1
|
Mena S, Cruikshank A, Best J, Nijhout HF, Reed MC, Hashemi P. Modulation of serotonin transporter expression by escitalopram under inflammation. Commun Biol 2024; 7:710. [PMID: 38851804 PMCID: PMC11162477 DOI: 10.1038/s42003-024-06240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/24/2024] [Indexed: 06/10/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used for depression based on the monoamine deficiency hypothesis. However, the clinical use of these agents is controversial, in part because of their variable clinical efficacy and in part because of their delayed onset of action. Because of the complexities involved in replicating human disease and clinical dosing in animal models, the scientific community has not reached a consensus on the reasons for these phenomena. In this work, we create a theoretical hippocampal model incorporating escitalopram's pharmacokinetics, pharmacodynamics (competitive and non-competitive inhibition, and serotonin transporter (SERT) internalization), inflammation, and receptor dynamics. With this model, we simulate chronic oral escitalopram in mice showing that days to weeks are needed for serotonin levels to reach steady-state. We show escitalopram's chemical efficacy is diminished under inflammation. Our model thus offers mechanisms for how chronic escitalopram affects brain serotonin, emphasizing the importance of optimized dose and time for future antidepressant discoveries.
Collapse
Affiliation(s)
- Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - H F Nijhout
- Department of Biology, Duke University, Durham, NC, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Parastoo Hashemi
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Lan MJ, Zanderigo F, Pantazatos SP, Sublette ME, Miller J, Ogden RT, Mann JJ. Serotonin 1A Receptor Binding of [11C]CUMI-101 in Bipolar Depression Quantified Using Positron Emission Tomography: Relationship to Psychopathology and Antidepressant Response. Int J Neuropsychopharmacol 2022; 25:534-544. [PMID: 34996114 PMCID: PMC9352178 DOI: 10.1093/ijnp/pyac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The pathophysiology of bipolar disorder (BD) remains largely unknown despite it causing significant disability and suicide risk. Serotonin signaling may play a role in the pathophysiology, but direct evidence for this is lacking. Treatment of the depressed phase of the disorder is limited. Previous studies have indicated that positron emission tomography (PET) imaging of the serotonin 1A receptor (5HT1AR) may predict antidepressant response. METHODS A total of 20 participants with BD in a current major depressive episode and 16 healthy volunteers had PET imaging with [11C]CUMI-101, employing a metabolite-corrected input function for quantification of binding potential to the 5HT1AR. Bipolar participants then received an open-labeled, 6-week clinical trial with a selective serotonin reuptake inhibitor (SSRI) in addition to their mood stabilizer. Clinical ratings were obtained at baseline and during SSRI treatment. RESULTS Pretreatment binding potential (BPF) of [11C]CUMI-101 was associated with a number of pretreatment clinical variables within BD participants. Within the raphe nucleus, it was inversely associated with the baseline Montgomery Åsberg Rating Scale (P = .026), the Beck Depression Inventory score (P = .0023), and the Buss Durkee Hostility Index (P = .0058), a measure of lifetime aggression. A secondary analysis found [11C]CUMI-101 BPF was higher in bipolar participants compared with healthy volunteers (P = .00275). [11C]CUMI-101 BPF did not differ between SSRI responders and non-responders (P = .907) to treatment and did not predict antidepressant response (P = .580). Voxel-wise analyses confirmed the results obtained in regions of interest analyses. CONCLUSIONS A disturbance of serotonin system function is associated with both the diagnosis of BD and its severity of depression. Pretreatment 5HT1AR binding did not predict SSRI antidepressant outcome.The study was listed on clinicaltrials.gov with identifier NCT02473250.
Collapse
Affiliation(s)
- Martin J Lan
- Correspondence: Martin Lan, MD, PhD, 1051 Riverside Dr., Unit 42, New York, NY 10032, USA ()
| | - Francesca Zanderigo
- Department of Psychiatry, Vagelos College of Physicians and Surgeons at Columbia University, New York, NY, USA,Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
| | - Spiro P Pantazatos
- Department of Psychiatry, Vagelos College of Physicians and Surgeons at Columbia University, New York, NY, USA,Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
| | - M Elizabeth Sublette
- Department of Psychiatry, Vagelos College of Physicians and Surgeons at Columbia University, New York, NY, USA,Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
| | - Jeffrey Miller
- Department of Psychiatry, Vagelos College of Physicians and Surgeons at Columbia University, New York, NY, USA,Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
| | - R Todd Ogden
- Department of Psychiatry, Vagelos College of Physicians and Surgeons at Columbia University, New York, NY, USA,Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
| | - J John Mann
- Department of Psychiatry, Vagelos College of Physicians and Surgeons at Columbia University, New York, NY, USA,Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA,Department of Radiology, Vagelos College of Physicians and Surgeons at Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Colom M, Vidal B, Fieux S, Redoute J, Costes N, Lavenne F, Mérida I, Irace Z, Iecker T, Bouillot C, Billard T, Newman-Tancredi A, Zimmer L. [ 18F]F13640, a 5-HT 1A Receptor Radiopharmaceutical Sensitive to Brain Serotonin Fluctuations. Front Neurosci 2021; 15:622423. [PMID: 33762906 PMCID: PMC7982540 DOI: 10.3389/fnins.2021.622423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Serotonin is involved in a variety of physiological functions and brain disorders. In this context, efforts have been made to investigate the in vivo fluctuations of this neurotransmitter using positron emission tomography (PET) imaging paradigms. Since serotonin is a full agonist, it binds preferentially to G-protein coupled receptors. In contrast, antagonist PET ligands additionally interact with uncoupled receptors. This could explain the lack of sensitivity to serotonin fluctuations of current 5-HT1A radiopharmaceuticals which are mainly antagonists and suggests that agonist radiotracers would be more appropriate to measure changes in neurotransmitter release. The present study evaluated the sensitivity to endogenous serotonin release of a recently developed, selective 5-HT1A receptor PET radiopharmaceutical, the agonist [18F]F13640 (a.k.a. befiradol or NLX-112). Materials and Methods Four cats each underwent three PET scans with [18F]F13640, i.e., a control PET scan of 90 min, a PET scan preceded 30 min before by an intravenous injection 1 mg/kg of d-fenfluramine, a serotonin releaser (blocking challenge), and a PET scan comprising the intravenous injection of 1 mg/kg of d-fenfluramine 30 min after the radiotracer injection (displacement challenge). Data were analyzed with regions of interest and voxel-based approaches. A lp-ntPET model approach was implemented to determine the dynamic of serotonin release during the challenge study. Results D-fenfluramine pretreatment elicited a massive inhibition of [18F]F13640 labeling in regions known to express 5-HT1A receptors, e.g., raphe nuclei, hippocampus, thalamus, anterior cingulate cortex, caudate putamen, occipital, frontal and parietal cortices, and gray matter of cerebellum. Administration of d-fenfluramine during PET acquisition indicates changes in occupancy from 10% (thalamus) to 31% (gray matter of cerebellum) even though the dissociation rate of [18F]F13640 over the 90 min acquisition time was modest. The lp-ntPET simulation succeeded in differentiating the control and challenge conditions. Conclusion The present findings demonstrate that labeling of 5-HT1A receptors with [18F]F13640 is sensitive to serotonin concentration fluctuations in vivo. Although the data underline the need to perform longer PET scan to ensure accurate measure of displacement, they support clinical development of [18F]F13640 as a tool to explore experimental paradigms involving physiological or pathological (neurological or neuropsychiatric pathologies) fluctuations of extracellular serotonin.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sylvain Fieux
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | | | | | | | | | | | | | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,CERMEP-Imagerie du Vivant, Bron, France.,Institut National des Sciences et Techniques Nucléaires, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Pauwelyn G, Vlerick L, Dockx R, Verhoeven J, Dobbeleir A, Peremans K, Goethals I, Bosmans T, Vanhove C, De Vos F, Polis I. PET quantification of [18F]MPPF in the canine brain using blood input and reference tissue modelling. PLoS One 2019; 14:e0218237. [PMID: 31185062 PMCID: PMC6559658 DOI: 10.1371/journal.pone.0218237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/30/2019] [Indexed: 12/04/2022] Open
