greater improvement of depressive symptoms was associated with greater reductions in metabolism after acute citalopram administration in similar brain regions, including additional posterior cortical regions. CONCLUSIONS lower baseline cerebral metabolism and greater decreases with acute citalopram administration are associated with better antidepressant response to chronic citalopram treatment. These data are consistent with previous studies of total sleep deprivation and suggest that dynamic, early adaptive changes or normalization of cerebral metabolism may represent early neurobiological markers of chronic SSRI treatment response in geriatric depression.
Collapse
|
36
|
Abstract
There is a large body of literature debating whether and how gender affects the metabolism, side-effect profile, and efficacy of antidepressants. Gender differences in antidepressant pharmacokinetics and efficacy profiles have been attributed to not only anatomic and physiological differences between the sexes, but also behavioral factors, comorbid disorders, and gender-specific conditions, such as pregnancy and menopause. Despite the large body of research on this topic, few definitive conclusions regarding effects of gender on antidepressant treatment exist, and much of this research is incomplete, contradictory, or not fully used to optimize the administration of antidepressants and the response to treatment. This chapter will review the latest research on gender-specific effects of antidepressant treatment, focusing on the overall, gender-related differences in efficacy, metabolism, and side-effect profile of antidepressants, and how these differences can be used to better optimize treatment of depression in a clinical setting.
Collapse
Affiliation(s)
- John J Sramek
- Worldwide Clinical Trials, Inc., 401 N. Maple Drive, Beverly Hills, CA 90210, USA.
| | | |
Collapse
|
37
|
Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications. Eur J Nucl Med Mol Imaging 2010; 38:576-91. [PMID: 21113591 PMCID: PMC3034914 DOI: 10.1007/s00259-010-1663-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/01/2010] [Indexed: 12/20/2022]
Abstract
The serotonergic system of the brain is complex, with an extensive innervation pattern covering all brain regions and endowed with at least 15 different receptors (each with their particular distribution patterns), specific reuptake mechanisms and synthetic processes. Many aspects of the functioning of the serotonergic system are still unclear, partially because of the difficulty of measuring physiological processes in the living brain. In this review we give an overview of the conventional methods of measuring serotonin synthesis and methods using positron emission tomography (PET) tracers, more specifically with respect to serotonergic function in affective disorders. Conventional methods are invasive and do not directly measure synthesis rates. Although they may give insight into turnover rates, a more direct measurement may be preferred. PET is a noninvasive technique which can trace metabolic processes, like serotonin synthesis. Tracers developed for this purpose are α-[11C]methyltryptophan ([11C]AMT) and 5-hydroxy-L-[β-11C]tryptophan ([11C]5-HTP). Both tracers have advantages and disadvantages. [11C]AMT can enter the kynurenine pathway under inflammatory conditions (and thus provide a false signal), but this tracer has been used in many studies leading to novel insights regarding antidepressant action. [11C]5-HTP is difficult to produce, but trapping of this compound may better represent serotonin synthesis. AMT and 5-HTP kinetics are differently affected by tryptophan depletion and changes of mood. This may indicate that both tracers are associated with different enzymatic processes. In conclusion, PET with radiolabelled substrates for the serotonergic pathway is the only direct way to detect changes of serotonin synthesis in the living brain.
