1
|
Wu J, Yang G, Liu Z, Liu Y, Guo J, Yan G, Ding G, Fu C, Yang Z, Yang X, Chen L. Language processing in emergencies recruits both language and default mode networks. Neuropsychologia 2025; 213:109152. [PMID: 40274046 DOI: 10.1016/j.neuropsychologia.2025.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/03/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Effective language processing in emergencies is crucial for professionals, including firefighters, soldiers, and doctors. Substantial research has been undertaken on language processing in silence, with several studies indicating the impact of noise on language processing in non-emergencies. However, it remains unclear about the neural mechanisms involved in language processing during emergencies, especially the role of the language network (LN) and the default mode network (DMN) in such contexts. In this study, we adopted functional near-infrared spectroscopy (fNIRS) to investigate brain activities of 60 participants who were performing language processing tasks in simulated high-emergency and low-emergency scenarios. Compared to the resting state, the reading task demonstrated reduced activation in bilateral superior and middle frontal gyri (SFG/MFG), components of the DMN, alongside enhanced activation in Broca's area, left temporal lobe and left inferior parietal lobule (IPL) - key LN regions. Furthermore, the activity of the left MFG was positively correlated with the level of stress experienced by participants during the task. Additionally, a positive correlation was identified between language processing performance and activation of the left MFG, exclusively in the participants exposed to high-emergency scenarios. These results support the view that language processing during emergency relies on both the LN and DMN. The current study deepens our understanding of the neural mechanisms that underlie language processing in complex, real-life emergency scenarios.
Collapse
Affiliation(s)
- Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China; Department of Linguistics, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2109, Sydney, Australia
| | - Guang Yang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China; Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Zhisai Liu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Youyi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Jia Guo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Guoli Yan
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Chenlu Fu
- Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Zihan Yang
- Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Xiujie Yang
- Faculty of Psychology, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, 100875, China.
| | - Luyao Chen
- School of International Chinese Language Education, Beijing Normal University, Beijing, 100875, China; Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, 100875, China; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04207, Germany; Institute of Educational System Science, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
2
|
Chen Y, Li HT, Luo X, Li G, Ide JS, Li CSR. Polygenic risks for depression and neural responses to reward and punishment in young adults. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00167-3. [PMID: 40412620 DOI: 10.1016/j.bpsc.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/18/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Extensive research has shown aberrant reward and punishment processing in people with depression. Genetic risks contribute to depression, but whether or how these risks of depression may impact behavioral and neural responses to reward and punishment remains unclear. METHODS We curated the data of 879 young adults performing a gambling task during brain imaging from the Human Connectome Project. Depression severity was assessed with the Achenbach Adult Self Report. Polygenic risk scores (PRS) for depression were computed for all subjects. With published routines and at a corrected threshold, we evaluated how brain responses to reward and punishment associated with depression scores and PRS in a linear regression in all, male, and female subjects, with age, sex (for all), race, and drinking severity as covariates. RESULTS The results showed broad frontal, parietal, and occipital cortical activation in negative correlation with PRS during both reward and punishment processing. Notably, posterior cingulate cortical activation was specifically associated with PRS-related punishment processing. Additionally, men and women displayed both shared and distinct neural responses to PRS-related reward and punishment processing. CONCLUSIONS These findings highlight the influence of genetic risks for depression on neural responses to reward and punishment and provide insights into genetically informed markers of depression.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A.
| | | | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, U.S.A; Inter-department Neuroscience Program, Yale University, New Haven, CT 06520, U.S.A; Wu Tsai Institute, Yale University, New Haven, CT 06520, U.S.A
| |
Collapse
|
3
|
Zhi Y, Huang T, Liu S, Li M, Hu H, Liang X, Jiang Z, Zhu J, Liu R. Correlation between iron deposition and cognitive function in mild to moderate Alzheimer's disease based on quantitative susceptibility mapping. Front Aging Neurosci 2024; 16:1485530. [PMID: 39478701 PMCID: PMC11521800 DOI: 10.3389/fnagi.2024.1485530] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Background Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressively worsening cognitive decline and memory loss. Excessive iron accumulation produces severe cognitive impairment. However, there are no uniform conclusions about changes in brain iron content in AD. This study aimed to investigate the iron content of the deep brain nuclei in AD, and its correlation with cognitive function. Methods Thirty-one patients with mild to moderate AD, 17 patients with mild cognitive impairment (MCI), and 20 age-, sex-, and education-matched healthy controls (HC) were collected. The QSM was used to quantify the magnetic susceptibility values of the caudate nucleus, putamen, globus pallidus, substantia nigra, red nucleus, and dentate nucleus, and to analyze the differences that existed between the three groups. As well as the correlation between the magnetic susceptibility values and cognitive function was calculated. Results The magnetic susceptibility values of bilateral globus pallidus, left putamen, and bilateral substantia nigra were significantly higher in AD patients than in HC, and the magnetic susceptibility values of the right globus pallidus were significantly higher in AD patients than in MCI (all p < 0.05). The magnetic susceptibility values of the left dentate nucleus in the AD group were negatively correlated with the writing function of the MMSE subitem (r = -0.42, p = 0.020), and the magnetic susceptibility values of the left caudate nucleus and right dentate nucleus were significantly and negatively correlated with the naming function and language function of the MoCA subitem, respectively (r = -0.43, p = 0.019; r = -0.36, p = 0.048). Conclusion Magnetic susceptibility values based on QSM correlate with cognitive function are valuable in discriminating AD from MCI and AD from HC.
Collapse
Affiliation(s)
- Yuqi Zhi
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Huang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shanwen Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Hu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoyun Liang
- Institute of Artificial Intelligence and Clinical Innovation, Neusoft Medical Systems Co., Ltd., Shanghai, China
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Jo HJ, Park C, Lee E, Lee JH, Kim J, Han S, Kim J, Kim EJ, Kim E, Kim JJ. Neural Effects of One's Own Voice on Self-Talk for Emotion Regulation. Brain Sci 2024; 14:637. [PMID: 39061378 PMCID: PMC11274574 DOI: 10.3390/brainsci14070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
One's own voice undergoes unique processing that distinguishes it from others' voices, and thus listening to it may have a special neural basis for self-talk as an emotion regulation strategy. This study aimed to elucidate how neural effects of one's own voice differ from those of others' voices on the implementation of emotion regulation strategies. Twenty-one healthy adults were scanned using fMRI while listening to sentences synthesized in their own or others' voices for self-affirmation and cognitive defusion, which were based on mental commitments to strengthen one's positive aspects and imagining metaphoric actions to shake off negative aspects, respectively. The interaction effect between voice identity and strategy was observed in the superior temporal sulcus, middle temporal gyrus, and parahippocampal cortex, and activity in these regions showed that the uniqueness of one's own voice is reflected more strongly for cognitive defusion than for self-affirmation. This interaction was also seen in the precuneus, suggesting intertwining of self-referential processing and episodic memory retrieval in self-affirmation with one's own voice. These results imply that unique effects of one's own voice may be expressed differently due to the degree of engagement of neural sharpening-related regions and self-referential networks depending on the type of emotion regulation.
