1
|
Sbaraglia F, Gaudino S, Tiberi E, Maiellare F, Spinazzola G, Garra R, Della Sala F, Micci DM, Russo R, Riitano F, Ferrara G, Vento G, Rossi M. Deep sedation in lateral position for preterm infants during cerebral magnetic resonance imaging: a pilot study. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:80. [PMID: 39696670 DOI: 10.1186/s44158-024-00216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION Respiratory adverse events are common during the sedation of preterm babies, often needing active airway support. During magnetic resonance imaging, this occurrence could extend the acquisition time, with a negative impact on the thermic and metabolic homeostasis. The aim of the study is to verify if lying in a lateral position instead of supine could improve the safe quality of sedation, without worsening the quality of imaging. METHODS This study was performed as a single-center, prospective study at a university-affiliated tertiary care center. A consultant provided deep sedation with sevoflurane 3-4% delivered by an external mask, in the lateral decubitus position. All patients were evaluated for the incidence of apnea and desaturation, quality of imaging obtained, the timing of imaging acquisition, and thermic and metabolic homeostasis. RESULTS We enrolled 23 consecutive preterm babies born < 37 weeks gestational age, candidates for sedation for elective brain magnetic resonance imaging. All patients completed the radiological procedure in 30 min (SD ± 6.39 min) without complications requiring exam interruption. Only one patient (4%) experienced a transient desaturation, while 2 neonates (9%) showed apnea lasting > 20 s. On average, there was a 1 °C decrease in body temperature and full enteral feeding was resumed within 1.5 h. Neuroradiologists rated the quality of the images obtained as high. CONCLUSIONS Lateral lying seems to be a viable option for sedated preterm babies during magnetic resonance imaging with a low risk of intervention for apnea and a reduced impact on thermic and metabolic homeostasis. Quality of imaging would be preserved maintaining correct scheduling of standard care. TRIAL REGISTRATION The study was registered at www. CLINICALTRIALS gov before enrollment (NCT05776238 on December, 21th 2023).
Collapse
Affiliation(s)
- Fabio Sbaraglia
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Simona Gaudino
- Department of Radiologic and Hematologic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eloisa Tiberi
- Neonatology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Maiellare
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgia Spinazzola
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rossella Garra
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filomena Della Sala
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Maria Micci
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rosellina Russo
- Department of Radiologic and Hematologic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Riitano
- Neonatology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Ferrara
- Department of Radiologic and Hematologic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Vento
- Neonatology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco Rossi
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
2
|
Dean DC, Tisdall MD, Wisnowski JL, Feczko E, Gagoski B, Alexander AL, Edden RAE, Gao W, Hendrickson TJ, Howell BR, Huang H, Humphreys KL, Riggins T, Sylvester CM, Weldon KB, Yacoub E, Ahtam B, Beck N, Banerjee S, Boroday S, Caprihan A, Caron B, Carpenter S, Chang Y, Chung AW, Cieslak M, Clarke WT, Dale A, Das S, Davies-Jenkins CW, Dufford AJ, Evans AC, Fesselier L, Ganji SK, Gilbert G, Graham AM, Gudmundson AT, Macgregor-Hannah M, Harms MP, Hilbert T, Hui SCN, Irfanoglu MO, Kecskemeti S, Kober T, Kuperman JM, Lamichhane B, Landman BA, Lecour-Bourcher X, Lee EG, Li X, MacIntyre L, Madjar C, Manhard MK, Mayer AR, Mehta K, Moore LA, Murali-Manohar S, Navarro C, Nebel MB, Newman SD, Newton AT, Noeske R, Norton ES, Oeltzschner G, Ongaro-Carcy R, Ou X, Ouyang M, Parrish TB, Pekar JJ, Pengo T, Pierpaoli C, Poldrack RA, Rajagopalan V, Rettmann DW, Rioux P, Rosenberg JT, Salo T, Satterthwaite TD, Scott LS, Shin E, Simegn G, Simmons WK, Song Y, Tikalsky BJ, Tkach J, van Zijl PCM, Vannest J, Versluis M, Zhao Y, Zöllner HJ, Fair DA, Smyser CD, Elison JT. Quantifying brain development in the HEALthy Brain and Child Development (HBCD) Study: The magnetic resonance imaging and spectroscopy protocol. Dev Cogn Neurosci 2024; 70:101452. [PMID: 39341120 PMCID: PMC11466640 DOI: 10.1016/j.dcn.2024.101452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. The acquisition of multimodal magnetic resonance-based brain development data is central to the study's core protocol. However, application of Magnetic Resonance Imaging (MRI) methods in this population is complicated by technical challenges and difficulties of imaging in early life. Overcoming these challenges requires an innovative and harmonized approach, combining age-appropriate acquisition protocols together with specialized pediatric neuroimaging strategies. The HBCD MRI Working Group aimed to establish a core acquisition protocol for all 27 HBCD Study recruitment sites to measure brain structure, function, microstructure, and metabolites. Acquisition parameters of individual modalities have been matched across MRI scanner platforms for harmonized acquisitions and state-of-the-art technologies are employed to enable faster and motion-robust imaging. Here, we provide an overview of the HBCD MRI protocol, including decisions of individual modalities and preliminary data. The result will be an unparalleled resource for examining early neurodevelopment which enables the larger scientific community to assess normative trajectories from birth through childhood and to examine the genetic, biological, and environmental factors that help shape the developing brain.
Collapse
Affiliation(s)
- Douglas C Dean
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - M Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica L Wisnowski
- Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA; Department of Radiology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Brittany R Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Hao Huang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Kimberly B Weldon
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Banu Ahtam
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Natacha Beck
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | | | - Sergiy Boroday
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | | | - Bryan Caron
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Samuel Carpenter
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | | | - Ai Wern Chung
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anders Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, USA; Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Samir Das
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Christopher W Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Alexander J Dufford
- Department of Psychiatry and Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Laetitia Fesselier
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Sandeep K Ganji
- MR Clinical Science, Philips Healthcare, Best, the Netherlands
| | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare, Mississauga, Ontario, Canada
| | - Alice M Graham
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Maren Macgregor-Hannah
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Michael P Harms
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland,; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland,; LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Steve C N Hui
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA; Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - M Okan Irfanoglu
- Quantitative Medical Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | | | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland,; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland,; LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joshua M Kuperman
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Bidhan Lamichhane
- Center for Health Sciences, Oklahoma State University, Tulsa, OK, USA
| | - Bennett A Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Xavier Lecour-Bourcher
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Erik G Lee
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Xu Li
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Leigh MacIntyre
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; Lasso Informatics, Canada
| | - Cecile Madjar
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Mary Kate Manhard
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Kahini Mehta
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Saipavitra Murali-Manohar
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Cristian Navarro
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sharlene D Newman
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, USA; Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Allen T Newton
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Monroe Carell Jr. Children's Hospital at Vandebrilt, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Elizabeth S Norton
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA; Department of Medical Social Sciences, Feinberg School of Medicine, Chicago, IL, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Regis Ongaro-Carcy
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Minhui Ouyang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Todd B Parrish
- Department of Radiology, Feinberg School of Medicine, Chicago, IL, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - James J Pekar
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Thomas Pengo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Carlo Pierpaoli
- Quantitative Medical Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | | | - Vidya Rajagopalan
- Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA; Department of Radiology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | - Pierre Rioux
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Jens T Rosenberg
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Taylor Salo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa S Scott
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Eunkyung Shin
- Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Gizeaddis Simegn
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - W Kyle Simmons
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA; OSU Biomedical Imaging Center, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Barry J Tikalsky
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Jean Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jennifer Vannest
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA; Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Yansong Zhao
- MR Clinical Science, Philips Healthcare, Cleveland, OH, USA
| | - Helge J Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
| | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Jed T Elison
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Yuan D, Tournis E, Ryan ME, Lai CM, Geng X, Young NM, Wong PCM. Early-stage use of hearing aids preserves auditory cortical structure in children with sensorineural hearing loss. Cereb Cortex 2024; 34:bhae145. [PMID: 38610087 PMCID: PMC11021813 DOI: 10.1093/cercor/bhae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Hearing is critical to spoken language, cognitive, and social development. Little is known about how early auditory experiences impact the brain structure of children with bilateral sensorineural hearing loss. This study examined the influence of hearing aid use and residual hearing on the auditory cortex of children with severe to profound congenital sensorineural hearing loss. We evaluated cortical preservation in 103 young pediatric cochlear implant candidates (55 females and 48 males) by comparing their multivoxel pattern similarity of auditory cortical structure with that of 78 age-matched children with typical hearing. The results demonstrated that early-stage hearing aid use preserved the auditory cortex of children with bilateral congenital sensorineural hearing loss. Children with less residual hearing experienced a more pronounced advantage from hearing aid use. However, this beneficial effect gradually diminished after 17 months of hearing aid use. These findings support timely fitting of hearing aids in conjunction with early implantation to take advantage of neural preservation to maximize auditory and spoken language development.
Collapse
Affiliation(s)
- Di Yuan
- Brain and Mind Institute, The Chinese University of Hong Kong, 4F, Hui Yeung Shing Building, Shatin, N.T., Hong Kong SAR, China
- Department of Psychology, The Chinese University of Hong Kong, 3F, Sino Building Shatin, N.T., Hong Kong SAR, China
| | - Elizabeth Tournis
- Department of Audiology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, United States
| | - Maura E Ryan
- Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, United States
- Department of Medical Imaging, Northwestern University Feinberg School of Medicine, 676 N. St. Clair St,Chicago, IL 60611, United States
| | - Ching Man Lai
- Brain and Mind Institute, The Chinese University of Hong Kong, 4F, Hui Yeung Shing Building, Shatin, N.T., Hong Kong SAR, China
| | - Xiujuan Geng
- Brain and Mind Institute, The Chinese University of Hong Kong, 4F, Hui Yeung Shing Building, Shatin, N.T., Hong Kong SAR, China
| | - Nancy M Young
- Division of Otolaryngology, Ann and Robert H Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, United States
- Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair St, Chicago, IL 60611, United States
- Knowles Hearing Center, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208-3540, United States
| | - Patrick C M Wong
- Brain and Mind Institute, The Chinese University of Hong Kong, 4F, Hui Yeung Shing Building, Shatin, N.T., Hong Kong SAR, China
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, G/F, Leung Kau Kui Building, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
4
|
Ke K, Chi X, Lv H, Zhao J, Jiang Y, Jiang T, Lu Q, Qiu Y, Tao S, Qin R, Huang L, Xu X, Liu C, Dou Y, Huang B, Xu B, Ma H, Jin G, Shen H, Hu Z, Lin Y, Du J. Association of Breastfeeding and Neonatal Jaundice With Infant Neurodevelopment. Am J Prev Med 2024; 66:698-706. [PMID: 38052381 DOI: 10.1016/j.amepre.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Exclusive breastfeeding is advantageous for infant neurodevelopment. Nevertheless, insufficient human milk supply in exclusively breastfed infants may elevate the risk of neonatal jaundice, which can potentially result in neurological harm. Whether mothers should adhere to exclusive breastfeeding in infants with neonatal jaundice remains unclear. METHODS Data comes from the Jiangsu Birth Cohort (JBC), a prospective and longitudinal birth cohort study in China. A total of 2,577 infants born from November 2017 to March 2021 were included in the analysis. Multivariate linear regression models were used to analyze the associations between breastfeeding status, neonatal jaundice, and their interaction with infant neurodevelopment. Analysis was performed in 2022. RESULTS Compared with "exclusive breastfeeding," fine motor scores of infants were lower for "mixed feeding" (βadj, -0.16; 95% CI, -0.29 to -0.03; p=0.016) and "no breastfeeding" (βadj, -0.41; 95% CI, -0.79 to -0.03; p=0.034). Compared with "no neonatal jaundice," infants with "severe neonatal jaundice" had lower scores for cognition (βadj, -0.44; 95% CI, -0.66 to -0.23; p<0.001) and fine motor (βadj, -0.19; 95% CI, -0.35 to -0.03; p=0.024). In infants with severe neonatal jaundice, the termination of exclusive breastfeeding before 6 months was associated with worse cognition (βadj, -0.28; 95% CI, -0.57 to 0.01), while this association was not observed in those without neonatal jaundice (βadj, 0.09; 95% CI, -0.26 to 0.43). CONCLUSIONS Exclusive breastfeeding for the first 6 months is beneficial to the neurodevelopment of infants, especially in those with severe neonatal jaundice.
