1
|
Dauvermann MR, Costello L, Tronchin G, Corley E, Holleran L, Mothersill D, Rokita KI, Kane R, Hallahan B, McDonald C, Pasternak O, Donohoe G, Cannon DM. Cellular and extracellular white matter alterations after childhood trauma experience in individuals with schizophrenia. Psychol Med 2025; 54:1-10. [PMID: 39757719 PMCID: PMC11779554 DOI: 10.1017/s0033291724003064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Childhood trauma (CT) is related to altered fractional anisotropy (FA) in individuals with schizophrenia (SZ). However, it remains unclear whether CT may influence specific cellular or extracellular compartments of FA in SZ with CT experience. We extended our previous study on FA in SZ (Costello et al., 2023) and examined the impact of CT on hypothesized lower free water-corrected FA (FAT) and higher extracellular free water (FW). METHOD Thirty-seven SZ and 129 healthy controls (HC) were grouped into the 'none/low' or 'high' CT group. All participants underwent diffusion-weighted magnetic resonance imaging. We performed tract-based spatial statistics to study the main effects of diagnostic group and CT, and the interaction between CT and diagnostic group across FAT and FW. RESULTS SZ displayed lower FAT within the corpus callosum and corona radiata compared to HC (p < 0.05, Threshold-Free Cluster Enhancement (TFCE)). Independent of diagnosis, we observed lower FAT (p < 0.05, TFCE) and higher FW (p < 0.05, TFCE) in both SZ and HC with high CT levels compared to SZ and HC with none or low CT levels. Furthermore, we did not identify an interaction between CT and diagnostic group (p > 0.05, TFCE). CONCLUSIONS These novel findings suggest that the impact of CT on lower FAT may reflect cellular rather than extracellular alterations in established schizophrenia. This highlights the impact of CT on white matter microstructure, regardless of diagnostic status.
Collapse
Affiliation(s)
- Maria R. Dauvermann
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Laura Costello
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Giulia Tronchin
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Emma Corley
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Laurena Holleran
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - David Mothersill
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Department of Psychology, School of Business, National College of Ireland, Dublin, Ireland
- Department of Psychiatry, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Karolina I. Rokita
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Ruán Kane
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Brian Hallahan
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Colm McDonald
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Ofer Pasternak
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gary Donohoe
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Dara M. Cannon
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Kristensen TD, Raghava JM, Skjerbæk MW, Dhollander T, Syeda W, Ambrosen KS, Bojesen KB, Nielsen MØ, Pantelis C, Glenthøj BY, Ebdrup BH. Fibre density and fibre-bundle cross-section of the corticospinal tract are distinctly linked to psychosis-specific symptoms in antipsychotic-naïve patients with first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1797-1812. [PMID: 37012463 PMCID: PMC10713712 DOI: 10.1007/s00406-023-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Multiple lines of research support the dysconnectivity hypothesis of schizophrenia. However, findings on white matter (WM) alterations in patients with schizophrenia are widespread and non-specific. Confounding factors from magnetic resonance image (MRI) processing, clinical diversity, antipsychotic exposure, and substance use may underlie some of the variability. By application of refined methodology and careful sampling, we rectified common confounders investigating WM and symptom correlates in a sample of strictly antipsychotic-naïve first-episode patients with schizophrenia. Eighty-six patients and 112 matched controls underwent diffusion MRI. Using fixel-based analysis (FBA), we extracted fibre-specific measures such as fibre density and fibre-bundle cross-section. Group differences on fixel-wise measures were examined with multivariate general linear modelling. Psychopathology was assessed with the Positive and Negative Syndrome Scale. We separately tested multivariate correlations between fixel-wise measures and predefined psychosis-specific versus anxio-depressive symptoms. Results were corrected for multiple comparisons. Patients displayed reduced fibre density in the body of corpus callosum and in the middle cerebellar peduncle. Fibre density and fibre-bundle cross-section of the corticospinal tract were positively correlated with suspiciousness/persecution, and negatively correlated with delusions. Fibre-bundle cross-section of isthmus of corpus callosum and hallucinatory behaviour were negatively correlated. Fibre density and fibre-bundle cross-section of genu and splenium of corpus callosum were negative correlated with anxio-depressive symptoms. FBA revealed fibre-specific properties of WM abnormalities in patients and differentiated associations between WM and psychosis-specific versus anxio-depressive symptoms. Our findings encourage an itemised approach to investigate the relationship between WM microstructure and clinical symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark.
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Martin W Skjerbæk
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia
| | - Warda Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christos Pantelis
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Caldwell M, Ayo-Jibunoh V, Mendoza JC, Brimblecombe KR, Reynolds LM, Zhu Jiang XY, Alarcon C, Fiore E, N Tomaio J, Phillips GR, Mingote S, Flores C, Casaccia P, Liu J, Cragg SJ, McCloskey DP, Yetnikoff L. Axo-glial interactions between midbrain dopamine neurons and oligodendrocyte lineage cells in the anterior corpus callosum. Brain Struct Funct 2023; 228:1993-2006. [PMID: 37668732 PMCID: PMC10516790 DOI: 10.1007/s00429-023-02695-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) receive synaptic innervation from glutamatergic and GABAergic axons and can be dynamically regulated by neural activity, resulting in activity-dependent changes in patterns of axon myelination. However, it remains unclear to what extent other types of neurons may innervate OPCs. Here, we provide evidence implicating midbrain dopamine neurons in the innervation of oligodendrocyte lineage cells in the anterior corpus callosum and nearby white matter tracts of male and female adult mice. Dopaminergic axon terminals were identified in the corpus callosum of DAT-Cre mice after injection of an eYFP reporter virus into the midbrain. Furthermore, fast-scan cyclic voltammetry revealed monoaminergic transients in the anterior corpus callosum, consistent with the anatomical findings. Using RNAscope, we further demonstrate that ~ 40% of Olig2 + /Pdfgra + cells and ~ 20% of Olig2 + /Pdgfra- cells in the anterior corpus callosum express Drd1 and Drd2 transcripts. These results suggest that oligodendrocyte lineage cells may respond to dopamine released from midbrain dopamine axons, which could affect myelination. Together, this work broadens our understanding of neuron-glia interactions with important implications for myelin plasticity by identifying midbrain dopamine axons as a potential regulator of corpus callosal oligodendrocyte lineage cells.
Collapse
Affiliation(s)
- Megan Caldwell
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Vanessa Ayo-Jibunoh
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Josue Criollo Mendoza
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Katherine R Brimblecombe
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lauren M Reynolds
- Plasticité du Cerveau, CNRS UMR8249, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | - Xin Yan Zhu Jiang
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Colin Alarcon
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Elizabeth Fiore
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Jacquelyn N Tomaio
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Greg R Phillips
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- Center for Developmental Neuroscience, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Susana Mingote
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Cecilia Flores
- Department of Psychiatry and of Neurology and Neuroscience, McGill University, and Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
- Department of Neuroscience and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Stephanie J Cragg
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Dan P McCloskey
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Leora Yetnikoff
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA.