Collapse
Affiliation(s)
- Hye-jeong Jo
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.-j.J.); (E.K.)
| | - Chanmi Park
- HCI Lab, Cognitive Science, Yonsei University, Seoul 03722, Republic of Korea; (C.P.); (E.L.); (J.K.)
| | - Eunyoung Lee
- HCI Lab, Cognitive Science, Yonsei University, Seoul 03722, Republic of Korea; (C.P.); (E.L.); (J.K.)
| | - Jee Hang Lee
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul 03016, Republic of Korea;
| | - Jinwoo Kim
- HCI Lab, Cognitive Science, Yonsei University, Seoul 03722, Republic of Korea; (C.P.); (E.L.); (J.K.)
| | - Sujin Han
- Department of Communication, Yonsei University, Seoul 03722, Republic of Korea; (S.H.); (J.K.)
| | - Joohan Kim
- Department of Communication, Yonsei University, Seoul 03722, Republic of Korea; (S.H.); (J.K.)
| | - Eun Joo Kim
- Graduate School of Education, Yonsei University, Seoul 03722, Republic of Korea;
| | - Eosu Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.-j.J.); (E.K.)
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae-Jin Kim
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Lavallé L, Brunelin J, Jardri R, Haesebaert F, Mondino M. The neural signature of reality-monitoring: A meta-analysis of functional neuroimaging studies. Hum Brain Mapp 2023; 44:4372-4389. [PMID: 37246722 PMCID: PMC10318245 DOI: 10.1002/hbm.26387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023] Open
Abstract
Distinguishing imagination and thoughts from information we perceived from the environment, a process called reality-monitoring, is important in everyday situations. Although reality monitoring seems to overlap with the concept of self-monitoring, which allows one to distinguish self-generated actions or thoughts from those generated by others, the two concepts remain largely separate cognitive domains and their common brain substrates have received little attention. We investigated the brain regions involved in these two cognitive processes and explored the common brain regions they share. To do this, we conducted two separate coordinate-based meta-analyses of functional magnetic resonance imaging studies assessing the brain regions involved in reality- and self-monitoring. Few brain regions survived threshold-free cluster enhancement family-wise multiple comparison correction (p < .05), likely owing to the small number of studies identified. Using uncorrected statistical thresholds recommended by Signed Differential Mapping with Permutation of Subject Images, the meta-analysis of reality-monitoring studies (k = 9 studies including 172 healthy subjects) revealed clusters in the lobule VI of the cerebellum, the right anterior medial prefrontal cortex and anterior thalamic projections. The meta-analysis of self-monitoring studies (k = 12 studies including 192 healthy subjects) highlighted the involvement of a set of brain regions including the lobule VI of the left cerebellum and fronto-temporo-parietal regions. We showed with a conjunction analysis that the lobule VI of the cerebellum was consistently engaged in both reality- and self-monitoring. The current findings offer new insights into the common brain regions underlying reality-monitoring and self-monitoring, and suggest that the neural signature of the self that may occur during self-production should persist in memories.
Collapse
Affiliation(s)
- Layla Lavallé
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Jérôme Brunelin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Renaud Jardri
- Université de Lille, INSERM U‐1172, Lille Neurosciences & Cognition, Plasticity & Subjectivity TeamLilleFrance
| | - Frédéric Haesebaert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Marine Mondino
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| |
Collapse
|
6
|
Preisig BC, Riecke L, Hervais-Adelman A. Speech sound categorization: The contribution of non-auditory and auditory cortical regions. Neuroimage 2022; 258:119375. [PMID: 35700949 DOI: 10.1016/j.neuroimage.2022.119375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Which processes in the human brain lead to the categorical perception of speech sounds? Investigation of this question is hampered by the fact that categorical speech perception is normally confounded by acoustic differences in the stimulus. By using ambiguous sounds, however, it is possible to dissociate acoustic from perceptual stimulus representations. Twenty-seven normally hearing individuals took part in an fMRI study in which they were presented with an ambiguous syllable (intermediate between /da/ and /ga/) in one ear and with disambiguating acoustic feature (third formant, F3) in the other ear. Multi-voxel pattern searchlight analysis was used to identify brain areas that consistently differentiated between response patterns associated with different syllable reports. By comparing responses to different stimuli with identical syllable reports and identical stimuli with different syllable reports, we disambiguated whether these regions primarily differentiated the acoustics of the stimuli or the syllable report. We found that BOLD activity patterns in left perisylvian regions (STG, SMG), left inferior frontal regions (vMC, IFG, AI), left supplementary motor cortex (SMA/pre-SMA), and right motor and somatosensory regions (M1/S1) represent listeners' syllable report irrespective of stimulus acoustics. Most of these regions are outside of what is traditionally regarded as auditory or phonological processing areas. Our results indicate that the process of speech sound categorization implicates decision-making mechanisms and auditory-motor transformations.
Collapse
Affiliation(s)
- Basil C Preisig
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands; Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland; Department of Comparative Language Science, Evolutionary Neuroscience of Language, University of Zurich, 8050 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, 8057 Zurich, Switzerland.
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Alexis Hervais-Adelman
- Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Setiadi TM, Martens S, Opmeer EM, Marsman JBC, Tumati S, Reesink FE, De Deyn PP, Aleman A, Ćurčić-Blake B. Widespread white matter aberration is associated with the severity of apathy in amnestic Mild Cognitive Impairment: Tract-based spatial statistics analysis. NEUROIMAGE-CLINICAL 2021; 29:102567. [PMID: 33545500 PMCID: PMC7856325 DOI: 10.1016/j.nicl.2021.102567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
In aMCI, apathy severity was associated with lower FA in widespread WM pathways. WM aberrations are related to apathy severity after controlling for depression. Disruptions related to apathy severity are not limited to frontal-subcortical area.