Abstract
Numerous studies have shown that the serotonin1A (5-HT1A) receptor is implicated in the pathophysiology and treatment of several psychiatric and neurological disorders. Furthermore, functional imaging studies in a variety of species have demonstrated that 4-(2´-Methoxyphenyl)-1-[2´-(N-2´´-pyridinyl)-p- [18F]fluorobenzamidoethylpiperazine ([18F]MPPF) is a valid and useful PET tracer to visualize the 5HT1A receptor. However, to our knowledge, [18F]MPPF has never been demonstrated in the canine brain. The ability to image the 5HT1A receptor with PET in dogs could improve diagnosis and therapy in both canine and human behavioural and neuropsychiatric disorders. To examine the potential use of [18F]MPPF in dogs, five healthy adult laboratory beagles underwent a 60-minutes dynamic PET scan with [18F]MPPF while arterial blood samples were taken. For each region of interest, total distribution volume (VT) and corresponding binding potential (BPND) were calculated using the 1-tissue compartment model (1-TC), 2-Tissue compartment model (2-TC) and Logan plot. The preferred model was chosen based on the goodness-of-fit, calculated with the Akaike information criterium (AIC). Subsequently, the BPND values of the preferred compartment model were compared with the estimated BPND values using three reference tissue models (RTMs): the 2-step simplified reference tissue model (SRTM2), the 2-parameter multilinear reference tissue model (MRTM2) and the Logan reference tissue model. According to the lower AIC values of the 2-TC model compared to the 1-TC in all ROIs, the 2-TC model showed a better fit. Calculating BPND using reference tissue modelling demonstrated high correlation with the BPND obtained by metabolite corrected plasma input 2-TC. This first-in-dog study indicates the results of a bolus injection with [18F]MPPF in dogs are consistent with the observations presented in the literature for other animal species and humans. Furthermore, for future experiments, compartmental modelling using invasive blood sampling could be replaced by RTMs, using the cerebellum as reference region.
Collapse
Affiliation(s)
- Glenn Pauwelyn
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Lise Vlerick
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Robrecht Dockx
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, Ghent, Belgium
| | | | - Andre Dobbeleir
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kathelijne Peremans
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tim Bosmans
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christian Vanhove
- Institute Biomedical Technology–Medisip–Infinity, Ghent University, Ghent, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Ingeborgh Polis
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
6
|
In vivo biased agonism at 5-HT 1A receptors: characterisation by simultaneous PET/MR imaging. Neuropsychopharmacology 2018; 43:2310-2319. [PMID: 30030540 PMCID: PMC6135772 DOI: 10.1038/s41386-018-0145-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/07/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
Abstract
In neuropharmacology, the recent concept of 'biased agonism' denotes the capacity of certain agonists to target-specific intracellular pathways of a given receptor in specific brain areas. In the context of serotonin pharmacotherapy, 5-HT1A receptor-biased agonists could be of great interest in several neuropsychiatric disorders. The aim of this study was to determine whether biased agonists could be differentiated in terms of regional targeting by use of simultaneous functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) brain imaging. We compared two 5-HT1A-biased agonists, NLX-112 and NLX-101, injected at three different doses in anaesthetised cats (n = 4). PET imaging was acquired for 90 min after bolus administration followed by constant infusion of the 5-HT1A radiotracer, [18F]MPPF. Drug occupancy was evaluated after injection at 50 min and BOLD fMRI was simultaneously acquired to evaluate subsequent brain activation patterns. 5-HT1A receptor occupancy was found to be dose-dependent for both agonists, but differed in magnitude and spatial distribution at equal doses with distinct BOLD patterns. Functional connectivity, as measured by BOLD signal temporal correlations between regions, was also differently modified by NLX-112 or NLX-101. Voxel-based correlation analyses between PET and fMRI suggested that NLX-112 stimulates both 5-HT1A autoreceptors and post-synaptic receptors, whereas NLX-101 preferentially stimulates post-synaptic cortical receptors. In cingulate cortex, the agonists induced opposite BOLD signal changes in response to receptor occupancy. These data constitute the first simultaneous exploration of 5-HT1A occupancy and its consequences in terms of brain activation, and demonstrates differential signalling by two 5-HT1A-biased agonists. Combined PET/fMRI represents a powerful tool in neuropharmacology, and opens new ways to address the concept of biased agonism by translational approaches.
Collapse
|
7
|
Hazari PP, Pandey A, Chaturvedi S, Mishra AK. New Trends and Current Status of Positron-Emission Tomography and Single-Photon-Emission Computerized Tomography Radioligands for Neuronal Serotonin Receptors and Serotonin Transporter. Bioconjug Chem 2017; 28:2647-2672. [PMID: 28767225 DOI: 10.1021/acs.bioconjchem.7b00243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The critical role of serotonin (5-hydroxytryptamine; 5-HT) and its receptors (5-HTRs) in the pathophysiology of diverse neuropsychiatric and neurodegenerative disorders render them attractive diagnostic and therapeutic targets for brain disorders. Therefore, the in vivo assessment of binding of 5-HT receptor ligands under a multitude of physiologic and pathologic scenarios may support more-accurate identification of disease and its progression and the patient's response to therapy as well as the screening of novel therapeutic strategies. The present Review aims to focus on the current status of radioligands used for positron-emission tomography (PET) and single-photon-emission computerized tomography (SPECT) imaging of human brain serotonin receptors. We further elaborate upon and emphasize the attributes that qualify a radioligand for theranostics on the basis of its frequency of use in clinics, its benefit to risk assessment in humans, and its continuous evolution, along with the major limitations.
Collapse
Affiliation(s)
- Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Ankita Pandey
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| |
Collapse
|
8
|
Riad M, Kobert A, Descarries L, Boye S, Rompré PP, Lacaille JC. Chronic fluoxetine rescues changes in plasma membrane density of 5-HT1A autoreceptors and serotonin transporters in the olfactory bulbectomy rodent model of depression. Neuroscience 2017; 356:78-88. [DOI: 10.1016/j.neuroscience.2017.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022]
|
9
|
Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl) 2015; 232:4129-57. [PMID: 25921033 PMCID: PMC4600473 DOI: 10.1007/s00213-015-3938-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
RATIONALE This review attempts to summarize the current status in relation to the use of positron emission tomography (PET) imaging in the assessment of synaptic concentrations of endogenous mediators in the living brain. OBJECTIVES Although PET radioligands are now available for more than 40 CNS targets, at the initiation of the Innovative Medicines Initiative (IMI) "Novel Methods leading to New Medications in Depression and Schizophrenia" (NEWMEDS) in 2009, PET radioligands sensitive to an endogenous neurotransmitter were only validated for dopamine. NEWMEDS work-package 5, "Cross-species and neurochemical imaging (PET) methods for drug discovery", commenced with a focus on developing methods enabling assessment of changes in extracellular concentrations of serotonin and noradrenaline in the brain. RESULTS Sharing the workload across institutions, we utilized in vitro techniques with cells and tissues, in vivo receptor binding and microdialysis techniques in rodents, and in vivo PET imaging in non-human primates and humans. Here, we discuss these efforts and review other recently published reports on the use of radioligands to assess changes in endogenous levels of dopamine, serotonin, noradrenaline, γ-aminobutyric acid, glutamate, acetylcholine, and opioid peptides. The emphasis is on assessment of the availability of appropriate translational tools (PET radioligands, pharmacological challenge agents) and on studies in non-human primates and human subjects, as well as current challenges and future directions. CONCLUSIONS PET imaging directed at investigating changes in endogenous neurochemicals, including the work done in NEWMEDS, have highlighted an opportunity to further extend the capability and application of this technology in drug development.
