1
|
Gozzi A, Zerbi V. Modeling Brain Dysconnectivity in Rodents. Biol Psychiatry 2023; 93:419-429. [PMID: 36517282 DOI: 10.1016/j.biopsych.2022.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
Altered or atypical functional connectivity as measured with functional magnetic resonance imaging (fMRI) is a hallmark feature of brain connectopathy in psychiatric, developmental, and neurological disorders. However, the biological underpinnings and etiopathological significance of this phenomenon remain unclear. The recent development of MRI-based techniques for mapping brain function in rodents provides a powerful platform to uncover the determinants of functional (dys)connectivity, whether they are genetic mutations, environmental risk factors, or specific cellular and circuit dysfunctions. Here, we summarize the recent contribution of rodent fMRI toward a deeper understanding of network dysconnectivity in developmental and psychiatric disorders. We highlight substantial correspondences in the spatiotemporal organization of rodent and human fMRI networks, supporting the translational relevance of this approach. We then show how this research platform might help us comprehend the importance of connectional heterogeneity in complex brain disorders and causally relate multiscale pathogenic contributors to functional dysconnectivity patterns. Finally, we explore how perturbational techniques can be used to dissect the fundamental aspects of fMRI coupling and reveal the causal contribution of neuromodulatory systems to macroscale network activity, as well as its altered dynamics in brain diseases. These examples outline how rodent functional imaging is poised to advance our understanding of the bases and determinants of human functional dysconnectivity.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering, École polytechnique fédérale de Lausanne, Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
| |
Collapse
|
2
|
Martins D, Brodmann K, Veronese M, Dipasquale O, Mazibuko N, Schuschnig U, Zelaya F, Fotopoulou A, Paloyelis Y. "Less is more": a dose-response account of intranasal oxytocin pharmacodynamics in the human brain. Prog Neurobiol 2022; 211:102239. [PMID: 35122880 DOI: 10.1016/j.pneurobio.2022.102239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 12/27/2022]
Abstract
Intranasal oxytocin is attracting attention as a potential treatment for several brain disorders due to promising preclinical results. However, translating findings to humans has been hampered by remaining uncertainties about its pharmacodynamics and the methods used to probe its effects in the human brain. Using a dose-response design (9, 18 and 36 IU), we demonstrate that intranasal oxytocin-induced changes in local regional cerebral blood flow (rCBF) in the amygdala at rest, and in the covariance between rCBF in the amygdala and other key hubs of the brain oxytocin system, follow a dose-response curve with maximal effects for lower doses. Yet, the effects on local rCBF might vary by amygdala subdivision, highlighting the need to qualify dose-response curves within subregion. We further link physiological changes with the density of the oxytocin receptor gene mRNA across brain regions, strengthening our confidence in intranasal oxytocin as a valid approach to engage central targets. Finally, we demonstrate that intranasal oxytocin does not disrupt cerebrovascular reactivity, which corroborates the validity of haemodynamic neuroimaging to probe the effects of intranasal oxytocin in the human brain. DATA AVAILABILITY: Participants did not consent for open sharing of the data. Therefore, data can only be accessed from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Katja Brodmann
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ndaba Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | | | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Aikaterini Fotopoulou
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
3
|
Mervin LH, Mitricheva E, Logothetis NK, Bifone A, Bender A, Noori HR. Neurochemical underpinning of hemodynamic response to neuropsychiatric drugs: A meta- and cluster analysis of preclinical studies. J Cereb Blood Flow Metab 2021; 41:874-885. [PMID: 32281457 PMCID: PMC7983335 DOI: 10.1177/0271678x20916003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 11/30/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is an extensively used method for the investigation of normal and pathological brain function. In particular, fMRI has been used to characterize spatiotemporal hemodynamic response to pharmacological challenges as a non-invasive readout of neuronal activity. However, the mechanisms underlying regional signal changes are yet unclear. In this study, we use a meta-analytic approach to converge data from microdialysis experiments with relative cerebral blood volume (rCBV) changes following acute administration of neuropsychiatric drugs in adult male rats. At whole-brain level, the functional response patterns show very weak correlation with neurochemical alterations, while for numerous brain areas a strong positive correlation with noradrenaline release exists. At a local scale of individual brain regions, the rCBV response to neurotransmitters is anatomically heterogeneous and, importantly, based on a complex interplay of different neurotransmitters that often exert opposing effects, thus providing a mechanism for regulating and fine tuning hemodynamic responses in specific regions.
Collapse
Affiliation(s)
- Lewis H Mervin
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Ekaterina Mitricheva
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Hamid R Noori
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Molecular and Functional Imaging in Central Nervous System Drug Development. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Solleveld MM, Schrantee A, Homberg JR, Lucassen PJ, Reneman L. The influence of age-of-onset of antidepressant use on the acute CBF response to a citalopram challenge; a pharmacological MRI study. Psychiatry Res Neuroimaging 2020; 303:111126. [PMID: 32592855 DOI: 10.1016/j.pscychresns.2020.111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 11/21/2022]
Abstract
Preclinical studies have demonstrated that antidepressant treatment in juvenile rodents affect the ontogeny of the serotonin system. However, whether early antidepressant use has similar effects on the development of the serotonin system in humans remains unknown. Therefore, we investigated whether effects of selective serotonin reuptake inhibitor (SSRI) treatment on the serotonin system are modulated by age. With pharmacological Magnetic Resonance Imaging the cerebral blood flow (CBF) response to an acute citalopram challenge was measured, as a proxy for serotonin function. Fifty-one females with major depressive disorder or anxiety disorder were stratified into three groups: 1) those treated with SSRIs <23 years of age, 2) those treated with SSRIs >23 years of age, and 3) those that were never treated with SSRIs. Additionally, a group of 14 healthy controls was included. CBF decreased after a citalopram challenge in the amygdala, hippocampus and orbitofrontal cortex across the whole sample. However, in contrast to preclinical studies, we did not find any age-dependent effect of SSRI exposure on the CBF response. In view of recent concerns on potential adverse effects of SSRIs administered to children, future studies are needed to replicate our negative findings in larger samples sizes and potentially in a prospective design.
Collapse
Affiliation(s)
- Michelle M Solleveld
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neurosciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neurosciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Sha Z, Versace A, Edmiston EK, Fournier J, Graur S, Greenberg T, Santos JPL, Chase HW, Stiffler RS, Bonar L, Hudak R, Yendiki A, Greenberg BD, Rasmussen S, Liu H, Quirk G, Haber S, Phillips ML. Functional disruption in prefrontal-striatal network in obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2020; 300:111081. [PMID: 32344156 PMCID: PMC7266720 DOI: 10.1016/j.pscychresns.2020.111081] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023]
Abstract
Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive, compulsive behaviors. While a cortico-striatal-limbic network has been implicated in the pathophysiology of OCD, the neural correlates of this network in OCD are not well understood. In this study, we examined resting state functional connectivity among regions within the cortico-striatal-limbic OCD neural network, including the rostral anterior cingulate cortex, dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, orbitofrontal cortex, ventromedial prefrontal cortex, amygdala, thalamus and caudate, in 44 OCD and 43 healthy participants. We then examined relationships between OCD neural network connectivity and OCD symptom severity in OCD participants. OCD relative to healthy participants showed significantly greater connectivity between the left caudate and bilateral dorsolateral prefrontal cortex. We also found a positive correlation between left caudate-bilateral dorsolateral prefrontal cortex connectivity and depression scores in OCD participants, such that greater positive connectivity was associated with more severe symptoms. This study makes a significant contribution to our understanding of functional networks and their relationship with depression in OCD.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Kale Edmiston
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jay Fournier
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simona Graur
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tsafrir Greenberg
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Henry W Chase
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Bonar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Hudak
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Greenberg
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Providence, RI, USA
| | - Steven Rasmussen
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Providence, RI, USA
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, USA
| | - Suzanne Haber
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Anterior insula stimulation suppresses appetitive behavior while inducing forebrain activation in alcohol-preferring rats. Transl Psychiatry 2020; 10:150. [PMID: 32424183 PMCID: PMC7235223 DOI: 10.1038/s41398-020-0833-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
The anterior insular cortex plays a key role in the representation of interoceptive effects of drug and natural rewards and their integration with attention, executive function, and emotions, making it a potential target region for intervention to control appetitive behaviors. Here, we investigated the effects of chemogenetic stimulation or inhibition of the anterior insula on alcohol and sucrose consumption. Excitatory or inhibitory designer receptors (DREADDs) were expressed in the anterior insula of alcohol-preferring rats by means of adenovirus-mediated gene transfer. Rats had access to either alcohol or sucrose solution during intermittent sessions. To characterize the brain network recruited by chemogenetic insula stimulation we measured brain-wide activation patterns using pharmacological magnetic resonance imaging (phMRI) and c-Fos immunohistochemistry. Anterior insula stimulation by the excitatory Gq-DREADDs significantly attenuated both alcohol and sucrose consumption, whereas the inhibitory Gi-DREADDs had no effects. In contrast, anterior insula stimulation failed to alter locomotor activity or deprivation-induced water drinking. phMRI and c-Fos immunohistochemistry revealed downstream activation of the posterior insula and medial prefrontal cortex, as well as of the mediodorsal thalamus and amygdala. Our results show the critical role of the anterior insula in regulating reward-directed behavior and delineate an insula-centered functional network associated with the effects of insula stimulation. From a translational perspective, our data demonstrate the therapeutic potential of circuit-based interventions and suggest that potentiation of insula excitability with neuromodulatory methods, such as repetitive transcranial magnetic stimulation (rTMS), could be useful in the treatment of alcohol use disorders.