Collapse
|
38
|
Frey BN, Skelin I, Sakai Y, Nishikawa M, Diksic M. Gender differences in alpha-[(11)C]MTrp brain trapping, an index of serotonin synthesis, in medication-free individuals with major depressive disorder: a positron emission tomography study. Psychiatry Res 2010; 183:157-66. [PMID: 20630715 DOI: 10.1016/j.pscychresns.2010.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/12/2010] [Accepted: 05/13/2010] [Indexed: 12/27/2022]
Abstract
Women are at higher risk than men for developing major depressive disorder (MDD), but the mechanisms underlying this higher risk are unknown. Here, we report proportionally normalized alpha-[(11)C]methyl-L-tryptophan brain trapping constant (alpha-[(11)C]MTrp K*(N)), an index of serotonin synthesis, in 25 medication-free individuals with MDD and in 25 gender- and age-matched healthy subjects who were studied using positron emission tomography (PET). Comparisons of alpha-[(11)C]MTrp K*(N) values between the men and women were conducted at the voxel and cluster levels using Statistical Parametric Mapping 2 (SPM2) analysis. In addition, the alpha-[(11)C]MTrp K*(N) values on both sides of the brain were extracted and compared to identify the left to right differences, as well as the gender differences. Women with MDD displayed higher alpha-[(11)C]MTrp K*(N) than men in the inferior frontal gyrus, anterior cingulate cortex (ACC), parahippocampal gyrus, precuneus, superior parietal lobule, and occipital lingual gyrus. In a matched group of normal subjects the gender differences were opposite from those found in MDD patients. Significant hemispheric differences in fronto-limbic structures between men and women with MDD were also observed. The K*(N) extracted from the volumes identified in MDD patients and in male and female normal subjects suggested no significant differences between males and females. In conclusion, depressed women have higher serotonin synthesis in multiple regions of the prefrontal cortex and limbic system involved with mood regulation, as compared with depressed men. Gender differences in brain serotonin synthesis may be related to higher risk for MDD in women.
Collapse
Affiliation(s)
- Benicio N Frey
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada H3A 2B4
| | | | | | | | | |
Collapse
|
39
|
Blood concentrations of serotonin, cortisol and dehydroepiandrosterone in aggressive dogs. Appl Anim Behav Sci 2010. [DOI: 10.1016/j.applanim.2010.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Sex differences in corticolimbic dopamine and serotonin systems in the rat and the effect of postnatal handling. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:251-61. [PMID: 19100810 DOI: 10.1016/j.pnpbp.2008.11.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/19/2008] [Accepted: 11/20/2008] [Indexed: 11/24/2022]
Abstract
Stress-related psychopathology is particularly prevalent in women, although the neurobiological reason(s) for this are unclear. Dopamine (DA) and serotonin (5-HT) systems however, are known to play important adaptive roles in stress and emotion regulation. The aims of the present study included examination of sex differences in stress-related behaviour and neuroendocrine function as well as post mortem neurochemistry, with the main hypothesis that corticolimbic DA and 5-HT systems would show greater functional activity in males than females. Long-Evans rats of both sexes were employed. Additional factors incorporated included differential postnatal experience (handled vs. nonhandled) and adult mild stress experience (acute vs. repeated (5) restraint). Regional neurochemistry measures were conducted separately for left and right hemispheres. Behaviourally, females showed more exploratory behaviour than males in the elevated plus maze and an openfield/holeboard apparatus. Females also exhibited significantly higher levels of adrenocorticotrophic hormone and corticosterone at all time points in response to restraint stress than males across treatment conditions, although both sexes showed similar habituation in stress-induced ACTH activation with repeated mild stress. Neurochemically, females had significantly higher levels of DA (in ventromedial prefrontal cortex (vmPFC), insular cortex and n. accumbens) and 5-HT (in vmPFC, amygdala, dorsal hippocampus and insula) than males. In contrast, males had higher levels of the DA metabolite DOPAC or DOPAC/DA ratios than females in all five regions and higher levels of the 5-HT metabolite 5-HIAA or 5-HIAA/5-HT ratios in vmPFC, amygdala and insula, suggesting greater neurotransmitter utilization in males. Moreover, handling treatment induced a significant male-specific upregulation of 5-HT metabolism in all regions except n. accumbens. Given the adaptive role of 5-HT and DAergic neurotransmission in stress and emotion regulation, the intrinsic sex differences we report in the functional status of these systems across conditions, may be highly relevant to the differential vulnerability to disorders of stress and emotion regulation.