Collapse
Affiliation(s)
- Sjoerd J. Finnema
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Mika Scheinin
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland , />Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Mohammed Shahid
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Jussi Lehto
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Edilio Borroni
- />Neuroscience Department, Hoffman-La Roche, Basel, Switzerland
| | | | - Jukka Sallinen
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Erik Wong
- />Neuroscience Innovative Medicine Unit, AstraZeneca, Wilmington, DE USA
| | - Lars Farde
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden , />Translational Science Center at Karolinska Institutet, AstraZeneca, Stockholm, Sweden
| | - Christer Halldin
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grimwood
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA. .,, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Klomp A, van Wingen G, de Ruiter M, Caan M, Denys D, Reneman L. Test–retest reliability of task-related pharmacological MRI with a single-dose oral citalopram challenge. Neuroimage 2013; 75:108-116. [DOI: 10.1016/j.neuroimage.2013.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022] Open
|
11
|
Da Costa Branquinho E, Becker G, Bouteiller C, Jean L, Renard PY, Zimmer L. Radiosynthesis and in vivo evaluation of fluorinated huprine derivates as PET radiotracers of acetylcholinesterase. Nucl Med Biol 2013; 40:554-60. [PMID: 23522975 DOI: 10.1016/j.nucmedbio.2013.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Developing positron emission tomography (PET) radiotracers for non-invasive study of the cholinergic system is crucial to the understanding of neurodegenerative diseases. Although several acetylcholinesterase (AChE) PET tracers radiolabeled with carbon-11 exist, no fluorinated radiotracer is currently used in clinical imaging studies. The purpose of the present study is to describe the first fluorinated PET radiotracer for this brain enzyme. METHODS Three structural analogs of huprine, a specific AChE inhibitor presenting high affinity towards AChE in vitro, were synthesized and labeled with fluorine-18 via a mesylate/fluoro-nucleophilic aliphatic substitution: ([(18)F]-FHUa, [(18)F]-FHUb and [(18)F]-FHUc). Initial biological evaluation included in vitro autoradiography in rat with competition with an AChE inhibitor at different concentrations, and microPET-scan on anesthetized rats. In vivo PET studies in anesthetized cat focused on [(18)F]-FHUa. RESULTS AND CONCLUSIONS Although radiosynthesis of these huprine analogs was straightforward, they showed poor brain penetration potential, partially reversed after pharmacological inhibition of P-glycoprotein. These results indicated that current huprine analogs are not suitable for PET mapping of brain AChE receptors, but require physicochemical modulation in order to increase brain penetration.
Collapse
|
12
|
Fisher PM, Hariri AR. Identifying serotonergic mechanisms underlying the corticolimbic response to threat in humans. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120192. [PMID: 23440464 DOI: 10.1098/rstb.2012.0192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A corticolimbic circuit including the amygdala and medial prefrontal cortex (mPFC) plays an important role in regulating sensitivity to threat, which is heightened in mood and anxiety disorders. Serotonin is a potent neuromodulator of this circuit; however, specific serotonergic mechanisms mediating these effects are not fully understood. Recent studies have evaluated molecular mechanisms mediating the effects of serotonin signalling on corticolimbic circuit function using a multi-modal neuroimaging strategy incorporating positron emission tomography and blood oxygen level-dependent functional magnetic resonance imaging. This multi-modal neuroimaging strategy can be integrated with additional techniques including imaging genetics and pharmacological challenge paradigms to more clearly understand how serotonin signalling modulates neural pathways underlying sensitivity to threat. Integrating these methodological approaches offers novel opportunities to identify mechanisms through which serotonin signalling contributes to differences in brain function and behaviour, which in turn can illuminate factors that confer risk for illness and inform the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Patrick M Fisher
- Center for Integrated Molecular Brain Imaging, University of Copenhagen, Copenhagen 2100, Denmark.
| | | |
Collapse
|
13
|
Descarries L, Riad M. Effects of the antidepressant fluoxetine on the subcellular localization of 5-HT1A receptors and SERT. Philos Trans R Soc Lond B Biol Sci 2012; 367:2416-25. [PMID: 22826342 DOI: 10.1098/rstb.2011.0361] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Serotonin (5-HT) 5-HT(1A) autoreceptors (5-HT(1A)autoR) and the plasmalemmal 5-HT transporter (SERT) are key elements in the regulation of central 5-HT function and its responsiveness to antidepressant drugs. Previous immuno-electron microscopic studies in rats have demonstrated an internalization of 5-HT(1A)autoR upon acute administration of the selective agonist 8-OH-DPAT or the selective serotonin reuptake inhibitor antidepressant fluoxetine. Interestingly, it was subsequently shown in cats as well as in humans that this internalization is detectable by positron emission tomography (PET) imaging with the 5-HT(1A) radioligand [(18)F]MPPF. Further immunocytochemical studies also revealed that, after chronic fluoxetine treatment, the 5-HT(1A)autoR, although present in normal density on the plasma membrane of 5-HT cell bodies and dendrites, do not internalize when challenged with 8-OH-DPAT. Resensitization requires several weeks after discontinuation of the chronic fluoxetine treatment. In contrast, the SERT internalizes in both the cell bodies and axon terminals of 5-HT neurons after chronic but not acute fluoxetine treatment. Moreover, the total amount of SERT immunoreactivity is then reduced, suggesting that SERT is not only internalized, but also degraded in the course of the treatment. Ongoing and future investigations prompted by these finding are briefly outlined by way of conclusion.
Collapse
Affiliation(s)
- Laurent Descarries
- Departments of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, , Montreal, Quebec, Canada H3C 3J7.