Collapse
Affiliation(s)
- Kang Ke
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xia Chi
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jing Zhao
- Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing, Jiangsu, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Tao Jiang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Qiu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Huang
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cong Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanyan Dou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bo Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Spann MN, Wisnowski JL, Smyser CD, Howell B, Dean DC. The Art, Science, and Secrets of Scanning Young Children. Biol Psychiatry 2023; 93:858-860. [PMID: 36336497 PMCID: PMC10050222 DOI: 10.1016/j.biopsych.2022.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023]
Affiliation(s)
- Marisa N Spann
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York.
| | - Jessica L Wisnowski
- Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Brittany Howell
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia; Department of Human Development and Family Science, Virginia Tech, Blacksburg, Virginia
| | - Douglas C Dean
- Departments of Pediatrics and Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
6
|
Chow HM, Garnett EO, Koenraads SPC, Chang SE. Brain developmental trajectories associated with childhood stuttering persistence and recovery. Dev Cogn Neurosci 2023; 60:101224. [PMID: 36863188 PMCID: PMC9986501 DOI: 10.1016/j.dcn.2023.101224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 02/25/2023] [Indexed: 02/27/2023] Open
Abstract
Stuttering is a neurodevelopmental disorder affecting 5-8 % of preschool-age children, continuing into adulthood in 1 % of the population. The neural mechanisms underlying persistence and recovery from stuttering remain unclear and little information exists on neurodevelopmental anomalies in children who stutter (CWS) during preschool age, when stuttering symptoms typically first emerge. Here we present findings from the largest longitudinal study of childhood stuttering to date, comparing children with persistent stuttering (pCWS) and those who later recovered from stuttering (rCWS) with age-matched fluent peers, to examine the developmental trajectories of both gray matter volume (GMV) and white matter volume (WMV) using voxel-based morphometry. A total of 470 MRI scans were analyzed from 95 CWS (72 pCWS and 23 rCWS) and 95 fluent peers between 3 and 12 years of age. We examined overall group and group by age interactions in GMV and WMV in preschool age (3-5 years old) and school age (6-12 years old) CWS and controls, controlling for sex, IQ, intracranial volume, and socioeconomic status. The results provide broad support for a possible basal ganglia-thalamocortical (BGTC) network deficit starting in the earliest phases of the disorder and point to normalization or compensation of earlier occurring structural changes associated with stuttering recovery.
Collapse
Affiliation(s)
- Ho Ming Chow
- University of Delaware, Department of Communication Sciences and Disorders, Newark, DE 19713, USA
| | - Emily O Garnett
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Soo-Eun Chang
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Xiao T, Dong X, Lu Y, Zhou W. High-Resolution and Multidimensional Phenotypes Can Complement Genomics Data to Diagnose Diseases in the Neonatal Population. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:204-215. [PMID: 37197647 PMCID: PMC10110825 DOI: 10.1007/s43657-022-00071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 05/19/2023]
Abstract
Advances in genomic medicine have greatly improved our understanding of human diseases. However, phenome is not well understood. High-resolution and multidimensional phenotypes have shed light on the mechanisms underlying neonatal diseases in greater details and have the potential to optimize clinical strategies. In this review, we first highlight the value of analyzing traditional phenotypes using a data science approach in the neonatal population. We then discuss recent research on high-resolution, multidimensional, and structured phenotypes in neonatal critical diseases. Finally, we briefly introduce current technologies available for the analysis of multidimensional data and the value that can be provided by integrating these data into clinical practice. In summary, a time series of multidimensional phenome can improve our understanding of disease mechanisms and diagnostic decision-making, stratify patients, and provide clinicians with optimized strategies for therapeutic intervention; however, the available technologies for collecting multidimensional data and the best platform for connecting multiple modalities should be considered.
Collapse
Affiliation(s)
- Tiantian Xiao
- Division of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai, 201102 China
- Department of Neonatology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000 China
| | - Xinran Dong
- Center for Molecular Medicine, Pediatric Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, 201102 China
| | - Yulan Lu
- Center for Molecular Medicine, Pediatric Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, 201102 China
| | - Wenhao Zhou
- Division of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai, 201102 China
- Center for Molecular Medicine, Pediatric Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, 201102 China
| |
Collapse
|
8
|
Behavioral-play familiarization for non-sedated magnetic resonance imaging in young children with mild traumatic brain injury. Pediatr Radiol 2023; 53:1153-1162. [PMID: 36823374 DOI: 10.1007/s00247-023-05592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) sustained in early childhood affects the brain at a peak developmental period and may disrupt sensitive stages of skill acquisition, thereby compromising child functioning. However, due to the challenges of collecting non-sedated neuroimaging data in young children, the consequences of mTBI on young children's brains have not been systematically studied. In typically developing preschool children (of age 3-5years), a brief behavioral-play familiarization provides an effective alternative to sedation for acquiring awake magnetic resonance imaging (MRI) in a time- and resource-efficient manner. To date, no study has applied such an approach for acquiring non-sedated MRI in preschool children with mTBI who may present with additional MRI acquisition challenges such as agitation or anxiety. OBJECTIVE The present study aimed to compare the effectiveness of a brief behavioral-play familiarization for acquiring non-sedated MRI for research purposes between young children with and without mTBI, and to identify factors associated with successful MRI acquisition. MATERIALS AND METHODS Preschool children with mTBI (n=13) and typically developing children (n=24) underwent a 15-minutes behavioral-play MRI familiarization followed by a 35-minutes non-sedated MRI protocol. Success rate was compared between groups, MRI quality was assessed quantitatively, and factors predicting success were documented. RESULTS Among the 37 participants, 15 typically developing children (63%) and 10 mTBI (77%) reached the MRI acquisition success criteria (i.e., completing the two first sequences). The success rate was not significantly different between groups (p=.48; 95% CI [-0.36 14.08]; Cramer's V=.15). The images acquired were of high-quality in 100% (for both groups) of the structural images, and 60% (for both groups) of the diffusion images. Factors associated with success included older child age (Β=0.73, p=.007, exp(B)=3.11, 95% CI [1.36 7.08]) and fewer parental concerns (Β=-1.56, p=.02, exp(Β)=0.21, 95% CI [0.05 0.82]) about the MRI procedure. CONCLUSION Using brief behavioral-play familiarization allows acquisition of high-quality non-sedated MRI in young children with mTBI with success rates comparable to those of non-injured peers.
Collapse
|
9
|
Knaus TA, Burns CO, Kamps J, Foundas AL. Action viewing and language in adolescents with autism spectrum disorder. Exp Brain Res 2023; 241:559-570. [PMID: 36625967 DOI: 10.1007/s00221-022-06540-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
The mirror neuron system consists of fronto-parietal regions and responds to both goal-directed action execution and observation. The broader action observation network is specifically involved in observation of actions and is thought to play a role in understanding the goals of the motor act, the intention of others, empathy, and language. Many, but not all, studies have found mirror neuron system or action observation network dysfunction in autism spectrum disorder. The objective of this study was to use observation of a goal-directed action fMRI paradigm to examine the action observation network in autism spectrum disorder and to determine whether fronto-parietal activation is associated with language ability. Adolescents with autism spectrum disorder (n = 23) were compared to typically developing adolescents (n = 20), 11-17 years. Overall, there were no group differences in activation, however, the autism spectrum group with impaired expressive language (n = 13) had significantly reduced inferior frontal and inferior parietal activation during action viewing. In controls, right supramarginal gyrus activation was associated with higher expressive language; bilateral supramarginal and left pars opercularis activation was associated with better verbal-gesture integration. Results suggest that action-observation network dysfunction may characterize a subgroup of individuals with autism spectrum disorder with expressive language deficits. Therefore, interventions that target this dysfunctional network may improve expressive language in this autism spectrum subgroup. Future treatment studies should individualize therapeutic approaches based on brain-behavior relationships.
Collapse
Affiliation(s)
- Tracey A Knaus
- Brain and Behavior Program at Children's Hospital, Department of Neurology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, USA. .,Department of Psychology, University of New Orleans, New Orleans, LA, USA.
| | - Claire O Burns
- Brain and Behavior Program at Children's Hospital, Department of Neurology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, USA.,Michael R. Boh Center for Child Development, Ochsner Hospital, New Orleans, LA, USA
| | - Jodi Kamps
- Department of Psychology, Children's Hospital and Department of Pediatrics, Louisiana State Univeristy Health Sciences Center, New Orleans, USA
| | - Anne L Foundas
- Brain and Behavior Program at Children's Hospital, Department of Neurology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, USA.,The Brain Institute of Louisiana, New Orleans, USA
| |
Collapse
|
10
|
Sibilska S, Mofleh R, Kocsis B. Development of network oscillations through adolescence in male and female rats. Front Cell Neurosci 2023; 17:1135154. [PMID: 37213214 PMCID: PMC10196069 DOI: 10.3389/fncel.2023.1135154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
The primary aim of this research was to study the developmental trajectory of oscillatory synchronization in neural networks of normal healthy rats during adolescence, corresponding to the vulnerable age of schizophrenia prodrome in human. To monitor the development of oscillatory networks through adolescence we used a "pseudo-longitudinal" design. Recordings were performed in terminal experiments under urethane anesthesia, every day from PN32 to PN52 using rats-siblings from the same mother, to reduce individual innate differences between subjects. We found that hippocampal theta power decreased and delta power in prefrontal cortex increased through adolescence, indicating that the oscillations in the two different frequency bands follow distinct developmental trajectories to reach the characteristic oscillatory activity found in adults. Perhaps even more importantly, theta rhythm showed age-dependent stabilization toward late adolescence. Furthermore, sex differences was found in both networks, more prominent in the prefrontal cortex compared with hippocampus. Delta increase was stronger in females and theta stabilization was completed earlier in females, in postnatal days PN41-47, while in males it was only completed in late adolescence. Our finding of a protracted maturation of theta-generating networks in late adolescence is overall consistent with the findings of longitudinal studies in human adolescents, in which oscillatory networks demonstrated a similar pattern of maturation.
Collapse
|
11
|
Liu Y, Sánchez Hernández F, Ting F, Hyde DC. Comparing fixed-array and functionally-defined channel of interest approaches to infant functional near-infrared spectroscopy data. Neuroimage 2022; 261:119520. [PMID: 35901918 PMCID: PMC9480621 DOI: 10.1016/j.neuroimage.2022.119520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/08/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is increasingly used to study brain function in infants, but the development and standardization of analysis techniques for use with infant fNIRS data have not paced other technical advances. Here we quantify and compare the effects of different methods of analysis of infant fNIRS data on two independent fNIRS datasets involving 6-9-month-old infants and a third simulated infant fNIRS dataset. With each, we contrast results from a traditional, fixed-array analysis with several functional channel of interest (fCOI) analysis approaches. In addition, we tested the effects of varying the number and anatomical location of potential data channels to be included in the fCOI definition. Over three studies we find that fCOI approaches are more sensitive than fixed-array analyses, especially when channels of interests were defined within-subjects. Applying anatomical restriction and/or including multiple channels in the fCOI definition does not decrease and in some cases increases sensitivity of fCOI methods. Based on these results, we recommend that researchers consider employing fCOI approaches to the analysis of infant fNIRS data and provide some guidelines for choosing between particular fCOI approaches and settings for the study of infant brain function and development.
Collapse
Affiliation(s)
- Yiyu Liu
- University of Illinois at Urbana-Champaign, Department of Psychology, Champaign, United States
| | | | - Fransisca Ting
- Boston University, Department of Psychological and Brain Sciences, Boston, United States
| | - Daniel C Hyde
- University of Illinois at Urbana-Champaign, Department of Psychology, Champaign, United States; University of Illinois at Urbana-Champaign, Neuroscience Program, Urbana, United States.
| |
Collapse
|
12
|
Kardan O, Kaplan S, Wheelock MD, Feczko E, Day TKM, Miranda-Domínguez Ó, Meyer D, Eggebrecht AT, Moore LA, Sung S, Chamberlain TA, Earl E, Snider K, Graham A, Berman MG, Uğurbil K, Yacoub E, Elison JT, Smyser CD, Fair DA, Rosenberg MD. Resting-state functional connectivity identifies individuals and predicts age in 8-to-26-month-olds. Dev Cogn Neurosci 2022; 56:101123. [PMID: 35751994 PMCID: PMC9234342 DOI: 10.1016/j.dcn.2022.101123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Resting-state functional connectivity (rsFC) measured with fMRI has been used to characterize functional brain maturation in typically and atypically developing children and adults. However, its reliability and utility for predicting development in infants and toddlers is less well understood. Here, we use fMRI data from the Baby Connectome Project study to measure the reliability and uniqueness of rsFC in infants and toddlers and predict age in this sample (8-to-26 months old; n = 170). We observed medium reliability for within-session infant rsFC in our sample, and found that individual infant and toddler's connectomes were sufficiently distinct for successful functional connectome fingerprinting. Next, we trained and tested support vector regression models to predict age-at-scan with rsFC. Models successfully predicted novel infants' age within ± 3.6 months error and a prediction R2 = .51. To characterize the anatomy of predictive networks, we grouped connections into 11 infant-specific resting-state functional networks defined in a data-driven manner. We found that connections between regions of the same network-i.e. within-network connections-predicted age significantly better than between-network connections. Looking ahead, these findings can help characterize changes in functional brain organization in infancy and toddlerhood and inform work predicting developmental outcome measures in this age range.