Collapse
|
41
|
Nishikawa M, Diksic M, Sakai Y, Kumano H, Charney D, Palacios-Boix J, Negrete J, Gill K. Alterations in Brain Serotonin Synthesis in Male Alcoholics Measured Using Positron Emission Tomography. Alcohol Clin Exp Res 2009; 33:233-9. [DOI: 10.1111/j.1530-0277.2008.00820.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Gokturk C, Schultze S, Nilsson KW, von Knorring L, Oreland L, Hallman J. Serotonin transporter (5-HTTLPR) and monoamine oxidase (MAOA) promoter polymorphisms in women with severe alcoholism. Arch Womens Ment Health 2008; 11:347-55. [PMID: 18827956 DOI: 10.1007/s00737-008-0033-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 09/14/2008] [Indexed: 02/02/2023]
Abstract
The serotonin system is known to play a pivotal role for mood, behaviour and psychic illness as e.g. alcoholism. Alcoholism in both males and females has been associated with polymorphisms in genes encoding for proteins of importance for central serotonergic function. Genotyping of two functional polymorphisms in the promoter region of the serotonin transporter and monoamine oxidase-A, respectively, (5-HTT-LPR and MAOA-VNTR), was performed in a group of women with severe alcohol addiction. A large sample of adolescent females from a normal population was used as controls. A significantly higher frequency of the LL 5-HTT genotype (high activity) was found in female addicts without a known co-morbid psychiatric disorder than in the controls. Genotype of the MAOA-VNTR polymorphism did not differ significantly between addicts and controls. However, within the group of alcoholics, when the patients with known co-morbid psychiatric disorders were excluded, aggressive anti-social behaviour was significantly linked to the presence of the high activity MAOA allele. The pattern of associations between genotypes of 5-HTT-LPR and MAOA-VNTR in women with severe alcoholism differs from most corresponding studies on males.
Collapse
Affiliation(s)
- Camilla Gokturk
- Department of Neuroscience, Pharmacology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
A considerable body of evidence suggests the involvement of serotonin neurotransmission in the pathogenesis of panic disorder. Research on pathways and functions of tryptophan, an essential amino acid converted into serotonin, may advance our understanding of serotonergic actions in panic disorder and related phenomena. The investigative approaches in this field include manipulations of tryptophan availability as well as genetic association and functional brain imaging studies. In this review we examine the principle findings of these studies and propose further research directions.
Collapse
Affiliation(s)
- Eduard Maron
- Research Department of Mental Health, The North Estonian Regional Hospital, Psychiatry Clinic, Tallinn, Estonia
- Department of Psychiatry, University of Tartu, Tartu, Estonia
- Estonian Genome Project, University of Tartu, Estonia
| | - Jakov Shlik
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| | - David J. Nutt
- Department of Community Based Medicine, Psychopharmacology Unit, University of Bristol, U.K
| |
Collapse
|
44
|
Frey BN, Rosa-Neto P, Lubarsky S, Diksic M. Correlation between serotonin synthesis and 5-HT1A receptor binding in the living human brain: A combined α-[11C]MT and [18F]MPPF positron emission tomography study. Neuroimage 2008; 42:850-7. [DOI: 10.1016/j.neuroimage.2008.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/27/2008] [Accepted: 05/09/2008] [Indexed: 10/22/2022] Open
|
45
|
Panconesi A. Serotonin and migraine: a reconsideration of the central theory. J Headache Pain 2008; 9:267-76. [PMID: 18668197 PMCID: PMC3452194 DOI: 10.1007/s10194-008-0058-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 07/11/2008] [Indexed: 01/01/2023] Open
Abstract
The 5-hydroxytryptamine (5-HT) has been implicated in migraine pathophysiology for the past 50 years. A low central 5-HT disposition associated with an increase in 5-HT release during attack is the most convincing change of 5-HT metabolism implicated in migraine. Peripheral studies on plasma/platelet have not generally shown low 5-HT levels. Studies on 5-HT reactivity showed hypersensitivity, also expressed as reduced tachyphylaxis (habituation), which successively was evidenced as the most characteristic marker of an altered sensory neurotransmission. Even the gender and seasonal variations of 5-HT parameters seem to agree with a low 5-HT turnover with receptoral hypersensitivity. The interpretation of the effects of some serotonergic drugs and recent neuroimaging studies give major evidence for this cascade of events. Although the exact mechanism that links abnormal 5-HT neurotransmission to the manifestation of head pain has yet to be fully understood, a deficit on 5-HT descending pain inhibitory system is still probably today the most implicated in migraine pathophysiology. This short review focuses and discusses the alteration of peripheral and central 5-HT parameters in migraine patients.