Apathy is recognized as a prevalent behavioral symptom of amnestic Mild Cognitive Impairment (aMCI). In aMCI, apathy is associated with an increased risk and increases the risk of progression to Alzheimer’s Disease (AD). Previous DTI study in aMCI showed that apathy has been associated with white matter alterations in the cingulum, middle and inferior longitudinal fasciculus, fornix, and uncinate fasciculus. However, the underlying white matter correlates associated with apathy in aMCI are still unclear. We investigated this relationship using whole-brain diffusion tensor imaging (DTI). Twenty-nine aMCI patients and 20 matched cognitively healthy controls were included. Apathy severity was assessed using the Apathy Evaluation Scale Clinician version. We applied the tract-based spatial statistics analyses to DTI parameters: fractional anisotropy (FA), mean diffusivity, axial diffusivity, and radial diffusivity to investigate changes in white matter pathways associated with the severity of apathy. No significant difference was found in any of the DTI parameters between aMCI and the control group. In aMCI, higher severity of apathy was associated with lower FA in various white matter pathways including the left anterior part of inferior fronto-occipital fasciculus/uncinate fasciculus, genu and body of the corpus callosum, superior and anterior corona radiata, anterior thalamic radiation of both hemispheres and in the right superior longitudinal fasciculus/anterior segment of arcuate fasciculus (p < .05, TFCE-corrected) after controlling for age, gender and GDS non-apathy. A trend association was observed in the right posterior corona radiata and corticospinal tract/internal capsule, and bilateral forceps minor (p < .065, TFCE-corrected). In conclusion, in aMCI, severity of apathy is associated with aberrant white matter integrity in widely distributed pathways, within and between hemispheres.
Collapse
Affiliation(s)
- Tania M Setiadi
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Sander Martens
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Esther M Opmeer
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Health and Welfare, Windesheim University of Applied Science, Zwolle, The Netherlands
| | - Jan-Bernard C Marsman
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Shankar Tumati
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Sunnybrook Research Institute and University of Toronto, Toronto, ON, Canada
| | - Fransje E Reesink
- Department of Neurology, Alzheimer Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter P De Deyn
- Department of Neurology, Alzheimer Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - André Aleman
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Psychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Branislava Ćurčić-Blake
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Hosaka T, Kimura M, Yotsumoto Y. Neural representations of own-voice in the human auditory cortex. Sci Rep 2021; 11:591. [PMID: 33436798 PMCID: PMC7804419 DOI: 10.1038/s41598-020-80095-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
We have a keen sensitivity when it comes to the perception of our own voices. We can detect not only the differences between ourselves and others, but also slight modifications of our own voices. Here, we examined the neural correlates underlying such sensitive perception of one's own voice. In the experiments, we modified the subjects' own voices by using five types of filters. The subjects rated the similarity of the presented voices to their own. We compared BOLD (Blood Oxygen Level Dependent) signals between the voices that subjects rated as least similar to their own voice and those they rated as most similar. The contrast revealed that the bilateral superior temporal gyrus exhibited greater activities while listening to the voice least similar to their own voice and lesser activation while listening to the voice most similar to their own. Our results suggest that the superior temporal gyrus is involved in neural sharpening for the own-voice. The lesser degree of activations observed by the voices that were similar to the own-voice indicates that these areas not only respond to the differences between self and others, but also respond to the finer details of own-voices.
Collapse
Affiliation(s)
- Taishi Hosaka
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Marino Kimura
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Yotsumoto
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
10
|
Kuiper JJ, Lin YH, Young IM, Bai MY, Briggs RG, Tanglay O, Fonseka RD, Hormovas J, Dhanaraj V, Conner AK, O'Neal CM, Sughrue ME. A parcellation-based model of the auditory network. Hear Res 2020; 396:108078. [PMID: 32961519 DOI: 10.1016/j.heares.2020.108078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The auditory network plays an important role in interaction with the environment. Multiple cortical areas, such as the inferior frontal gyrus, superior temporal gyrus and adjacent insula have been implicated in this processing. However, understanding of this network's connectivity has been devoid of tractography specificity. METHODS Using attention task-based functional magnetic resonance imaging (MRI) studies, an activation likelihood estimation (ALE) of the auditory network was generated. Regions of interest corresponding to the cortical parcellation scheme previously published under the Human Connectome Project were co-registered onto the ALE in the Montreal Neurological Institute coordinate space, and visually assessed for inclusion in the network. Diffusion spectrum MRI-based fiber tractography was performed to determine the structural connections between cortical parcellations comprising the network. RESULTS Fifteen cortical regions were found to be part of the auditory network: areas 44 and 8C, auditory area 1, 4, and 5, frontal operculum area 4, the lateral belt, medial belt and parabelt, parietal area F centromedian, perisylvian language area, retroinsular cortex, supplementary and cingulate eye field and the temporoparietal junction area 1. These regions showed consistent interconnections between adjacent parcellations. The frontal aslant tract was found to connect areas within the frontal lobe, while the arcuate fasciculus was found to connect the frontal and temporal lobe, and subcortical U-fibers were found to connect parcellations within the temporal area. Further studies may refine this model with the ultimate goal of clinical application.
Collapse
Affiliation(s)
- Joseph J Kuiper
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | | | - Michael Y Bai
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - R Dineth Fonseka
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia.
| |
Collapse
|
11
|
Johnson JF, Belyk M, Schwartze M, Pinheiro AP, Kotz SA. The role of the cerebellum in adaptation: ALE meta-analyses on sensory feedback error. Hum Brain Mapp 2019; 40:3966-3981. [PMID: 31155815 PMCID: PMC6771970 DOI: 10.1002/hbm.24681] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023] Open
Abstract
It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies.