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
| |
Collapse
|
4
|
Graïc JM, Finos L, Vadori V, Cozzi B, Luisetto R, Gerussi T, M G, Doria A, Grisan E, Corain L, Peruffo A. Cytoarchitectureal changes in hippocampal subregions of the NZB/W F1 mouse model of lupus. Brain Behav Immun Health 2023; 32:100662. [PMID: 37456623 PMCID: PMC10339121 DOI: 10.1016/j.bbih.2023.100662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Over 50% of clinical patients affected by the systemic lupus erythematosus disease display impaired neurological cognitive functions and psychiatric disorders, a form called neuropsychiatric systemic lupus erythematosus. Hippocampus is one of the brain structures most sensitive to the cognitive deficits and psychiatric disorders related to neuropsychiatric lupus. The purpose of this study was to compare, layer by layer, neuron morphology in lupus mice model NZB/W F1 versus Wild Type mice. By a morphometric of cells identified on Nissl-stained sections, we evaluated structural alterations between NZB/W F1 and Wild Type mice in seven hippocampal subregions: Molecular dentate gyrus, Granular dentate gyrus, Polymorph dentate gyrus, Oriens layer, Pyramidal layer, Radiatum layer and Lacunosum molecular layer. By principal component analysis we distinguished healthy Wild Type from NZB/W F1 mice. In NZB/W F1 mice hippocampal cytoarchitecture, the neuronal cells resulted larger in size and more regular than those of Wild Type. In NZB/W F1, neurons were usually denser than in WT. The Pyramidal layer neurons were much denser in Wild Type than in NZB/W F1. Application of principal component analysis, allowed to distinguish NZB/W F1 lupus mice from healthy, showing as NZBW subjects presented a scattered distribution and intrasubject variability. Our results show a hypertrophy of the NZB/W F1 hippocampal neurons associated with an increase in perikaryal size within the CA1, CA2, CA3 region and the DG. These results help advance our understanding on hippocampal organization and structure in the NZB/W F1 lupus model, suggesting the hypothesis that the different subregions could be differentially affected in neuropsychiatric systemic lupus erythematosus disease. Leveraging an in-depth analysis of the morphology of neural cells in the hippocampal subregions and applying dimensionality reduction using PCA, we propose an efficient methodology to distinguish pathological NZBW mice from WT mice."
Collapse
Affiliation(s)
- J.-M. Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Italy
| | - L. Finos
- Department of Statistical Sciences, University of Padova, Padova, 35100, Italy
| | - V. Vadori
- School of Engineering, London South Bank University, London, SE1 0AA, UK
| | - B. Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Italy
| | - R. Luisetto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, 35100, Italy
| | - T. Gerussi
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Italy
| | - Gatto M
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova, 35100, Italy
| | - A. Doria
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova, 35100, Italy
| | - E. Grisan
- School of Engineering, London South Bank University, London, SE1 0AA, UK
| | - L. Corain
- Department of Management and Engineering, University of Padova, Vicenza, 36100, Italy
| | - A. Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Italy
| |
Collapse
|
5
|
Scoppettuolo P, Sinkunaite L, Topciu MF, Schulz J. Cytotoxic lesions of the corpus callosum during the course of ketotic hyperglycemia revealing type I diabetes: A case report. SAGE Open Med Case Rep 2023; 11:2050313X231172338. [PMID: 37187493 PMCID: PMC10176541 DOI: 10.1177/2050313x231172338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Cytotoxic lesions of the corpus callosum are lesions secondary to different medical conditions. Radiologically, lesions are identified on magnetic resonance imaging as a hyperintense signal on diffusion-weighted imaging and decreased apparent diffusion coefficient values of the splenium of corpus callosum. Signal changes are reversible in almost totality of the cases. Previous cases of cytotoxic lesions of the corpus callosums have been associated with several metabolic disturbances, but ketotic hyperglycemia has never been reported. We here discussed the case of 28-year-old patient with complex visual hallucinations presenting with cytotoxic lesions of the corpus callosums and type I diabetes. Treatment of hyperglycemia was followed by full clinical recovery and complete regression of the radiological abnormalities at 3-month follow-up. Elevated levels of circulating pro-inflammatory mediators associated with ketotic hyperglycemia in type I diabetes support an implication of cytokines in the pathophysiology of the cytotoxic lesions of the corpus callosums.
Collapse
Affiliation(s)
- Pasquale Scoppettuolo
- Neurology Department, Cliniques
Universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium
- Neurology Department, CHU St Pierre,
Université Libre de Bruxelles (ULB), Brussels, Belgium
- Pasquale Scoppettuolo, Neurology Department,
Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue
d’Hippocrate 10, 1200 Brussels, Belgium.
| | - Laura Sinkunaite
- Neurology Department, CHU St Pierre,
Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mihaela-Felicia Topciu
- Radiology Department, CHU St Pierre,
Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Joachim Schulz
- Neurology Department, CHU St Pierre,
Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
6
|
Thomas F, Gallea C, Moulier V, Bouaziz N, Valero-Cabré A, Januel D. Local Alterations of Left Arcuate Fasciculus and Transcallosal White Matter Microstructure in Schizophrenia Patients with Medication-resistant Auditory Verbal Hallucinations: A Pilot Study. Neuroscience 2022; 507:1-13. [PMID: 36370935 DOI: 10.1016/j.neuroscience.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Auditory verbal hallucinations (AVH) in schizophrenia (SZ) have been associated with abnormalities of the left arcuate fasciculus and transcallosal white matter projections linking homologous language areas of both hemispheres. While most studies have used a whole-tract approach, here we focused on analyzing local alterations of the above-mentioned pathways in SZ patients suffering medication-resistant AVH. Fractional anisotropy (FA) was estimated along the left arcuate fasciculus and interhemispheric projections of the rostral and caudal corpus callosum. Then, potential associations between white matter tracts and SZ symptoms were explored by correlating local site-by-site FA values and AVH severity estimated via the Auditory Hallucinations Rating Scale (AHRS). Compared to a sample of healthy controls, SZ patients displayed lower FA values in the rostral portion of the left arcuate fasciculus, near the frontal operculum, and in the left and right lateral regions of the rostral portion of the transcallosal pathways. In contrast, SZ patients showed higher FA values than healthy controls in the medial portion of the latter transcallosal pathway and in the midsagittal section of the interhemispheric auditory pathway. Finally, significant correlations were found between local FA values in the left arcuate fasciculus and the severity of the AVH's attentional salience. Contributing to the study of associations between local white matter alterations of language networks and SZ symptoms, our findings highlight local alterations of white matter integrity in these pathways linking language areas in SZ patients with AVH. We also hypothesize a link between the left arcuate fasciculus and the attentional capture of AVH.
Collapse
Affiliation(s)
- Fanny Thomas
- Centre de Recherche Clinique, Établissement Public de Santé de Ville-Evrard, 202 avenue Jean Jaurès, 93330 Neuilly-sur-Marne, France; Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB, Institut du Cerveau, CNRS UMR 7225, INSERM UMRS 1127, France.