Collapse
Affiliation(s)
| | - Sydney Kaplan
- Washington University in St. Louis School of Medicine, USA
| | | | | | | | | | | | | | | | | | | | - Eric Earl
- Oregon Health & Science University, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hervé E, Mento G, Desnous B, François C. Challenges and new perspectives of developmental cognitive EEG studies. Neuroimage 2022; 260:119508. [PMID: 35882267 DOI: 10.1016/j.neuroimage.2022.119508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022] Open
Abstract
Despite shared procedures with adults, electroencephalography (EEG) in early development presents many specificities that need to be considered for good quality data collection. In this paper, we provide an overview of the most representative early cognitive developmental EEG studies focusing on the specificities of this neuroimaging technique in young participants, such as attrition and artifacts. We also summarize the most representative results in developmental EEG research obtained in the time and time-frequency domains and use more advanced signal processing methods. Finally, we briefly introduce three recent standardized pipelines that will help promote replicability and comparability across experiments and ages. While this paper does not claim to be exhaustive, it aims to give a sufficiently large overview of the challenges and solutions available to conduct robust cognitive developmental EEG studies.
Collapse
Affiliation(s)
- Estelle Hervé
- CNRS, LPL, Aix-Marseille University, 5 Avenue Pasteur, Aix-en-Provence 13100, France
| | - Giovanni Mento
- Department of General Psychology, University of Padova, Padova 35131, Italy; Padua Neuroscience Center (PNC), University of Padova, Padova 35131, Italy
| | - Béatrice Desnous
- APHM, Reference Center for Rare Epilepsies, Timone Children Hospital, Aix-Marseille University, Marseille 13005, France; Inserm, INS, Aix-Marseille University, Marseille 13005, France
| | - Clément François
- CNRS, LPL, Aix-Marseille University, 5 Avenue Pasteur, Aix-en-Provence 13100, France.
| |
Collapse
|
14
|
Intracranial Volumes of Healthy Children in the First 3 Years of Life: An Analysis of 270 Magnetic Resonance Imaging Scans. Plast Reconstr Surg 2022; 150:136e-144e. [PMID: 35575631 DOI: 10.1097/prs.0000000000009188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is a paucity of data on normal intracranial volumes for healthy children during the first few years of life, when cranial growth velocity is greatest. The aim of this study was to generate a normative predictive model of intracranial volumes based on brain magnetic resonance imaging from a large sample of healthy children to serve as a reference tool for future studies on craniosynostosis. METHODS Structural magnetic resonance imaging data for healthy children up to 3 years of age was acquired from the National Institutes of Health Pediatric MRI Data Repository. Intracranial volumes were calculated using T1-weighted scans with FreeSurfer (version 6.0.0). Mean intracranial volumes were calculated and best-fit logarithmic curves were generated. Results were compared to previously published intracranial volume curves. RESULTS Two-hundred seventy magnetic resonance imaging scans were available: 118 were collected in the first year of life, 97 were collected between years 1 and 2, and 55 were collected between years 2 and 3. A best-fit logarithmic growth curve was generated for male and female patients. The authors' regression models showed that male patients had significantly greater intracranial volumes than female patients after 1 month of age. Predicted intracranial volumes were also greater in male and female patients in the first 6 months of life as compared to previously published intracranial volume curves. CONCLUSIONS To the authors' knowledge, this is the largest series of demographically representative magnetic resonance imaging-based intracranial volumes for children aged 3 years and younger. The model generated in this study can be used by investigators as a reference for evaluating craniosynostosis patients.
Collapse
|
15
|
Tsuzuki D, Taga G, Watanabe H, Homae F. Individual variability in the nonlinear development of the corpus callosum during infancy and toddlerhood: a longitudinal MRI analysis. Brain Struct Funct 2022; 227:1995-2013. [PMID: 35396953 DOI: 10.1007/s00429-022-02485-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
The human brain spends several years bootstrapping itself through intrinsic and extrinsic modulation, thus gradually developing both spatial organization and functions. Based on previous studies on developmental patterns and inter-individual variability of the corpus callosum (CC), we hypothesized that inherent variations of CC shape among infants emerge, depending on the position within the CC, along the developmental timeline. Here we used longitudinal magnetic resonance imaging data from infancy to toddlerhood and investigated the area, thickness, and shape of the midsagittal plane of the CC by applying multilevel modeling. The shape characteristics were extracted using the Procrustes method. We found nonlinearity, region-dependency, and inter-individual variability, as well as intra-individual consistencies, in CC development. Overall, the growth rate is faster in the first year than in the second year, and the trajectory differs between infants; the direction of CC formation in individual infants was determined within six months and maintained to two years. The anterior and posterior subregions increase in area and thickness faster than other subregions. Moreover, we clarified that the growth rate of the middle part of the CC is faster in the second year than in the first year in some individuals. Since the division of regions exhibiting different tendencies coincides with previously reported divisions based on the diameter of axons that make up the region, our results suggest that subregion-dependent individual variability occurs due to the increase in the diameter of the axon caliber, myelination partly due to experience and axon elimination during the early developmental period.
Collapse
Affiliation(s)
- Daisuke Tsuzuki
- Department of Language Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan. .,Graduate School of Education, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Gentaro Taga
- Graduate School of Education, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hama Watanabe
- Graduate School of Education, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumitaka Homae
- Department of Language Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan.,Research Center for Language, Brain and Genetics, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
16
|
Kagan MS, Mongerson CRL, Zurakowski D, Bajic D. Impact of Infant Thoracic Non-cardiac Perioperative Critical Care on Homotopic-Like Corpus Callosum and Forebrain Sub-regional Volumes. FRONTIERS IN PAIN RESEARCH 2022; 3:788903. [PMID: 35465294 PMCID: PMC9021551 DOI: 10.3389/fpain.2022.788903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Previously, we reported quantitatively smaller total corpus callosum (CC) and total forebrain size in critically ill term-born and premature patients following complex perioperative critical care for long-gap esophageal atresia (LGEA) that included Foker process repair. We extended our cross-sectional pilot study to determine sub-regional volumes of CC and forebrain using structural brain MRI. Our objective was to evaluate region-specific CC as an in-vivo marker for decreased myelination and/or cortical neural loss of homotopic-like sub-regions of the forebrain. Term-born (n = 13) and premature (n = 13) patients, and healthy naïve controls (n = 21) <1-year corrected age underwent non-sedated MRI using a 3T Siemens scanner, as per IRB approval at Boston Children's Hospital following completion of clinical treatment for Foker process. We used ITK-SNAP (v.3.6) to manually segment six sub-regions of CC and eight sub-regions of forebrain as per previously reported methodology. Group differences were assessed using a general linear model univariate analysis with corrected age at scan as a covariate. Our analysis implicates globally smaller CC and forebrain with sub-region II (viz. rostral body of CC known to connect to pre-motor cortex) to be least affected in comparison to other CC sub-regions in LGEA patients. Our report of smaller subgenual forebrain implicates (mal)adaptation in limbic circuits development in selected group of infant patients following LGEA repair. Future studies should include diffusion tractography studies of CC in further evaluation of what appears to represent global decrease in homotopic-like CC/forebrain size following complex perioperative critical care of infants born with LGEA.
Collapse
Affiliation(s)
- Mackenzie Shea Kagan
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Chandler R. L. Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Dusica Bajic
| |
Collapse
|
17
|
Pollatou A, Filippi CA, Aydin E, Vaughn K, Thompson D, Korom M, Dufford AJ, Howell B, Zöllei L, Martino AD, Graham A, Scheinost D, Spann MN. An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field. Dev Cogn Neurosci 2022; 54:101083. [PMID: 35184026 PMCID: PMC8861425 DOI: 10.1016/j.dcn.2022.101083] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the community and the need for an academic society that bridges expertise in developmental neuroscience, clinical science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, rather than adapted, for the young brain.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney A Filippi
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Ezra Aydin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kelly Vaughn
- Department of Pediatrics, University of Texas Health Sciences Center, Houston, TX, USA
| | - Deanne Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Alice Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dustin Scheinost
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
18
|
Arredondo MM, Aslin RN, Werker JF. Bilingualism alters infants' cortical organization for attentional orienting mechanisms. Dev Sci 2022; 25:e13172. [PMID: 34418259 PMCID: PMC11225098 DOI: 10.1111/desc.13172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
A bilingual environment is associated with changes in the brain's structure and function. Some suggest that bilingualism also improves higher-cognitive functions in infants as young as 6-months, yet whether this effect is associated with changes in the infant brain remains unknown. In the present study, we measured brain activity using functional near-infrared spectroscopy in monolingual- and bilingual-raised 6- and 10-month-old infants. Infants completed an orienting attention task, in which a cue was presented prior to an object appearing on the same (Valid) or opposite (Invalid) side of a display. Task performance did not differ between the groups but neural activity did. At 6-months, both groups showed greater activity for Valid (> Invalid) trials in frontal regions (left hemisphere for bilinguals, right hemisphere for monolinguals). At 10-months, bilinguals showed greater activity for Invalid (> Valid) trials in bilateral frontal regions, while monolinguals showed greater brain activity for Valid (> Invalid) trials in left frontal regions. Bilinguals' brain activity trended with their parents' reporting of dual-language mixing when speaking to their child. These findings are the first to indicate how early (dual) language experience can alter the cortical organization underlying broader, non-linguistic cognitive functions during the first year of life.
Collapse
Affiliation(s)
- Maria M. Arredondo
- The University of Texas at Austin
- Haskins Laboratories
- The University of British Columbia
| | | | | |
Collapse
|
19
|
Korom M, Camacho MC, Filippi CA, Licandro R, Moore LA, Dufford A, Zöllei L, Graham AM, Spann M, Howell B, Shultz S, Scheinost D. Dear reviewers: Responses to common reviewer critiques about infant neuroimaging studies. Dev Cogn Neurosci 2022; 53:101055. [PMID: 34974250 PMCID: PMC8733260 DOI: 10.1016/j.dcn.2021.101055] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/26/2021] [Indexed: 01/07/2023] Open
Abstract
The field of adult neuroimaging relies on well-established principles in research design, imaging sequences, processing pipelines, as well as safety and data collection protocols. The field of infant magnetic resonance imaging, by comparison, is a young field with tremendous scientific potential but continuously evolving standards. The present article aims to initiate a constructive dialog between researchers who grapple with the challenges and inherent limitations of a nascent field and reviewers who evaluate their work. We address 20 questions that researchers commonly receive from research ethics boards, grant, and manuscript reviewers related to infant neuroimaging data collection, safety protocols, study planning, imaging sequences, decisions related to software and hardware, and data processing and sharing, while acknowledging both the accomplishments of the field and areas of much needed future advancements. This article reflects the cumulative knowledge of experts in the FIT'NG community and can act as a resource for both researchers and reviewers alike seeking a deeper understanding of the standards and tradeoffs involved in infant neuroimaging.
Collapse
Affiliation(s)
- Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA.
| | - M Catalina Camacho
- Division of Biology and Biomedical Sciences (Neurosciences), Washington University School of Medicine, St. Louis, MO, USA.
| | - Courtney A Filippi
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Roxane Licandro
- Institute of Visual Computing and Human-Centered Technology, Computer Vision Lab, TU Wien, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research, Medical University of Vienna, Vienna, Austria
| | - Lucille A Moore
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Alexander Dufford
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Marisa Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Department of Human Development and Family Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Sarah Shultz
- Division of Autism & Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Dustin Scheinost
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Low household income and neurodevelopment from infancy through adolescence. PLoS One 2022; 17:e0262607. [PMID: 35081147 PMCID: PMC8791534 DOI: 10.1371/journal.pone.0262607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/29/2021] [Indexed: 01/21/2023] Open
Abstract
Despite advancements in the study of brain maturation at different developmental epochs, no work has linked the significant neural changes occurring just after birth to the subtler refinements in the brain occurring in childhood and adolescence. We aimed to provide a comprehensive picture regarding foundational neurodevelopment and examine systematic differences by family income. Using a nationally representative longitudinal sample of 486 infants, children, and adolescents (age 5 months to 20 years) from the NIH MRI Study of Normal Brain Development and leveraging advances in statistical modeling, we mapped developmental trajectories for the four major cortical lobes and constructed charts that show the statistical distribution of gray matter and reveal the considerable variability in regional volumes and structural change, even among healthy, typically developing children. Further, the data reveal that significant structural differences in gray matter development for children living in or near poverty, first detected during childhood (age 2.5-6.5 years), evolve throughout adolescence.
Collapse
|
21
|
Chen LZ, Holmes AJ, Zuo XN, Dong Q. Neuroimaging brain growth charts: A road to mental health. PSYCHORADIOLOGY 2021; 1:272-286. [PMID: 35028568 PMCID: PMC8739332 DOI: 10.1093/psyrad/kkab022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Mental disorders are common health concerns and contribute to a heavy global burden on our modern society. It is challenging to identify and treat them timely. Neuroimaging evidence suggests the incidence of various psychiatric and behavioral disorders is closely related to the atypical development of brain structure and function. The identification and understanding of atypical brain development provide chances for clinicians to detect mental disorders earlier, perhaps even prior to onset, and treat them more precisely. An invaluable and necessary method in identifying and monitoring atypical brain development are growth charts of typically developing individuals in the population. The brain growth charts can offer a series of standard references on typical neurodevelopment, representing an important resource for the scientific and medical communities. In the present paper, we review the relationship between mental disorders and atypical brain development from a perspective of normative brain development by surveying the recent progress in the development of brain growth charts, including four aspects on growth chart utility: 1) cohorts, 2) measures, 3) mechanisms, and 4) clinical translations. In doing so, we seek to clarify the challenges and opportunities in charting brain growth, and to promote the application of brain growth charts in clinical practice.