Collapse
Affiliation(s)
| | - Michel Belyk
- Maastricht University, Maastricht, the Netherlands.,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | | | - Ana P Pinheiro
- Faculdade de Psicologia - Universidade de Lisboa, Lisboa, Portugal
| | - Sonja A Kotz
- Maastricht University, Maastricht, the Netherlands.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
12
|
Briggs RG, Pryor DP, Conner AK, Nix CE, Milton CK, Kuiper JK, Palejwala AH, Sughrue ME. The Artery of Aphasia, A Uniquely Sensitive Posterior Temporal Middle Cerebral Artery Branch that Supplies Language Areas in the Brain: Anatomy and Report of Four Cases. World Neurosurg 2019; 126:e65-e76. [PMID: 30735868 DOI: 10.1016/j.wneu.2019.01.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Arterial disruption during brain surgery can cause devastating injuries to wide expanses of white and gray matter beyond the tumor resection cavity. Such damage may occur as a result of disrupting blood flow through en passage arteries. Identification of these arteries is critical to prevent unforeseen neurologic sequelae during brain tumor resection. In this study, we discuss one such artery, termed the artery of aphasia (AoA), which when disrupted can lead to receptive and expressive language deficits. METHODS We performed a retrospective review of all patients undergoing an awake craniotomy for resection of a glioma by the senior author from 2012 to 2018. Patients were included if they experienced language deficits secondary to postoperative infarction in the left posterior temporal lobe in the distribution of the AoA. The gross anatomy of the AoA was then compared with activation likelihood estimations of the auditory and semantic language networks using coordinate-based meta-analytic techniques. RESULTS We identified 4 patients with left-sided posterior temporal artery infarctions in the distribution of the AoA on diffusion-weighted magnetic resonance imaging. All 4 patients developed substantial expressive and receptive language deficits after surgery. Functional language improvement occurred in only 2/4 patients. Activation likelihood estimations localized parts of the auditory and semantic language networks in the distribution of the AoA. CONCLUSIONS The AoA is prone to blood flow disruption despite benign manipulation. Patients seem to have limited capacity for speech recovery after intraoperative ischemia in the distribution of this artery, which supplies parts of the auditory and semantic language networks.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Dillon P Pryor
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Cameron E Nix
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Camille K Milton
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joseph K Kuiper
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ali H Palejwala
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael E Sughrue
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia.
| |
Collapse
|
13
|
Role of the human mirror system in automatic processing of musical emotion: Evidence from EEG. ACTA PSYCHOLOGICA SINICA 2019. [DOI: 10.3724/sp.j.1041.2019.00795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Jiang J, Liu F, Zhou L, Jiang C. The neural basis for understanding imitation-induced musical meaning: The role of the human mirror system. Behav Brain Res 2018; 359:362-369. [PMID: 30458161 DOI: 10.1016/j.bbr.2018.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022]
Abstract
Music can convey meanings by imitating phenomena of the extramusical world, and these imitation-induced musical meanings can be understood by listeners. Although the human mirror system (HMS) is implicated in imitation, little is known about the HMS's role in making sense of meaning that derives from musical imitation. To answer this question, we used fMRI to examine listeners' brain activities during the processing of imitation-induced musical meaning with a cross-modal semantic priming paradigm. Eleven normal individuals and 11 individuals with congenital amusia, a neurodevelopmental disorder of musical processing, participated in the experiment. Target pictures with either an upward or downward movement were primed by semantically congruent or incongruent melodic sequences characterized by the direction of pitch change (upward or downward). When contrasting the incongruent with the congruent condition between the two groups, we found greater activations in the left supramarginal gyrus/inferior parietal lobule and inferior frontal gyrus in normals but not in amusics. The implications of these findings in terms of the role of the HMS in understanding imitation-induced musical meaning are discussed.
Collapse
Affiliation(s)
- Jun Jiang
- Music College, Shanghai Normal University, Shanghai, China
| | - Fang Liu
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Linshu Zhou
- Music College, Shanghai Normal University, Shanghai, China
| | - Cunmei Jiang
- Music College, Shanghai Normal University, Shanghai, China; Institute of Psychology, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
15
|
Listening to yourself is special: Evidence from global speech rate tracking. PLoS One 2018; 13:e0203571. [PMID: 30183780 PMCID: PMC6124796 DOI: 10.1371/journal.pone.0203571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/22/2018] [Indexed: 11/24/2022] Open
Abstract
Listeners are known to use adjacent contextual speech rate in processing temporally ambiguous speech sounds. For instance, an ambiguous vowel between short /α/ and long /a:/ in Dutch sounds relatively long (i.e., as /a:/) embedded in a fast precursor sentence, but short in a slow sentence. Besides the local speech rate, listeners also track talker-specific global speech rates. However, it is yet unclear whether other talkers’ global rates are encoded with reference to a listener’s self-produced rate. Three experiments addressed this question. In Experiment 1, one group of participants was instructed to speak fast, whereas another group had to speak slowly. The groups were compared on their perception of ambiguous /α/-/a:/ vowels embedded in neutral rate speech from another talker. In Experiment 2, the same participants listened to playback of their own speech and again evaluated target vowels in neutral rate speech. Neither of these experiments provided support for the involvement of self-produced speech in perception of another talker’s speech rate. Experiment 3 repeated Experiment 2 but with a new participant sample that was unfamiliar with the participants from Experiment 2. This experiment revealed fewer /a:/ responses in neutral speech in the group also listening to a fast rate, suggesting that neutral speech sounds slow in the presence of a fast talker and vice versa. Taken together, the findings show that self-produced speech is processed differently from speech produced by others. They carry implications for our understanding of rate-dependent speech perception in dialogue settings, suggesting that both perceptual and cognitive mechanisms are involved.
Collapse
|
16
|
Alemi R, Batouli SAH, Behzad E, Ebrahimpoor M, Oghabian MA. Not single brain areas but a network is involved in language: Applications in presurgical planning. Clin Neurol Neurosurg 2018; 165:116-128. [PMID: 29334640 DOI: 10.1016/j.clineuro.2018.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Language is an important human function, and is a determinant of the quality of life. In conditions such as brain lesions, disruption of the language function may occur, and lesion resection is a solution for that. Presurgical planning to determine the language-related brain areas would enhance the chances of language preservation after the operation; however, availability of a normative language template is essential. PATIENTS AND METHODS In this study, using data from 60 young individuals who were meticulously checked for mental and physical health, and using fMRI and robust imaging and data analysis methods, functional brain maps for the language production, perception and semantic were produced. RESULTS The obtained templates showed that the language function should be considered as the product of the collaboration of a network of brain regions, instead of considering only few brain areas to be involved in that. CONCLUSION This study has important clinical applications, and extends our knowledge on the neuroanatomy of the language function.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Otorhinolaryngology, Faculty of Medicine, McGill University, Canada
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Behzad
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Ebrahimpoor
- Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran; Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Lima CF, Krishnan S, Scott SK. Roles of Supplementary Motor Areas in Auditory Processing and Auditory Imagery. Trends Neurosci 2016; 39:527-542. [PMID: 27381836 PMCID: PMC5441995 DOI: 10.1016/j.tins.2016.06.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022]
Abstract
Although the supplementary and pre-supplementary motor areas have been intensely investigated in relation to their motor functions, they are also consistently reported in studies of auditory processing and auditory imagery. This involvement is commonly overlooked, in contrast to lateral premotor and inferior prefrontal areas. We argue here for the engagement of supplementary motor areas across a variety of sound categories, including speech, vocalizations, and music, and we discuss how our understanding of auditory processes in these regions relate to findings and hypotheses from the motor literature. We suggest that supplementary and pre-supplementary motor areas play a role in facilitating spontaneous motor responses to sound, and in supporting a flexible engagement of sensorimotor processes to enable imagery and to guide auditory perception. Hearing and imagining sounds–including speech, vocalizations, and music–can recruit SMA and pre-SMA, which are normally discussed in relation to their motor functions. Emerging research indicates that individual differences in the structure and function of SMA and pre-SMA can predict performance in auditory perception and auditory imagery tasks. Responses during auditory processing primarily peak in pre-SMA and in the boundary area between pre-SMA and SMA. This boundary area is crucially involved in the control of speech and vocal production, suggesting that sounds engage this region in an effector-specific manner. Activating sound-related motor representations in SMA and pre-SMA might facilitate behavioral responses to sounds. This might also support a flexible generation of sensory predictions based on previous experience to enable imagery and guide perception.