| | - Cécile Gallea
- Movement Investigations and Therapeutics, MOVIT, Institut du Cerveau, CNRS UMR 7225, INSERM UMRS 1127, France; Université Pierre et Marie Curie, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Virginie Moulier
- Centre de Recherche Clinique, Établissement Public de Santé de Ville-Evrard, 202 avenue Jean Jaurès, 93330 Neuilly-sur-Marne, France; Centre Hospitalier du Rouvray, University Department of Psychiatry, 76301 Sotteville-lès-Rouen, France
| | - Noomane Bouaziz
- Centre de Recherche Clinique, Établissement Public de Santé de Ville-Evrard, 202 avenue Jean Jaurès, 93330 Neuilly-sur-Marne, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB, Institut du Cerveau, CNRS UMR 7225, INSERM UMRS 1127, France; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 700 Albany Street, Boston, MA W-702A, USA; Université Pierre et Marie Curie, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Dominique Januel
- Centre de Recherche Clinique, Établissement Public de Santé de Ville-Evrard, 202 avenue Jean Jaurès, 93330 Neuilly-sur-Marne, France; Université Sorbonne Paris Nord, Campus de Bobigny, 1 rue de Chablis, 93000 Bobigny
| |
Collapse
|
7
|
Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay MÈ. The implication of a diversity of non-neuronal cells in disorders affecting brain networks. Front Cell Neurosci 2022; 16:1015556. [PMID: 36439206 PMCID: PMC9693782 DOI: 10.3389/fncel.2022.1015556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system (CNS) neurons are classically considered the functional unit of the brain. Analysis of the physical connections and co-activation of neurons, referred to as structural and functional connectivity, respectively, is a metric used to understand their interplay at a higher level. A myriad of glial cell types throughout the brain composed of microglia, astrocytes and oligodendrocytes are key players in the maintenance and regulation of neuronal network dynamics. Microglia are the central immune cells of the CNS, able to affect neuronal populations in number and connectivity, allowing for maturation and plasticity of the CNS. Microglia and astrocytes are part of the neurovascular unit, and together they are essential to protect and supply nutrients to the CNS. Oligodendrocytes are known for their canonical role in axonal myelination, but also contribute, with microglia and astrocytes, to CNS energy metabolism. Glial cells can achieve this variety of roles because of their heterogeneous populations comprised of different states. The neuroglial relationship can be compromised in various manners in case of pathologies affecting development and plasticity of the CNS, but also consciousness and mood. This review covers structural and functional connectivity alterations in schizophrenia, major depressive disorder, and disorder of consciousness, as well as their correlation with vascular connectivity. These networks are further explored at the cellular scale by integrating the role of glial cell diversity across the CNS to explain how these networks are affected in pathology.
Collapse
Affiliation(s)
- Micaël Carrier
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada
- Oncology Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
8
|
Khasawneh RR, Abu-El-Rub E, Alzu’bi A, Abdelhady GT, Al-Soudi HS. Corpus callosum anatomical changes in Alzheimer patients and the effect of acetylcholinesterase inhibitors on corpus callosum morphometry. PLoS One 2022; 17:e0269082. [PMID: 35895623 PMCID: PMC9328497 DOI: 10.1371/journal.pone.0269082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
The Corpus Callosum (CC) is an important structure that includes the majority of fibers connecting the two brain hemispheres. Several neurodegenerative diseases may alter CC size and morphology leading to its atrophy and malfunction which may play a role in the pathological manifestations found in these diseases. The purpose of the current study is to determine any possible changes in CC size in patients suffering from Alzheimer’s disease. The Study also investigated the effect of acetylcholinesterase inhibitors (AChEIs) on the size of CC and its association with improvement in the Alzheimer disease severity scores. Midsagittal size of CC were recorded prospectively from 439 routine T1-weighted MRI brain images in normal individuals. The internal skull surface was measured to calculate CC/ internal skull surface ratio. Two groups of patients were studied: 300 (150 male / 150 female) were healthy subjects and 130 (55 males / 75 females) had Alzheimer disease. Out of the 130 Alzheimer disease pateints, 70 patients were treated with Donepezil or Rivastigmine or both. The size of the CC was measured based on T1-weighted MRI images after the treatment to investigate any possible improvement in CC size. The mean surface area of CC in controls was 6.53±1.105 cm2. There was no significant difference between males and females (P < 0.627), and CC/ internal skull surface ratio was 4.41±0.77%. Patients with mild or severe Alzheimer disease showed a significant reduction in CC size compared to healthy controls. Treating mild Alzheimer patients with either Donepezil or Rivastigmine exerts a comparable therapeutic effect in improving the CC size. There was more improvement in the size of CC in patients with severe Alzheimer disease by using combined therapy of Donepezil and Rivastigmine than using single a medication. we measured the mean size of the various portions of the corpus callosum in normal individuals and Alzheimer patients before and after taking Donepezil and Rivastigmine. Alzheimer patients have pronounced reduction in CC which is corrected after taking Donepezil and Rivastigmine leading to remarkable improvement in Alzheimer disease severity scores.
Collapse
Affiliation(s)
- Ramada R. Khasawneh
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
- * E-mail:
| | - Ejlal Abu-El-Rub
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Ayman Alzu’bi
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Gamal T. Abdelhady
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
- Faculty of Medicine, Department of Anatomy, Ain Shams University, Cairo, Egypt
| | - Hana S. Al-Soudi
- Nuclear Medicine, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| |
Collapse
|
9
|
AĞDANLI O, TOPUZOGLU A, KARABAY N, ALPTEKİN K. Corpus Callosum Volume in Patients with First-Episode Psychosis. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.789999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Onur AĞDANLI
- Sağlık Bakanlığı, İzmir Katip Çelebi Üniverstesi Atatürk Eğitim Araştırma Hastanesi, Psikiyatri Kliniği
| | - Ahmet TOPUZOGLU
- MARMARA ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, HALK SAĞLIĞI ANABİLİM DALI
| | - Nuri KARABAY
- Dokuz Eylül Üniversitesi Tıp Fakültesi Dahili Bilimler, Radyoloji Anabilim Dalı
| | - Köksal ALPTEKİN
- DOKUZ EYLÜL ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, RUH SAĞLIĞI VE HASTALIKLARI ANABİLİM DALI
| |
Collapse
|
10
|
Microstructural white matter alterations associated with migraine headaches: a systematic review of diffusion tensor imaging studies. Brain Imaging Behav 2022; 16:2375-2401. [PMID: 35710680 PMCID: PMC9581876 DOI: 10.1007/s11682-022-00690-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/04/2022]
Abstract
The pathophysiology of migraine as a headache disorder is still undetermined. Diffusion tensor imaging (DTI) has significantly improved our knowledge about brain microstructure in this disease. Here, we aimed to systematically review DTI studies in migraine and survey the sources of heterogeneity by investigating diffusion parameter changes associated with clinical characteristics and migraine subtypes. Microstructural changes, as revealed by widespread alteration of diffusion metrics in white matter (WM) tracts, subcortical and cortical regions, were reported by several migraine DTI studies. Specifically, we reported changes in the corpus callosum, thalamic radiations, corona radiata, and brain stem. These alterations showed high variability across migraine cycle phases. Additionally, migraine associated with depressive/anxiety symptoms revealed significant changes in the corpus callosum, internal capsule, and superior longitudinal fasciculus. No significant WM microstructural differences were observed between migraine patients with and without aura. Overall, differences between chronic and episodic migraine showed inconsistency across studies. Migraine is associated with microstructural changes in widespread regions including thalamic radiations, corpus callosum, and brain stem. These alterations can highlight neuronal damage and neuronal plasticity mechanisms either following pain stimulations occurring in migraine cycle or as a compensatory response to pain in chronic migraine. Longitudinal studies applying advanced modalities may shed new light on the underlying microstructural changes in migraine subtypes.