Collapse
Affiliation(s)
- Li-Zhen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06511, USA
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- National Basic Science Data Center, Beijing 100190, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Research Center for Lifespan Development of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
Kagan MS, Mongerson CRL, Zurakowski D, Jennings RW, Bajic D. Infant study of hemispheric asymmetry after long-gap esophageal atresia repair. Ann Clin Transl Neurol 2021; 8:2132-2145. [PMID: 34662511 PMCID: PMC8607454 DOI: 10.1002/acn3.51465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Previous studies have demonstrated that infants are typically born with a left-greater-than-right forebrain asymmetry that reverses throughout the first year of life. We hypothesized that critically ill term-born and premature patients following surgical and critical care for long-gap esophageal atresia (LGEA) would exhibit alteration in expected forebrain asymmetry. METHODS Term-born (n = 13) and premature (n = 13) patients, and term-born controls (n = 23) <1 year corrected age underwent non-sedated research MRI following completion of LGEA treatment via Foker process. Structural T1- and T2-weighted images were collected, and ITK-SNAP was used for forebrain tissue segmentation and volume acquisition. Data were presented as absolute (cm3 ) and normalized (% total forebrain) volumes of the hemispheres. All measures were checked for normality, and group status was assessed using a general linear model with age at scan as a covariate. RESULTS Absolute volumes of both forebrain hemispheres were smaller in term-born and premature patients in comparison to controls (p < 0.001). Normalized hemispheric volume group differences were detected by T1-weighted analysis, with premature patients demonstrating right-greater-than-left hemisphere volumes in comparison to term-born patients and controls (p < 0.01). While normalized group differences were very subtle (a right hemispheric predominance of roughly 2% of forebrain volume), they represent a deviation from the expected pattern of hemispheric brain asymmetry. INTERPRETATION Our pilot quantitative MRI study of hemispheric volumes suggests that premature patients might be at risk of altered expected left-greater-than-right forebrain asymmetry following repair of LGEA. Future neurobehavioral studies in infants born with LGEA are needed to elucidate the functional significance of presented anatomical findings.
Collapse
Affiliation(s)
- Mackenzie S Kagan
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA
| | - Chandler R L Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA.,Harvard Medical School, Harvard University, 25 Shattuck St., Boston, Massachusetts, 02115, USA
| | - Russell W Jennings
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, Massachusetts, 02115, USA.,Department of Surgery, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA.,Esophageal and Airway Treatment Center, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA.,Harvard Medical School, Harvard University, 25 Shattuck St., Boston, Massachusetts, 02115, USA
| |
Collapse
|
23
|
Benign longitudinal T2-hyperintense signal in the lateral cord in infancy: a cross-sectional study of spinal cord white matter maturation on magnetic resonance imaging. Pediatr Radiol 2021; 51:2069-2076. [PMID: 34143226 DOI: 10.1007/s00247-021-05115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Longitudinal T2-hyperintense signal is commonly seen in the spinal cord of infants and likely reflects normal unmyelinated white matter tracts, but it can be mistaken for pathology. Autopsy studies have described incomplete myelination of spinal cord in early childhood; however, the maturation timeline of the spinal cord has not been described on imaging. OBJECTIVE The purpose of this study was to retrospectively evaluate the maturation timeline of the spinal cord on MRI to provide a baseline for image interpretation. MATERIALS AND METHODS We retrospectively reviewed axial T2-W images of the spinal cord acquired on 1.5-tesla (T) and 3.0-T MRI in children ages 0-2 years for presence of longitudinal T2-hyperintense signal, and we subjectively graded this signal as 0 (absent) to 3 (pronounced). Further, we reviewed a summary of medical records for confounding pathology in the brain or spine. Cord signal was interpreted as normal in the clinical report by subspecialized pediatric neuroradiologists for all included children. RESULTS We reviewed 437 MRI exams from 409 children and included 189 studies in the analysis. Longitudinal T2-hyperintense signal in the lateral cord was seen in 95% (19/20) of subjects <1 month of age and was not seen in subjects ages 21-24 months (0/15). Grade 3 signal was seen in 22% (11/50) of infants ages 0-2 months and was not seen infants older than 5 months. CONCLUSION Characteristic symmetrical longitudinal T2 hyperintensity in the lateral spinal cord is common in infants and should not be mistaken for pathology, and it was not seen in children older than 21 months.
Collapse
|
24
|
Bajic D, Rudisill SS, Jennings RW. Head circumference in infants undergoing Foker process for long-gap esophageal atresia repair: Call for attention. J Pediatr Surg 2021; 56:1564-1569. [PMID: 33722370 PMCID: PMC8362829 DOI: 10.1016/j.jpedsurg.2021.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION We extended our pilot study in infants following long-gap esophageal atresia (LGEA) repair to report head circumference, an easily obtainable indirect measure of brain size. Data are presented in the context of previously reported body weight and T2-weighted MRI measures of intracranial and brain volumes. METHODS Clinical information and head circumference were obtained for term-born (n = 13) and premature (n = 13) infants following LGEA repair with Foker process, as well as healthy term-born controls (n = 20) <1-year corrected age who underwent non-sedated research MRI. General Linear Model univariate analysis with corrected age at scan as a covariate and Bonferroni adjusted p values assessed group differences. RESULTS We report no difference in head circumference between the three groups. Such findings paralleled trends in body weight and total intracranial volume but not in brain volume as previously reported for the same pilot cohort. DISCUSSION Results suggest uncompromised somatic and head growth after repair of LGEA. In contrast, a novel finding of discrepancy between head circumference (novel data) and brain size (previously published data) in the same cohort suggests that head circumference might not be the best indirect measure of brain size in selected group of patients.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Bader 3, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Samuel S. Rudisill
- Department of Anesthesiology, Critical Care, and Pain
Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Bader 3, Boston,
MA 02115, USA,Rush Medical College at Rush University, 600 S. Paulina
Street, Chicago, IL 60612, USA
| | - Russell W. Jennings
- Harvard Medical School, 25 Shattuck Street, Boston, MA
02115, USA,Department of Surgery, Esophageal and Airway Treatment
Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115,
USA
| |
Collapse
|
25
|
Abreu NJ, Selvaraj B, Truxal KV, Moore-Clingenpeel M, Zumberge NA, McNally KA, McBride KL, Ho ML, Flanigan KM. Longitudinal MRI brain volume changes over one year in children with mucopolysaccharidosis types IIIA and IIIB. Mol Genet Metab 2021; 133:193-200. [PMID: 33962822 DOI: 10.1016/j.ymgme.2021.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/16/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To quantify changes in segmented brain volumes over 12 months in children with mucopolysaccharidosis types IIIA and IIIB (MPS IIIA and IIIB). METHODS In order to establish suitable outcome measures for clinical trials, twenty-five children greater than 2 years of age were enrolled in a prospective natural history study of MPS IIIA and IIIB at Nationwide Children's Hospital. Data from sedated non-contrast brain 3 T MRIs and neuropsychological measures were reviewed from the baseline visit and at 12-month follow-up. No intervention beyond standard clinical care was provided. Age- and sex-matched controls were gathered from the National Institute of Mental Health Data Archive. Automated brain volume segmentation with longitudinal processing was performed using FreeSurfer. RESULTS Of the 25 subjects enrolled with MPS III, 17 children (4 females, 13 males) completed at least one MRI with interpretable volumetric data. The ages ranged from 2.8 to 13.7 years old (average 7.2 years old) at enrollment, including 8 with MPS IIIA and 9 with MPS IIIB. At baseline, individuals with MPS III demonstrated reduced cerebral white matter and corpus callosum volumes, but greater volumes of the lateral ventricles, cerebellar cortex, and cerebellar white matter compared to controls. Among the 13 individuals with MPS III with two interpretable MRIs, there were annualized losses or plateaus in supratentorial brain tissue volumes (cerebral cortex -42.10 ± 18.52 cm3/year [mean ± SD], cerebral white matter -4.37 ± 11.82 cm3/year, subcortical gray matter -6.54 ± 3.63 cm3/year, corpus callosum -0.18 ± 0.62 cm3/yr) and in cerebellar cortex (-0.49 ± 12.57 cm3/year), with a compensatory increase in lateral ventricular volume (7.17 ± 6.79 cm3/year). Reductions in the cerebral cortex and subcortical gray matter were more striking in individuals younger than 8 years of age. Greater cerebral cortex volume was associated with higher fine and gross motor functioning on the Mullen Scales of Early Learning, while greater subcortical gray matter volume was associated with higher nonverbal functioning on the Leiter International Performance Scale. Larger cerebellar cortex was associated with higher receptive language performance on the Mullen, but greater cerebellar white matter correlated with worse adaptive functioning on the Vineland Adaptive Behavioral Scales and visual problem-solving on the Mullen. CONCLUSIONS Loss or plateauing of supratentorial brain tissue volumes may serve as longitudinal biomarkers of MPS III age-related disease progression compared to age-related growth in typically developing controls. Abnormally increased cerebellar white matter in MPS III, and its association with worse performance on neuropsychological measures, suggest the possibility of pathophysiological mechanisms distinct from neurodegeneration-associated atrophy that warrant further investigation.
Collapse
Affiliation(s)
- Nicolas J Abreu
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Bhavani Selvaraj
- Department of Radiology, Nationwide Children's Hospital, Department of Radiology, The Ohio State University, Columbus, OH, United States of America
| | - Kristen V Truxal
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH, United States of America
| | | | - Nicholas A Zumberge
- Department of Radiology, Nationwide Children's Hospital, Department of Radiology, The Ohio State University, Columbus, OH, United States of America
| | - Kelly A McNally
- Section of Psychology, Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH, United States of America
| | - Kim L McBride
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH, United States of America; Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH, United States of America
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, Department of Radiology, The Ohio State University, Columbus, OH, United States of America
| | - Kevin M Flanigan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Division of Neurology, Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Department of Neurology, Columbus, OH, United States of America.
| |
Collapse
|
26
|
Darki F, Nyström P, McAlonan G, Bölte S, Falck-Ytter T. T1-Weighted/T2-Weighted Ratio Mapping at 5 Months Captures Individual Differences in Behavioral Development and Differentiates Infants at Familial Risk for Autism from Controls. Cereb Cortex 2021; 31:4068-4077. [PMID: 33825851 PMCID: PMC8328213 DOI: 10.1093/cercor/bhab069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Identifying structural measures that capture early brain development and are sensitive to individual differences in behavior is a priority in developmental neuroscience, with potential implications for our understanding of both typical and atypical populations. T1-weighted/T2-weighted (T1w/T2w) ratio mapping, which previously has been linked to myelination, represents an interesting candidate measure in this respect, as an accessible measure from standard magnetic resonance imaging (MRI) sequences. Yet, its value as an early infancy measure remains largely unexplored. Here, we compared T1w/T2w ratio in 5-month-old infants at familial risk (n = 27) for autism spectrum disorder (ASD) to those without elevated autism risk (n = 16). We found lower T1w/T2w ratio in infants at high risk for ASD within widely distributed regions, spanning both white and gray matter. In regions differing between groups, higher T1w/T2w ratio was robustly associated with higher age at scan (range: ~ 4–6.5 months), implying sensitivity to maturation at short developmental timescales. Further, higher T1w/T2w ratio within these regions was associated with higher scores on measures of concurrent developmental level. These findings suggest that T1w/T2w ratio is a developmentally sensitive measure that should be explored further in future studies of both typical and atypical infant populations.