Collapse
Affiliation(s)
- César F Lima
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Saloni Krishnan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, University College London, London, UK.
| |
Collapse
|
18
|
Abstract
The primary motor cortex (M1) is traditionally implicated in voluntary movement control. In order to test the hypothesis that there is a functional topography of M1 activation in studies where it has been implicated in higher cognitive tasks we performed activation-likelihood-estimation (ALE) meta-analyses of functional neuroimaging experiments reporting M1 activation in relation to six cognitive functional categories for which there was a sufficient number of studies to include, namely motor imagery, working memory, mental rotation, social/emotion/empathy, language, and auditory processing. The six categories activated different sub-sectors of M1, either bilaterally or lateralized to one hemisphere. Notably, the activations found in the M1 of the left or right hemisphere detected in our study were unlikely due to button presses. In fact, all contrasts were selected in order to eliminate M1 activation due to activity related to the finger button press. In addition, we identified the M1 sub-region of Area 4a commonly activated by 4/6 categories, namely motor imagery and working memory, emotion/empathy, and language. Overall, our findings lend support to the idea that there is a functional topography of M1 activation in studies where it has been found activated in higher cognitive tasks and that the left Area 4a can be involved in a number of cognitive processes, likely as a product of implicit mental simulation processing.
Collapse
|
19
|
Pang EW, Valica T, MacDonald MJ, Taylor MJ, Brian J, Lerch JP, Anagnostou E. Abnormal Brain Dynamics Underlie Speech Production in Children with Autism Spectrum Disorder. Autism Res 2015; 9:249-61. [PMID: 26363154 PMCID: PMC4884085 DOI: 10.1002/aur.1526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 07/17/2015] [Indexed: 12/18/2022]
Abstract
A large proportion of children with autism spectrum disorder (ASD) have speech and/or language difficulties. While a number of structural and functional neuroimaging methods have been used to explore the brain differences in ASD with regards to speech and language comprehension and production, the neurobiology of basic speech function in ASD has not been examined. Magnetoencephalography (MEG) is a neuroimaging modality with high spatial and temporal resolution that can be applied to the examination of brain dynamics underlying speech as it can capture the fast responses fundamental to this function. We acquired MEG from 21 children with high‐functioning autism (mean age: 11.43 years) and 21 age‐ and sex‐matched controls as they performed a simple oromotor task, a phoneme production task and a phonemic sequencing task. Results showed significant differences in activation magnitude and peak latencies in primary motor cortex (Brodmann Area 4), motor planning areas (BA 6), temporal sequencing and sensorimotor integration areas (BA 22/13) and executive control areas (BA 9). Our findings of significant functional brain differences between these two groups on these simple oromotor and phonemic tasks suggest that these deficits may be foundational and could underlie the language deficits seen in ASD. Autism Res2016, 9: 249–261. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elizabeth W Pang
- Division of Neurology, Hospital for Sick Children.,Neurosciences and Mental Health, Sick Kids Research Institute.,Institute of Medical Science, Faculty of Medicine, University of Toronto
| | - Tatiana Valica
- Institute of Medical Science, Faculty of Medicine, University of Toronto
| | - Matt J MacDonald
- Neurosciences and Mental Health, Sick Kids Research Institute.,Institute of Medical Science, Faculty of Medicine, University of Toronto
| | - Margot J Taylor
- Neurosciences and Mental Health, Sick Kids Research Institute.,Institute of Medical Science, Faculty of Medicine, University of Toronto.,Department of Diagnostic Imaging, Hospital for Sick Children
| | - Jessica Brian
- Holland Bloorview Kids Rehabilitation Hospital, Toronto
| | - Jason P Lerch
- Neurosciences and Mental Health, Sick Kids Research Institute.,Mouse Imaging Centre, Hospital for Sick Children.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada,, M5G 1X8
| | - Evdokia Anagnostou
- Neurosciences and Mental Health, Sick Kids Research Institute.,Institute of Medical Science, Faculty of Medicine, University of Toronto.,Holland Bloorview Kids Rehabilitation Hospital, Toronto
| |
Collapse
|
20
|
Effects of aging on the neuromagnetic mismatch detection to speech sounds. Biol Psychol 2015; 104:48-55. [DOI: 10.1016/j.biopsycho.2014.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/30/2014] [Accepted: 11/09/2014] [Indexed: 11/21/2022]
|
21
|
Differentiating between self and others: an ALE meta-analysis of fMRI studies of self-recognition and theory of mind. Brain Imaging Behav 2014; 8:24-38. [PMID: 24535033 DOI: 10.1007/s11682-013-9266-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The perception of self and others is a key aspect of social cognition. In order to investigate the neurobiological basis of this distinction we reviewed two classes of task that study self-awareness and awareness of others (theory of mind, ToM). A reliable task to measure self-awareness is the recognition of one's own face in contrast to the recognition of others' faces. False-belief tasks are widely used to identify neural correlates of ToM as a measure of awareness of others. We performed an activation likelihood estimation meta-analysis, using the fMRI literature on self-face recognition and false-belief tasks. The brain areas involved in performing false-belief tasks were the medial prefrontal cortex (MPFC), bilateral temporo-parietal junction, precuneus, and the bilateral middle temporal gyrus. Distinct self-face recognition regions were the right superior temporal gyrus, the right parahippocampal gyrus, the right inferior frontal gyrus/anterior cingulate cortex, and the left inferior parietal lobe. Overlapping brain areas were the superior temporal gyrus, and the more ventral parts of the MPFC. We confirmed that self-recognition in contrast to recognition of others' faces, and awareness of others involves a network that consists of separate, distinct neural pathways, but also includes overlapping regions of higher order prefrontal cortex where these processes may be combined. Insights derived from the neurobiology of disorders such as autism and schizophrenia are consistent with this notion.