Collapse
|
46
|
The serotonin-1A receptor distribution in healthy men and women measured by PET and [carbonyl-11C]WAY-100635. Eur J Nucl Med Mol Imaging 2008; 35:2159-68. [PMID: 18542956 DOI: 10.1007/s00259-008-0850-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/11/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE The higher prevalence rates of depression and anxiety disorders in women compared to men have been associated with sexual dimorphisms in the serotonergic system. The present positron emission tomography (PET) study investigated the influence of sex on the major inhibitory serotonergic receptor subtype, the serotonin-1A (5-HT(1A)) receptor. METHODS Sixteen healthy women and 16 healthy men were measured using PET and the highly specific radioligand [carbonyl-(11)C]WAY-100635. Effects of age or gonadal hormones were excluded by restricting the inclusion criteria to young adults and by controlling for menstrual cycle phase. The 5-HT(1A) receptor BP(ND) was quantified using (1) the 'gold standard' manual delineation approach with ten regions of interest (ROIs) and (2) a newly developed delineation method using a PET template normalized to the Montreal Neurologic Institute space with 45 ROIs based on automated anatomical labeling. RESULTS The 5-HT(1A) receptor BP(ND) was found equally distributed in men and women applying both the manual delineation method and the automated delineation approach. Women had lower mean BP(ND) values in every region investigated, with a borderline significant sex difference in the hypothalamus (p = 0.012, uncorrected). There was a high intersubject variability of the 5-HT(1A) receptor BP(ND) within both sexes compared to the small mean differences between men and women. CONCLUSIONS To conclude, when measured in the follicular phase, women do not differ from men in the 5-HT(1A) receptor binding. To explain the higher prevalence of affective disorders in women, further studies are needed to evaluate the relationship between hormonal status and the 5-HT(1A) receptor expression.
Collapse
|
47
|
Mace J, Porter R, O'Brien J, Gallagher P. Cognitive effects of acute tryptophan depletion in the healthy elderly. Acta Neuropsychiatr 2008; 20:78-86. [PMID: 25385467 DOI: 10.1111/j.1601-5215.2008.00272.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Studies investigating the cognitive effects of serotonin depletion, using the technique of acute tryptophan depletion (ATD) by dietary means, have generally suggested that ATD impairs delayed verbal recall and recognition. In two previous studies in the elderly, this result has not been replicated and ATD impaired working memory. These results may be susceptible to type II error but a similar testing schedule in the individual studies allows data to be pooled in a larger analysis. METHODS Data from two separate double-blind placebo-controlled studies of the effects of ATD on cognitive function in the elderly were combined. In one study, a low dose and in the other a high dose of amino acids was used. In a repeated measures analysis of variance, the effects of ATD and the interaction of this with the other factors (age, gender and dose) on cognitive measures was examined. RESULTS Data from 31 healthy subjects aged between 60 and 81 years were analysed. There were no main effects of ATD or consistent interactions between ATD and age, gender or dose. There were significant interactions between ATD, gender and dose. When tryptophan depleted, females having the higher dose drink had reduced scores on Digit span and immediate recall on the Rey Auditory Verbal Learning Test. CONCLUSION The enlarged data set did not confirm an overall effect of ATD on working memory or on delayed word recall but does suggest an effect of ATD on encoding or registration in the subgroup of females receiving a higher strength drink.