Collapse
Affiliation(s)
- Fahimeh Darki
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, SE-11330 Stockholm, Sweden.,Department of Psychology, Uppsala University, SE 75142 Uppsala, Sweden
| | - Pär Nyström
- Department of Psychology, Uppsala University, SE 75142 Uppsala, Sweden
| | - Grainne McAlonan
- The Sackler Institute and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, South London and Maudsley NHS Foundation Trust, WC2R 2LS UK
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, SE-11330 Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, WA 6102 Perth, Western Australia
| | - Terje Falck-Ytter
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, SE-11330 Stockholm, Sweden.,Department of Psychology, Uppsala University, SE 75142 Uppsala, Sweden.,The Swedish Collegium for Advanced Study (SCAS), SE-752 38 Uppsala, Sweden
| |
Collapse
|
27
|
Kuschner ES, Kim M, Bloy L, Dipiero M, Edgar JC, Roberts TPL. MEG-PLAN: a clinical and technical protocol for obtaining magnetoencephalography data in minimally verbal or nonverbal children who have autism spectrum disorder. J Neurodev Disord 2021; 13:8. [PMID: 33485311 PMCID: PMC7827989 DOI: 10.1186/s11689-020-09350-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neuroimaging research on individuals who have autism spectrum disorder (ASD) has historically been limited primarily to those with age-appropriate cognitive and language performance. Children with limited abilities are frequently excluded from such neuroscience research given anticipated barriers like tolerating the loud sounds associated with magnetic resonance imaging and remaining still during data collection. To better understand brain function across the full range of ASD there is a need to (1) include individuals with limited cognitive and language performance in neuroimaging research (non-sedated, awake) and (2) improve data quality across the performance range. The purpose of this study was to develop, implement, and test the feasibility of a clinical/behavioral and technical protocol for obtaining magnetoencephalography (MEG) data. Participants were 38 children with ASD (8-12 years) meeting the study definition of minimally verbal/nonverbal language. MEG data were obtained during a passive pure-tone auditory task. RESULTS Based on stakeholder feedback, the MEG Protocol for Low-language/cognitive Ability Neuroimaging (MEG-PLAN) was developed, integrating clinical/behavioral and technical components to be implemented by an interdisciplinary team (clinicians, behavior specialists, scientists, and technologists). Using MEG-PLAN, a 74% success rate was achieved for acquiring MEG data, with a 71% success rate for evaluable and analyzable data. Exploratory analyses suggested nonverbal IQ and adaptive skills were related to reaching the point of acquirable data. No differences in group characteristics were observed between those with acquirable versus evaluable/analyzable data. Examination of data quality (evaluable trial count) was acceptable. Moreover, results were reproducible, with high intraclass correlation coefficients for pure-tone auditory latency. CONCLUSIONS Children who have ASD who are minimally verbal/nonverbal, and often have co-occurring cognitive impairments, can be effectively and comfortably supported to complete an electrophysiological exam that yields valid and reproducible results. MEG-PLAN is a protocol that can be disseminated and implemented across research teams and adapted across technologies and neurodevelopmental disorders to collect electrophysiology and neuroimaging data in previously understudied groups of individuals.
Collapse
Affiliation(s)
- Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA. .,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Marissa Dipiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| |
Collapse
|
28
|
François C, Garcia-Alix A, Bosch L, Rodriguez-Fornells A. Signatures of brain plasticity supporting language recovery after perinatal arterial ischemic stroke. BRAIN AND LANGUAGE 2021; 212:104880. [PMID: 33220646 DOI: 10.1016/j.bandl.2020.104880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Brain imaging methods such as functional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) have already been used to decipher the functional and structural brain changes occurring during normal language development. However, little is known about the differentiation of the language network after an early lesion. While in adults, stroke over the left hemisphere generally induces post-stroke aphasia, it is not always the case when a stroke occurs in the perinatal period, thus revealing a remarkable plastic power of the language network during early development. In particular, the role of perilesional tissues, as opposed to undamaged brain areas in the functional recovery of language functions after an early insult, remains unclear. In this review article, we provide an overview of the extant literature using functional and structural neuroimaging data revealing the signatures of brain plasticity underlying near-normal language development.
Collapse
Affiliation(s)
| | - Alfredo Garcia-Alix
- Service of Genetic and Molecular Medicine, Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain; NeNe Foundation, Madrid, Spain
| | - Laura Bosch
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Group, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| |
Collapse
|
29
|
Frijia EM, Billing A, Lloyd-Fox S, Vidal Rosas E, Collins-Jones L, Crespo-Llado MM, Amadó MP, Austin T, Edwards A, Dunne L, Smith G, Nixon-Hill R, Powell S, Everdell NL, Cooper RJ. Functional imaging of the developing brain with wearable high-density diffuse optical tomography: A new benchmark for infant neuroimaging outside the scanner environment. Neuroimage 2020; 225:117490. [PMID: 33157266 DOI: 10.1016/j.neuroimage.2020.117490] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
Studies of cortical function in the awake infant are extremely challenging to undertake with traditional neuroimaging approaches. Partly in response to this challenge, functional near-infrared spectroscopy (fNIRS) has become increasingly common in developmental neuroscience, but has significant limitations including resolution, spatial specificity and ergonomics. In adults, high-density arrays of near-infrared sources and detectors have recently been shown to yield dramatic improvements in spatial resolution and specificity when compared to typical fNIRS approaches. However, most existing fNIRS devices only permit the acquisition of ~20-100 sparsely distributed fNIRS channels, and increasing the number of optodes presents significant mechanical challenges, particularly for infant applications. A new generation of wearable, modular, high-density diffuse optical tomography (HD-DOT) technologies has recently emerged that overcomes many of the limitations of traditional, fibre-based and low-density fNIRS measurements. Driven by the development of this new technology, we have undertaken the first study of the infant brain using wearable HD-DOT. Using a well-established social stimulus paradigm, and combining this new imaging technology with advances in cap design and spatial registration, we show that it is now possible to obtain high-quality, functional images of the infant brain with minimal constraints on either the environment or on the infant participants. Our results are consistent with prior low-density fNIRS measures based on similar paradigms, but demonstrate superior spatial localization, improved depth specificity, higher SNR and a dramatic improvement in the consistency of the responses across participants. Our data retention rates also demonstrate that this new generation of wearable technology is well tolerated by the infant population.
Collapse
Affiliation(s)
- Elisabetta Maria Frijia
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom; neoLAB, Cambridge University NHS Foundation Trust, Cambridge CB2 OQQ, United Kingdom.
| | - Addison Billing
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom; Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Sarah Lloyd-Fox
- Cambridge Babylab, Department of Psychology, University of Cambridge, Cambridge, CB2 3ER, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Ernesto Vidal Rosas
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Liam Collins-Jones
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom; neoLAB, Cambridge University NHS Foundation Trust, Cambridge CB2 OQQ, United Kingdom
| | - Maria Magdalena Crespo-Llado
- Cambridge Babylab, Department of Psychology, University of Cambridge, Cambridge, CB2 3ER, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Marta Perapoch Amadó
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Topun Austin
- neoLAB, Cambridge University NHS Foundation Trust, Cambridge CB2 OQQ, United Kingdom
| | - Andrea Edwards
- neoLAB, Cambridge University NHS Foundation Trust, Cambridge CB2 OQQ, United Kingdom
| | - Luke Dunne
- Gowerlabs Ltd., Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Greg Smith
- Gowerlabs Ltd., Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Reuben Nixon-Hill
- Gowerlabs Ltd., Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Samuel Powell
- Gowerlabs Ltd., Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Nicholas L Everdell
- Gowerlabs Ltd., Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Robert J Cooper
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom; neoLAB, Cambridge University NHS Foundation Trust, Cambridge CB2 OQQ, United Kingdom
| |
Collapse
|
30
|
Lidstone DE, Miah FZ, Poston B, Beasley JF, Mostofsky SH, Dufek JS. Children with Autism Spectrum Disorder Show Impairments During Dynamic Versus Static Grip-force Tracking. Autism Res 2020; 13:2177-2189. [PMID: 32830457 DOI: 10.1002/aur.2370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/07/2022]
Abstract
Impairments in visuomotor integration (VMI) may contribute to anomalous development of motor, as well as social-communicative, skills in children with autism spectrum disorder (ASD). However, it is relatively unknown whether VMI impairments are specific to children with ASD versus children with other neurodevelopmental disorders. As such, this study addressed the hypothesis that children with ASD, but not those in other clinical control groups, would show greater deficits in high-VMI dynamic grip-force tracking versus low-VMI static presentation. Seventy-nine children, aged 7-17 years, participated: 22 children with ASD, 17 children with fetal alcohol spectrum disorder (FASD), 18 children with Attention-Deficit Hyperactivity Disorder (ADHD), and 22 typically developing (TD) children. Two grip-force tracking conditions were examined: (1) a low-VMI condition (static visual target) and (2) a high-VMI condition (dynamic visual target). Low-frequency force oscillations <0.5 Hz during the visuomotor task were also examined. Two-way ANCOVAs were used to examine group x VMI and group x frequency effects (α = 0.05). Children with ASD showed a difficulty, above that seen in the ADHD/FASD groups, tracking dynamic, but not static, visual stimuli as compared to TD children. Low-frequency force oscillations <0.25 Hz were also significantly greater in the ASD versus the TD group. This study is the first to report VMI deficits during dynamic versus static grip-force tracking and increased proportion of force oscillations <0.25 Hz during visuomotor tracking in the ASD versus TD group. Dynamic VMI impairments may be a core psychophysiologic feature that could contribute to impaired development of motor and social-communicative skills in ASD. LAY SUMMARY: Children with autism spectrum disorder (ASD) show difficulties using dynamic visual stimuli to guide their own movements compared to their typically developing (TD) peers. It is unknown whether children without a diagnosis of ASD, but with other neurological disorders, show similar difficulties processing dynamic visual stimuli. In this study, we showed that children with ASD show a difficulty using dynamic, but not static, visual stimuli to guide movement that may explain atypical development of motor and social skills.
Collapse
Affiliation(s)
- Daniel E Lidstone
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Faria Z Miah
- Univerisity of Nevada, Las Vegas Medicine Ackerman Autism Center, Las Vegas, Nevada, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Julie F Beasley
- Univerisity of Nevada, Las Vegas Medicine Ackerman Autism Center, Las Vegas, Nevada, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janet S Dufek
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Nevada, USA
| |
Collapse
|
31
|
Dong P, Guo Y, Gao Y, Liang P, Shi Y, Wu G. Multi-Atlas Segmentation of Anatomical Brain Structures Using Hierarchical Hypergraph Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:3061-3072. [PMID: 31502994 DOI: 10.1109/tnnls.2019.2935184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accurate segmentation of anatomical brain structures is crucial for many neuroimaging applications, e.g., early brain development studies and the study of imaging biomarkers of neurodegenerative diseases. Although multi-atlas segmentation (MAS) has achieved many successes in the medical imaging area, this approach encounters limitations in segmenting anatomical structures associated with poor image contrast. To address this issue, we propose a new MAS method that uses a hypergraph learning framework to model the complex subject-within and subject-to-atlas image voxel relationships and propagate the label on the atlas image to the target subject image. To alleviate the low-image contrast issue, we propose two strategies equipped with our hypergraph learning framework. First, we use a hierarchical strategy that exploits high-level context features for hypergraph construction. Because the context features are computed on the tentatively estimated probability maps, we can ultimately turn the hypergraph learning into a hierarchical model. Second, instead of only propagating the labels from the atlas images to the target subject image, we use a dynamic label propagation strategy that can gradually use increasing reliably identified labels from the subject image to aid in predicting the labels on the difficult-to-label subject image voxels. Compared with the state-of-the-art label fusion methods, our results show that the hierarchical hypergraph learning framework can substantially improve the robustness and accuracy in the segmentation of anatomical brain structures with low image contrast from magnetic resonance (MR) images.
Collapse
|
32
|
Araneda R, Sizonenko SV, Newman CJ, Dinomais M, Le Gal G, Ebner-Karestinos D, Paradis J, Klöcker A, Saussez G, Demas J, Bailly R, Bouvier S, Nowak E, Guzzetta A, Riquelme I, Brochard S, Bleyenheuft Y. Protocol of changes induced by early Hand-Arm Bimanual Intensive Therapy Including Lower Extremities (e-HABIT-ILE) in pre-school children with bilateral cerebral palsy: a multisite randomized controlled trial. BMC Neurol 2020; 20:243. [PMID: 32532249 PMCID: PMC7291688 DOI: 10.1186/s12883-020-01820-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cerebral palsy (CP), which is the leading cause of motor disability during childhood, can produce sensory and cognitive impairments at different degrees. Most recent therapeutic interventions for these patients have solely focused on upper extremities (UE), although more than 60% of these patients present lower extremities (LE) deficits. Recently, a new therapeutic concept, Hand-arm Bimanual Intensive Therapy Including Lower Extremities (HABIT-ILE), has been proposed, involving the constant stimulation of UE and LE. Based on motor skill learning principles, HABIT-ILE is delivered in a day-camp setting, promoting voluntary movements for several hours per day during 10 consecutive week days. Interestingly, the effects of this intervention in a large scale of youngsters are yet to be observed. This is of interest due to the lack of knowledge on functional, neuroplastic and biomechanical changes in infants with bilateral CP. The aim of this randomized controlled study is to assess the effects of HABIT-ILE adapted for pre-school children with bilateral CP regarding functional, neuroplastic and biomechanical factors. METHODS This international, multicentric study will include 50 pre-school children with CP from 12 to 60 months of age, comparing the effect of 50 h (2 weeks) of HABIT-ILE versus regular motor activity and/or customary rehabilitation. HABIT-ILE presents structured activities and functional tasks with continuous increase in difficulty while the child evolves. Assessments will be performed at 3 period times: baseline, two weeks later and 3 months later. The primary outcome will be the Gross Motor Function Measure 66. Secondary outcomes will include Both Hands Assessment, Melbourne Assessment-2, Semmes-Weinstein Monofilament Test, algometry assessments, executive function tests, ACTIVLIM-CP questionnaire, Pediatric Evaluation of Disability Inventory (computer adaptative test), Young Children's Participation and Environment Measure, Measure of the Process of Care, Canadian Occupational Performance Measure, neuroimaging and kinematics. DISCUSSION The results of this study should highlight the impact of a motor, intensive, goal-directed therapy (HABIT-ILE) in pre-school children at a functional, neuroplastic and biomechanical level. In addition, this changes could demonstrated the impact of this intervention in the developmental curve of each child, improving functional ability, activity and participation in short-, mid- and long-term. NAME OF THE REGISTRY Evaluation of Functional, Neuroplastic and Biomechanical Changes Induced by an Intensive, Playful Early-morning Treatment Including Lower Limbs (EARLY-HABIT-ILE) in Preschool Children With Uni and Bilateral Cerebral Palsy (HABIT-ILE). TRIAL REGISTRATION NCT04017871 REGISTRATION DATE: July 12, 2019.