Collapse
|
22
|
Moseley P, Fernyhough C, Ellison A. Auditory verbal hallucinations as atypical inner speech monitoring, and the potential of neurostimulation as a treatment option. Neurosci Biobehav Rev 2013; 37:2794-805. [PMID: 24125858 PMCID: PMC3870271 DOI: 10.1016/j.neubiorev.2013.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/05/2013] [Accepted: 10/02/2013] [Indexed: 02/09/2023]
Abstract
We discuss ‘inner speech’ theories of auditory verbal hallucinations. Atypical self-monitoring may lead to the experience of inner speech as external. We summarize research into the use of neurostimulation to treat hallucinations. Effects of neurostimulation may be due to modulation of self-monitoring networks.
Auditory verbal hallucinations (AVHs) are the experience of hearing voices in the absence of any speaker, often associated with a schizophrenia diagnosis. Prominent cognitive models of AVHs suggest they may be the result of inner speech being misattributed to an external or non-self source, due to atypical self- or reality monitoring. These arguments are supported by studies showing that people experiencing AVHs often show an externalising bias during monitoring tasks, and neuroimaging evidence which implicates superior temporal brain regions, both during AVHs and during tasks that measure verbal self-monitoring performance. Recently, efficacy of noninvasive neurostimulation techniques as a treatment option for AVHs has been tested. Meta-analyses show a moderate effect size in reduction of AVH frequency, but there has been little attempt to explain the therapeutic effect of neurostimulation in relation to existing cognitive models. This article reviews inner speech models of AVHs, and argues that a possible explanation for reduction in frequency following treatment may be modulation of activity in the brain regions involving the monitoring of inner speech.
Collapse
Affiliation(s)
- Peter Moseley
- Psychology Department, Durham University, South Road, Durham DH1 3LE, UK.
| | | | | |
Collapse
|
23
|
Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage 2013; 86:554-72. [PMID: 24076206 DOI: 10.1016/j.neuroimage.2013.09.033] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/02/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023] Open
Abstract
This meta-analysis explores the role of the cerebellum in social cognition. Recent meta-analyses of neuroimaging studies since 2008 demonstrate that the cerebellum is only marginally involved in social cognition and emotionality, with a few meta-analyses pointing to an involvement of at most 54% of the individual studies. In this study, novel meta-analyses of over 350 fMRI studies, dividing up the domain of social cognition in homogeneous subdomains, confirmed this low involvement of the cerebellum in conditions that trigger the mirror network (e.g., when familiar movements of body parts are observed) and the mentalizing network (when no moving body parts or unfamiliar movements are present). There is, however, one set of mentalizing conditions that strongly involve the cerebellum in 50-100% of the individual studies. In particular, when the level of abstraction is high, such as when behaviors are described in terms of traits or permanent characteristics, in terms of groups rather than individuals, in terms of the past (episodic autobiographic memory) or the future rather than the present, or in terms of hypothetical events that may happen. An activation likelihood estimation (ALE) meta-analysis conducted in this study reveals that the cerebellum is critically implicated in social cognition and that the areas of the cerebellum which are consistently involved in social cognitive processes show extensive overlap with the areas involved in sensorimotor (during mirror and self-judgments tasks) as well as in executive functioning (across all tasks). We discuss the role of the cerebellum in social cognition in general and in higher abstraction mentalizing in particular. We also point out a number of methodological limitations of some available studies on the social brain that hamper the detection of cerebellar activity.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Kris Baetens
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Peter Mariën
- Faculty of Arts, Department of Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Department of Neurology and Memory Clinic, ZNA Middelheim Hospital, Lindendreef 1, B-2020 Antwerp, Belgium
| | - Marie Vandekerckhove
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
24
|
van de Ven V, Wingen M, Kuypers KPC, Ramaekers JG, Formisano E. Escitalopram Decreases Cross-Regional Functional Connectivity within the Default-Mode Network. PLoS One 2013; 8:e68355. [PMID: 23826388 PMCID: PMC3694983 DOI: 10.1371/journal.pone.0068355] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 05/29/2013] [Indexed: 12/13/2022] Open
Abstract
The default-mode network (DMN), which comprises medial frontal, temporal and parietal regions, is part of the brain’s intrinsic organization. The serotonergic (5-HT) neurotransmitter system projects to DMN regions from midbrain efferents, and manipulation of this system could thus reveal insights into the neurobiological mechanisms of DMN functioning. Here, we investigate intrinsic functional connectivity of the DMN as a function of activity of the serotonergic system, through the administration of the selective serotonin reuptake inhibitor (SSRI) escitalopram. We quantified DMN functional connectivity using an approach based on dual-regression. Specifically, we decomposed group data of a subset of the functional time series using spatial independent component analysis, and projected the group spatial modes to the same and an independent resting state time series of individual participants. We found no effects of escitalopram on global functional connectivity of the DMN at the map-level; that is, escitalopram did not alter the global functional architecture of the DMN. However, we found that escitalopram decreased DMN regional pairwise connectivity, which included anterior and posterior cingulate cortex, hippocampal complex and lateral parietal regions. Further, regional DMN connectivity covaried with alertness ratings across participants. Our findings show that escitalopram altered intrinsic regional DMN connectivity, which suggests that the serotonergic system plays an important role in DMN connectivity and its contribution to cognition. Pharmacological challenge designs may be a useful addition to resting-state functional MRI to investigate intrinsic brain functional organization.
Collapse
Affiliation(s)
- Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| | - Marleen Wingen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Kim P. C. Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Johannes G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
25
|
Content matters: neuroimaging investigation of brain and behavioral impact of televised anti-tobacco public service announcements. J Neurosci 2013; 33:7420-7. [PMID: 23616548 DOI: 10.1523/jneurosci.3840-12.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Televised public service announcements are video ads that are a key component of public health campaigns against smoking. Understanding the neurophysiological correlates of anti-tobacco ads is an important step toward novel objective methods of their evaluation and design. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the brain and behavioral effects of the interaction between content ("argument strength," AS) and format ("message sensation value," MSV) of anti-smoking ads in humans. Seventy-one nontreatment-seeking smokers viewed a sequence of 16 high or 16 low AS ads during an fMRI scan. Dependent variables were brain fMRI signal, the immediate recall of the ads, the immediate change in intentions to quit smoking, and the urine levels of a major nicotine metabolite cotinine at a 1 month follow-up. Whole-brain ANOVA revealed that AS and MSV interacted in the inferior frontal, inferior parietal, and fusiform gyri; the precuneus; and the dorsomedial prefrontal cortex (dMPFC). Regression analysis showed that the activation in the dMPFC predicted the urine cotinine levels 1 month later. These results characterize the key brain regions engaged in the processing of persuasive communications and suggest that brain fMRI response to anti-smoking ads could predict subsequent smoking severity in nontreatment-seeking smokers. Our findings demonstrate the importance of the quality of content for objective ad outcomes and suggest that fMRI investigation may aid the prerelease evaluation of televised public health ads.