Collapse
|
8
|
Tozzi L, Goldstein-Piekarski AN, Korgaonkar MS, Williams LM. Connectivity of the Cognitive Control Network During Response Inhibition as a Predictive and Response Biomarker in Major Depression: Evidence From a Randomized Clinical Trial. Biol Psychiatry 2020; 87:462-472. [PMID: 31601424 PMCID: PMC8628639 DOI: 10.1016/j.biopsych.2019.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/28/2019] [Accepted: 08/10/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND In treating major depressive disorder, we lack tests anchored in neurobiology that predict antidepressant efficacy. Cognitive impairments are a particularly disabling feature of major depressive disorder. We tested whether functional connectivity during a response-inhibition task can predict response to antidepressants and whether its changes over time are correlated to symptom changes. METHODS We analyzed data from outpatients with major depressive disorder (n = 124) randomized to receive escitalopram, sertraline, or venlafaxine (8 weeks) and healthy control subjects (n = 59; age 18-65 years). Before and after treatment, participants were interviewed and scanned using functional magnetic resonance imaging, and functional connectivity was measured using generalized psychophysiological interaction during response inhibition (Go-NoGo task). We investigated the interaction between treatment type and response (≥50% reduction on self-reported symptoms), coupling differences between responders and nonresponders at baseline, their correlation with symptom improvement, and their changes in time. RESULTS During response inhibition, connectivity between the dorsolateral prefrontal cortex/supramarginal gyrus and supramarginal gyrus/middle temporal gyrus was associated with response to sertraline and venlafaxine, but not escitalopram. Sertraline responders had higher functional connectivity between these regions compared with nonresponders, whereas venlafaxine responders had lower functional connectivity. For sertraline, attenuation of connectivity in the precentral and superior temporal gyri correlated with posttreatment symptom improvement. For venlafaxine, enhancement of connectivity between the orbitofrontal cortex and subcortical regions correlated with symptom improvement. CONCLUSIONS Connectivity of the cognitive control circuit during response inhibition selectively and differentially predicts antidepressant treatment response and correlates with symptom improvement. These quantitative markers tied to the neurobiology of cognitive features of depression could be used translationally to predict and evaluate treatment response.
Collapse
Affiliation(s)
- Leonardo Tozzi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia; Discipline of Psychiatry, Western Clinical School, The University of Sydney, Sydney, Australia
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California.
| |
Collapse
|
9
|
Park J, Kim T, Kim M, Lee TY, Kwon JS. Functional Connectivity of the Striatum as a Neural Correlate of Symptom Severity in Patient with Obsessive-Compulsive Disorder. Psychiatry Investig 2020; 17:87-95. [PMID: 32000480 PMCID: PMC7047004 DOI: 10.30773/pi.2019.0206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/13/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE It is well established that the cortico-striato-thalamo-cortical (CSTC) circuit is implicated in the pathophysiology of obsessive- compulsive disorder (OCD). However, reports on corticostriatal functional connectivity (FC) in OCD have been inconsistent due to the structural and functional heterogeneity of the striatum. Therefore, in the present study, we investigated corticostriatal FC using a fine 12-seed striatal parcellation to overcome this heterogeneity and discover the neural correlates of symptoms in OCD patients. METHODS We recruited 23 OCD patients and 23 healthy controls (HCs). Whole-brain FC based on striatal seeds was examined using resting-state functional magnetic resonance imaging data and compared across OCD patients and HCs. We conducted correlation analysis between FCs of striatal subregions with significant group differences and symptom severity scores on the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), Hamilton Rating Scale for Depression, and Hamilton Rating Scale for Anxiety (HAM-A). RESULTS Compared to HCs, patients demonstrated increased FC of the dorsal caudal putamen and ventral rostral putamen (VRP) with several cortical regions, such as the intracalcarine cortex, inferior frontal gyrus, supramarginal/angular gyrus (SMG/AG), and postcentral gyrus (PCG). Furthermore, FC between the VRP and SMG/AG and between the VRP and PCG was negatively correlated with scores on the Y-BOCS compulsive subscale and the HAM-A, respectively. CONCLUSION These findings suggest that striatal subregions have strengthened FC with extensive cortical regions, which may reflect neural correlates of compulsive and anxious symptoms in OCD patients. These results contribute to an improved understanding of OCD pathophysiology by complementing the current evidence regarding striatal FC.
Collapse
Affiliation(s)
- Junha Park
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University-Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
10
|
Acute and Repeated Intranasal Oxytocin Differentially Modulate Brain-wide Functional Connectivity. Neuroscience 2020; 445:83-94. [PMID: 31917352 DOI: 10.1016/j.neuroscience.2019.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022]
Abstract
Central release of the neuropeptide oxytocin (OXT) modulates neural substrates involved in socio-affective behavior. This property has prompted research into the use of intranasal OXT administration as an adjunctive therapy for brain conditions characterized by social impairment, such as autism spectrum disorders (ASD). However, the neural circuitry and brain-wide functional networks recruited by intranasal OXT administration remain elusive. Moreover, little is known of the neuroadaptive cascade triggered by long-term administration of this peptide at the network level. To address these questions, we applied fMRI-based circuit mapping in adult mice upon acute and repeated (seven-day) intranasal dosing of OXT. We report that acute and chronic OXT administration elicit comparable fMRI activity as assessed with cerebral blood volume mapping, but entail largely different patterns of brain-wide functional connectivity. Specifically, acute OXT administration focally boosted connectivity within key limbic components of the rodent social brain, whereas repeated dosing led to a prominent and widespread increase in functional connectivity, involving a strong coupling between the amygdala and extended cortical territories. Importantly, this connectional reconfiguration was accompanied by a paradoxical reduction in social interaction and communication in wild-type mice. Our results identify the network substrates engaged by exogenous OXT administration, and show that repeated OXT dosing leads to a substantial reconfiguration of brain-wide connectivity, entailing an aberrant functional coupling between cortico-limbic structures involved in socio-communicative and affective functions. Such divergent patterns of network connectivity might contribute to discrepant clinical findings involving acute or long-term OXT dosing in clinical populations.
Collapse
|
11
|
Edes AE, McKie S, Szabo E, Kokonyei G, Pap D, Zsombok T, Hullam G, Gonda X, Kozak LR, McFarquhar M, Anderson IM, Deakin JFW, Bagdy G, Juhasz G. Spatiotemporal brain activation pattern following acute citalopram challenge is dose dependent and associated with neuroticism: A human phMRI study. Neuropharmacology 2019; 170:107807. [PMID: 31593709 DOI: 10.1016/j.neuropharm.2019.107807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The initial effects of selective serotonin reuptake inhibitors (SSRIs) in the human living brain are poorly understood. We carried out a 3T resting state fMRI study with pharmacological challenge to determine the brain activation changes over time following different dosages of citalopram. METHODS During the study, 7.5 mg i.v. citalopram was administered to 32 healthy subjects. In addition, 11.25 mg citalopram was administered to a subset of 9 subjects to investigate the dose-response. Associations with neuroticism (assessed by the NEO PI-R) of the emerging brain activation to citalopram was also investigated. RESULTS Citalopram challenge evoked significant activation in brain regions that are part of the default mode network, the visual network and the sensorimotor network, extending to the thalamus, and midbrain. Most effects appeared to be dose-dependent and this was statistically significant in the middle cingulate gyrus. Individual citalopram-induced brain responses were positively correlated with neuroticism scores and its subscales in specific brain areas; anxiety subscale scores in thalamus and midbrain and self-consciousness scores in middle cingulate gyrus. There were no sex differences. LIMITATIONS We investigated only healthy subjects and we used a relatively low sample size in the 11.25 mg citalopram analysis. DISCUSSION Our results suggest that SSRIs acutely induce an increased arousal-like state of distributed cortical and subcortical systems that is mediated by enhanced serotonin neurotransmission according to levels of neuroticism and underpins trait sensitivity to environmental stimuli and stressors. Studies in depression are needed to determine how therapeutic effects eventually emerge. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Andrea Edit Edes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Shane McKie
- Faculty of Biological, Medical and Human Sciences Platform Sciences, Enabling Technologies & Infrastructure, Faculty of Biological, Medical and Human Sciences Research and Innovation, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Edina Szabo
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Doctoral School of Psychology, ELTE Eotvos Loránd University, Budapest, Hungary; Institute of Psychology, ELTE Eotvos Loránd University, Budapest, Hungary
| | - Gyongyi Kokonyei
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Institute of Psychology, ELTE Eotvos Loránd University, Budapest, Hungary
| | - Dorottya Pap
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Terezia Zsombok
- Department of Neurology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor Hullam
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics, Budapest, Hungary
| | - Xenia Gonda
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Lajos R Kozak
- MR Research Center, Semmelweis University, Budapest, Hungary
| | - Martyn McFarquhar
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Ian M Anderson
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - J F William Deakin
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom.