| | | |
Collapse
|
14
|
Feasibility of ASL-based phMRI with a single dose of oral citalopram for repeated assessment of serotonin function. Neuroimage 2012; 63:1695-700. [DOI: 10.1016/j.neuroimage.2012.07.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/18/2012] [Accepted: 07/18/2012] [Indexed: 11/22/2022] Open
|
15
|
Zimmer L, Luxen A. PET radiotracers for molecular imaging in the brain: Past, present and future. Neuroimage 2012; 61:363-70. [DOI: 10.1016/j.neuroimage.2011.12.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/15/2011] [Indexed: 12/22/2022] Open
|
16
|
Zimmer L, Descarries L. Internalization of serotonin 5-HT1A autoreceptors as an imaging biomarker of antidepressant response. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Simmons JG, Nathan PJ, Berger G, Allen NB. Chronic modulation of serotonergic neurotransmission with sertraline attenuates the loudness dependence of the auditory evoked potential in healthy participants. Psychopharmacology (Berl) 2011; 217:101-10. [PMID: 21465243 DOI: 10.1007/s00213-011-2265-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/11/2011] [Indexed: 11/24/2022]
Abstract
RATIONALE The loudness dependence of the auditory evoked potential (LDAEP) has been reported to be an effective non-invasive measure of central serotonergic neurotransmission. However, acute manipulations of the serotonergic system in humans and animals have yielded inconsistent findings. OBJECTIVES In this study, we examined the chronic effect of serotonergic manipulation using the selective serotonin reuptake inhibitor, sertraline, on the LDAEP. In addition, we examined the influence of 5-HTTLPR genotype and individual differences in plasma drug concentrations on the LDAEP. METHODS The study utilised a double-blind, placebo-controlled, between-group design in which 40 (24 female) healthy adults (M age = 22.0 years, SE = 0.7) were tested following placebo or sertraline for an average of 24 days. The LDAEP was assessed 6 h post-final dose, and changes in the slope of amplitude of the N1/P2 across intensities (60, 70, 80, 90, 100 dB) were examined at Cz. RESULTS The sertraline group had a significantly smaller LDAEP than the placebo group [F(1,38) = 5.97, p = 0.02]. Drug plasma levels did not correlate with the LDAEP in the sertraline group, and there was no influence of 5-HTTLPR genotype. CONCLUSIONS We show for the first time that chronically modulating serotonin neurotransmission alters the LDAEP in healthy adults, consistent with extant literature indicating a moderating role of serotonin on this neurophysiological biomarker. The findings from this study together with previous studies suggest that the LDAEP may be a more sensitive marker of long-term or chronic rather than acute changes in the serotonin system.
Collapse
Affiliation(s)
- Julian G Simmons
- Orygen Youth Health Research Centre, Locked Bag 10, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|
18
|
Klomp A, Tremoleda JL, Wylezinska M, Nederveen AJ, Feenstra M, Gsell W, Reneman L. Lasting effects of chronic fluoxetine treatment on the late developing rat brain: age-dependent changes in the serotonergic neurotransmitter system assessed by pharmacological MRI. Neuroimage 2011; 59:218-26. [PMID: 21840402 DOI: 10.1016/j.neuroimage.2011.07.082] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/18/2011] [Accepted: 07/26/2011] [Indexed: 01/26/2023] Open
Abstract
RATIONALE With the growing prevalence of psychotropic drug prescriptions among children and adolescents, the need for studies on lasting effects of drug exposure on the developing brain rises. Fluoxetine is the only selective serotonin reuptake inhibitor (SSRI) officially registered to treat major depressive disorder in children. Although various (pre)clinical studies have assessed the (long-term) effects of fluoxetine exposure in the perinatal period and in adulthood, limited data is available on its effects on the developing brain later in life, i.e. during adolescence. OBJECTIVE The present study aimed at investigating the effects of age following chronic SSRI treatment on the central serotonin (5-HT) system. To this end, pharmacological MRI (phMRI) was performed in chronic fluoxetine-treated (5 mg/kg, oral gavage for 3 weeks) juvenile (PND25) and adult rats (PND65) after a 1-week washout period, using an acute fluoxetine challenge (5 mg/kg, i.v.) to trigger the 5-HT system. RESULTS We observed a diminished brain response to the acute challenge in adult treated animals when compared to control animals, whereas this response was increased in juvenile treated rats. As a result, a significant age by treatment interaction effect was seen in several (subcortical) 5-HT related brain regions. CONCLUSION An opposite effect of chronic fluoxetine treatment was seen in the developing brain compared to that in matured brain, as assessed non-invasively using phMRI. These findings most likely reflect neuronal imprinting effects of juvenile SSRI treatment and may underlie emotional disturbances seen in animals and children treated with this drug. Also, our findings suggest that phMRI might be ideally suited to study this important issue in the pediatric population.
Collapse
Affiliation(s)
- A Klomp
- Department of Radiology, Academic Medical Centre Amsterdam, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Schaz U, Föhr KJ, Liebau S, Fulda S, Koelch M, Fegert JM, Boeckers TM, Ludolph AG. Dose-dependent modulation of apoptotic processes by fluoxetine in maturing neuronal cells: an in vitro study. World J Biol Psychiatry 2011; 12:89-98. [PMID: 20735156 DOI: 10.3109/15622975.2010.506927] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Recent studies indicate that the selective serotonin reuptake inhibitor (SSRI) fluoxetine is not solely effective by the instant inhibition of the serotonin transporter (SERT) but also by its influence on mitotic and/or apoptotic processes. METHODS To investigate the effects of the compound in vitro, we treated neurons from different brain areas with increasing concentrations of fluoxetine. Additionally, human embryonic kidney (HEK-293) cells and HEK-293 cells stably expressing the SERT were used. Cell viability was quantified by MTT-assay and apoptosis via fluorescence-activated cell-sorting analyses. Fluoxetine's effect on the γ-aminobutyric acid (GABA) receptor was electrophysiologically investigated to test the hypothesis if a GABA-mimetic effect exists that might lead - additionally to the well-known N-methyl-D-aspartate (NMDA)-antagonism - to increased apoptosis in immature neurons. RESULTS In hippocampal, cortical, and both types of HEK-293 cells, viability decreased and apoptosis increased in a dose-dependent manner (0.5-75 μM). In contrast, in mesencephalic and striatal cells the viability was unchanged or even slightly stimulated up to 20 μM fluoxetine. An anti-apoptotic effect of concentrations below 10 μM was observed in these cells. The GABA(A) receptor was directly activated by fluoxetine. CONCLUSIONS We conclude that fluoxetine affects apoptotic processes independently from SERT expression. Since especially the combined GABA-mimetic and NMDA-antagonistic effects increase apoptosis in developing neuronal cells, whereas both effects are neuroprotective in adult neurons we hypothesise that these mechanisms explain the discrepancy of in vitro and in vivo studies.
Collapse
Affiliation(s)
- Ulrike Schaz
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM. Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J Cereb Blood Flow Metab 2010; 30:1682-706. [PMID: 20664611 PMCID: PMC3023404 DOI: 10.1038/jcbfm.2010.104] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/03/2010] [Accepted: 06/16/2010] [Indexed: 01/17/2023]
Abstract
Molecular in vivo neuroimaging techniques can be used to measure regional changes in endogenous neurotransmitters, evoked by challenges that alter synaptic neurotransmitter concentration. This technique has most successfully been applied to the study of endogenous dopamine release using positron emission tomography, but has not yet been adequately extended to other neurotransmitter systems. This review focuses on how the technique has been applied to the study of the 5-hydroxytryptamine (5-HT) system. The principles behind visualising fluctuations in neurotransmitters are introduced, with reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT(1A), 5-HT(2A), and 5-HT(4) receptors and the serotonin reuptake transporter have been explored for their sensitivity to 5-HT fluctuations, but with mixed outcomes; tracers for these targets cannot reliably image endogenous 5-HT in humans. Shortcomings in our basic knowledge of the mechanisms underlying changes in binding potential are addressed, and suggestions are made as to how the selection of targets, radiotracers, challenge paradigms, and experimental design might be optimised to improve our chances of successfully imaging endogenous neurotransmitters in the future.
Collapse
|
21
|
Finnema SJ, Varrone A, Hwang TJ, Gulyás B, Pierson ME, Halldin C, Farde L. Fenfluramine-induced serotonin release decreases [11C]AZ10419369 binding to 5-HT1B-receptors in the primate brain. Synapse 2010; 64:573-7. [PMID: 20222157 DOI: 10.1002/syn.20780] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The need for positron emission tomography (PET)-radioligands that are sensitive to changes in endogenous serotonin (5-HT) levels in brain is recognized in experimental and clinical psychiatric research. We recently developed the novel PET radioligand [(11)C]AZ10419369 that is highly selective for the 5-HT(1B) receptor. In this PET-study in three cynomolgus monkeys, we examined the sensitivity of [(11)C]AZ10419369 to altered endogenous 5-HT levels. Fenfluramine-induced 5-HT release decreased radioligand binding in a dose-dependent fashion with a regional average of 27% after 1 mg/kg and 50% after 5 mg/kg. This preliminary study supports that [(11)C]AZ10419369 is sensitive to endogenous 5-HT levels in vivo and may serve as a tool to examine the pathophysiology and treatment of major psychiatric disorders.