Collapse
|
11
|
Xue Y, Zhu X, Yan W, Zhang Z, Cui E, Wu Y, Li C, Pan J, Yan Q, Chai X, Zhao S. Dietary Supplementation With Acer truncatum Oil Promotes Remyelination in a Mouse Model of Multiple Sclerosis. Front Neurosci 2022; 16:860280. [PMID: 35585921 PMCID: PMC9109879 DOI: 10.3389/fnins.2022.860280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis is a chronic demyelinating disease of uncertain etiology. Traditional treatment methods produce more adverse effects. Epidemiological and clinical treatment findings showed that unknown environmental factors contribute to the etiology of MS and that diet is a commonly assumed factor. Despite the huge interest in diet expressed by people with MS and the potential role diet plays in MS, very little data is available on the role of diet in MS pathogenesis and MS course, in particular, studies on fats and MS. The oil of Acer truncatum is potential as a resource to be exploited in the treatment of some neurodegenerative diseases. Objective Here, we investigated the underlying influences of Acer truncatum oil on the stimulation of remyelination in a cuprizone mouse model of demyelination. Methods Cuprizone (0.2% in chow) was used to establish a mouse model of demyelination. Acer truncatum oil was administrated to mice during remyelination. Following techniques were used: behavioral test, histochemistry, fluorescent immunohistochemistry, transmission electron microscope. Results Mice exposed to cuprizone for 6 weeks showed schizophrenia-like behavioral changes, the increased exploration of the center in the open field test (OFT), increased entries into the open arms of the elevated plus-maze, as well as demyelination in the corpus callosum. After cuprizone withdrawal, the diet therapy was initiated with supplementation of Acer truncatum oil for 2 weeks. As expected, myelin repair was greatly enhanced in the demyelinated regions with increased mature oligodendrocytes (CC1) and myelin basic protein (MBP). More importantly, the supplementation with Acer truncatum oil in the diet reduced the schizophrenia-like behavior in the open field test (OFT) and the elevated plus-maze compared to the cuprizone recovery group. The results revealed that the diet supplementation with Acer truncatum oil improved behavioral abnormalities, oligodendrocyte maturation, and remyelination in the cuprizone model during recovery. Conclusion Diet supplementation with Acer truncatum oil attenuates demyelination induced by cuprizone, indicating that Acer truncatum oil is a novel therapeutic diet in demyelinating diseases.
Collapse
Affiliation(s)
- Yuhuan Xue
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenyong Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Enhui Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Cixia Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiarong Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qijiang Yan
- Multiple Sclerosis Research Center of New York, New York, NY, United States
| | - Xuejun Chai
- Department of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Jitsuishi T, Yamaguchi A. Searching for optimal machine learning model to classify mild cognitive impairment (MCI) subtypes using multimodal MRI data. Sci Rep 2022; 12:4284. [PMID: 35277565 PMCID: PMC8917197 DOI: 10.1038/s41598-022-08231-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
The intervention at the stage of mild cognitive impairment (MCI) is promising for preventing Alzheimer's disease (AD). This study aims to search for the optimal machine learning (ML) model to classify early and late MCI (EMCI and LMCI) subtypes using multimodal MRI data. First, the tract-based spatial statistics (TBSS) analyses showed LMCI-related white matter changes in the Corpus Callosum. The ROI-based tractography addressed the connected cortical areas by affected callosal fibers. We then prepared two feature subsets for ML by measuring resting-state functional connectivity (TBSS-RSFC method) and graph theory metrics (TBSS-Graph method) in these cortical areas, respectively. We also prepared feature subsets of diffusion parameters in the regions of LMCI-related white matter alterations detected by TBSS analyses. Using these feature subsets, we trained and tested multiple ML models for EMCI/LMCI classification with cross-validation. Our results showed the ensemble ML model (AdaBoost) with feature subset of diffusion parameters achieved better performance of mean accuracy 70%. The useful brain regions for classification were those, including frontal, parietal lobe, Corpus Callosum, cingulate regions, insula, and thalamus regions. Our findings indicated the optimal ML model using diffusion parameters might be effective to distinguish LMCI from EMCI subjects at the prodromal stage of AD.
Collapse
Affiliation(s)
- Tatsuya Jitsuishi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Atsushi Yamaguchi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
13
|
Guo Y, Yang X, Yuan Z, Qiu J, Lu W. A comparison between diffusion tensor imaging and generalized q-sampling imaging in the age prediction of healthy adults via machine learning approaches. J Neural Eng 2022; 19. [PMID: 35038689 DOI: 10.1088/1741-2552/ac4bfe] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Brain age, which is predicted using neuroimaging data, has become an important biomarker in aging research. This study applied diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI) model to predict age respectively, with the purpose of evaluating which diffusion model is more accurate in estimating age and revealing age-related changes in the brain. APPROACH Diffusion MRI data of 125 subjects from two sites were collected. Fractional anisotropy (FA) and quantitative anisotropy (QA) from the two diffusion models were calculated and were used as features of machine learning models. Sequential backward elimination algorithm was used for feature selection. Six machine learning approaches including linear regression, ridge regression, support vector regression (SVR) with linear kernel, quadratic kernel and radial basis function (RBF) kernel and feedforward neural network were used to predict age using FA and QA features respectively. MAIN RESULTS Age predictions using FA features were more accurate than predictions using QA features for all the 6 machine learning algorithms. Post-hoc analysis revealed that FA was more sensitive to age-related white matter alterations in the brain. In addition, SVR with RBF kernel based on FA features achieved better performances than the competing algorithms with MAE ranging from 7.74 to 10.54, MSE ranging from 87.79 to 150.86, and nMSE ranging from 0.05 to 0.14 Significance: FA from DTI model was more suitable than QA from GQI model in age prediction. FA metric was more sensitive to age-related white matter changes in the brain and FA of several brain regions could be used as white matter biomarkers in aging.
Collapse
Affiliation(s)
- Yingying Guo
- Department of Radiology, Shandong First Medical University, No.619 Changcheng Road, Jinan, Shandong, 250000, CHINA
| | - Xi Yang
- Pennsylvania State University, Department of Mathematics, The Pennsylvania State University, University Park, PA, 16801, USA, State College, Pennsylvania, 16801, UNITED STATES
| | - Zilong Yuan
- Hubei Cancer Hospital, No. 116 South Zhuodaoquan Road, Wuhan, Hubei, 430079, CHINA
| | - Jianfeng Qiu
- Shandong Medical University, No. 6699 Qingdao Road, Jinan, 250100, CHINA
| | - Weizhao Lu
- Department of Radiology, Taishan Medical University, No.619 Changcheng Road, Taian, Shandong, 271016, CHINA
| |
Collapse
|
14
|
Is treatment-resistant schizophrenia associated with distinct neurobiological callosal connectivity abnormalities? CNS Spectr 2021; 26:545-549. [PMID: 32772934 DOI: 10.1017/s1092852920001753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Resistance to antipsychotic treatment affects up to 30% of patients with schizophrenia. Although the time course of development of treatment-resistant schizophrenia (TRS) varies from patient to patient, the reasons for these variations remain unknown. Growing evidence suggests brain dysconnectivity as a significant feature of schizophrenia. In this study, we compared fractional anisotropy (FA) of brain white matter between TRS and non-treatment-resistant schizophrenia (non-TRS) patients. Our central hypothesis was that TRS is associated with reduced FA values. METHODS TRS was defined as the persistence of moderate to severe symptoms after adequate treatment with at least two antipsychotics from different classes. Diffusion-tensor brain MRI obtained images from 34 TRS participants and 51 non-TRS. Whole-brain analysis of FA and axial, radial, and mean diffusivity were performed using Tract-Based Spatial Statistics (TBSS) and FMRIB's Software Library (FSL), yielding a contrast between TRS and non-TRS patients, corrected for multiple comparisons using family-wise error (FWE) < 0.05. RESULTS We found a significant reduction in FA in the splenium of corpus callosum (CC) in TRS when compared to non-TRS. The antipsychotic dose did not relate to the splenium CC. CONCLUSION Our results suggest that the focal abnormality of CC may be a potential biomarker of TRS.