Collapse
|
26
|
Adank P. Design choices in imaging speech comprehension: an Activation Likelihood Estimation (ALE) meta-analysis. Neuroimage 2012; 63:1601-13. [PMID: 22836181 DOI: 10.1016/j.neuroimage.2012.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/11/2012] [Accepted: 07/14/2012] [Indexed: 11/30/2022] Open
Abstract
The localisation of spoken language comprehension is debated extensively: is processing located anterior or posterior on the left temporal lobe, and is it left- or bilaterally organised? An Activation Likelihood Estimation (ALE) analysis was conducted on functional MRI and PET studies investigating speech comprehension to identify the neural network involved in comprehension processing. Furthermore, the analysis aimed to establish the effect of four design choices (scanning paradigm, non-speech baseline, the presence of a task, and the type of stimulus material) on this comprehension network. The analysis included 57 experiments contrasting intelligible with less intelligible or unintelligible stimuli. A large comprehension network was found across bilateral Superior Temporal Sulcus (STS), Middle Temporal Gyrus (MTG) and Superior Temporal (STS) bilaterally, in left Inferior Frontal Gyrus (IFG), left Precentral Gyrus, and Supplementary Motor Area (SMA) and pre-SMA. The core network for post-lexical processing was restricted to the temporal lobes bilaterally with the highest ALE values located anterior to Heschl's Gyrus. Activations in the ALE comprehension network outside the temporal lobes (left IFG, SMA/pre-SMA, and Precentral Gyrus) were driven by the use of sentences instead of words, the scanning paradigm, or the type of non-speech baseline.
Collapse
Affiliation(s)
- Patti Adank
- School of Psychological Sciences, University of Manchester, Zochonis Building, Brunswick Street, M13 9PL, Manchester, United Kingdom.
| |
Collapse
|
27
|
Adank P. The neural bases of difficult speech comprehension and speech production: Two Activation Likelihood Estimation (ALE) meta-analyses. BRAIN AND LANGUAGE 2012; 122:42-54. [PMID: 22633697 DOI: 10.1016/j.bandl.2012.04.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
The role of speech production mechanisms in difficult speech comprehension is the subject of on-going debate in speech science. Two Activation Likelihood Estimation (ALE) analyses were conducted on neuroimaging studies investigating difficult speech comprehension or speech production. Meta-analysis 1 included 10 studies contrasting comprehension of less intelligible/distorted speech with more intelligible speech. Meta-analysis 2 (21 studies) identified areas associated with speech production. The results indicate that difficult comprehension involves increased reliance of cortical regions in which comprehension and production overlapped (bilateral anterior Superior Temporal Sulcus (STS) and anterior Supplementary Motor Area (pre-SMA)) and in an area associated with intelligibility processing (left posterior MTG), and second involves increased reliance on cortical areas associated with general executive processes (bilateral anterior insulae). Comprehension of distorted speech may be supported by a hybrid neural mechanism combining increased involvement of areas associated with general executive processing and areas shared between comprehension and production.
Collapse
Affiliation(s)
- Patti Adank
- School of Psychological Sciences, University of Manchester, United Kingdom.
| |
Collapse
|
28
|
Jardri R, Pins D, Lafargue G, Very E, Ameller A, Delmaire C, Thomas P. Increased overlap between the brain areas involved in self-other distinction in schizophrenia. PLoS One 2011; 6:e17500. [PMID: 21408008 PMCID: PMC3052363 DOI: 10.1371/journal.pone.0017500] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/07/2011] [Indexed: 12/03/2022] Open
Abstract
Self-awareness impairments are frequently mentioned as being responsible for the positive symptoms of schizophrenia spectrum disorders. However, the neural correlates of self-other distinction in this pathology are still poorly understood. In the present study, we developed an fMRI procedure in order to examine self-other distinction during speech exchange situations. Fifteen subjects with schizophrenia were compared to 15 matched controls. The results revealed an increased overlap between the self and non-self cortical maps in schizophrenia, in the medial frontal and medial parietal cortices, as well as in the right middle temporal cortex and the right inferior parietal lobule. Moreover, these neural structures showed less BOLD amplitude differences between the self and non-self conditions in the patients. These activation patterns were judged to be independent of mirror-like properties, familiarity or body-ownership processing. Significantly, the increase in the right IPL signal was found to correlate positively with the severity of first-rank symptoms, and thus could be considered a “state-marker” of schizophrenia, whereas temporal and medial parieto-frontal differences appear to be “trait-markers” of the disease. Such an increased overlap between self and non-self cortical maps might be considered a neuro-physiological signature of the well established self-awareness impairment in people suffering from schizophrenia.
Collapse
Affiliation(s)
- Renaud Jardri
- Laboratoire de Neurosciences Fonctionnelles et Pathologies, EA-4559, Université Lille Nord de France, Lille, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Küper M, Thürling M, Maderwald S, Ladd ME, Timmann D. Structural and Functional Magnetic Resonance Imaging of the Human Cerebellar Nuclei. THE CEREBELLUM 2010; 11:314-24. [DOI: 10.1007/s12311-010-0194-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Qin P, Di H, Liu Y, Yu S, Gong Q, Duncan N, Weng X, Laureys S, Northoff G. Anterior cingulate activity and the self in disorders of consciousness. Hum Brain Mapp 2010; 31:1993-2002. [PMID: 20336686 DOI: 10.1002/hbm.20989] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the relationship between medial cortical activation and the presence of self and consciousness in healthy subjects and patients with vegetative state and minimally conscious state using functional magnetic resonance imaging (fMRI). EXPERIMENT DESIGN We first conducted two fMRI experiments in healthy subjects to identify brain regions specifically associated with self-perception through the use of different auditory stimuli that had different grades of self-relatedness. We then applied these regions as functional localizers to examine the relationship between neural activity changes during self-relatedness and consciousness level in the patients with disorders of consciousness (DOC). PRINCIPAL OBSERVATIONS We demonstrated recruitment of various anterior medial cortical regions including the anterior cingulate cortex (ACC) in healthy subjects during auditory perception of self-related stimuli. We further showed that patients with DOC showed signal changes in the ACC during auditory perception of self-related stimuli. Finally, it was shown that these signal changes correlate with the level of consciousness in the patients with DOC. CONCLUSION The degree of consciousness in patients with DOC was correlated with neural activity in the ACC induced by self-related stimuli. Our results not only shed light on the pathophysiology of DOC, but may also suggest a useful neural, and thus diagnostic, marker of the dysfunction of consciousness in vegetative patients.