Collapse
Affiliation(s)
- Rodrigo Araneda
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53 box B1.53.04, 1200 Brussels, Belgium
| | - Stephane V. Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Christopher J. Newman
- Paediatric Neurology and Neurorehabilitation Unit, University Hospital of Lausanne, Lausanne, Switzerland
| | - Mickael Dinomais
- Département de Médecine Physique et de Réadaptions, CHU Angers-Capucins, Angers, France
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Université d’Angers, Angers, France
| | - Gregoire Le Gal
- University Hospital of Brest, Brest, France
- INSERM CIC 1412, Brest, France
| | - Daniela Ebner-Karestinos
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53 box B1.53.04, 1200 Brussels, Belgium
| | - Julie Paradis
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Anne Klöcker
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53 box B1.53.04, 1200 Brussels, Belgium
- Haute Ecole Léonard de Vinci, Parnasse-ISEI, Brussels, Belgium
| | - Geoffroy Saussez
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53 box B1.53.04, 1200 Brussels, Belgium
| | - Josselin Demas
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Université d’Angers, Angers, France
- Institut Régional de Formation aux Métiers de Rééducation et de Réadaptation (IFM3R), Nantes, France
| | - Rodolphe Bailly
- Pediatric rehabilitation department, Fondation Ildys, Brest, France
- INSERM UMR 1101, LaTIM, Brest, France
- Western Britany University, Brest, France
| | - Sandra Bouvier
- University Hospital of Brest, Brest, France
- INSERM UMR 1101, LaTIM, Brest, France
- Western Britany University, Brest, France
| | - Emmanuel Nowak
- University Hospital of Brest, Brest, France
- INSERM CIC 1412, Brest, France
| | - Andrea Guzzetta
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Inmaculada Riquelme
- Department of Nursing and Physiotherapy and Research Institute on Health Sciences (UINICS-Idisba), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Sylvain Brochard
- University Hospital of Brest, Brest, France
- Pediatric rehabilitation department, Fondation Ildys, Brest, France
- INSERM UMR 1101, LaTIM, Brest, France
- Western Britany University, Brest, France
| | - Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53 box B1.53.04, 1200 Brussels, Belgium
| |
Collapse
|
33
|
Fusar-Poli P, Allen P, McGuire P. Neuroimaging studies of the early stages of psychosis: A critical review. Eur Psychiatry 2020; 23:237-44. [DOI: 10.1016/j.eurpsy.2008.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/15/2008] [Accepted: 01/17/2008] [Indexed: 11/26/2022] Open
Abstract
AbstractPsychiatric imaging, in particular functional imaging techniques such as functional magnetic resonance imaging (fMRI) are potentially powerful tools to explore the neurophysiological basis of the early stages of psychosis. Despite this impressive growth, neuroimaging has yet to become an established as diagnostic instrument this area, partly as a result of significant heterogeneity across the findings from research studies. The present review aims to: (i) assess the determinants of inconsistencies in the results from neuroimaging studies of the early stages of psychosis; and (ii) suggest approaches for future imaging research in this field that may reduce methodological differences between studies.
Collapse
|
34
|
Wedderburn CJ, Subramoney S, Yeung S, Fouche JP, Joshi SH, Narr KL, Rehman AM, Roos A, Ipser J, Robertson FC, Groenewold NA, Gibb DM, Zar HJ, Stein DJ, Donald KA. Neuroimaging young children and associations with neurocognitive development in a South African birth cohort study. Neuroimage 2020; 219:116846. [PMID: 32304884 PMCID: PMC7443699 DOI: 10.1016/j.neuroimage.2020.116846] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) is an indispensable tool for investigating brain development in young children and the neurobiological mechanisms underlying developmental risk and resilience. Sub-Saharan Africa has the highest proportion of children at risk of developmental delay worldwide, yet in this region there is very limited neuroimaging research focusing on the neurobiology of such impairment. Furthermore, paediatric MRI imaging is challenging in any setting due to motion sensitivity. Although sedation and anesthesia are routinely used in clinical practice to minimise movement in young children, this may not be ethical in the context of research. Our study aimed to investigate the feasibility of paediatric multimodal MRI at age 2–3 years without sedation, and to explore the relationship between cortical structure and neurocognitive development at this understudied age in a sub-Saharan African setting. A total of 239 children from the Drakenstein Child Health Study, a large observational South African birth cohort, were recruited for neuroimaging at 2–3 years of age. Scans were conducted during natural sleep utilising locally developed techniques. T1-MEMPRAGE and T2-weighted structural imaging, resting state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy sequences were included. Child neurodevelopment was assessed using the Bayley-III Scales of Infant and Toddler Development. Following 23 pilot scans, 216 children underwent scanning and T1-weighted images were obtained from 167/216 (77%) of children (median age 34.8 months). Furthermore, we found cortical surface area and thickness within frontal regions were associated with cognitive development, and in temporal and frontal regions with language development (beta coefficient ≥0.20). Overall, we demonstrate the feasibility of carrying out a neuroimaging study of young children during natural sleep in sub-Saharan Africa. Our findings indicate that dynamic morphological changes in heteromodal association regions are associated with cognitive and language development at this young age. These proof-of-concept analyses suggest similar links between the brain and cognition as prior literature from high income countries, enhancing understanding of the interplay between cortical structure and function during brain maturation. MRI data are challenging to acquire in the early years of life. Paediatric MRI without sedation is feasible in sub-Saharan Africa, with 77% success. The Drakenstein Child Health study has novel MRI data of South African children. Morphological features of the cortex associate with neurocognitive development. Structure-cognition relationships in heteromodal association regions at 2–3 years.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Department of Clinical Research, London School of Hygiene & Tropical Medicine, UK; Neuroscience Institute, University of Cape Town, South Africa.
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, UK
| | | | - Shantanu H Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, CA, USA
| | - Andrea M Rehman
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa; SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, South Africa
| | - Jonathan Ipser
- Neuroscience Institute, University of Cape Town, South Africa; Department of Psychiatry, University of Cape Town, South Africa
| | - Frances C Robertson
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Cape Universities Brain Imaging Centre (CUBIC), Cape Town, South Africa
| | - Nynke A Groenewold
- Neuroscience Institute, University of Cape Town, South Africa; Department of Psychiatry, University of Cape Town, South Africa
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College, London, UK
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; SAMRC Unit on Child & Adolescent Health, University of Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, South Africa; Department of Psychiatry, University of Cape Town, South Africa; SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa
| |
Collapse
|
35
|
Araneda R, Sizonenko SV, Newman CJ, Dinomais M, Le Gal G, Nowak E, Guzzetta A, Riquelme I, Brochard S, Bleyenheuft Y. Functional, neuroplastic and biomechanical changes induced by early Hand-Arm Bimanual Intensive Therapy Including Lower Extremities (e-HABIT-ILE) in pre-school children with unilateral cerebral palsy: study protocol of a randomized control trial. BMC Neurol 2020; 20:133. [PMID: 32290815 PMCID: PMC7155331 DOI: 10.1186/s12883-020-01705-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/27/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cerebral palsy (CP) causes motor, cognitive and sensory impairment at different extents. Many recent rehabilitation developments (therapies) have focused solely on the upper extremities (UE), although the lower extremities (LE) are commonly affected. Hand-arm Bimanual Intensive Therapy Including Lower Extremities (HABIT-ILE) applies the concepts of motor skill learning and intensive training to both the UE and LE. It involves constant stimulation of the UE and LE, for several hours each day over a 2-week period. The effects of HABIT-ILE have never been evaluated in a large sample of young children. Furthermore, understanding of functional, neuroplastic and biomechanical changes in infants with CP is lacking. The aim of this study is to carry out a multi-center randomized controlled trial (RCT) to evaluate the effects of HABIT-ILE in pre-school children with unilateral CP on functional, neuroplastic and biomechanical parameters. METHODS This multi-center, 3-country study will include 50 pre-school children with CP aged 1-4 years. The RCT will compare the effect of 50 h (two weeks) of HABIT-ILE versus usual motor activity, including regular rehabilitation. HABIT-ILE will be delivered in a day-camp setting, with structured activities and functional tasks that will be continuously progressed in terms of difficulty. Assessments will be performed at 3 intervals: baseline (T0), two weeks later and 3 months later. Primary outcomes will be the Assisting Hand Assessment; secondary outcomes include the Melbourne Assessment-2, executive function assessments, questionnaires ACTIVLIM-CP, Pediatric Evaluation of Disability Inventory, Young Children's Participation and Environment Measure, Measure of the Process of Care, Canadian Occupational Performance Measure, as well as neuroimaging and kinematics measures. DISCUSSION We expect that HABIT-ILE will induce functional, neuroplastic and biomechanical changes as a result of the intense, activity-based rehabilitation process and these changes will impact the whole developmental curve of each child, improving functional ability, activity and participation in the short-, mid- and long-term. Name of the registry: Changes Induced by Early HABIT-ILE in Pre-school Children With Uni- and Bilateral Cerebral Palsy (EarlyHABIT-ILE). TRIAL REGISTRATION Trial registration number: NCT04020354-Registration date on the International Clinical Trials Registry Platform (ICTRP): November 20th, 2018; Registration date on NIH Clinical Trials Registry: July 16th, 2019.
Collapse
Affiliation(s)
- R Araneda
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53 box B1.53.04, 1200, Brussels, Belgium
| | - S V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - C J Newman
- Paediatric Neurology and Neurorehabilitation Unit, University Hospital of Lausanne, Lausanne, Switzerland
| | - M Dinomais
- CHU Angers, Département de Médecine Physique et de Réadaptions, CHU Angers-Capucins, Angers, France
- Université d'Angers, Laboratoire Angevin de Recherche en Ingénierie des Systèmes, (LARIS) - EA7315, Angers, France
| | - G Le Gal
- University Hospital of Brest, Brest, France
- INSERM CIC 1412, Brest, France
| | - E Nowak
- University Hospital of Brest, Brest, France
- INSERM CIC 1412, Brest, France
| | - A Guzzetta
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - I Riquelme
- Department of Nursing and Physiotherapy and Research Institute on Health Sciences (UINICS-Idisba), University of the Balearic Islands, Palma de Mallorca, Spain
| | - S Brochard
- University Hospital of Brest, Brest, France
- Western Britany University, Brest, France
- INSERM UMR 1101, LaTIM, Brest, France
- Pediatric rehabilitation department, Fondation Ildys, Brest, France
| | - Y Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53 box B1.53.04, 1200, Brussels, Belgium.
| |
Collapse
|
36
|
Mongerson CRL, Jaimes C, Zurakowski D, Jennings RW, Bajic D. Infant Corpus Callosum Size After Surgery and Critical Care for Long-Gap Esophageal Atresia: Qualitative and Quantitative MRI. Sci Rep 2020; 10:6408. [PMID: 32286423 PMCID: PMC7156662 DOI: 10.1038/s41598-020-63212-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/26/2020] [Indexed: 12/02/2022] Open
Abstract
Previous studies in preterm infants report white matter abnormalities of the corpus callosum (CC) as an important predictor of neurodevelopmental outcomes. Our cross-sectional study aimed to describe qualitative and quantitative CC size in critically ill infants following surgical and critical care for long-gap esophageal atresia (LGEA) - in comparison to healthy infants - using MRI. Non-sedated brain MRI was acquired for full-term (n = 13) and premature (n = 13) patients following treatment for LGEA, and controls (n = 20) <1 year corrected age. A neuroradiologist performed qualitative evaluation of T1-weighted images. ITK-SNAP was used for linear, 2-D and 3-D manual CC measures and segmentations as part of CC size quantification. Qualitative MRI analysis indicated underdeveloped CC in both patient groups in comparison to controls. We show no group differences in mid-sagittal CC length. Although 2-D results were inconclusive, volumetric analysis showed smaller absolute (F(2,42) = 20.40, p < 0.001) and normalized (F(2,42) = 16.61, p < 0.001) CC volumes following complex perioperative treatment for LGEA in both full-term and premature patients, suggesting delayed or diminished CC growth in comparison to controls, with no difference between patient groups. Future research should look into etiology of described differences, neurodevelopmental outcomes, and role of the CC as an early marker of neurodevelopment in this unique infant population.