Collapse
Affiliation(s)
- S J Finnema
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
22
|
Popa D, Cerdan J, Repérant C, Guiard BP, Guilloux JP, David DJ, Gardier AM. A longitudinal study of 5-HT outflow during chronic fluoxetine treatment using a new technique of chronic microdialysis in a highly emotional mouse strain. Eur J Pharmacol 2009; 628:83-90. [PMID: 19944680 DOI: 10.1016/j.ejphar.2009.11.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 11/28/2022]
Abstract
The onset of a therapeutic response to antidepressant treatment exhibits a delay of several weeks. The present study was designed to know whether extracellular serotonin (5-HT) levels need to be increased in territories of 5-HT innervation in order to obtain beneficial effects from a chronic treatment with a serotonin-selective reuptake inhibitor (SSRI). Thus, we performed a longitudinal study of a chronic fluoxetine treatment in a model of highly emotional mice (BALB/cJ). The function of the 5-HT system in the raphe nuclei and hippocampus, was assessed by using repeated in vivo microdialysis sessions in awake freely moving mice, then studying its relation with behavior, analyzed mainly with open field paradigm. One of the neural mechanisms underlying such delay has been proposed to be the functional status of 5-HT1A autoreceptors in raphe nuclei. Thus, we also assessed the degree of 5-HT1A autoreceptor desensitization by using a local infusion in the raphe of the antagonist, WAY 100635 via reverse microdialysis. We report that the anxiolytic-like effects of fluoxetine correlate in time and amplitude with 5-HT1A autoreceptor desensitization, but neither with the extracellular levels of 5-HT in the raphe nuclei, nor in the hippocampus. Our study suggests that the beneficial anxiolytic/antidepressant-like effects of chronic SSRI treatment indeed depend on 5-HT1A autoreceptor internalization, but do not require a sustained increase in extracellular 5-HT levels in a territory of 5-HT projection such as hippocampus.
Collapse
Affiliation(s)
- Daniela Popa
- Univ. Paris Sud, EA 3544, Fac. Pharmacie, Chatenay-Malabry cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Stockmeier CA, Howley E, Shi X, Sobanska A, Clarke G, Friedman L, Rajkowska G. Antagonist but not agonist labeling of serotonin-1A receptors is decreased in major depressive disorder. J Psychiatr Res 2009; 43:887-94. [PMID: 19215942 PMCID: PMC2754145 DOI: 10.1016/j.jpsychires.2009.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/22/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022]
Abstract
Serotonin-1A receptors may play a role in the pathophysiology of depression and suicide. In postmortem brain tissue, agonist binding to serotonin-1A receptors is reportedly increased or unchanged in depression or suicide, while neuroimaging studies report a decrease in antagonist binding to these receptors in subjects with depression. In this study, both agonist and antagonist radioligand binding to serotonin-1A receptors were examined in postmortem orbitofrontal cortex from subjects with major depressive disorder (MDD). Brain tissue was collected at autopsy from 11 subjects with MDD and 11 age- and gender-matched normal control subjects. Two depressed subjects had a recent psychoactive substance use disorder. Six subjects with MDD had a prescription for an antidepressant drug in the last month of life, and, of these six, postmortem bloods from only two subjects tested positive for an antidepressant drug. There was no significant difference between cohorts for age, postmortem interval or tissue pH. The receptor agonist [3H]8-OH-DPAT or the antagonist [3H]MPPF were used to autoradiographically label serotonin-1A receptors in frozen sections from cytoarchitectonically-defined left rostral orbitofrontal cortex (area 47). There was no significant difference between depressed and control subjects in agonist binding to serotonin-1A receptors. However, antagonist binding was significantly decreased in outer layers of orbitofrontal cortex in MDD. This observation in postmortem tissue confirms reports using an antagonist radioligand in living subjects with depression. Decreased antagonist binding to serotonin-1A receptors in outer layers of orbitofrontal cortex suggests diminished receptor signaling and may be linked to corresponding neuronal changes detected previously in these depressed subjects.
Collapse
Affiliation(s)
- Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Moulin-Sallanon M, Charnay Y, Ginovart N, Perret P, Lanfumey L, Hamon M, Hen R, Fagret D, Ibáñez V, Millet P. Acute and chronic effects of citalopram on 5-HT1A receptor-labeling by [18F]MPPF and -coupling to receptors-G proteins. Synapse 2009; 63:106-16. [PMID: 19016488 DOI: 10.1002/syn.20588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Selective serotonin reuptake inhibitors take several weeks to produce their maximal therapeutic antidepressant effect. This delay has been attributed to the gradual desensitization of somatodendritic serotonin 5-HT(1A) autoreceptors. We evaluated adaptive changes of 5-HT(1A) receptors after acute and chronic citalopram challenges in rat. Small animal positron emission tomography trial and quantitative ex vivo autoradiography studies using [(18)F]MPPF were employed, as well as in vitro 8-OH-DPAT-stimulated [(35)S]-GTPgammaS binding assay. Additionally, 5-HT(1A) receptor knock-out mice were used to assess the specificity of [(18)F]MPPF. Acute treatment with citalopram did not alter [(18)F]MPPF binding in dorsal raphe nucleus (DR), frontal cortex, or hippocampus. The absence of [(18)F]MPPF binding in the brain of 5-HT(1A) knock-out mice demonstrates the specificity of MPPF for 5-HT(1A) receptor brain imaging, but the high affinity of [(18)F]MPPF compared to 5-HT suggests that it would only be displaced by dramatic increases in extracellular 5-HT. Chronic citalopram did not modify 5-HT(1A) receptor density in any of the brain regions studied. In addition, this treatment did not modify 8-OH-DPAT-stimulated [(35)S]-GTPgammaS binding in DR, although a significant increase was observed in frontal cortex and hippocampus. [(18)F]MPPF appears to be an efficient radioligand to quantify specifically 5-HT(1A) receptor density in brain imaging. The delayed therapeutic efficacy of citalopram did not appear to be linked to either a downregulation of 5-HT(1A) receptors or to a 5-HT(1A) receptor-G protein decoupling process in serotonergic neurons, but to increased functional sensitivity of postsynaptic 5-HT(1A) receptors.