| |
Collapse
|
12
|
Wang Z, Guo Y, Mayer EA, Holschneider DP. Sex differences in insular functional connectivity in response to noxious visceral stimulation in rats. Brain Res 2019; 1717:15-26. [PMID: 30974090 DOI: 10.1016/j.brainres.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 03/01/2019] [Accepted: 04/07/2019] [Indexed: 01/26/2023]
Abstract
Insular cortex (INS) plays a critical role in pain processing and shows sex differences in functional activation during noxious visceral stimulation. Less is known regarding functional interactions within the INS and between this structure and other parts of the brain. Cerebral blood flow mapping was performed using [14C]-iodoantipyrine perfusion autoradiography in male and female rats during colorectal distension (CRD) or no distension (controls). Forty regions of interest (ROIs) were defined anatomically to represent the granular, dysgranular, and agranular INS along the anterior-posterior (A-P) axis. Inter-ROI correlation matrices were calculated for each group to characterize intra-insular functional connectivity (FC). Results showed a clear FC segregation within the INS into an anterior (rostral to bregma +2.4 mm), a posterior (caudal to bregma -1.2 mm), and a mid INS subregion in between. Female controls showed higher FC density compared to males. During CRD, intra-insular FC density decreased greatly in females, but only modestly in males, with a loss of long-range connections between the anterior and mid INS noted in both sexes. New functional organization was characterized in both sexes by a cluster in the mid INS and primarily short-range FC along the A-P axis. Seed correlation analysis during CRD showed sex differences in FC of the anterior and mid agranular INS with the medial prefrontal cortex, thalamus, and brainstem areas (periaqueductal gray, parabrachial nucleus), suggesting sex differences in the modulatory aspect of visceral pain processing. Our findings suggest presence of substantial sex differences in visceral pain processing at the level of the insula.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Yumei Guo
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Emeran A Mayer
- Departments of Medicine, Physiology, Psychiatry and Biobehavioral Sciences, G Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel P Holschneider
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, CA 90089, USA; Departments of Neurology, Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
13
|
Hahn A, Lanzenberger R, Kasper S. Making Sense of Connectivity. Int J Neuropsychopharmacol 2019; 22:194-207. [PMID: 30544240 PMCID: PMC6403091 DOI: 10.1093/ijnp/pyy100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
In addition to the assessment of local alterations of specific brain regions, the investigation of entire networks with in vivo neuroimaging techniques has gained increasing attention. In general, connectivity analysis refers to the investigation of links between brain regions, with the aim to characterize their interactions and information transfer. These may represent or relate to different physiological characteristics (structural, functional, or metabolic information) and can be calculated across different levels of granularity (2 regions vs whole brain). In this article, we provide an overview of different connectivity analysis approaches with interpretations and limitations as well as examples in pharmacological imaging and clinical applications. Structural connectivity obtained from diffusion MRI enables the reconstruction of neuronal fiber tracts. These physical links represent major constraints of functional connections, which are in turn defined as correlations between signal time courses. In addition, molecular connectivity approaches based on PET imaging enable the assessment of interregional associations of metabolic demands and neurotransmitter systems. Application of these approaches in clinical investigations has demonstrated novel alterations in various neurological and psychiatric disorders on a network level. Future work should aim for the combined assessment of multiple imaging modalities and to establish robust biomarkers for clinical use. These advancements will further improve the biological interpretation of connectivity metrics and networks of the human brain.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
14
|
Tollens F, Gass N, Becker R, Schwarz AJ, Risterucci C, Künnecke B, Lebhardt P, Reinwald J, Sack M, Weber-Fahr W, Meyer-Lindenberg A, Sartorius A. The affinity of antipsychotic drugs to dopamine and serotonin 5-HT 2 receptors determines their effects on prefrontal-striatal functional connectivity. Eur Neuropsychopharmacol 2018; 28:1035-1046. [PMID: 30006253 DOI: 10.1016/j.euroneuro.2018.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 03/07/2018] [Accepted: 05/17/2018] [Indexed: 12/31/2022]
Abstract
One of the major challenges of cross-species translation in psychiatry is the identification of quantifiable brain phenotypes linked to drug efficacy and/or side effects. A measure that has received increasing interest is the effect of antipsychotic drugs on resting-state functional connectivity (FC) in magnetic resonance imaging. However, quantitative comparisons of antipsychotic drug-induced alterations of FC patterns are missing. Consideration of receptor binding affinities provides a means for the effects of antipsychotic drugs on extended brain networks to be related directly to their molecular mechanism of action. Therefore, we examined the relationship between the affinities of three second-generation antipsychotics (amisulpride, risperidone and olanzapine) to dopamine and serotonin receptors and FC patterns related to the prefrontal cortex (PFC) and striatum in Sprague-Dawley rats. FC of the relevant regions was quantified by correlation coefficients and local network properties. Each drug group (32 animals per group) was subdivided into three dose groups and a vehicle control group. A linear relationship was discovered for the mid-dose of antipsychotic compounds, with stronger affinity to serotonin 5-HT2A, 5-HT2C and 5-HT1A receptors and decreased affinity to D3 receptors associated with increased prefrontal-striatal FC (p = 0.0004, r² = 0.46; p = 0.004, r² = 0.33; p = 0.002, r² = 0.37; p = 0.02, r² = 0.22, respectively). Interestingly, no correlation was observed for the low and high dose groups, and for D2 receptors. Our results indicate that drug-induced FC patterns may be linked to antipsychotic mechanism of action on the molecular level and suggest the technique's value for drug development, especially if our results are extended to a larger number of antipsychotics.
Collapse
Affiliation(s)
- F Tollens
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - N Gass
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - R Becker
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - A J Schwarz
- Eli Lilly and Company, Indianapolis, IN 46285, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Department of Radiological and Imaging Sciences, Indiana University School of Medicine, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - C Risterucci
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - B Künnecke
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - P Lebhardt
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - J Reinwald
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - M Sack
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - W Weber-Fahr
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - A Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - A Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
15
|
Barry RL, Byun NE, Williams JM, Siuta MA, Tantawy MN, Speed NK, Saunders C, Galli A, Niswender KD, Avison MJ. Brief exposure to obesogenic diet disrupts brain dopamine networks. PLoS One 2018; 13:e0191299. [PMID: 29698491 PMCID: PMC5919534 DOI: 10.1371/journal.pone.0191299] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 01/02/2018] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH). METHODS We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET). RESULTS We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens-anterior cingulate) and sensorimotor circuits (caudate/putamen-thalamus-sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals. CONCLUSION These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding.
Collapse
Affiliation(s)
- Robert L. Barry
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nellie E. Byun
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jason M. Williams
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michael A. Siuta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mohammed N. Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nicole K. Speed
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christine Saunders
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Aurelio Galli
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kevin D. Niswender
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Malcolm J. Avison
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
16
|
Choi JK, Lim G, Chen YCI, Jenkins BG. Abstinence to chronic methamphetamine switches connectivity between striatal, hippocampal and sensorimotor regions and increases cerebral blood volume response. Neuroimage 2018. [PMID: 29518566 DOI: 10.1016/j.neuroimage.2018.02.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Methamphetamine (meth), and other psychostimulants such as cocaine, present a persistent problem for society with chronic users being highly prone to relapse. We show, in a chronic methamphetamine administration model, that discontinuation of drug for more than a week produces much larger changes in overall meth-induced brain connectivity and cerebral blood volume (CBV) response than changes that occur immediately following meth administration. Areas showing the largest changes were hippocampal, limbic striatum and sensorimotor cortical regions as well as brain stem areas including the pedunculopontine tegmentum (PPTg) and pontine nuclei - regions known to be important in mediating reinstatement of drug-taking after abstinence. These changes occur concomitantly with behavioral sensitization and appear to be mediated through increases in dopamine D1 and D3 and decreases in D2 receptor protein and mRNA expression. We further identify a novel region of dorsal caudate/putamen, with a low density of calbindin neurons, that has an opposite hemodynamic response to meth than the rest of the caudate/putamen and accumbens and shows very strong correlation with dorsal CA1 and CA3 hippocampus. This correlation switches following meth abstinence from CA1/CA3 to strong connections with ventral hippocampus (ventral subiculum) and nucleus accumbens. These data provide novel evidence for temporal alterations in brain connectivity where chronic meth can subvert hippocampal - striatal interactions from cognitive control regions to regions that mediate drug reinstatement. Our results also demonstrate that the signs and magnitudes of the induced CBV changes following challenge with meth or a D3-preferring agonist are a complementary read out of the relative changes that occur in D1, D2 and D3 receptors using protein or mRNA levels.