Collapse
|
15
|
Sardari S, Pourrahimi A, Fathi M, Talebi H, Mazhari S. Auditory processing in schizophrenia: Behavioural evidence of abnormal spatial awareness. Laterality 2021; 27:71-85. [PMID: 34293997 DOI: 10.1080/1357650x.2021.1955910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spatial processing deficits are the reason for many daily life problems of schizophrenia (SCZ) patients. In this study, we aimed to examine the possibility of abnormal bias to one hemifield, in form of hemispatial neglect and extinction, in auditory modality in SCZ. Twenty-five SCZ patients and 25 healthy individuals were compared on speech tasks to study the auditory neglect and extinction, as well as an auditory localization task for studying neglect. In the speech tasks, participants reproduced some nonsense syllables, played from one or two speakers on the right and/or left sides. On the localization task, examinees discriminated the subjective location of the noise stimuli presented randomly from five speakers. On the speech task, patients had significantly lower hit rates for the right ear compared with controls (p = 0.01). While healthy controls showed right ear advantage, SCZs showed a left ear priority. In the localization task, although both groups had a left-side bias, this bias was much more prominent for the patients (all p < 0.05). SCZ could potentially alter the auditory spatial function, which may appear in the form of auditory neglect and extinction on the right side, depending on the characteristics of patient population.
Collapse
Affiliation(s)
- Sara Sardari
- Kerman Neuroscience Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - AliMohammad Pourrahimi
- Kerman Neuroscience Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mazyar Fathi
- Kerman Neuroscience Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hosein Talebi
- Audiology department, Rehabilitation faculty, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Mazhari
- Kerman Neuroscience Research center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Psychiatry, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Chang X, Mandl RCW, Pasternak O, Brouwer RM, Cahn W, Collin G. Diffusion MRI derived free-water imaging measures in patients with schizophrenia and their non-psychotic siblings. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110238. [PMID: 33400942 DOI: 10.1016/j.pnpbp.2020.110238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Free-water imaging is a diffusion MRI technique that separately models water diffusion hindered by fiber tissue and water that disperses freely in the extracellular space. Studies using this technique have shown that schizophrenia is characterized by a lower level of fractional anisotropy of the tissue compartment (FAt) and higher free-water fractional volume (FW). It is unknown, however, whether such abnormalities are an expression of pre-existing (genetic) risk for schizophrenia or a manifestation of the illness. To investigate the contribution of familial risk factors to white matter abnormalities, we used the free-water imaging technique to assess FAt and FW in a large cohort of 471 participants including 161 patients with schizophrenia, 182 non-psychotic siblings, and 128 healthy controls. In this sample, patients did not show significant differences in FAt as compared to controls, but did exhibit a higher level of FW relative to both controls and siblings in the left uncinate fasciculus, superior corona radiata and fornix / stria terminalis. This increase in FW was found to be related to, though not solely explained by, ventricular enlargement. Siblings did not show significant FW abnormalities. However, siblings did show a higher level of FAt as compared to controls and patients, in line with results of a previous study on the same data using conventional DTI. Taken together, our findings suggest that extracellular free-water accumulation in patients is likely a manifestation of established disease rather than an expression of familial risk for schizophrenia and that super-normal levels of FAt in unaffected siblings may reflect a compensatory process.
Collapse
Affiliation(s)
- Xiao Chang
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands; Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - René C W Mandl
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands; Altrecht Institute of Mental Health Care, Utrecht, the Netherlands
| | - Guusje Collin
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands; Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Boston, USA
| |
Collapse
|
17
|
Musiek FE, Morris S, Ichiba K, Clark L, Davidson AJ. Auditory Hallucinations: An Audiological Horizon? J Am Acad Audiol 2021; 32:195-210. [PMID: 34062609 DOI: 10.1055/s-0041-1722989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Interesting data and theories have emerged regarding auditory hallucinations (AHs) in patients with schizophrenia. The possibility that these patients may have changes in the anatomy of the auditory cortex and/or subcortical structures of the central auditory nervous system and present with deficits on audiological tests is important information to the audiology community. However, it seems clear that, in general, audiologists are not sufficiently aware of these findings. PURPOSE There are two main purposes of this article: (1) to educate audiologists about AHs related to schizophrenia and related issues, and (2) to encourage audiologists and hearing scientists to become involved in the evaluation and research of AHs. This fascinating disorder is one in which audiologists/hearing scientists are well suited to make a significant contribution. RESEARCH DESIGN A review and synthesis of the literature was conducted. Relevant literature was identified through PubMed, Google Scholar, as well as independent book chapters and article searches. Keywords driving the searches were AHs, auditory illusions, verbal and musical hallucinations, schizophrenia, and central auditory disorders. Given the currency of the topic, the information collected was primarily between 1990 and 2020. STUDY SAMPLE The review is organized around categorization, prevalence, models, mechanisms, anatomy, pathophysiology, and audiological correlates related to AHs. DATA COLLECTION AND ANALYSIS Searches were conducted using well-known search engines and manual searches by each author. This information on AHs was then analyzed collectively by the authors for useful background and relevance, as well as important for the field of audiology. RESULTS Several anatomical, physiological, and functional imaging studies have shown compromise of the auditory cortex in those with schizophrenia and AHs. Potentially related to this, are studies that demonstrated sub-par performance on behavioral audiologic measures for this unique clinical population. These findings align well with the kind of hearing disorder for which audiologists are well-trained to make significant contributions. CONCLUSION Neurobiological and audiological evidence is accumulating on patients with schizophrenia and AH potentially rendering it as both an auditory and psychiatric disorder. Audiologists should consider expanding their horizon and playing a role in the clinical investigation of this disorder.
Collapse
Affiliation(s)
- Frank E Musiek
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, Arizona
| | - Sarah Morris
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, Arizona
| | - Kayla Ichiba
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, Arizona
| | - Liza Clark
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, Arizona
| | - Alyssa J Davidson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| |
Collapse
|
18
|
McNabb CB, McIlwain ME, Anderson VM, Kydd RR, Sundram F, Russell BR. Aberrant white matter microstructure in treatment-resistant schizophrenia ✰. Psychiatry Res Neuroimaging 2020; 305:111198. [PMID: 33035754 DOI: 10.1016/j.pscychresns.2020.111198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023]
Abstract
Treatment response in schizophrenia divides into three subcategories: treatment-responsive (first-line responders; FLR), treatment-resistant (TRS), and ultra-treatment-resistant schizophrenia (UTRS). White matter abnormalities could drive antipsychotic resistance but little work has investigated differences between TRS and UTRS. The current study aimed to establish whether differences in white matter structure are present across both treatment-resistant subtypes or if UTRS is distinct from TRS. Diffusion-weighted images were acquired for 18 individuals with TRS, 14 with UTRS, 18 FLR and 20 healthy controls. Measures of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) were obtained using tract-based spatial statistics. Analysis of variance and post-hoc t-tests were conducted for each measure. Those with TRS had lower FA than healthy controls in superior longitudinal fasciculus, corpus callosum, thalamic radiation, corticospinal tract, internal capsule, corona radiata and fronto-occipital fasciculus (p<.05 FWE-corrected). Lower FA was also observed in TRS compared with UTRS in the superior longitudinal fasciculus (p<.05 FWE-corrected). No post-hoc tests survived corrections for multiple comparisons and no differences in MD, AD or RD were observed. These data suggest that microstructural deficits in white matter could contribute to TRS but suggest that other mechanisms may be more relevant for UTRS.