Collapse
|
25
|
Preece MA, Taylor MJ, Raley J, Blamire A, Sharp T, Sibson NR. Evidence that increased 5-HT release evokes region-specific effects on blood-oxygenation level-dependent functional magnetic resonance imaging responses in the rat brain. Neuroscience 2009; 159:751-9. [PMID: 19174180 DOI: 10.1016/j.neuroscience.2008.12.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/18/2008] [Accepted: 12/16/2008] [Indexed: 01/10/2023]
Abstract
This study aimed to determine the potential of in vivo functional magnetic resonance imaging (fMRI) methods as a non-invasive means of detecting effects of increased 5-HT release in brain. Changes in blood-oxygenation level-dependent (BOLD) contrast induced by administration of the 5-HT-releasing agent, fenfluramine, were measured in selected brain regions of halothane-anesthetized rats. Initial immunohistochemical measurements of the marker of neural activation, Fos, confirmed that in halothane-anesthetized rats fenfluramine (10 mg/kg i.v.) evoked cellular responses in cortical regions which were attenuated by pre-treatment with the 5-HT synthesis inhibitor p-chlorophenylalanine (300 mg/kg i.p. once daily for 2 days). Fenfluramine-induced Fos was demonstrated in numerous glutamatergic pyramidal neurons (Fos/excitatory amino acid carrier 1 (EAAC1) co-labeled), but also a small number of GABA interneurons (Fos/glutamic acid decarboxylase (GAD)(67) colabeled). Fenfluramine (10 mg/kg i.v.) evoked changes in BOLD signal intensity in a number of cortical and sub-cortical regions with the greatest effects being observed in the nucleus accumbens (-13.0%+/-2.7%), prefrontal cortex (-10.1%+/-3.2%) and motor cortex (+2.3%+/-1.0%). Pre-treatment with p-chlorophenylalanine, significantly attenuated the response to fenfluramine (10 mg/kg i.v.) in all regions with the exception of the motor cortex which showed a trend. These experiments demonstrate that increased 5-HT release evokes region-specific changes in the BOLD signal in rats, and that this effect is attenuated in almost all regions by 5-HT depletion. These findings support the use of fMRI imaging methods as a non-invasive tool to study 5-HT function in animal models, with the potential for extension to clinical studies.
Collapse
Affiliation(s)
- M A Preece
- Department of Pharmacology, Mansfield Road, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Martin C, Sibson NR. Pharmacological MRI in animal models: a useful tool for 5-HT research? Neuropharmacology 2008; 55:1038-47. [PMID: 18789342 DOI: 10.1016/j.neuropharm.2008.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 01/19/2023]
Abstract
Pharmacological magnetic resonance imaging (phMRI) offers the potential to provide novel insights into the functioning of neurotransmitter systems and drug action in the central nervous system. To date, much of the neuropharmacological research that has applied phMRI techniques has focused on the dopaminergic system with relatively few studies into serotonergic function. In this article, we discuss the current capabilities of, and future potential for phMRI to address fundamental questions in serotonergic research using animal models. Firstly we review existing literature on the application of phMRI to the serotonergic system by exploring 3 broad research themes: (i) the functional anatomy of the serotonergic system; (ii) drug-receptor targeting and distribution; and (iii) disease models and drug development. Subsequently, we discuss the interpretation of phMRI data in terms of neuropharmacological action with a focus on issues specific to neuroimaging studies of the serotonergic system. Unlike other neuroimaging approaches such as positron emission tomography, phMRI methods do not currently offer sensitivity to markers of specific pharmacological action. However, they can provide in vivo markers of the neuropharmacological modulation of neuronal activity across the whole brain with unparalleled spatial and temporal resolution. Furthermore, due to the non-invasive nature of MRI, these markers are readily translatable to human studies. Whilst there are a number of constraints and limitations to phMRI methods that necessitate careful data interpretation, we argue that phMRI could become a valuable research tool in neuropharmacological studies of the serotonergic system.
Collapse
Affiliation(s)
- Chris Martin
- Experimental Neuroimaging Group, Department of Radiation Oncology and Biology, Radiobiology Research Institute, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | | |
Collapse
|
27
|
Muneoka K, Shirayama Y, Takigawa M, Shioda S. Brain Region-Specific Effects of Short-Term Treatment with Duloxetine, Venlafaxine, Milnacipran and Sertraline on Monoamine Metabolism in Rats. Neurochem Res 2008; 34:542-55. [DOI: 10.1007/s11064-008-9818-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 07/31/2008] [Indexed: 11/27/2022]
|
28
|
MicroPET imaging of 5-HT 1A receptors in rat brain: a test-retest [18F]MPPF study. Eur J Nucl Med Mol Imaging 2008; 36:53-62. [PMID: 18704404 DOI: 10.1007/s00259-008-0891-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE Earlier studies have shown that positron emission tomography (PET) imaging with the radioligand [(18)F]MPPF allows for measuring the binding potential of serotonin 5-hydroxytryptamine(1A) (5-HT(1A)) receptors in different regions of animal and human brain, including that of 5-HT(1A) autoreceptors in the raphe nuclei. In the present study, we sought to determine if such data could be obtained in rat, with a microPET (R4, Concorde Microsystems). METHODS Scans from isoflurane-anaesthetised rats (n = 18, including six test-retest) were co-registered with magnetic resonance imaging data, and binding potential, blood to plasma ratio and radiotracer efflux were estimated according to a simplified reference tissue model. RESULTS Values of binding potential for hippocampus (1.2), entorhinal cortex (1.1), septum (1.1), medial prefrontal cortex (1.0), amygdala (0.8), raphe nuclei (0.6), paraventricular hypothalamic nucleus (0.5) and raphe obscurus (0.5) were comparable to those previously measured with PET in cats, non-human primates or humans. Test-retest variability was in the order of 10% in the larger brain regions (hippocampus, medial prefrontal and entorhinal cortex) and less than 20% in small nuclei such as the septum and the paraventricular hypothalamic, basolateral amygdaloid and raphe nuclei. CONCLUSIONS MicroPET brain imaging of 5-HT(1A) receptors with [(18)F]MPPF thus represents a promising avenue for investigating 5-HT(1A) receptor function in rat.
Collapse
|
29
|
Günther L, Liebscher S, Jähkel M, Oehler J. Effects of chronic citalopram treatment on 5-HT1A and 5-HT2A receptors in group- and isolation-housed mice. Eur J Pharmacol 2008; 593:49-61. [PMID: 18657534 DOI: 10.1016/j.ejphar.2008.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 06/27/2008] [Accepted: 07/09/2008] [Indexed: 01/01/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRI) are characterized by high clinical effectiveness and good tolerability. A 2-3 week delay in the onset of effects is caused by adaptive mechanisms, probably at the serotonergic (5-HT) receptor level. To analyze this in detail, we measured 5-HT(1A) and 5-HT(2A) receptor bindings in vitro after 3 weeks of citalopram treatment (20 mg/kg i.p. daily) in group-housed as well as isolation-housed mice, reflecting neurobiological aspects seen in psychiatric patients. Isolation housing increased somatodendritic (+52%) and postsynaptic (+30-95%) 5-HT(1A) as well as postsynaptic 5-HT(2A) receptor binding (+25-34%), which confirms previous findings. Chronic citalopram treatment did not induce alterations in raphe 5-HT(1A) autoreceptor binding, independent of housing conditions. Housing-dependent citalopram effects on postsynaptic 5-HT(1A) receptor binding were found with increases in group- (+11-42%) but decreases in isolation-housed (-11 to 35%) mice. Forebrain 5-HT(2A) receptor binding decreased between 11 and 38% after chronic citalopram administration, independent of housing conditions. Citalopram's long-term action comprises alterations at the postsynaptic 5-HT(1A) and 5-HT(2A) receptor binding levels. Housing conditions interact with citalopram effects, especially on 5-HT(1A) receptor binding, and should be more strongly considered in pharmacological studies. In general, SSRI-induced alterations were more pronounced and affected more brain regions in isolates, supporting the concept of a higher responsiveness in "stressed" animals. Isolation-induced receptor binding changes were partly normalized by chronic citalopram treatment, suggesting the isolation housing model for further analyses of SSRI effects, especially at the behavioral level.