Collapse
Affiliation(s)
- Ji-Kyung Choi
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| | - Grewo Lim
- Department of Anesthesiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Yin-Ching Iris Chen
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Bruce G Jenkins
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
17
|
McCormick EM, Telzer EH. Not Doomed to Repeat: Enhanced Medial Prefrontal Cortex Tracking of Errors Promotes Adaptive Behavior during Adolescence. J Cogn Neurosci 2018; 30:281-289. [PMID: 29131744 PMCID: PMC5797691 DOI: 10.1162/jocn_a_01206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Feedback information is one of the most powerful forces that promotes learning, providing guidance for changes to ongoing behavioral patterns. Previous examinations of feedback learning have largely relied on explicit feedback based on task performance. However, learning is not restricted to explicit feedback and likely involves other forms of more subtle feedback cues. One potential form of this kind of learning may involve internally generated feedback in response to error commission. Whether this error-related response prompts neural and behavioral adaptation that overlaps with, or is distinct from, those evoked by external feedback is largely unknown. To explore this gap, 55 adolescents completed a difficult behavioral inhibition task designed to elicit relatively high rates of error commission during an fMRI session. We examined neural adaptation after accumulating errors (i.e., internally generated negative feedback events) at the group level, as well as the impact of individual differences in error tracking on overall task performance. Group effects show that medial PFC (mPFC) activation tracks accumulating errors; however, reduced tracking of errors is associated with greater total false alarms. These findings suggest that increased mPFC integration of error-related feedback is beneficial for task performance and, in concert with previous findings, suggests a domain-general role for mPFC integration of negative feedback.
Collapse
Affiliation(s)
- Ethan M. McCormick
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Eva H. Telzer
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
18
|
Razoux F, Russig H, Mueggler T, Baltes C, Dikaiou K, Rudin M, Mansuy IM. Transgenerational disruption of functional 5-HT 1AR-induced connectivity in the adult mouse brain by traumatic stress in early life. Mol Psychiatry 2017; 22:519-526. [PMID: 27671475 DOI: 10.1038/mp.2016.146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/06/2016] [Accepted: 05/06/2016] [Indexed: 11/09/2022]
Abstract
Traumatic stress in early life is a strong risk factor for psychiatric disorders that can affect individuals across several generations. Although the underlying mechanisms have been proposed to implicate serotonergic transmission in the brain, the neural circuits involved remain poorly delineated. Using pharmacological functional magnetic resonance imaging in mice, we demonstrate that traumatic stress in postnatal life alters 5-HT1A receptor-evoked local and global functions in both, the exposed animals and their progeny when adult. Disrupted functional connectivity is consistent across generations and match limbic circuits implicated in mood disorders, but also networks not previously linked to traumatic stress. These findings underscore the neurobiology and functional mapping of transgenerational effects of early life experiences.
Collapse
Affiliation(s)
- F Razoux
- Laboratory of Neuroepigenetics, University and ETH Zurich, Brain Research Institute, Center for Neuroscience Zürich, Zurich, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - H Russig
- Laboratory of Neuroepigenetics, University and ETH Zurich, Brain Research Institute, Center for Neuroscience Zürich, Zurich, Switzerland
| | - T Mueggler
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - C Baltes
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - K Dikaiou
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - M Rudin
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Center for Neuroscience Zürich, Zurich, Switzerland
| | - I M Mansuy
- Laboratory of Neuroepigenetics, University and ETH Zurich, Brain Research Institute, Center for Neuroscience Zürich, Zurich, Switzerland
| |
Collapse
|
19
|
Chang H, Huang W, Wu C, Huang S, Guan C, Sekar S, Bhakoo KK, Duan Y. A New Variational Method for Bias Correction and Its Applications to Rodent Brain Extraction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:721-733. [PMID: 28114009 DOI: 10.1109/tmi.2016.2636026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Brain extraction is an important preprocessing step for further analysis of brain MR images. Significant intensity inhomogeneity can be observed in rodent brain images due to the high-field MRI technique. Unlike most existing brain extraction methods that require bias corrected MRI, we present a high-order and L0 regularized variational model for bias correction and brain extraction. The model is composed of a data fitting term, a piecewise constant regularization and a smooth regularization, which is constructed on a 3-D formulation for medical images with anisotropic voxel sizes. We propose an efficient multi-resolution algorithm for fast computation. At each resolution layer, we solve an alternating direction scheme, all subproblems of which have the closed-form solutions. The method is tested on three T2 weighted acquisition configurations comprising a total of 50 rodent brain volumes, which are with the acquisition field strengths of 4.7 Tesla, 9.4 Tesla and 17.6 Tesla, respectively. On one hand, we compare the results of bias correction with N3 and N4 in terms of the coefficient of variations on 20 different tissues of rodent brain. On the other hand, the results of brain extraction are compared against manually segmented gold standards, BET, BSE and 3-D PCNN based on a number of metrics. With the high accuracy and efficiency, our proposed method can facilitate automatic processing of large-scale brain studies.
Collapse
|
20
|
Cheng Y, Xu J, Arnone D, Nie B, Yu H, Jiang H, Bai Y, Luo C, Campbell RAA, Shan B, Xu L, Xu X. Resting-state brain alteration after a single dose of SSRI administration predicts 8-week remission of patients with major depressive disorder. Psychol Med 2017; 47:438-450. [PMID: 27697079 DOI: 10.1017/s0033291716002440] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The present study investigated alteration of brain resting-state activity induced by antidepressant treatment and attempted to investigate whether treatment efficacy can be predicted at an early stage of pharmacological treatment. METHOD Forty-eight first-episode medication-free patients diagnosed with major depression received treatment with escitalopram. Resting-state functional magnetic resonance imaging was administered prior to treatment, 5 h after the first dose, during the course of pharmacological treatment (week 4) and at endpoint (week 8). Resting-state activity was evaluated in the course of the 8-week treatment and in relation to clinical improvement. RESULTS Escitalopram dynamically modified resting-state activity in depression during the treatment. After 5 h the antidepressant induced a significant decrease in the signal in the occipital cortex and an increase in the dorsolateral and dorsomedial prefrontal cortices and middle cingulate cortex. Furthermore, while remitters demonstrated more obvious changes following treatment, these were more modest in non-responders suggesting possible tonic and dynamic differences in the serotonergic system. Changes after 5 h in the caudate, occipital and temporal cortices were the best predictor of clinical remission at endpoint. CONCLUSIONS This study revealed the possibility of using the measurement of resting-state neural changes a few hours after acute administration of antidepressant to identify individuals likely to remit after a few weeks of treatment.
Collapse
Affiliation(s)
- Y Cheng
- Department of Psychiatry,First Affiliated Hospital of Kunming Medical University,Kunming,China
| | - J Xu
- Department of Internal Medicine,First Affiliated Hospital of Kunming Medical University,Kunming,China
| | - D Arnone
- Department of Psychological Medicine,Centre for Affective Disorders, King's College London,London,UK
| | - B Nie
- Key Laboratory of Nuclear Analysis Techniques,Institute of High Energy Physics, Chinese Academy of Sciences,Beijing,China
| | - H Yu
- Magnetic Resonance Imaging Center,the First Hospital of Kunming City,Kunming,China
| | - H Jiang
- Department of Psychiatry,First Affiliated Hospital of Kunming Medical University,Kunming,China
| | - Y Bai
- Department of Psychiatry,First Affiliated Hospital of Kunming Medical University,Kunming,China
| | - C Luo
- Magnetic Resonance Imaging Center,the First Hospital of Kunming City,Kunming,China
| | - R A A Campbell
- Department of Neuroscience,Cold Spring Harbor Laboratory,New York,USA
| | - B Shan
- Key Laboratory of Nuclear Analysis Techniques,Institute of High Energy Physics, Chinese Academy of Sciences,Beijing,China
| | - L Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms,Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology,Kunming,China
| | - X Xu
- Department of Psychiatry,First Affiliated Hospital of Kunming Medical University,Kunming,China
| |
Collapse
|
21
|
Khalili-Mahani N, Rombouts SARB, van Osch MJP, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP, Wise R, Zijdenbos AP, van Gerven JM. Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: A review of state-of-the-Art, challenges, and opportunities for studying brain chemistry. Hum Brain Mapp 2017; 38:2276-2325. [PMID: 28145075 DOI: 10.1002/hbm.23516] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
A decade of research and development in resting-state functional MRI (RSfMRI) has opened new translational and clinical research frontiers. This review aims to bridge between technical and clinical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL) were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objectives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and translational studies. Common biomarkers in these studies include functional connectivity, graph metrics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to biological confounds, structured noise from motion and physiological confounds, as well as modeling and inference testing. Currently, these issues are not well explored, and heterogeneities in experimental design, data acquisition and preprocessing make comparative or meta-analysis of existing reports impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for investigating the commonalities and differences in biomarker sensitivity and specificity, and establishing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We provide a list of basic minimum and advanced options that can be considered in design and analyses of future pharma-RSfMRI studies. Hum Brain Mapp 38:2276-2325, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,PERFORM Centre, Concordia University, Montreal, Canada
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | | | - Eugene P Duff
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.,Oxford Centre for Functional MRI of the Brain, Oxford University, Oxford, United Kingdom
| | | | - Lisa D Nickerson
- McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School & Boston Children's Hospital, Boston, Massachusetts
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Richard Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Alex P Zijdenbos
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,Biospective Inc, Montreal, Quebec, Canada
| | - Joop M van Gerven
- Centre for Human Drug Research, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
22
|
Bär KJ, de la Cruz F, Schumann A, Koehler S, Sauer H, Critchley H, Wagner G. Functional connectivity and network analysis of midbrain and brainstem nuclei. Neuroimage 2016; 134:53-63. [PMID: 27046112 DOI: 10.1016/j.neuroimage.2016.03.071] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 12/23/2022] Open
|
23
|
Becker G, Bolbos R, Costes N, Redouté J, Newman-Tancredi A, Zimmer L. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study. Sci Rep 2016; 6:26633. [PMID: 27211078 PMCID: PMC4876409 DOI: 10.1038/srep26633] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/06/2016] [Indexed: 11/09/2022] Open
Abstract
Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology.