Collapse
Affiliation(s)
- Carolyn B McNabb
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Reading RG6 7BE, United Kingdom
| | - Meghan E McIlwain
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Valerie M Anderson
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Robert R Kydd
- Department of Psychological Medicine, University of Auckland, Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Frederick Sundram
- Department of Psychological Medicine, University of Auckland, Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Bruce R Russell
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
19
|
Diffusion tensor imaging of the corpus callosum in healthy aging: Investigating higher order polynomial regression modelling. Neuroimage 2020; 213:116675. [PMID: 32112960 DOI: 10.1016/j.neuroimage.2020.116675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Previous diffusion tensor imaging (DTI) studies confirmed the vulnerability of corpus callosum (CC) fibers to aging. However, most studies employed lower order regressions to study the relationship between age and white matter microstructure. The present study investigated whether higher order polynomial regression modelling can better describe the relationship between age and CC DTI metrics compared to lower order models in 140 healthy participants (ages 18-85). The CC was found to be non-uniformly affected by aging, with accelerated and earlier degradation occurring in anterior portion; callosal volume, fiber count, fiber length, mean fibers per voxel, and FA decreased with age while mean, axial, and radial diffusivities increased. Half of the parameters studied also displayed significant age-sex interaction or intracranial volume effects. Higher order models were chosen as the best fit, based on Bayesian Information Criterion minimization, in 16 out of 23 significant cases when describing the relationship between DTI measurements and age. Higher order model fits provided different estimations of aging trajectory peaks and decline onsets than lower order models; however, a likelihood ratio test found that higher order regressions generally did not fit the data significantly better than lower order polynomial or linear models. The results contrast the modelling approaches and highlight the importance of using higher order polynomial regression modelling when investigating associations between age and CC white matter microstructure.
Collapse
|
20
|
Madigand J, Tréhout M, Delcroix N, Dollfus S, Leroux E. Corpus callosum microstructural and macrostructural abnormalities in schizophrenia according to the stage of disease. Psychiatry Res Neuroimaging 2019; 291:63-70. [PMID: 31401547 DOI: 10.1016/j.pscychresns.2019.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
Corpus callosum (CC) volume and surface (macrostructural) studies remain controversial and have not considered the illness duration (ID) systematically. Regardless of ID, some CC macrostructural studies have shown no difference between SZ patients and healthy controls (HC), whereas others have reported macrostructural abnormalities in SZ. Conversely, CC microstructural studies are more in agreement with alterations in CC integrity regardless of the patients' ID, but the direction and degree of these abnormalities over time remain unknown. Moreover, no study has explored both the micro- and macrostructure of the CC in SZ by considering the stage of disease. Both CC micro- and macrostructural data were investigated in 43 SZ patients and compared between two patient groups (21 patients with a short ID and 22 with a long ID) and HC (23 participants) using diffusion tensor and structural imaging. CC microstructural alterations were detected in both SZ groups compared to the HC group, without differences between the SZ groups. In contrast, CC macrostructural alterations were only found in the long ID group. CC microstructural alterations might be detected in schizophrenia at an early stage, without an increase of magnitude thereafter, while CC macrostructural alterations might become apparent at later stages of the illness.
Collapse
Affiliation(s)
- Jérémy Madigand
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France; CHU de Caen, Service de psychiatrie Adulte, Centre Esquirol, Caen F-14000, France; Normandie Univ, UNICAEN, UFR de Médecine (Medical School), Caen F-14000, France.
| | - Maxime Tréhout
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France; CHU de Caen, Service de psychiatrie Adulte, Centre Esquirol, Caen F-14000, France; Normandie Univ, UNICAEN, UFR de Médecine (Medical School), Caen F-14000, France.
| | - Nicolas Delcroix
- Normandie Univ, UNICAEN, CNRS, UMS GIP CYCERON, Caen F-14000, France.
| | - Sonia Dollfus
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France; CHU de Caen, Service de psychiatrie Adulte, Centre Esquirol, Caen F-14000, France; Normandie Univ, UNICAEN, UFR de Médecine (Medical School), Caen F-14000, France.
| | - Elise Leroux
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France.
| |
Collapse
|
21
|
Ohoshi Y, Takahashi S, Yamada S, Ishida T, Tsuda K, Tsuji T, Terada M, Shinosaki K, Ukai S. Microstructural abnormalities in callosal fibers and their relationship with cognitive function in schizophrenia: A tract-specific analysis study. Brain Behav 2019; 9:e01357. [PMID: 31283112 PMCID: PMC6710197 DOI: 10.1002/brb3.1357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The corpus callosum serves the essential role of relaying cognitive information between the homologous regions in the left and the right hemispheres of the brain. Cognitive impairment is a core dysfunction of schizophrenia, but much of its pathophysiology is unknown. The aim of this study was to elucidate the association between microstructural abnormalities of the corpus callosum and cognitive dysfunction in schizophrenia. METHODS We examined stepwise multiple regression analysis to investigate the relationship of the fractional anisotropy (FA) of callosal fibers in each segment with z-scores of each brief assessment of cognition in schizophrenia subtest and cognitive composite score in all subjects (19 patients with schizophrenia [SZ group] and 19 healthy controls [HC group]). Callosal fibers were separated into seven segments based on their cortical projection using tract-specific analysis of diffusion tensor imaging. RESULTS The FA of callosal fibers in the temporal segment was significantly associated with z-scores of token motor test, Tower of London test, and the composite score. In the SZ group, the FA of callosal fibers in the temporal segment was significantly associated with the z-score of the Tower of London test. In addition, the FA of callosal fibers in temporal segment showed significant negative association with the positive and negative syndrome scale negative score in the SZ group. Compared to the HC group, the FA in temporal segment was significantly decreased in the SZ group. CONCLUSION Our results suggest that microstructural abnormalities in the callosal white matter fibers connecting bilateral temporal lobe cortices contribute to poor executive function and severe negative symptom in patients with schizophrenia.
Collapse
Affiliation(s)
- Yuji Ohoshi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Takuya Ishida
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Kumi Tsuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | | | - Kazuhiro Shinosaki
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan.,Asakayama General Hospital, Osaka, Japan
| | - Satoshi Ukai
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
22
|
del Re EC, Bouix S, Fitzsimmons J, Blokland GA, Mesholam-Gately R, Wojcik J, Kikinis Z, Kubicki M, Petryshen T, Pasternak O, Shenton ME, Niznikiewicz M. Diffusion abnormalities in the corpus callosum in first episode schizophrenia: Associated with enlarged lateral ventricles and symptomatology. Psychiatry Res 2019; 277:45-51. [PMID: 30808608 PMCID: PMC6857635 DOI: 10.1016/j.psychres.2019.02.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Abnormalities in the corpus callosum (CC) and the lateral ventricles (LV) are hallmark features of schizophrenia. These abnormalities have been reported in chronic and in first episode schizophrenia (FESZ). Here we explore further associations between CC and LV in FESZ using diffusion tensor imaging (DTI). METHODS . Sixteen FESZ patients and 16 healthy controls (HC), matched on age, gender, and handedness participated in the study. Diffusion and structural imaging scans were acquired on a 3T GE Signa magnet. Volumetric measures for LV and DTI measures for five CC subdivisions were completed in both groups. In addition, two-tensor tractography, the latter corrected for free-water (FAt), was completed for CC. Correlations between LV and DTI measures of the CC were examined in both groups, while correlations between DTI and clinical measures were examined in only FESZ. RESULTS Results from two-tensor tractography demonstrated decreased FAt and increased trace and radial diffusivity (RDt) in the five CC subdivisions in FESZ compared to HC. Central CC diffusion measures in FESZ were significantly correlated with volume of the LV, i.e., decreased FAt values were associated with larger LV volume, while increased RDt and trace values were associated with larger LV volume. In controls, correlations were also significant, but they were in the opposite direction from FESZ. In addition, decreased FAt in FESZ was associated with more positive symptoms. DISCUSSION Partial volume corrected FAt, RDt, and trace abnormalities in the CC in FESZ suggest possible de- or dys-myelination, or changes in axonal diameters, all compatible with neurodevelopmental theories of schizophrenia. Correlational findings between the volume of LV and diffusion measures in FESZ reinforce the concept of a link between abnormalities in the LV and CC in early stages of schizophrenia and are also compatible with neurodevelopmental abnormalities in this population.