Collapse
Affiliation(s)
- Janet Mace
- 1Department of Psychological Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Richard Porter
- 1Department of Psychological Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - John O'Brien
- 2Wolfson Research Centre, Institute for Ageing and Health, Newcastle upon Tyne, UK
| | - Peter Gallagher
- 3School of Neurology, Neurobiology and Psychiatry, Newcastle University, Leazes Wing (Psychiatry), Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
48
|
Jovanovic H, Lundberg J, Karlsson P, Cerin A, Saijo T, Varrone A, Halldin C, Nordström AL. Sex differences in the serotonin 1A receptor and serotonin transporter binding in the human brain measured by PET. Neuroimage 2007; 39:1408-19. [PMID: 18036835 DOI: 10.1016/j.neuroimage.2007.10.016] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 10/04/2007] [Accepted: 10/11/2007] [Indexed: 11/19/2022] Open
Abstract
Women and men differ in serotonin associated psychiatric conditions, such as depression, anxiety and suicide. Despite this, very few studies focus on sex differences in the serotonin system. Of the biomarkers in the serotonin system, serotonin(1A) (5-HT(1A)) receptor is implicated in depression, and anxiety and serotonin transporter (5-HTT) is a target for selective serotonin reuptake inhibitors, psychotropic drugs used in the treatment of these disorders. The objective of the present study was to study sex related differences in the 5-HT(1A) receptor and 5-HTT binding potentials (BP(ND)s) in healthy humans, in vivo. Positron emission tomography and selective radioligands [(11)C]WAY100635 and [(11)C]MADAM were used to evaluate binding potentials for 5-HT(1A) receptors (14 women and 14 men) and 5-HTT (8 women and 10 men). The binding potentials were estimated both on the level of anatomical regions and voxel wise, derived by the simplified reference tissue model and wavelet/Logan plot parametric image techniques respectively. Compared to men, women had significantly higher 5-HT(1A) receptor and lower 5-HTT binding potentials in a wide array of cortical and subcortical brain regions. In women, there was a positive correlation between 5-HT(1A) receptor and 5-HTT binding potentials for the region of hippocampus. Sex differences in 5-HT(1A) receptor and 5-HTT BP(ND) may reflect biological distinctions in the serotonin system contributing to sex differences in the prevalence of psychiatric disorders such as depression and anxiety. The result of the present study may help in understanding sex differences in drug treatment responses to drugs affecting the serotonin system.
Collapse
Affiliation(s)
- Hristina Jovanovic
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Berney A, Nishikawa M, Benkelfat C, Debonnel G, Gobbi G, Diksic M. An index of 5-HT synthesis changes during early antidepressant treatment: alpha-[11C]methyl-L-tryptophan PET study. Neurochem Int 2007; 52:701-8. [PMID: 17928105 DOI: 10.1016/j.neuint.2007.08.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/05/2007] [Accepted: 08/31/2007] [Indexed: 12/01/2022]
Abstract
The antidepressant selective serotonin transporter inhibitors (SSRIs) are clinically active after a delay of several weeks. Indeed, the rapid increase of serotonin (5-HT) caused by SSRIs, stimulates the 5-HT(1A) autoreceptors, which exert a negative feedback on the 5-HT neurotransmission. Only when autoreceptors are desensitized, can SSRIs exert their therapeutic activity. The 5-HT(1A) receptor antagonist pindolol has been used to accelerate the clinical effects of antidepressant by preventing the negative feedback. Using the alpha-[(11)C]methyl-L-tryptophan/positron emission tomography (PET), the goal of the present double-blind, randomized study was to compare the changes in alpha-[(11)C]methyl-L-tryptophan trapping, an index of serotonin synthesis, in patients suffering from unipolar depression treated with the SSRI citalopram (20 mg/day) plus placebo versus patients treated with citalopram plus pindol (7.5 mg/day). PET and Hamilton depression rating scale (HDRS-17) were performed at baseline, and after 10 and 24 days of antidepressant treatment. Results show that the combination citalopram plus pindol, compared to citalopram alone shows a more rapid and greater increase of an index of 5-HT synthesis in prefrontal cortex (BA 9). This research is the first human PET study demonstrating that, after 24 days, the combination SSRIs plus pindolol produces a greater increase of the metabolism of serotonin in the prefrontal cortex, an area associated to depressive symptoms.
Collapse
|