Collapse
Affiliation(s)
- G Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, CNRS, INSERM, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - R Bolbos
- CERMEP - Imagerie du vivant, Lyon, France
| | - N Costes
- CERMEP - Imagerie du vivant, Lyon, France
| | - J Redouté
- CERMEP - Imagerie du vivant, Lyon, France
| | | | - L Zimmer
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, CNRS, INSERM, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,CERMEP - Imagerie du vivant, Lyon, France
| |
Collapse
|
24
|
Developmental psychopathology in an era of molecular genetics and neuroimaging: A developmental neurogenetics approach. Dev Psychopathol 2016; 27:587-613. [PMID: 25997774 DOI: 10.1017/s0954579415000188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The emerging field of neurogenetics seeks to model the complex pathways from gene to brain to behavior. This field has focused on imaging genetics techniques that examine how variability in common genetic polymorphisms predict differences in brain structure and function. These studies are informed by other complimentary techniques (e.g., animal models and multimodal imaging) and have recently begun to incorporate the environment through examination of Imaging Gene × Environment interactions. Though neurogenetics has the potential to inform our understanding of the development of psychopathology, there has been little integration between principles of neurogenetics and developmental psychopathology. The paper describes a neurogenetics and Imaging Gene × Environment approach and how these approaches have been usefully applied to the study of psychopathology. Six tenets of developmental psychopathology (the structure of phenotypes, the importance of exploring mechanisms, the conditional nature of risk, the complexity of multilevel pathways, the role of development, and the importance of who is studied) are identified, and how these principles can further neurogenetics applications to understanding the development of psychopathology is discussed. A major issue of this piece is how neurogenetics and current imaging and molecular genetics approaches can be incorporated into developmental psychopathology perspectives with a goal of providing models for better understanding pathways from among genes, environments, the brain, and behavior.
Collapse
|
25
|
Gozzi A, Schwarz AJ. Large-scale functional connectivity networks in the rodent brain. Neuroimage 2015; 127:496-509. [PMID: 26706448 DOI: 10.1016/j.neuroimage.2015.12.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 02/08/2023] Open
Abstract
Resting-state functional Magnetic Resonance Imaging (rsfMRI) of the human brain has revealed multiple large-scale neural networks within a hierarchical and complex structure of coordinated functional activity. These distributed neuroanatomical systems provide a sensitive window on brain function and its disruption in a variety of neuropathological conditions. The study of macroscale intrinsic connectivity networks in preclinical species, where genetic and environmental conditions can be controlled and manipulated with high specificity, offers the opportunity to elucidate the biological determinants of these alterations. While rsfMRI methods are now widely used in human connectivity research, these approaches have only relatively recently been back-translated into laboratory animals. Here we review recent progress in the study of functional connectivity in rodent species, emphasising the ability of this approach to resolve large-scale brain networks that recapitulate neuroanatomical features of known functional systems in the human brain. These include, but are not limited to, a distributed set of regions identified in rats and mice that may represent a putative evolutionary precursor of the human default mode network (DMN). The impact and control of potential experimental and methodological confounds are also critically discussed. Finally, we highlight the enormous potential and some initial application of connectivity mapping in transgenic models as a tool to investigate the neuropathological underpinnings of the large-scale connectional alterations associated with human neuropsychiatric and neurological conditions. We conclude by discussing the translational potential of these methods in basic and applied neuroscience.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems at UniTn, Rovereto, Italy.
| | - Adam J Schwarz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Spain A, Howarth C, Khrapitchev AA, Sharp T, Sibson NR, Martin C. Neurovascular and neuroimaging effects of the hallucinogenic serotonin receptor agonist psilocin in the rat brain. Neuropharmacology 2015; 99:210-20. [PMID: 26192543 PMCID: PMC4655865 DOI: 10.1016/j.neuropharm.2015.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/22/2015] [Accepted: 07/16/2015] [Indexed: 12/28/2022]
Abstract
The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N=6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data.
Collapse
Affiliation(s)
- Aisling Spain
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK; Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Clare Howarth
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK; Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Alexandre A Khrapitchev
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Nicola R Sibson
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Chris Martin
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| |
Collapse
|
27
|
Jonckers E, Shah D, Hamaide J, Verhoye M, Van der Linden A. The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front Pharmacol 2015; 6:231. [PMID: 26539115 PMCID: PMC4612660 DOI: 10.3389/fphar.2015.00231] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations.
Collapse
Affiliation(s)
- Elisabeth Jonckers
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Disha Shah
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Julie Hamaide
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| |
Collapse
|
28
|
Dynamic functional connectivity using state-based dynamic community structure: method and application to opioid analgesia. Neuroimage 2014; 108:274-91. [PMID: 25534114 DOI: 10.1016/j.neuroimage.2014.12.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/20/2022] Open
Abstract
We present a new method, State-based Dynamic Community Structure, that detects time-dependent community structure in networks of brain regions. Most analyses of functional connectivity assume that network behavior is static in time, or differs between task conditions with known timing. Our goal is to determine whether brain network topology remains stationary over time, or if changes in network organization occur at unknown time points. Changes in network organization may be related to shifts in neurological state, such as those associated with learning, drug uptake or experimental conditions. Using a hidden Markov stochastic blockmodel, we define a time-dependent community structure. We apply this approach to data from a functional magnetic resonance imaging experiment examining how contextual factors influence drug-induced analgesia. Results reveal that networks involved in pain, working memory, and emotion show distinct profiles of time-varying connectivity.
Collapse
|
29
|
Stewart SB, Koller JM, Campbell MC, Black KJ. Arterial spin labeling versus BOLD in direct challenge and drug-task interaction pharmacological fMRI. PeerJ 2014; 2:e687. [PMID: 25538867 PMCID: PMC4266850 DOI: 10.7717/peerj.687] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/16/2014] [Indexed: 11/30/2022] Open
Abstract
A carefully controlled study allowed us to compare the sensitivity of ASL (arterial spin labeling) and BOLD (blood oxygen level dependent) fMRI for detecting the effects of the adenosine A2a antagonist tozadenant in Parkinson disease. The study compared the effect of drug directly or the interaction of the drug with a cognitive task. Only ASL detected the direct effect of tozadenant. BOLD was more sensitive to the cognitive task, which (unlike most drugs) allows on–off comparisons over short periods of time. Neither ASL nor BOLD could detect a cognitive-pharmacological interaction. These results are consistent with the known relative advantages of each fMRI method, and suggest that for drug development, directly imaging pharmacodynamic effects with ASL may have advantages over cognitive-pharmacological interaction BOLD, which has hitherto been the more common approach to pharmacological fMRI.
Collapse
Affiliation(s)
- Stephanie B Stewart
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St Louis, MO , USA
| | - Jonathan M Koller
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA
| | - Meghan C Campbell
- Department of Neurology, Washington University School of Medicine , St Louis, MO , USA ; Department of Radiology, Washington University School of Medicine , St Louis, MO , USA
| | - Kevin J Black
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St Louis, MO , USA ; Department of Radiology, Washington University School of Medicine , St Louis, MO , USA ; Department of Anatomy and Neurobiology, Washington University School of Medicine , St Louis, MO , USA ; Division of Biology and Biomedical Sciences, Washington University School of Medicine , St Louis, MO , USA
| |
Collapse
|
30
|
Peng YH, Heintz R, Wang Z, Guo Y, Myers KG, Scremin OU, Maarek JMI, Holschneider DP. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain. FRONTIERS IN PHYSICS 2014; 2:72. [PMID: 25745629 PMCID: PMC4347897 DOI: 10.3389/fphy.2014.00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface "Cx-2D" allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex-changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic studies.
Collapse
Affiliation(s)
- Yu-Hao Peng
- Department of Biomedical Engineering, Viterbi School of Engineering, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan Heintz
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhuo Wang
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yumei Guo
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kalisa G. Myers
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Oscar U. Scremin
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Physiology Department, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jean-Michel I. Maarek
- Department of Biomedical Engineering, Viterbi School of Engineering, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel P. Holschneider
- Department of Biomedical Engineering, Viterbi School of Engineering, School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Kim CE, Kim YK, Chung G, Jeong JM, Lee DS, Kim J, Kim SJ. Large-scale plastic changes of the brain network in an animal model of neuropathic pain. Neuroimage 2014; 98:203-15. [DOI: 10.1016/j.neuroimage.2014.04.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/17/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022] Open
|
32
|
Holschneider DP, Wang Z, Pang RD. Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study. Front Neuroinform 2014; 8:61. [PMID: 24966831 PMCID: PMC4052632 DOI: 10.3389/fninf.2014.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/24/2014] [Indexed: 12/29/2022] Open
Abstract
Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [14C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas–findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture.