Collapse
Affiliation(s)
- Lydia Günther
- AG Neurobiologie, Klinik für Psychiatrie, Universitätsklinikum der TU Dresden, Fetscherstrasse 74, Dresden, Germany.
| | | | | | | |
Collapse
|
30
|
Sibon I, Benkelfat C, Gravel P, Aznavour N, Costes N, Mzengeza S, Booij L, Baker G, Soucy JP, Zimmer L, Descarries L. Decreased [18F]MPPF binding potential in the dorsal raphe nucleus after a single oral dose of fluoxetine: a positron-emission tomography study in healthy volunteers. Biol Psychiatry 2008; 63:1135-40. [PMID: 18191817 DOI: 10.1016/j.biopsych.2007.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/01/2007] [Accepted: 11/27/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND Brain serotonin-1A (5-HT(1A)) autoreceptors internalize when activated by agonist or by their endogenous ligand, serotonin. This positron-emission tomography (PET) study tested the hypothesis that 5-HT(1A) autoreceptor internalization might be indexed in vivo by a decrease in the specific binding of the 5-HT(1A) radioligand, 4-[18F]fluoro-N-[2-[1-(2-methoxyphenyl)-1 piperazinyl]ethyl-N-2-pyridinyl-benzamide ([(18)F]MPPF), in the dorsal raphe nucleus (DRN) of healthy adult men administered a single oral dose of the selective serotonin reuptake inhibitor, fluoxetine. METHODS [(18)F]MPPF binding potential was measured in the DRN and other brain regions endowed with 5-HT(1A) receptors in eight healthy volunteers, 5 hours after the randomized, double-blind administration of fluoxetine (20 mg) or placebo. RESULTS In every subject, [(18)F]MPPF binding potential was decreased in the DRN only (44% +/- 22 SD), in response to fluoxetine. CONCLUSIONS Imaging the functional state of 5-HT(1A) autoreceptors (i.e., internalization) in the human brain, using [(18)F]MPPF/PET, may represent a promising avenue for investigating the neurobiology of serotonin-related disorders and notably of major depression.
Collapse
Affiliation(s)
- Igor Sibon
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Desbrée A, Verdurand M, Godart J, Dubois A, Mastrippolito R, Pain F, Pinot L, Delzescaux T, Gurden H, Zimmer L, Lanièce P. The Potential of a Radiosensitive Intracerebral Probe to Monitor 18F-MPPF Binding in Mouse Hippocampus In Vivo. J Nucl Med 2008; 49:1155-61. [DOI: 10.2967/jnumed.107.050047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Boldrini M, Underwood MD, Mann JJ, Arango V. Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides. J Psychiatr Res 2008; 42:433-42. [PMID: 17574270 PMCID: PMC2268626 DOI: 10.1016/j.jpsychires.2007.05.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/27/2007] [Indexed: 10/23/2022]
Abstract
Serotonergic dysfunction is present in mood disorders and suicide. Brainstem 5-HT1A somatodendritic autoreceptors regulate serotonin neuron firing but studies of autoreceptor binding in the dorsal raphe nucleus (DRN) in depressed suicides report conflicting results. We sought to determine: (1) the anatomical distribution of 5-HT1A receptor binding in the DRN in depressed suicides and psychiatrically normal controls; and (2) whether sex differences in 5-HT1A binding in the DRN contribute to differences between depressed suicides and controls. Previously collected quantitative receptor autoradiograms of [3H]8-hydroxy-2-(di-n-propyl)aminotetralin (3H-8-OH-DPAT) in postmortem tissue sections containing the DRN from drug-free suicide victims (n=10) and matched controls (n=10) were analyzed. Less total receptor binding (fmol/mg tissuexmm3) was observed in the entire DRN in depressed suicides compared with controls (p<0.05). Group differences along the rostrocaudal extent of the DRN were observed for cross-sectional 5-HT(1A) binding (fmol/mg tissue) and receptor binding (fmol/mgxmm3, p<0.05). Cross-sectional 5-HT1A DRN binding in depressed suicides compared with controls was higher rostrally and lower caudally. The differences between depressed suicides and controls were present in males and females, although females had more binding than males. Less autoreceptor binding in the DRN of depressed suicides may represent a homeostatic response to less serotonin release, increasing serotonin neuron firing. More autoreceptor binding in rostral DRN might contribute to deficient serotonin release in ventromedial prefrontal cortex by lower neuronal firing.
Collapse
Affiliation(s)
- Maura Boldrini
- Department of Psychiatry, Division of Neuroscience, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, P.O. Box 42, New York, NY 10032, USA
- Department of Neurological and Psychiatric Sciences, University of Florence, Viale Morgagni 85, 50134 Firenze, Italy
| | - Mark D. Underwood
- Department of Psychiatry, Division of Neuroscience, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, P.O. Box 42, New York, NY 10032, USA
| | - J. John Mann
- Department of Psychiatry, Division of Neuroscience, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, P.O. Box 42, New York, NY 10032, USA
| | - Victoria Arango
- Department of Psychiatry, Division of Neuroscience, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, P.O. Box 42, New York, NY 10032, USA
| |
Collapse
|
33
|
Bellido I, Delange L, Gomez-Luque A. The platelet of the patients with ischemic cardiopathy and cardiac valve disease showed a reduction of 8OH-DPAT binding sites. Thromb Res 2008; 121:555-65. [PMID: 17675218 DOI: 10.1016/j.thromres.2007.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
Depression is prospectively associated with increased risk of coronary artery disease in individuals initially free of clinical cardiovascular disease probably by an increased platelet activity. The serotonergic receptors mainly implied in depression are 5-HT1A and 5-HT2 receptors. Activation of 5HT2 receptor induces platelet aggregation. Drugs with 5-HT1A receptor agonist and 5-HT2A receptor antagonist effects reduced the receptor-mediated platelet aggregation. There are only indirect data about 5-HT1A receptors presence in platelet membranes, thus our aims were to study the characteristics of the platelet membranes 5-HT1A binding sites of both healthy volunteers and patients with cardiac valve disease and ischemic cardiopathy. The bound of the 5-HT1A selective agonist 3H-8OH-DPAT to the platelet membranes 5-HT1A binding sites of patients with cardiac valve disease and ischemic cardiopathy were compared with a control group of healthy voluntaries using radioligand binding methods. The patients with cardiovascular disease showed a reduction (-50.40%) (p<0.01) of the 3H-8OH-DPAT bound to the platelet membranes 5-HT1A receptors (1.652+/-0.79 fmol/mg protein) with respect to the control group (3.331+/-0.16 fmol/mg protein). 3H-8OH-DPAT binding to human platelet membranes is saturable, of high affinity, and seems selective for 5-HT1A receptors, and similar to that described in animal brain and in other human cells. Patients with ischemic cardiopathy and cardiac valve disease showed a reduction of the 8OH-DPAT bound to the platelet membranes. Taken together, these findings suggest that the 8OH-DPAT bound to the human platelet membranes is modulated by modifications produced by cardiovascular disease conditions.