Collapse
Affiliation(s)
- Chandler R L Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
| | - Camilo Jaimes
- Department of Radiology, Division of Neuroradiology, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA
| | - Russell W Jennings
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Esophageal and Airway Treatment Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Abstract
Significant advances in the field of neonatal imaging has resulted in the generation of large complex data sets of relevant information for routine daily clinical practice, and basic and translational research. The evaluation of this data is a complex task for the neonatal imager who must distinguish normal and incidental findings from clinically significant abnormalities which are often adjunctive data points applicable to clinical evaluation and treatment. This review provides an overview of the imaging manifestations of disease processes commonly encountered in the neonatal brain. Since MRI is currently the highest yield technique for the diagnosis and characterization of the normal and abnormal brain, it is therefore the focus of the majority of this review. When applicable, discussion of some of the pertinent known pathophysiology and neuropathological aspects of disease processes are reviewed.
Collapse
|
38
|
Rudisill SS, Wang JT, Jaimes C, Mongerson CRL, Hansen AR, Jennings RW, Bajic D. Neurologic Injury and Brain Growth in the Setting of Long-Gap Esophageal Atresia Perioperative Critical Care: A Pilot Study. Brain Sci 2019; 9:E383. [PMID: 31861169 PMCID: PMC6955668 DOI: 10.3390/brainsci9120383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022] Open
Abstract
We previously showed that infants born with long-gap esophageal atresia (LGEA) demonstrate clinically significant brain MRI findings following repair with the Foker process. The current pilot study sought to identify any pre-existing (PRE-Foker process) signs of brain injury and to characterize brain and corpus callosum (CC) growth. Preterm and full-term infants (n = 3/group) underwent non-sedated brain MRI twice: before (PRE-Foker scan) and after (POST-Foker scan) completion of perioperative care. A neuroradiologist reported on qualitative brain findings. The research team quantified intracranial space, brain, cerebrospinal fluid (CSF), and CC volumes. We report novel qualitative brain findings in preterm and full-term infants born with LGEA before undergoing Foker process. Patients had a unique hospital course, as assessed by secondary clinical end-point measures. Despite increased total body weight and absolute intracranial and brain volumes (cm3) between scans, normalized brain volume was decreased in 5/6 patients, implying delayed brain growth. This was accompanied by both an absolute and relative CSF volume increase. In addition to qualitative findings of CC abnormalities in 3/6 infants, normative CC size (% brain volume) was consistently smaller in all infants, suggesting delayed or abnormal CC maturation. A future larger study group is warranted to determine the impact on the neurodevelopmental outcomes of infants born with LGEA.
Collapse
Affiliation(s)
- Samuel S. Rudisill
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (S.S.R.); (J.T.W.); (C.R.L.M.)
| | - Jue T. Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (S.S.R.); (J.T.W.); (C.R.L.M.)
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | - Camilo Jaimes
- Department of Radiology, Division of Neuroradiology, Boston Children’s Hospital, and Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Chandler R. L. Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (S.S.R.); (J.T.W.); (C.R.L.M.)
| | - Anne R. Hansen
- Department of Pediatrics, Division of Neonatal Medicine, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA;
| | - Russell W. Jennings
- Department of Surgery, Boston Children’s Hospital, and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA;
- Esophageal and Airway Treatment Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (S.S.R.); (J.T.W.); (C.R.L.M.)
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Caritis SN, Panigrahy A. Opioids affect the fetal brain: reframing the detoxification debate. Am J Obstet Gynecol 2019; 221:602-608. [PMID: 31323217 DOI: 10.1016/j.ajog.2019.07.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
Abstract
Medication-assisted treatment is recommended for individuals with an opioid use disorder, including pregnant women. Medication-assisted treatment during pregnancy provides benefits to the mother and fetus, including better pregnancy outcomes, reduced illicit drug use, and improved prenatal care. An alternative approach, medically supervised withdrawal (detoxification), has, in recent reports, demonstrated a low risk of fetal death and low rates of relapse and neonatal abstinence syndrome. The rates of relapse and neonatal abstinence syndrome are questioned by many who view medically supervised withdrawal as unacceptable based on the concern for the potential adverse consequences of relapse to mother and baby. The impact of opioids on the fetal brain have not been integrated into this debate. Studies in animals and human brain tissues demonstrate opioid receptors in neurons, astroglia, and oligodendrocytes. Age-specific normative data from infants, children, and adults have facilitated investigation of the impact of opioids on the human brain in vivo. Collectively, these studies in animals, human neural tissue, adult brains, and the brains of children and newborns demonstrate that opioids adversely affect the human brain, primarily the developing oligodendrocyte and the processes of myelinization (white matter microstructure), connectivity between parts of the brain, and the size of multiple brain regions, including the basal ganglia, thalamus, and cerebellar white matter. These in vivo studies across the human lifespan suggest vulnerability of specific fronto-temporal-limbic and frontal-subcortical (basal ganglia and cerebellum) pathways that are also likely vulnerable in the human fetal brain. The long-term impact of these reproducible changes in the fetal brain in vivo is unclear, but the possibility of lasting injury has been suggested. In light of the recent data on medically supervised withdrawal and the emerging evidence suggesting adverse effects of opioids on the developing fetal brain, a new paradigm of care is needed that includes the preferred option of medication-assisted treatment but also the option of medically supervised opioid withdrawal for a select group of women. Both these treatment options should offer mental health and social services support throughout pregnancy. More research on both opioid exposure on the developing human brain and the impact of medically supervised withdrawal is required to identify appropriate candidates, optimal dose reduction regimens, and gestational age timing for initiating medically supervised withdrawal.
Collapse
|
40
|
Bringas Vega ML, Guo Y, Tang Q, Razzaq FA, Calzada Reyes A, Ren P, Paz Linares D, Galan Garcia L, Rabinowitz AG, Galler JR, Bosch-Bayard J, Valdes Sosa PA. An Age-Adjusted EEG Source Classifier Accurately Detects School-Aged Barbadian Children That Had Protein Energy Malnutrition in the First Year of Life. Front Neurosci 2019; 13:1222. [PMID: 31866804 PMCID: PMC6905178 DOI: 10.3389/fnins.2019.01222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/29/2019] [Indexed: 01/22/2023] Open
Abstract
We have identified an electroencephalographic (EEG) based statistical classifier that correctly distinguishes children with histories of Protein Energy Malnutrition (PEM) in the first year of life from healthy controls with 0.82% accuracy (area under the ROC curve). Our previous study achieved similar accuracy but was based on scalp quantitative EEG features that precluded anatomical interpretation. We have now employed BC-VARETA, a novel high-resolution EEG source imaging method with minimal leakage and maximal sparseness, which allowed us to identify a classifier in the source space. The EEGs were recorded in 1978 in a sample of 108 children who were 5-11 years old and were participants in the 45+ year longitudinal Barbados Nutrition Study. The PEM cohort experienced moderate-severe PEM limited to the first year of life and were age, handedness and gender-matched with healthy classmates who served as controls. In the current study, we utilized a machine learning approach based on the elastic net to create a stable sparse classifier. Interestingly, the classifier was driven predominantly by nutrition group differences in alpha activity in the lingual gyrus. This structure is part of the pathway associated with generating alpha rhythms that increase with normal maturation. Our findings indicate that the PEM group showed a significant decrease in alpha activity, suggestive of a delay in brain development. Childhood malnutrition is still a serious worldwide public health problem and its consequences are particularly severe when present during early life. Deficits during this critical period are permanent and predict impaired cognitive and behavioral functioning later in life. Our EEG source classifier may provide a functionally interpretable diagnostic technology to study the effects of early childhood malnutrition on the brain, and may have far-reaching applicability in low resource settings.
Collapse
Affiliation(s)
- Maria L. Bringas Vega
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neuroscience Center, Havana, Cuba
| | - Yanbo Guo
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Fuleah A. Razzaq
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Peng Ren
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Deirel Paz Linares
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neuroscience Center, Havana, Cuba
| | | | | | - Janina R. Galler
- Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Jorge Bosch-Bayard
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pedro A. Valdes Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neuroscience Center, Havana, Cuba
| |
Collapse
|
41
|
Right Structural and Functional Reorganization in Four-Year-Old Children with Perinatal Arterial Ischemic Stroke Predict Language Production. eNeuro 2019; 6:ENEURO.0447-18.2019. [PMID: 31383726 PMCID: PMC6749144 DOI: 10.1523/eneuro.0447-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
Brain imaging methods have contributed to shed light on the mechanisms of recovery after early brain insult. The assumption that the unaffected right hemisphere can take over language functions after left perinatal stroke is still under debate. Here, we report how patterns of brain structural and functional reorganization were associated with language outcomes in a group of four-year-old children with left perinatal arterial ischemic stroke (PAIS). Specifically, we gathered specific fine-grained developmental measures of receptive and productive aspects of language as well as standardized measures of cognitive development. We also collected structural neuroimaging data as well as functional activations during a passive listening story-telling fMRI task and a resting state session (rs-fMRI). Children with a left perinatal stroke showed larger lateralization indices of both structural and functional connectivity of the dorsal language pathway towards the right hemisphere that, in turn, were associated with better language outcomes. Importantly, the pattern of structural asymmetry was significantly more right-lateralized in children with a left perinatal brain insult than in a group of matched healthy controls. These results strongly suggest that early lesions of the left dorsal pathway and the associated perisylvian regions can induce the interhemispheric transfer of language functions to right homolog regions. This study provides combined evidence of structural and functional brain reorganization of language networks after early stroke with strong implications for neurobiological models of language development.
Collapse
|
42
|
A pilot investigation of neuroimaging predictors for the benefits from pivotal response treatment for children with autism. J Psychiatr Res 2019; 111:140-144. [PMID: 30771619 DOI: 10.1016/j.jpsychires.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022]
Abstract
Children with autism spectrum disorder (ASD) frequently exhibit language delays and functional communication deficits. Pivotal response treatment (PRT) is an effective intervention for targeting these skills; however, similar to other behavioral interventions, response to PRT is variable across individuals. Thus, objective markers capable of predicting treatment response are critically-needed to identify which children are most likely to benefit from this intervention. In this pilot study, we investigated whether structural neuroimaging measures from language regions in the brain are associated with response to PRT. Children with ASD (n = 18) who were receiving PRT to target their language deficits were assessed with MRI at baseline. T1-weighted images were segmented with FreeSurfer and morphometric measures of the primary language regions (inferior frontal (IFG) and superior temporal (STG) gyri) were evaluated. Children with ASD and language deficits did not exhibit the anticipated relationships between baseline structural measures of language regions and baseline language abilities, as assessed by the number of utterances displayed during a structured laboratory observation (SLO). Interestingly, the level of improvement on the SLO was correlated with baseline asymmetry of the IFG, and the size of the left STG at baseline was correlated with the level of improvement on standardized parental questionnaires. Although very preliminary, the observed associations between baseline structural properties of language regions and improvement in language abilities following PRT suggest that neuroimaging measures may be able to help identify which children are most likely to benefit from specific language treatments, which could help improve precision medicine for children with ASD.
Collapse
|
43
|
Mongerson CRL, Wilcox SL, Goins SM, Pier DB, Zurakowski D, Jennings RW, Bajic D. Infant Brain Structural MRI Analysis in the Context of Thoracic Non-cardiac Surgery and Critical Care. Front Pediatr 2019; 7:315. [PMID: 31428593 PMCID: PMC6688189 DOI: 10.3389/fped.2019.00315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/11/2019] [Indexed: 01/20/2023] Open
Abstract
Objective: To determine brain magnetic resonance imaging (MRI) measures of cerebrospinal fluid (CSF) and whole brain volume of full-term and premature infants following surgical treatment for thoracic non-cardiac congenital anomalies requiring critical care. Methods: Full-term (n = 13) and pre-term (n = 13) patients with long-gap esophageal atresia, and full-term naïve controls (n = 19) < 1 year corrected age, underwent non-sedated brain MRI following completion of thoracic non-cardiac surgery and critical care treatment. Qualitative MRI findings were reviewed and reported by a pediatric neuroradiologist and neurologist. Several linear brain metrics were measured using structural T1-weighted images, while T2-weighted images were required for segmentation of total CSF and whole brain tissue using the Morphologically Adaptive Neonatal Tissue Segmentation (MANTiS) tool. Group differences in absolute (mm, cm3) and normalized (%) data were analyzed using a univariate general linear model with age at scan as a covariate. Mean normalized values were assessed using one-way ANOVA. Results: Qualitative brain findings suggest brain atrophy in both full-term and pre-term patients. Both linear and volumetric MRI analyses confirmed significantly greater total CSF and extra-axial space, and decreased whole brain size in both full-term and pre-term patients compared to naïve controls. Although linear analysis suggests greater ventricular volumes in all patients, volumetric analysis showed that normalized ventricular volumes were higher only in premature patients compared to controls. Discussion: Linear brain metrics paralleled volumetric MRI analysis of total CSF and extra-axial space, but not ventricular size. Full-term infants appear to demonstrate similar brain vulnerability in the context of life-saving thoracic non-cardiac surgery requiring critical care as premature infants.