Collapse
Affiliation(s)
- Daniel P Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California Los Angeles, CA, USA ; Departments of Neurology, Cell and Neurobiology, Biomedical Engineering, University of Southern California Los Angeles, CA, USA
| | - Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California Los Angeles, CA, USA
| | - Raina D Pang
- Department of Psychiatry and Behavioral Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
33
|
Smucny J, Wylie KP, Tregellas JR. Functional magnetic resonance imaging of intrinsic brain networks for translational drug discovery. Trends Pharmacol Sci 2014; 35:397-403. [PMID: 24906509 DOI: 10.1016/j.tips.2014.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 01/23/2023]
Abstract
Developing translational biomarkers is a priority for psychiatry research. Task-independent functional brain imaging is a relatively novel technique that allows examination of the brain's intrinsic networks, defined as functionally and (often) structurally connected populations of neurons whose properties reflect fundamental neurobiological organizational principles of the central nervous system. The ability to study the activity and organization of these networks has opened a promising new avenue for translational investigation, because they can be analogously examined across species and disease states. Interestingly, imaging studies have revealed shared spatial and functional characteristics of the intrinsic network architecture of the brain across species, including mice, rats, non-human primates, and humans. Using schizophrenia as an example, we show how intrinsic networks may show similar abnormalities in human diseases and animal models of these diseases, supporting their use as biomarkers in drug development.
Collapse
Affiliation(s)
- Jason Smucny
- Research Service, Denver VA Medical Center, Denver, CO, USA; Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jason R Tregellas
- Research Service, Denver VA Medical Center, Denver, CO, USA; Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
34
|
Abstract
BACKGROUND Abnormal brain pH has been suggested to play a critical role in panic disorder. To investigate this possibility, we employed a pH-sensitive magnetic resonance (MR) imaging strategy (T1 relaxation in the rotating frame [T1ρ]) and conventional blood oxygen level-dependent (BOLD) imaging. METHODS Thirteen panic disorder participants and 13 matched control subjects were enrolled in the study. T1ρ and BOLD were used to study the functional response to a visual flashing checkerboard and their relationship to panic symptoms assessed using the Beck Anxiety Inventory. RESULTS In response to visual stimulation, T1ρ imaging revealed a significantly greater increase in the visual cortex of panic disorder participants. T1ρ also detected a stimulus-evoked decrease in the anterior cingulate cortex. Blood oxygen level-dependent imaging detected no functional differences between groups. The correspondence between panic symptoms and functional T1ρ response identified significant relationships within the left inferior parietal lobe, left middle temporal gyrus, and right insula. No relationships were found between panic symptoms and the BOLD signal. CONCLUSIONS The data suggest greater activity-evoked T1ρ changes in the visual cortex and anterior cingulate cortex of panic disorder participants. These observations are consistent with a pH dysregulation in panic disorder. In addition, our data suggest that T1ρ imaging may provide information about panic disorder that is distinct from conventional BOLD imaging and may reflect abnormalities in pH and/or brain metabolism.
Collapse
|
35
|
Byun NE, Grannan M, Bubser M, Barry RL, Thompson A, Rosanelli J, Gowrishankar R, Kelm ND, Damon S, Bridges TM, Melancon BJ, Tarr JC, Brogan JT, Avison MJ, Deutch AY, Wess J, Wood MR, Lindsley CW, Gore JC, Conn PJ, Jones CK. Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine receptor positive allosteric modulator VU0152100. Neuropsychopharmacology 2014; 39:1578-93. [PMID: 24442096 PMCID: PMC4023154 DOI: 10.1038/npp.2014.2] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that selective M4 muscarinic acetylcholine receptor (mAChR) activators may offer a novel strategy for the treatment of psychosis. However, previous efforts to develop selective M4 activators were unsuccessful because of the lack of M4 mAChR subtype specificity and off-target muscarinic adverse effects. We recently developed VU0152100, a highly selective M4 positive allosteric modulator (PAM) that exerts central effects after systemic administration. We now report that VU0152100 dose-dependently reverses amphetamine-induced hyperlocomotion in rats and wild-type mice, but not in M4 KO mice. VU0152100 also blocks amphetamine-induced disruption of the acquisition of contextual fear conditioning and prepulse inhibition of the acoustic startle reflex. These effects were observed at doses that do not produce catalepsy or peripheral adverse effects associated with non-selective mAChR agonists. To further understand the effects of selective potentiation of M4 on region-specific brain activation, VU0152100 alone and in combination with amphetamine were evaluated using pharmacologic magnetic resonance imaging (phMRI). Key neural substrates of M4-mediated modulation of the amphetamine response included the nucleus accumbens (NAS), caudate-putamen (CP), hippocampus, and medial thalamus. Functional connectivity analysis of phMRI data, specifically assessing correlations in activation between regions, revealed several brain networks involved in the M4 modulation of amphetamine-induced brain activation, including the NAS and retrosplenial cortex with motor cortex, hippocampus, and medial thalamus. Using in vivo microdialysis, we found that VU0152100 reversed amphetamine-induced increases in extracellular dopamine levels in NAS and CP. The present data are consistent with an antipsychotic drug-like profile of activity for VU0152100. Taken together, these data support the development of selective M4 PAMs as a new approach to the treatment of psychosis and cognitive impairments associated with psychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Nellie E Byun
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Grannan
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Bubser
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert L Barry
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Analisa Thompson
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Rosanelli
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raajaram Gowrishankar
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA,Vanderbilt International Scholars Program, Vanderbilt University, Nashville, TN, USA
| | - Nathaniel D Kelm
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Stephen Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas M Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce J Melancon
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James C Tarr
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John T Brogan
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Malcolm J Avison
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ariel Y Deutch
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael R Wood
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, 418B Preston Research Building, Nashville, TN 37232, USA, Tel: +1 615 343 4337, Fax: +1 615 343 3088, E-mail:
| |
Collapse
|
36
|
Holschneider DP, Guo Y, Wang Z, Roch M, Scremin OU. Remote brain network changes after unilateral cortical impact injury and their modulation by acetylcholinesterase inhibition. J Neurotrauma 2014; 30:907-19. [PMID: 23343118 DOI: 10.1089/neu.2012.2657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We explored whether cerebral cortical impact injury (CCI) effects extend beyond direct lesion sites to affect remote brain networks, and whether acetylcholinesterase (AChE) inhibition elicits discrete changes in functional activation of motor circuits following CCI. Adult male rats underwent unilateral motor-sensory CCI or sham injury. Physostigmine (AChE inhibitor) or saline were administered subcutaneously continuously via implanted minipumps (1.6 micromoles/kg/day) for 3 weeks, followed by cerebral perfusion mapping during treadmill walking using [(14)C]-iodoantipyrine. Quantitative autoradiographs were analyzed by statistical parametric mapping and functional connectivity (FC) analysis. CCI resulted in functional deficits in the ipsilesional basal ganglia, with increased activation contralesionally. Recruitment was also observed, especially contralesionally, of the red nucleus, superior colliculus, pedunculopontine tegmental nucleus, thalamus (ventrolateral n., central medial n.), cerebellum, and sensory cortex. FC decreased significantly within ipsi- and contralesional motor circuits and between hemispheres, but increased between midline cerebellum and select regions of the basal ganglia within each hemisphere. Physostigmine significantly increased functional brain activation in the cerebellar thalamocortical pathway (midline cerebellum→ventrolateral thalamus→motor cortex), subthalamic nucleus/zona incerta, and red nucleus and bilateral sensory cortex. In conclusion, CCI resulted in increased functional recruitment of contralesional motor cortex and bilateral subcortical motor regions, as well as recruitment of the cerebellar-thalamocortical circuit and contralesional sensory cortex. This phenomenon, augmented by physostigmine, may partially compensate motor deficits. FC decreased inter-hemispherically and in negative, but not positive, intra-hemispherical FC, and it was not affected by physostigmine. Circuit-based approaches into functional brain reorganization may inform future behavioral or molecular strategies to augment targeted neurorehabilitation.
Collapse
Affiliation(s)
- Daniel P Holschneider
- Department of Psychiatry, Keck School of Medicine at University of Southern California , Los Angeles, California 90033, USA.
| | | | | | | | | |
Collapse
|
37
|
Anatomical MRI templates of tree shrew brain for volumetric analysis and voxel-based morphometry. J Neurosci Methods 2013; 220:9-17. [PMID: 24012828 DOI: 10.1016/j.jneumeth.2013.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/25/2013] [Accepted: 08/21/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Tree shrews are close relatives of primates, and are increasingly used as models in the research of vision, social stress and neurological/psychiatric diseases. However, neuroimaging techniques, for example magnetic resonance (MR) imaging, are only rarely applied to this species to study the structure and function of the brain. A template MR image set, which is essential for morphometry/volumetric analysis, of tree shrew brain has been lacking in the literature. NEW METHOD High-resolution anatomical MR images and diffusion tensor images of the brain were acquired from male Chinese tree shrews (Tupaia belangeri chinensis), and resampled to an isotropic resolution of 200 μm × 200 μm × 200 μm. Population-based image templates of tree shrew brain, including gray matter/white matter/cerebrospinal fluid probability maps and a fractional anisotropy template, were constructed at this spatial resolution, all in a reference space. Digital masks of representative anatomical structures, including hippocampus, amygdala and cingulum bundle, were created. RESULT With the templates constructed, the volumes of bilateral hippocampus and amygdala were measured using a template-facilitated semi-automated approach to be 59.8 ± 8.3 and 64.3 ± 3.4 mm(3), respectively. COMPARISON WITH EXISTING METHOD(S) For the first time, high-resolution MR image templates of tree shrew brain were reported. The average volume of bilateral hippocampus measured with the template-facilitated semi-automated approach was found to be similar to the result obtained by the much more labor-intensive manual approach. CONCLUSIONS The MR image templates obtained in this study are useful for analyzing neuroimage data of tree shrew brain. The templates are freely available to the scientific community upon request.