Collapse
Affiliation(s)
- Inmaculada Bellido
- Department of Pharmacology and Clinical Therapeutics, School of Medicine, Campus de Teatinos, Boulevard Louis Pasteur, 32, 29071, University of Malaga, Spain.
| | | | | |
Collapse
|
34
|
Riad M, Rbah L, Verdurand M, Aznavour N, Zimmer L, Descarries L. Unchanged density of 5-HT(1A) autoreceptors on the plasma membrane of nucleus raphe dorsalis neurons in rats chronically treated with fluoxetine. Neuroscience 2007; 151:692-700. [PMID: 18166275 DOI: 10.1016/j.neuroscience.2007.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 11/14/2007] [Accepted: 11/19/2007] [Indexed: 11/18/2022]
Abstract
5-HT(1A) autoreceptors regulate the firing of 5-HT neurons and their release of 5-HT. In previous immuno-electron microscopic studies, we have demonstrated an internalization of 5-HT(1A) autoreceptors in the nucleus raphe dorsalis (NRD) of rats, after the acute administration of a single dose of the specific agonist 8-hydroxy-2-(di-n-propylamine)tetralin (8-OH-DPAT) or of the selective 5-HT reuptake inhibitor, fluoxetine. Twenty-four hours after either treatment, the receptors were back in normal density on the plasma membrane of NRD neurons. Here, we examined the subcellular localization of these receptors and the in vivo binding of the 5-HT(1A) radioligand 4,2-(methoxyphenyl)-1-[2-(N-2-pyridinyl)-p-fluorobenzamido]ethylpiperazine labeled with [(18)F]fluorine ([(18)F]MPPF) after chronic fluoxetine treatment (10 mg/kg daily for 3 weeks, by minipump). Unexpectedly, after such a treatment, there were no more differences between treated and control rats in either the density of plasma membrane labeling of NRD dendrites, or in the in vivo binding of [(18)F]MPPF, as measured with beta-microprobes. This was in keeping with earlier reports of an unchanged density of 5-HT(1A) receptor binding sites after chronic fluoxetine treatment, but quite unexpected from the strong electrophysiological and biochemical evidence for a desensitization of 5-HT(1A) autoreceptors under such conditions. Indeed, when the fluoxetine-treated rats were challenged with a single dose of 8-OH-DPAT, there was no internalization of the 5-HT(1A) autoreceptors, at variance with the controls. Interestingly, several laboratories have reported an uncoupling of 5-HT(1A) autoreceptors from their G protein in the NRD of rats chronically treated with fluoxetine. Therefore, the best explanation for our results is that, after repeated internalization and retargeting, functional 5-HT(1A) autoreceptors are replaced by receptors uncoupled from their G protein on the plasma membrane of NRD 5-HT neurons. Thus, the regulatory function of these autoreceptors may depend on a dynamic balance among their production, activation, internalization and recycling to the plasma membrane in inactivated (desensitized) form.
Collapse
Affiliation(s)
- M Riad
- Department of Pathology, and Groupe de recherche sur le système nerveux central, Faculty of Medicine, Université de Montréal, CP 6128, Succursale Centre-ville, Montreal, QC, Canada H3C 3J7
| | | | | | | | | | | |
Collapse
|
35
|
Jovanovic H, Lundberg J, Karlsson P, Cerin A, Saijo T, Varrone A, Halldin C, Nordström AL. Sex differences in the serotonin 1A receptor and serotonin transporter binding in the human brain measured by PET. Neuroimage 2007; 39:1408-19. [PMID: 18036835 DOI: 10.1016/j.neuroimage.2007.10.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 10/04/2007] [Accepted: 10/11/2007] [Indexed: 11/19/2022] Open
Abstract
Women and men differ in serotonin associated psychiatric conditions, such as depression, anxiety and suicide. Despite this, very few studies focus on sex differences in the serotonin system. Of the biomarkers in the serotonin system, serotonin(1A) (5-HT(1A)) receptor is implicated in depression, and anxiety and serotonin transporter (5-HTT) is a target for selective serotonin reuptake inhibitors, psychotropic drugs used in the treatment of these disorders. The objective of the present study was to study sex related differences in the 5-HT(1A) receptor and 5-HTT binding potentials (BP(ND)s) in healthy humans, in vivo. Positron emission tomography and selective radioligands [(11)C]WAY100635 and [(11)C]MADAM were used to evaluate binding potentials for 5-HT(1A) receptors (14 women and 14 men) and 5-HTT (8 women and 10 men). The binding potentials were estimated both on the level of anatomical regions and voxel wise, derived by the simplified reference tissue model and wavelet/Logan plot parametric image techniques respectively. Compared to men, women had significantly higher 5-HT(1A) receptor and lower 5-HTT binding potentials in a wide array of cortical and subcortical brain regions. In women, there was a positive correlation between 5-HT(1A) receptor and 5-HTT binding potentials for the region of hippocampus. Sex differences in 5-HT(1A) receptor and 5-HTT BP(ND) may reflect biological distinctions in the serotonin system contributing to sex differences in the prevalence of psychiatric disorders such as depression and anxiety. The result of the present study may help in understanding sex differences in drug treatment responses to drugs affecting the serotonin system.
Collapse
Affiliation(s)
- Hristina Jovanovic
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Theodore WH, Hasler G, Giovacchini G, Kelley K, Reeves-Tyer P, Herscovitch P, Drevets W. Reduced Hippocampal 5HT1A PET Receptor Binding and Depression in Temporal Lobe Epilepsy. Epilepsia 2007; 48:1526-30. [PMID: 17442003 DOI: 10.1111/j.1528-1167.2007.01089.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To study the relation of hippocampal 5HT1A receptor binding to symptoms of depression in patients with temporal lobe epilepsy. Depression is common in people with epilepsy, and reduced 5HT1A binding has been reported in patients with primary depressive disorders. METHODS We studied 45 patients with temporal lobe epilepsy confirmed by ictal video-EEG recording. Mood was assessed with the Beck Depression Inventory (BDI). Positron emission tomographic measurement of 5HT1A receptors was performed with 18F-FCWAY, a highly specific silent antagonist. 3D-T1-weighted MRI was used to correct for structural atrophy. Receptor distribution volume (V) was corrected for plasma tracer free fraction (f1). RESULTS There was a significant inverse relation between ipsilateral hippocampal v/f1 and the BDI. For contralateral hippocampus, there was a nonsignificant trend. Patients with BDI > 20 had significantly lower ipsilateral hippocampal V/f1 than patients in the low and medium groups. There was no significant effect of the presence of mesial temporal sclerosis, focus laterality, or gender on the BDI. CONCLUSIONS Our study shows a relationship between hippocampal 5HT1A binding and depressive symptoms measured by the BDI in patients with epilepsy. The findings parallel results in patients with MDD.
Collapse
Affiliation(s)
- William H Theodore
- Clinical Epilepsy Section, National Institute of Neurological Diseases and Stroke/NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Aznavour N, Zimmer L. [18F]MPPF as a tool for the in vivo imaging of 5-HT1A receptors in animal and human brain. Neuropharmacology 2006; 52:695-707. [PMID: 17101155 DOI: 10.1016/j.neuropharm.2006.09.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 09/21/2006] [Accepted: 09/29/2006] [Indexed: 11/18/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and its various receptors are involved in numerous CNS functions and psychiatric disorders. 5-HT(1A), the best-characterized subtype of currently known 5-HT receptors, is tightly implicated in the pathogenesis of depression, anxiety, epilepsy and eating disorders. It thus represents an important target for drug therapy. Specific radioligands and positron emission tomography (PET) allow for a quantitative imaging of brain 5-HT(1A) receptor distribution in living animals and humans. Recently, the selective 5-HT(1A) receptor antagonist, MPPF, has been successfully labeled with [(18)F]fluorine ([(18)F]MPPF), and an increasing number of academic and industry centres have used this radiotracer in preclinical and clinical studies. After a brief account of some of the structural, distributional and electrophysiological characteristics of brain 5-HT(1A) receptors, this review focuses on studies conducted with [(18)F]MPPF, with emphasis on preclinical results illustrating the actual and potential value of this PET radioligand for clinical research and drug development.
Collapse
Affiliation(s)
- Nicolas Aznavour
- Laboratoire de Neuropharmacologie, Université Lyon 1, Lyon, France
| | | |
Collapse
|