Collapse
Affiliation(s)
- Elisabetta C. del Re
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jennifer Fitzsimmons
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Gabriëlla A.M. Blokland
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Joanne Wojcik
- Commonwealth Research Center, Harvard Medical School, Boston, MA, USA
| | - Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracey Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,VA Boston Healthcare System, Brockton, MA, USA,Corresponding author. (M.E. Shenton)
| | - Margaret Niznikiewicz
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Neuropsychiatric Manifestations of Partial Agenesis of the Corpus Callosum: A Case Report and Literature Review. Case Rep Psychiatry 2019; 2019:5925191. [PMID: 31019828 PMCID: PMC6452548 DOI: 10.1155/2019/5925191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023] Open
Abstract
Agenesis of the corpus callosum is a rare congenital defect that has been linked to psychiatric disorders, cognitive deficits, learning disabilities, and developmental delays. We present the case of a patient with partial agenesis of the corpus callosum who exhibits depressed mood, transient loss of memory, and history of cognitive, social, and behavioral disturbances that developed during his childhood. Recent and pertinent literature was reviewed and the agenesis of the corpus callosum and its associated neuropsychiatric manifestations are discussed.
Collapse
|
24
|
Ahn JI, Yu ST, Sung G, Choi TK, Lee KS, Bang M, Lee SH. Intra-individual variability in neurocognitive function in schizophrenia: relationships with the corpus callosum. Psychiatry Res Neuroimaging 2019; 283:1-6. [PMID: 30447489 DOI: 10.1016/j.pscychresns.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Patients with schizophrenia not only have impairments in neurological function, but also have instability and variability in neurocognitive function. However, previous researchers have not fully studied the relationships between dispersion across multiple neurocognitive domains and white matter (WM) structures of the brain. This study focuses on intra-individual variability (IIV) in patients with schizophrenia and its relationship with WM integrity of the corpus callosum (CC). Thirty-eight patients with schizophrenia were enrolled in the study. All subjects underwent assessments of neurocognitive function using the Korean-Wechsler Adult Intelligence Scale-Revised (K-WAIS-R) and the severity of clinical symptoms using the Positive and Negative Syndrome Scale (PANSS). IIV across subtests of the K-WAIS-R was calculated using the Holtzer's equation. Tract-based spatial statistics were used to analyze diffusion tensor images. In subjects with schizophrenia, a negative correlation was found between IIV in performance intelligence quotient (PIQ) and fractional anisotropy (FA) values in the genu of the CC. In addition, FA values of the same region were negatively correlated with the total and subscale scores of positive symptoms and general psychopathology from the PANSS. Our findings suggest that the genu of the CC may play an important role in IIV in PIQ and symptomatology in patients with schizophrenia.
Collapse
Affiliation(s)
- Ji-In Ahn
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, Republic of Korea.
| | - Seung-Taek Yu
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, Republic of Korea.
| | - Gyhye Sung
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, Republic of Korea; Department of Clinical and Counselling Psychology, Korea University, Seoul, Republic of Korea.
| | - Tai-Kiu Choi
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, Republic of Korea.
| | - Kang-Soo Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, Republic of Korea.
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, Republic of Korea; Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
25
|
Jiang Y, Guo Z, Xing G, He L, Peng H, Du F, McClure MA, Mu Q. Effects of High-Frequency Transcranial Magnetic Stimulation for Cognitive Deficit in Schizophrenia: A Meta-Analysis. Front Psychiatry 2019; 10:135. [PMID: 30984036 PMCID: PMC6450172 DOI: 10.3389/fpsyt.2019.00135] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Objective: Repetitive transcranial magnetic stimulation (rTMS) has been applied to dorsolateral prefrontal cortex (DLPFC) to improve cognitive function of patients with schizophrenia (SZs). The aim of this meta-analysis was to evaluate whether a high-frequency rTMS course could enhance cognitive function in SZs. Methods: Studies published in PubMed, Cochrane Library, Embase, ScienceDirect, and Web of science were searched until April 2018. The search terms included: "repetitive transcranial magnetic stimulation" or "Rtms," "SZ," or "schizophrenia," and "neuro-cognition" or "neurocognitive performance" or "cognitive effects" or "cognitive" or "cognition" or "working memory" or "executive function" or "language function" or "processing speed," After screening the literatures according to inclusion and exclusion criteria, extracting data, and evaluating the methodological quality of the included studies, a meta-analysis was performed using RevMan 5.3 software (The Cochrane Collaboration, USA). Results: A total of 9 studies on cognitive dysfunction of SZs were included and involved 351 patients. A significant efficacy of high-frequency rTMS on working memory in SZs was found compared to sham stimulation [p = 0.009, standardized mean difference (SMD) = 0.34]. Specifically, rTMS treatment positioned on the left DLPFC, with a total pluses <30,000 was more significantly more effective in improving the working memory (SMD = 0.33, p = 0.03). No improvement was found in other cognitive domains such as executive function, attention, processing speed, and language function. For the follow-up observations, high-frequency rTMS had long-lasting sustained effects on working memory (SMD = 0.45, p = 0.01) and language function (SMD = 0.77, p = 0.02) in SZs. Conclusions: High-frequency rTMS over the left DLPFC with a total pulses <30,000 stimulation could significantly improve working memory in SZs for an extended period of time.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Zhiwei Guo
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Guoqiang Xing
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Lin He
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Haitao Peng
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Fei Du
- Department of Psychiatry, Harvard Medical School, Belmont, CA, United States
| | - Morgan A McClure
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Qiwen Mu
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
26
|
Leroux E, Vandevelde A, Tréhout M, Dollfus S. Abnormalities of fronto-subcortical pathways in schizophrenia and the differential impacts of antipsychotic treatment: a DTI-based tractography study. Psychiatry Res Neuroimaging 2018; 280:22-29. [PMID: 30145382 DOI: 10.1016/j.pscychresns.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/13/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023]
Abstract
The fronto-striato-thalamic circuitry is a key network in patients with schizophrenia (SZPs). We use diffusion tensor imaging (DTI) to investigate the integrity of white matter (WM) pathways involved in this network in SZPs relative to healthy controls (HCs). We also evaluate the differential impact of chronic exposure to clozapine as well as other atypical and typical antipsychotics. 63 HCs and 41 SZPs were included. Of the SZPs, 16 were treated with clozapine (SZPsC), 17 with atypical antipsychotics (SZPsA), and 8 with typical antipsychotics (SZPsT). Three tracts were reconstructed in the left hemisphere using tractography: one fronto-subcortical tract, one prefronto-subcortical tract, and one prefronto-frontal tract. Diffusion parameters were individually extracted in each tract. SZPs exhibited lower integrity in both the fronto-subcortical and prefronto-subcortical tracts relative to HCs, and SZPsT showed altered integrity compared to SZPsC. There were no WM integrity differences in the prefronto-frontal tract between SZP groups or between SZPs and HCs. SZPs exhibit structural connectivity abnormalities in the prefronto-fronto-subcortical network that are specifically and differentially impacted by the type of antipsychotic treatment. Additional studies are needed to separate the contributions of clozapine-mediated neuroprotection, neurotoxicity related to typical antipsychotics, and the illness itself to observed differences.