Collapse
|
38
|
Antinociceptive activity of crotoxin in the central nervous system: a functional Magnetic Resonance Imaging study. Toxicon 2013; 74:44-55. [PMID: 23916599 DOI: 10.1016/j.toxicon.2013.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 11/23/2022]
Abstract
Crotoxin, the main neurotoxic component of the venom of South American rattlesnake (Crotalus durissus terrificus), is reported to have potent antinociceptive activity. Several authors have shown mainly in behavioral pain models that crotoxin induces antinociceptive effects, supposed to be mediated by actions on the central nervous system. The antinociceptive effects of crotoxin (45 μg/kg ip) in rats were verified in this study by increased response latencies in a Hargreaves test and tail flick test. In addition, it was demonstrated that crotoxin does not lead to motor impairments during a rotarod test and open field test. The main objective, carried out by blood oxygen level dependent functional Magnetic Resonance Imaging (BOLD fMRI) in anesthetized rats, was to determine which specific brain structures are involved in these antinociceptive effects. Moreover, potential antihyperalgesic effects were investigated by inducing a local hyperalgesia on the left hind paw. Therefore, antinociceptive effects (right paw) and antihyperalgesic effects (left paw) of crotoxin were able to be differentiated. As a result, crotoxin exhibited dominant antihyperalgesic but also antinociceptive effects during pain stimulation. Reductions of BOLD signal already occurred in brain input structures but were most prominent in primary and secondary somatosensory cortices. In conclusion, BOLD fMRI in anesthetized rats proved to be a helpful tool in toxinology, particularly in unraveled mechanisms of modulating nociception in the central nervous system by (potential) analgesics like crotoxin.
Collapse
|
39
|
Black KJ, Koller JM, Miller BD. Rapid quantitative pharmacodynamic imaging by a novel method: theory, simulation testing and proof of principle. PeerJ 2013; 1:e117. [PMID: 23940831 PMCID: PMC3740141 DOI: 10.7717/peerj.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/08/2013] [Indexed: 11/20/2022] Open
Abstract
Pharmacological challenge imaging has mapped, but rarely quantified, the sensitivity of a biological system to a given drug. We describe a novel method called rapid quantitative pharmacodynamic imaging. This method combines pharmacokinetic-pharmacodynamic modeling, repeated small doses of a challenge drug over a short time scale, and functional imaging to rapidly provide quantitative estimates of drug sensitivity including EC 50 (the concentration of drug that produces half the maximum possible effect). We first test the method with simulated data, assuming a typical sigmoidal dose-response curve and assuming imperfect imaging that includes artifactual baseline signal drift and random error. With these few assumptions, rapid quantitative pharmacodynamic imaging reliably estimates EC 50 from the simulated data, except when noise overwhelms the drug effect or when the effect occurs only at high doses. In preliminary fMRI studies of primate brain using a dopamine agonist, the observed noise level is modest compared with observed drug effects, and a quantitative EC 50 can be obtained from some regional time-signal curves. Taken together, these results suggest that research and clinical applications for rapid quantitative pharmacodynamic imaging are realistic.
Collapse
Affiliation(s)
- Kevin J Black
- Departments of Psychiatry, Neurology, Radiology, and Anatomy & Neurobiology, Washington University School of Medicine , St. Louis, MO , USA
| | | | | |
Collapse
|
40
|
Li J, Liu X, Zhuo J, Gullapalli RP, Zara JM. An automatic rat brain extraction method based on a deformable surface model. J Neurosci Methods 2013; 218:72-82. [DOI: 10.1016/j.jneumeth.2013.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/18/2023]
|
41
|
Jonckers E, Van der Linden A, Verhoye M. Functional magnetic resonance imaging in rodents: an unique tool to study in vivo pharmacologic neuromodulation. Curr Opin Pharmacol 2013; 13:813-20. [PMID: 23856429 DOI: 10.1016/j.coph.2013.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
When new compounds targeting the brain are developed, it is important to assess both the acute and chronic effects on brain functioning. This can be done non-invasively using a technique called functional magnetic resonance imaging (fMRI). This review discusses the possibilities of both stimulation-based and resting state fMRI to study pharmacological modulations of the rodent brain. Moreover, attention is given to the use of anesthetics which could importantly influence the outcome of both techniques.
Collapse
|
42
|
Razoux F, Baltes C, Mueggler T, Seuwen A, Russig H, Mansuy I, Rudin M. Functional MRI to assess alterations of functional networks in response to pharmacological or genetic manipulations of the serotonergic system in mice. Neuroimage 2013; 74:326-36. [DOI: 10.1016/j.neuroimage.2013.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/17/2013] [Accepted: 02/11/2013] [Indexed: 01/21/2023] Open
|
43
|
van de Ven V, Wingen M, Kuypers KPC, Ramaekers JG, Formisano E. Escitalopram Decreases Cross-Regional Functional Connectivity within the Default-Mode Network. PLoS One 2013; 8:e68355. [PMID: 23826388 PMCID: PMC3694983 DOI: 10.1371/journal.pone.0068355] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 05/29/2013] [Indexed: 12/13/2022] Open
Abstract
The default-mode network (DMN), which comprises medial frontal, temporal and parietal regions, is part of the brain’s intrinsic organization. The serotonergic (5-HT) neurotransmitter system projects to DMN regions from midbrain efferents, and manipulation of this system could thus reveal insights into the neurobiological mechanisms of DMN functioning. Here, we investigate intrinsic functional connectivity of the DMN as a function of activity of the serotonergic system, through the administration of the selective serotonin reuptake inhibitor (SSRI) escitalopram. We quantified DMN functional connectivity using an approach based on dual-regression. Specifically, we decomposed group data of a subset of the functional time series using spatial independent component analysis, and projected the group spatial modes to the same and an independent resting state time series of individual participants. We found no effects of escitalopram on global functional connectivity of the DMN at the map-level; that is, escitalopram did not alter the global functional architecture of the DMN. However, we found that escitalopram decreased DMN regional pairwise connectivity, which included anterior and posterior cingulate cortex, hippocampal complex and lateral parietal regions. Further, regional DMN connectivity covaried with alertness ratings across participants. Our findings show that escitalopram altered intrinsic regional DMN connectivity, which suggests that the serotonergic system plays an important role in DMN connectivity and its contribution to cognition. Pharmacological challenge designs may be a useful addition to resting-state functional MRI to investigate intrinsic brain functional organization.
Collapse
Affiliation(s)
- Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| | - Marleen Wingen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Kim P. C. Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Johannes G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
44
|
Xie P, Yu T, Fu X, Tu Y, Zou Y, Lui S, Zhao X, Huang X, Kemp GJ, Gong Q. Altered functional connectivity in an aged rat model of postoperative cognitive dysfunction: a study using resting-state functional MRI. PLoS One 2013; 8:e64820. [PMID: 23738003 PMCID: PMC3667804 DOI: 10.1371/journal.pone.0064820] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/18/2013] [Indexed: 11/24/2022] Open
Abstract
Background Postoperative cognitive impairment is a common complication after cardiac and major non-cardiac surgery in the elderly, but its causes and mechanisms remain unclear. The purpose of the current study was to use resting-state functional magnetic resonance imaging (fMRI) to explore changes in the functional connectivity, i.e. the synchronization of low frequency fluctuation (LFF), in an animal model of cognitive impairment in aged rats. Methods Aged (22 months) rats were anaesthetized with 40 µg/kg fentanyl and 500 µg/kg droperidol (intraperitoneal) for splenectomy. Cognitive function was assessed using Y maze prior to operation and on postoperative days 1, 3 and 9. To evaluate functional connectivity, resting-state fMRI data were acquired using a 3T MR imaging system with a 4 channel phase array rat head coil. Results Cognitive function was impaired at postoperative days 1 and 3 compared with preoperative. Significant synchronized LFF was detected bilaterally in the primary somatosensory cortex and hippocampus preoperatively. By contrast, no significant LFF synchronization was detected in the right primary somatosensory cortex and right hippocampus on postoperative days 1 and 3, although the pattern of functional connectivity had become almost normal by day 9. Conclusion Splenectomy performed under neuroleptic anaesthesia triggers a cognitive decline that is associated with altered spontaneous neuronal activity in the cortex and hippocampus.