Collapse
Affiliation(s)
- Chandler R L Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Sophie L Wilcox
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Stacy M Goins
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Danielle B Pier
- Massachusetts General Hospital Child Neurology, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Russell W Jennings
- Harvard Medical School, Harvard University, Boston, MA, United States.,Department of Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Massachusetts General Hospital Child Neurology, Boston, MA, United States
| |
Collapse
|
44
|
Altered White Matter Microstructure Correlates with IQ and Processing Speed in Children and Adolescents Post-Fontan. J Pediatr 2018; 200:140-149.e4. [PMID: 29934026 DOI: 10.1016/j.jpeds.2018.04.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To compare white matter microstructure in children and adolescents with single ventricle who underwent the Fontan procedure with healthy controls, and to explore the association of white matter injury with cognitive performance as well as patient and medical factors. STUDY DESIGN Fontan (n = 102) and control subjects (n = 47) underwent diffusion tensor imaging (DTI) at ages 10-19 years. Mean DTI measures (fractional anisotropy, radial diffusivity, axial diffusivity, and mean diffusivity) were calculated for 33 fiber tracts from standard white matter atlases. Voxel-wise group differences in DTI measures were assessed using Tract-Based Spatial Statistics. Associations of regional fractional anisotropy with IQ and processing speed as well as medical characteristics were examined. RESULTS Subjects with Fontan, compared with controls, had reduced bilateral regional and voxel-wise fractional anisotropy in multiple white matter tracts along with increased regional radial diffusivity in several overlapping tracts; regional mean diffusivity differed in 2 tracts. The groups did not differ in voxel-wise radial diffusivity or mean diffusivity. Among subjects with Fontan, fractional anisotropy in many tracts correlated positively with Full-Scale Intelligence Quotient and processing speed, although similar findings were absent in controls. Lower mean fractional anisotropy in various tracts was associated with more complications in the first operation, a greater number of total operations, and history of neurologic event. CONCLUSIONS Children and adolescents who have undergone the Fontan procedure have widespread abnormalities in white matter microstructure. Furthermore, white matter microstructure in several tracts is associated with cognitive performance and operative and medical history characteristics.
Collapse
|
45
|
Thieba C, Frayne A, Walton M, Mah A, Benischek A, Dewey D, Lebel C. Factors Associated With Successful MRI Scanning in Unsedated Young Children. Front Pediatr 2018; 6:146. [PMID: 29872649 PMCID: PMC5972312 DOI: 10.3389/fped.2018.00146] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: Young children are often unable to remain still for magnetic resonance imaging (MRI), leading to unusable images. Various preparation methods may increase success, though it is unclear which factors best predict success. Here, in a retrospective sample, we describe factors associated with successful scanning in unsedated young children. We hypothesized that the mock scanner training and fewer behavior problems would result in higher success rates. Methods: We recruited 134 children aged 2.0-5.0 years for an MRI study. We compared success between children whose parents opted for mock scanner training (n = 20) or not (n = 114), and evaluated demographic and cognitive factors that predicted success. Results: Ninety-seven children (72%) completed at least one MRI sequence successfully on their first try; 64 children (48%) provided high-quality data for all 3 structural imaging sequences. Cognitive scores were higher in successful than unsuccessful children. Children who received mock scanner training were no more likely to be successful than children without, though they had slightly higher scores on T1 image quality. Conclusions: Our data shows that scanning with minimial preparation is possible in young children, and suggests limited advantages of mock scanner preparation for healthy young children.Cognitive ability may predict success.
Collapse
Affiliation(s)
- Camilia Thieba
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Child & Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
| | - Ashleigh Frayne
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Child & Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
| | - Matthew Walton
- Child & Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
| | - Alyssa Mah
- Child & Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
| | - Alina Benischek
- Child & Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Child & Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
46
|
Abstract
OBJECTIVE While there is a long history of interest in measuring brain growth, as of yet there is no definitive model for normative human brain volume growth. The goal of this study was to analyze a variety of candidate models for such growth and select the model that provides the most statistically applicable fit. The authors sought to optimize clinically applicable growth charts that would facilitate improved treatment and predictive management for conditions such as hydrocephalus. METHODS The Weibull, two-term power law, West ontogenic, and Gompertz models were chosen as potential models. Normative brain volume data were compiled from the NIH MRI repository, and the data were fit using a nonlinear least squares regression algorithm. Appropriate statistical measures were analyzed for each model, and the best model was characterized with prediction bound curves to provide percentile estimates for clinical use. RESULTS Each model curve fit and the corresponding statistics were presented and analyzed. The Weibull fit had the best statistical results for both males and females, while the two-term power law generated the worst scores. The statistical measures and goodness of fit parameters for each model were provided to assure reproducibility. CONCLUSIONS The authors identified the Weibull model as the most effective growth curve fit for both males and females. Clinically usable growth charts were developed and provided to facilitate further clinical study of brain volume growth in conditions such as hydrocephalus. The authors note that the homogenous population from which the normative MRI data were compiled limits the study. Gaining a better understanding of the dynamics that underlie childhood brain growth would yield more predictive growth curves and improved neurosurgical management of hydrocephalus.
Collapse
Affiliation(s)
- Mallory Peterson
- The Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania,Departments of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - Benjamin C. Warf
- Department of Neurosurgery, Boston Children’s Hospital and Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
| | - Steven J. Schiff
- The Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania,Departments of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania,Engineering Science and Mechanics, Neurosurgery, and Physics, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
47
|
Howell BR, Styner MA, Gao W, Yap PT, Wang L, Baluyot K, Yacoub E, Chen G, Potts T, Salzwedel A, Li G, Gilmore JH, Piven J, Smith JK, Shen D, Ugurbil K, Zhu H, Lin W, Elison JT. The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development. Neuroimage 2018; 185:891-905. [PMID: 29578031 DOI: 10.1016/j.neuroimage.2018.03.049] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/05/2018] [Accepted: 03/21/2018] [Indexed: 11/28/2022] Open
Abstract
The human brain undergoes extensive and dynamic growth during the first years of life. The UNC/UMN Baby Connectome Project (BCP), one of the Lifespan Connectome Projects funded by NIH, is an ongoing study jointly conducted by investigators at the University of North Carolina at Chapel Hill and the University of Minnesota. The primary objective of the BCP is to characterize brain and behavioral development in typically developing infants across the first 5 years of life. The ultimate goals are to chart emerging patterns of structural and functional connectivity during this period, map brain-behavior associations, and establish a foundation from which to further explore trajectories of health and disease. To accomplish these goals, we are combining state of the art MRI acquisition and analysis techniques, including high-resolution structural MRI (T1-and T2-weighted images), diffusion imaging (dMRI), and resting state functional connectivity MRI (rfMRI). While the overall design of the BCP largely is built on the protocol developed by the Lifespan Human Connectome Project (HCP), given the unique age range of the BCP cohort, additional optimization of imaging parameters and consideration of an age appropriate battery of behavioral assessments were needed. Here we provide the overall study protocol, including approaches for subject recruitment, strategies for imaging typically developing children 0-5 years of age without sedation, imaging protocol and optimization, a description of the battery of behavioral assessments, and QA/QC procedures. Combining HCP inspired neuroimaging data with well-established behavioral assessments during this time period will yield an invaluable resource for the scientific community.
Collapse
Affiliation(s)
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, USA; Department of Medicine, University of California, Los Angeles, USA
| | - Pew-Thian Yap
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - Li Wang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - Kristine Baluyot
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, USA
| | - Geng Chen
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - Taylor Potts
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - Andrew Salzwedel
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, USA
| | - Gang Li
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, USA
| | - J Keith Smith
- Department of Radiology, University of North Carolina at Chapel Hill, USA
| | - Dinggang Shen
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, USA
| | - Hongtu Zhu
- The University of Texas M.D. Anderson Cancer Center, USA
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA.
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, USA; Department of Pediatrics, University of Minnesota, USA.
| |
Collapse
|
48
|
Watson CG, Stopp C, Newburger JW, Rivkin MJ. Graph theory analysis of cortical thickness networks in adolescents with d-transposition of the great arteries. Brain Behav 2018; 8:e00834. [PMID: 29484251 PMCID: PMC5822582 DOI: 10.1002/brb3.834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 01/01/2023] Open
Abstract
Objective Adolescents with d-transposition of the great arteries (d-TGA) who had the arterial switch operation in infancy have been found to have structural brain differences compared to healthy controls. We used cortical thickness measurements obtained from structural brain MRI to determine group differences in global brain organization using a graph theoretical approach. Methods Ninety-two d-TGA subjects and 49 controls were scanned using one of two identical 1.5-Tesla MRI systems. Mean cortical thickness was obtained from 34 regions per hemisphere using Freesurfer. A linear model was used for each brain region to adjust for subject age, sex, and scanning location. Structural connectivity for each group was inferred based on the presence of high inter-regional correlations of the linear model residuals, and binary connectivity matrices were created by thresholding over a range of correlation values for each group. Graph theory analysis was performed using packages in R. Permutation tests were performed to determine significance of between-group differences in global network measures. Results Within-group connectivity patterns were qualitatively different between groups. At lower network densities, controls had significantly more long-range connections. The location and number of hub regions differed between groups: controls had a greater number of hubs at most network densities. The control network had a significant rightward asymmetry compared to the d-TGA group at all network densities. Conclusions Using graph theory analysis of cortical thickness correlations, we found differences in brain structural network organization among d-TGA adolescents compared to controls. These may be related to the white matter and gray matter differences previously found in this cohort, and in turn may be related to the cognitive deficits this cohort presents.
Collapse
Affiliation(s)
- Christopher G. Watson
- Graduate Program for NeuroscienceBoston UniversityBostonMAUSA
- Department of NeurologyBoston Children's HospitalBostonMAUSA
| | - Christian Stopp
- Department of CardiologyBoston Children's HospitalBostonMAUSA
| | - Jane W. Newburger
- Department of CardiologyBoston Children's HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| | - Michael J. Rivkin
- Department of NeurologyBoston Children's HospitalBostonMAUSA
- Department of RadiologyBoston Children's HospitalBostonMAUSA
- Department of PsychiatryBoston Children's HospitalBostonMAUSA
- Department of NeurologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
49
|
Meng Y, Li G, Gao Y, Lin W, Shen D. Learning-based subject-specific estimation of dynamic maps of cortical morphology at missing time points in longitudinal infant studies. Hum Brain Mapp 2018; 37:4129-4147. [PMID: 27380969 DOI: 10.1002/hbm.23301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/20/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Longitudinal neuroimaging analysis of the dynamic brain development in infants has received increasing attention recently. Many studies expect a complete longitudinal dataset in order to accurately chart the brain developmental trajectories. However, in practice, a large portion of subjects in longitudinal studies often have missing data at certain time points, due to various reasons such as the absence of scan or poor image quality. To make better use of these incomplete longitudinal data, in this paper, we propose a novel machine learning-based method to estimate the subject-specific, vertex-wise cortical morphological attributes at the missing time points in longitudinal infant studies. Specifically, we develop a customized regression forest, named dynamically assembled regression forest (DARF), as the core regression tool. DARF ensures the spatial smoothness of the estimated maps for vertex-wise cortical morphological attributes and also greatly reduces the computational cost. By employing a pairwise estimation followed by a joint refinement, our method is able to fully exploit the available information from both subjects with complete scans and subjects with missing scans for estimation of the missing cortical attribute maps. The proposed method has been applied to estimating the dynamic cortical thickness maps at missing time points in an incomplete longitudinal infant dataset, which includes 31 healthy infant subjects, each having up to five time points in the first postnatal year. The experimental results indicate that our proposed framework can accurately estimate the subject-specific vertex-wise cortical thickness maps at missing time points, with the average error less than 0.23 mm. Hum Brain Mapp 37:4129-4147, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu Meng
- Department of Computer Science, University of North Carolina at Chapel Hill, North Carolina.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina.
| | - Yaozong Gao
- Department of Computer Science, University of North Carolina at Chapel Hill, North Carolina.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina. .,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients. Proc Natl Acad Sci U S A 2018; 115:E1022-E1031. [PMID: 29339512 DOI: 10.1073/pnas.1717603115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although cochlear implantation enables some children to attain age-appropriate speech and language development, communicative delays persist in others, and outcomes are quite variable and difficult to predict, even for children implanted early in life. To understand the neurobiological basis of this variability, we used presurgical neural morphological data obtained from MRI of individual pediatric cochlear implant (CI) candidates implanted younger than 3.5 years to predict variability of their speech-perception improvement after surgery. We first compared neuroanatomical density and spatial pattern similarity of CI candidates to that of age-matched children with normal hearing, which allowed us to detail neuroanatomical networks that were either affected or unaffected by auditory deprivation. This information enables us to build machine-learning models to predict the individual children's speech development following CI. We found that regions of the brain that were unaffected by auditory deprivation, in particular the auditory association and cognitive brain regions, produced the highest accuracy, specificity, and sensitivity in patient classification and the most precise prediction results. These findings suggest that brain areas unaffected by auditory deprivation are critical to developing closer to typical speech outcomes. Moreover, the findings suggest that determination of the type of neural reorganization caused by auditory deprivation before implantation is valuable for predicting post-CI language outcomes for young children.
Collapse
|