Collapse
Affiliation(s)
- Pengmin Qin
- Laboratory for Higher Brain Function, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Functional but not structural networks of the human laryngeal motor cortex show left hemispheric lateralization during syllable but not breathing production. J Neurosci 2010; 29:14912-23. [PMID: 19940187 DOI: 10.1523/jneurosci.4897-09.2009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The laryngeal motor cortex (LMC) is indispensible for the vocal motor control of speech and song production. Patients with bilateral lesions in this region are unable to speak and sing, although their nonverbal vocalizations, such as laughter and cry, are preserved. Despite the importance of the LMC in the control of voluntary voice production in humans, the literature describing its connections remains sparse. We used diffusion tensor probabilistic tractography and functional magnetic resonance imaging-based functional connectivity analysis to identify LMC networks controlling two tasks necessary for speech production: voluntary voice as repetition of two different syllables and voluntary breathing as controlled inspiration and expiration. Peaks of activation during all tasks were found in the bilateral ventral primary motor cortex in close proximity to each other. Functional networks of the LMC during voice production but not during controlled breathing showed significant left-hemispheric lateralization (p < 0.0005). However, structural networks of the LMC associated with both voluntary voice production and controlled breathing had bilateral hemispheric organization. Our findings indicate the presence of a common bilateral structural network of the LMC, upon which different functional networks are built to control various voluntary laryngeal tasks. Bilateral organization of functional LMC networks during controlled breathing supports its indispensible role in all types of laryngeal behaviors. Significant left-hemispheric lateralization of functional networks during simple but highly learned voice production suggests the readiness of the LMC network for production of a complex voluntary behavior, such as human speech.
Collapse
|
32
|
Functional Imaging of the Deep Cerebellar Nuclei: A Review. THE CEREBELLUM 2009; 9:22-8. [PMID: 19513801 DOI: 10.1007/s12311-009-0119-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
|
33
|
van de Ven V, Esposito F, Christoffels IK. Neural network of speech monitoring overlaps with overt speech production and comprehension networks: a sequential spatial and temporal ICA study. Neuroimage 2009; 47:1982-91. [PMID: 19481159 DOI: 10.1016/j.neuroimage.2009.05.057] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 05/04/2009] [Accepted: 05/18/2009] [Indexed: 11/24/2022] Open
Abstract
The neural correlates of speech monitoring overlap with neural correlates of speech comprehension and production. However, it is unclear how these correlates are organized within functional connectivity networks, and how these networks interact to subserve speech monitoring. We applied spatial and temporal independent component analysis (sICA and tICA) to a functional magnetic resonance imaging (fMRI) experiment involving overt speech production, comprehension and monitoring. SICA and tICA respectively decompose fMRI data into spatial and temporal components that can be interpreted as distributed estimates of functional connectivity and concurrent temporal dynamics in one or more regions of fMRI activity. Using sICA we found multiple connectivity components that were associated with speech perception (auditory and left fronto-temporal components) and production (bilateral central sulcus and default-mode components), but not with speech monitoring. In order to further investigate if speech monitoring could be mapped in the auditory cortex as a unique temporal process, we applied tICA to voxels of the sICA auditory component. Amongst the temporal components we found a single, unique component that matched the speech monitoring temporal pattern. We used this temporal component as a new predictor for whole-brain activity and found that it correlated positively with bilateral auditory cortex, and negatively with the supplementary motor area (SMA). Psychophysiological interaction analysis of task and activity in bilateral auditory cortex and SMA showed that functional connectivity changed with task conditions. These results suggest that speech monitoring entails a dynamic coupling between different functional networks. Furthermore, we demonstrate that overt speech comprises multiple networks that are associated with specific speech-related processes. We conclude that the sequential combination of sICA and tICA is a powerful approach for the analysis of complex, overt speech tasks.
Collapse
Affiliation(s)
- Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, Maastricht, The Netherlands.
| | | | | |
Collapse
|
34
|
Scott SK, McGettigan C, Eisner F. A little more conversation, a little less action--candidate roles for the motor cortex in speech perception. Nat Rev Neurosci 2009; 10:295-302. [PMID: 19277052 PMCID: PMC4238059 DOI: 10.1038/nrn2603] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The motor theory of speech perception assumes that activation of the motor system is essential in the perception of speech. However, deficits in speech perception and comprehension do not arise from damage that is restricted to the motor cortex, few functional imaging studies reveal activity in the motor cortex during speech perception, and the motor cortex is strongly activated by many different sound categories. Here, we evaluate alternative roles for the motor cortex in spoken communication and suggest a specific role in sensorimotor processing in conversation. We argue that motor cortex activation is essential in joint speech, particularly for the timing of turn taking.
Collapse
Affiliation(s)
- Sophie K Scott
- Institute for Cognitive Neuroscience, UCL, 17 Queen Square, London WC1N 3AR
| | - Carolyn McGettigan
- Institute for Cognitive Neuroscience, UCL, 17 Queen Square, London WC1N 3AR
| | - Frank Eisner
- Institute for Cognitive Neuroscience, UCL, 17 Queen Square, London WC1N 3AR
| |
Collapse
|
35
|
Jardri R, Delevoye-Turrell Y, Lucas B, Pins D, Bulot V, Delmaire C, Thomas P, Delion P, Goeb JL. Clinical practice of rTMS reveals a functional dissociation between agency and hallucinations in schizophrenia. Neuropsychologia 2009; 47:132-8. [DOI: 10.1016/j.neuropsychologia.2008.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 07/10/2008] [Accepted: 08/06/2008] [Indexed: 11/26/2022]
|
36
|
Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious Cogn 2008; 17:457-67. [DOI: 10.1016/j.concog.2008.03.013] [Citation(s) in RCA: 425] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 03/04/2008] [Indexed: 11/24/2022]
|