Collapse
Affiliation(s)
- Peng Xie
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China, People's Republic
| | - Tian Yu
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China, People's Republic
- * E-mail:
| | - Xiaoyun Fu
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China, People's Republic
| | - Ye Tu
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China, People's Republic
| | - Yan Zou
- The School of Public Health, Zunyi Medical College, Zunyi, Guizhou, China, People's Republic
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China, People's Republic
| | - Xuna Zhao
- Philips Medical Systems Beijing, Beijing, China, People's Republic
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China, People's Republic
| | - Graham J. Kemp
- Magnetic Resonance and Image Analysis Research Centre (MARIARC), Faculty of Health and Life Sciences, University of Liverpool, United Kingdom
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China, People's Republic
| |
Collapse
|
45
|
Becerra L, Upadhyay J, Chang PC, Bishop J, Anderson J, Baumgartner R, Schwarz AJ, Coimbra A, Wallin D, Nutile L, George E, Maier G, Sunkaraneni S, Iyengar S, Evelhoch JL, Bleakman D, Hargreaves R, Borsook D. Parallel buprenorphine phMRI responses in conscious rodents and healthy human subjects. J Pharmacol Exp Ther 2013; 345:41-51. [PMID: 23370795 DOI: 10.1124/jpet.112.201145] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pharmacological magnetic resonance imaging (phMRI) is one method by which a drug's pharmacodynamic effects in the brain can be assessed. Although phMRI has been frequently used in preclinical and clinical settings, the extent to which a phMRI signature for a compound translates between rodents and humans has not been systematically examined. In the current investigation, we aimed to build on recent clinical work in which the functional response to 0.1 and 0.2 mg/70 kg i.v. buprenorphine (partial µ-opioid receptor agonist) was measured in healthy humans. Here, we measured the phMRI response to 0.04 and 0.1 mg/kg i.v. buprenorphine in conscious, naive rats to establish the parallelism of the phMRI signature of buprenorphine across species. PhMRI of 0.04 and 0.1 mg/kg i.v. buprenorphine yielded dose-dependent activation in a brain network composed of the somatosensory cortex, cingulate, insula, striatum, thalamus, periaqueductal gray, and cerebellum. Similar dose-dependent phMRI activation was observed in the human phMRI studies. These observations indicate an overall preservation of pharmacodynamic responses to buprenorphine between conscious, naive rodents and healthy human subjects, particularly in brain regions implicated in pain and analgesia. This investigation further demonstrates the usefulness of phMRI as a translational tool in neuroscience research that can provide mechanistic insight and guide dose selection in drug development.
Collapse
Affiliation(s)
- Lino Becerra
- Imaging Consortium for Drug Development, P.A.I.N. Group, Harvard Medical School, Children’s Hospital of Boston, Waltham, Massachusetts 02453, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Licata SC, Nickerson LD, Lowen SB, Trksak GH, Maclean RR, Lukas SE. The hypnotic zolpidem increases the synchrony of BOLD signal fluctuations in widespread brain networks during a resting paradigm. Neuroimage 2013; 70:211-22. [PMID: 23296183 DOI: 10.1016/j.neuroimage.2012.12.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/21/2012] [Accepted: 12/22/2012] [Indexed: 12/17/2022] Open
Abstract
Networks of brain regions having synchronized fluctuations of the blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) time-series at rest, or "resting state networks" (RSNs), are emerging as a basis for understanding intrinsic brain activity. RSNs are topographically consistent with activity-related networks subserving sensory, motor, and cognitive processes, and studying their spontaneous fluctuations following acute drug challenge may provide a way to understand better the neuroanatomical substrates of drug action. The present within-subject double-blind study used BOLD fMRI at 3T to investigate the functional networks influenced by the non-benzodiazepine hypnotic zolpidem (Ambien). Zolpidem is a positive modulator of γ-aminobutyric acid(A) (GABA(A)) receptors, and engenders sedative effects that may be explained in part by how it modulates intrinsic brain activity. Healthy participants (n=12) underwent fMRI scanning 45 min after acute oral administration of zolpidem (0, 5, 10, or 20mg), and changes in BOLD signal were measured while participants gazed at a static fixation point (i.e., at rest). Data were analyzed using group independent component analysis (ICA) with dual regression and results indicated that compared to placebo, the highest dose of zolpidem increased functional connectivity within a number of sensory, motor, and limbic networks. These results are consistent with previous studies showing an increase in functional connectivity at rest following administration of the positive GABA(A) receptor modulators midazolam and alcohol, and suggest that investigating how zolpidem modulates intrinsic brain activity may have implications for understanding the etiology of its powerful sedative effects.
Collapse
Affiliation(s)
- Stephanie C Licata
- Behavioral Psychopharmacology Research Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Feasibility of ASL-based phMRI with a single dose of oral citalopram for repeated assessment of serotonin function. Neuroimage 2012; 63:1695-700. [DOI: 10.1016/j.neuroimage.2012.07.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/18/2012] [Accepted: 07/18/2012] [Indexed: 11/22/2022] Open
|
48
|
Voxel scale complex networks of functional connectivity in the rat brain: neurochemical state dependence of global and local topological properties. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:615709. [PMID: 22919431 PMCID: PMC3415145 DOI: 10.1155/2012/615709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022]
Abstract
Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties. However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local, voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by pharmacological challenge (d-amphetamine, fluoxetine, and nicotine) to discriminate between stimulus-specific functional connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar, mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.
Collapse
|
49
|
Crunelle CL, Veltman DJ, Booij J, Emmerik – van Oortmerssen K, den Brink W. Substrates of neuropsychological functioning in stimulant dependence: a review of functional neuroimaging research. Brain Behav 2012; 2:499-523. [PMID: 22950052 PMCID: PMC3432971 DOI: 10.1002/brb3.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 11/11/2022] Open
Abstract
Stimulant dependence is associated with neuropsychological impairments. Here, we summarize and integrate the existing neuroimaging literature on the neural substrates of neuropsychological (dys)function in stimulant dependence, including cocaine, (meth-)amphetamine, ecstasy and nicotine dependence, and excessive caffeine use, comparing stimulant abusers (SAs) to nondrug using healthy controls (HCs). Despite some inconsistencies, most studies indicated altered brain activation in prefrontal cortex (PFC) and insula in response to reward and punishment, and higher limbic and anterior cingulate cortex (ACC)/PFC activation during craving and attentional bias paradigms in SAs compared with HCs. Impulsivity in SAs was associated with lower ACC and presupplementary motor area activity compared with HCs, and related to both ventral (amygdala, ventrolateral PFC, insula) and dorsal (dorsolateral PFC, dorsal ACC, posterior parietal cortex) systems. Decision making in SAs was associated with low dorsolateral PFC activity and high orbitofrontal activity. Finally, executive function in SAs was associated with lower activation in frontotemporal regions and higher activation in premotor cortex compared with HCs. It is concluded that the lower activations compared with HCs are likely to reflect the neural substrate of impaired neurocognitive functions, whereas higher activations in SAs compared with HCs are likely to reflect compensatory cognitive control mechanisms to keep behavioral task performance to a similar level as in HCs. However, before final conclusions can be drawn, additional research is needed using neuroimaging in SAs and HCs using larger and more homogeneous samples as well as more comparable task paradigms, study designs, and statistical analyses.
Collapse
Affiliation(s)
- Cleo L. Crunelle
- Amsterdam Institute for Addiction Research and Department of Psychiatry Academic Medical Center University of Amsterdam Amsterdam The Netherlands
- Department of Nuclear Medicine Academic Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Dick J. Veltman
- Amsterdam Institute for Addiction Research and Department of Psychiatry Academic Medical Center University of Amsterdam Amsterdam The Netherlands
- Department of Psychiatry Vrije Universiteit medical center Amsterdam The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine Academic Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Katelijne Emmerik – van Oortmerssen
- Amsterdam Institute for Addiction Research and Department of Psychiatry Academic Medical Center University of Amsterdam Amsterdam The Netherlands
- Arkin Mental Health and Addiction Treatment Centre Amsterdam The Netherlands
| | - Wim den Brink
- Amsterdam Institute for Addiction Research and Department of Psychiatry Academic Medical Center University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
50
|
Bouet V, Klomp A, Freret T, Wylezinska-Arridge M, Lopez-Tremoleda J, Dauphin F, Boulouard M, Booij J, Gsell W, Reneman L. Age-dependent effects of chronic fluoxetine treatment on the serotonergic system one week following treatment. Psychopharmacology (Berl) 2012; 221:329-39. [PMID: 22205158 DOI: 10.1007/s00213-011-2580-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 11/07/2011] [Indexed: 01/08/2023]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are increasingly used for the treatment of depression in children. Limited data are, however, available on their effects on brain development and their efficacy remains debated. Moreover, previous experimental studies are seriously hampered in their clinical relevance. OBJECTIVES The aim of the present study was to investigate putative age-related effects of a chronic treatment with fluoxetine (5 mg/kg, either orally or i.p. for 3 weeks, 1 week washout) using conventional methods (behavioral testing and binding assay using [(123)I]β-CIT) and a novel magnetic resonance imaging (MRI) approach. METHODS Behavior was assessed, as well as serotonin transporter (SERT) availability and function through ex vivo binding assays and in vivo pharmacological MRI (phMRI) with an acute fluoxetine challenge (10 mg/kg oral or 5 mg/kg i.v.) in adolescent and adult rats. RESULTS Fluoxetine caused an increase in anxiety-like behavior in treated adult, but not adolescent, rats. On the binding assays, we observed increased SERT densities in most cortical brain regions and hypothalamus in adolescent, but not adult, treated rats. Finally, reductions in brain activation were observed with phMRI following treatment, in both adult and adolescent treated animals. CONCLUSION Collectively, our data indicate that the short-term effects of fluoxetine on the 5-HT system may be age-dependent. These findings could reflect structural and functional rearrangements in the developing brain that do not occur in the matured rat brain. phMRI possibly will be well suited to study this important issue in the pediatric population.
Collapse
Affiliation(s)
- Valentine Bouet
- Groupe Mémoire et Plasticité comportementale (GMPc), Université de Caen Basse-Normandie, Caen, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|