Collapse
Affiliation(s)
- E Leroux
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France.
| | - A Vandevelde
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France; Service de Psychiatrie Adulte, Centre Esquirol, CHU de Caen, 14000 Caen, France; UFR de Médecine (Medical School), Normandie Université, UNICAEN, Caen, France.
| | - M Tréhout
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France; Service de Psychiatrie Adulte, Centre Esquirol, CHU de Caen, 14000 Caen, France; UFR de Médecine (Medical School), Normandie Université, UNICAEN, Caen, France.
| | - S Dollfus
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France; Service de Psychiatrie Adulte, Centre Esquirol, CHU de Caen, 14000 Caen, France; UFR de Médecine (Medical School), Normandie Université, UNICAEN, Caen, France.
| |
Collapse
|
27
|
Fang J, Li S, Li M, Chan Q, Ma X, Su H, Wang T, Zhan W, Yan J, Xu M, Zhang Y, Zeng L, Tian J, Jiang G. Altered white matter microstructure identified with tract-based spatial statistics in irritable bowel syndrome: a diffusion tensor imaging study. Brain Imaging Behav 2018; 11:1110-1116. [PMID: 27627891 DOI: 10.1007/s11682-016-9573-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neural mechanisms underlying the pathophysiology of irritable bowel syndrome(IBS) are far from being completely understood. The purpose of the present study was to investigate potential white matter (WM) microstructural changes and underlying causes for WM impairment in IBS using diffusion tensor imaging. The present prospective study involved 19 patients with IBS and 20 healthy controls. Whole-brain voxel-wise analyses of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were performed by tract-based spatial statistics (TBSS) to localize abnormal WM regions between the 2 groups. We found that IBS patients had significantly reduced FA (P < 0.05) in the splenium of the corpus callosum, the right retrolenticular area of the internal capsule and the right superior corona radiata. We also found increased MD (P < 0.05) in the splenium and body of the corpus callosum, the right retrolenticular area of the internal capsule, the right superior corona radiata and the right posterior limb of the internal capsule. In addition, IBS patients had significantly increased AD (P < 0.05) in the splenium of the corpus callosum, the bilateral retrolenticular area of the internal capsule and the left posterior limb of the internal capsule. We conclude that the WM microstructure is changed in IBS and the underlying pathological basis may be attributed to the axonal injury and loss. These results may lead to a better understanding of the pathophysiology of IBS.
Collapse
Affiliation(s)
- Jin Fang
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Shumei Li
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Meng Li
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | | | - Xiaofen Ma
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Huanhuan Su
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Tianyue Wang
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Wenfeng Zhan
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Jianhao Yan
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Ming Xu
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Yaxi Zhang
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Luxian Zeng
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China.
| |
Collapse
|
28
|
Agcaoglu O, Miller R, Damaraju E, Rashid B, Bustillo J, Cetin MS, Van Erp TGM, McEwen S, Preda A, Ford JM, Lim KO, Manoach DS, Mathalon DH, Potkin SG, Calhoun VD. Decreased hemispheric connectivity and decreased intra- and inter- hemisphere asymmetry of resting state functional network connectivity in schizophrenia. Brain Imaging Behav 2018; 12:615-630. [PMID: 28434159 PMCID: PMC5651208 DOI: 10.1007/s11682-017-9718-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Many studies have shown that schizophrenia patients have aberrant functional network connectivity (FNC) among brain regions, suggesting schizophrenia manifests with significantly diminished (in majority of the cases) connectivity. Schizophrenia is also associated with a lack of hemispheric lateralization. Hoptman et al. (2012) reported lower inter-hemispheric connectivity in schizophrenia patients compared to controls using voxel-mirrored homotopic connectivity. In this study, we merge these two points of views together using a group independent component analysis (gICA)-based approach to generate hemisphere-specific timecourses and calculate intra-hemisphere and inter-hemisphere FNC on a resting state fMRI dataset consisting of age- and gender-balanced 151 schizophrenia patients and 163 healthy controls. We analyzed the group differences between patients and healthy controls in each type of FNC measures along with age and gender effects. The results reveal that FNC in schizophrenia patients shows less hemispheric asymmetry compared to that of the healthy controls. We also found a decrease in connectivity in all FNC types such as intra-left (L_FNC), intra-right (R_FNC) and inter-hemisphere (Inter_FNC) in the schizophrenia patients relative to healthy controls, but general patterns of connectivity were preserved in patients. Analyses of age and gender effects yielded results similar to those reported in whole brain FNC studies.
Collapse
Affiliation(s)
- O Agcaoglu
- Mind Research Network, 1001 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA.
| | - R Miller
- Mind Research Network, 1001 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - E Damaraju
- Mind Research Network, 1001 Yale Blvd. NE, Albuquerque, NM, 87106, USA
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - B Rashid
- Mind Research Network, 1001 Yale Blvd. NE, Albuquerque, NM, 87106, USA
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - J Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - M S Cetin
- Mind Research Network, 1001 Yale Blvd. NE, Albuquerque, NM, 87106, USA
- Computer Science Department, University of New Mexico, Albuquerque, NM, USA
| | - T G M Van Erp
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - S McEwen
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - A Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - J M Ford
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - K O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - D S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - D H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - S G Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - V D Calhoun
- Mind Research Network, 1001 Yale Blvd. NE, Albuquerque, NM, 87106, USA
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
- Computer Science Department, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
29
|
Kelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C, Andreassen OA, Arango C, Banaj N, Bouix S, Bousman CA, Brouwer RM, Bruggemann J, Bustillo J, Cahn W, Calhoun V, Cannon D, Carr V, Catts S, Chen J, Chen JX, Chen X, Chiapponi C, Cho KK, Ciullo V, Corvin AS, Crespo-Facorro B, Cropley V, De Rossi P, Diaz-Caneja CM, Dickie EW, Ehrlich S, Fan FM, Faskowitz J, Fatouros-Bergman H, Flyckt L, Ford JM, Fouche JP, Fukunaga M, Gill M, Glahn DC, Gollub R, Goudzwaard ED, Guo H, Gur RE, Gur RC, Gurholt TP, Hashimoto R, Hatton SN, Henskens FA, Hibar DP, Hickie IB, Hong LE, Horacek J, Howells FM, Hulshoff Pol HE, Hyde CL, Isaev D, Jablensky A, Jansen PR, Janssen J, Jönsson EG, Jung LA, Kahn RS, Kikinis Z, Liu K, Klauser P, Knöchel C, Kubicki M, Lagopoulos J, Langen C, Lawrie S, Lenroot RK, Lim KO, Lopez-Jaramillo C, Lyall A, Magnotta V, Mandl RCW, Mathalon DH, McCarley RW, McCarthy-Jones S, McDonald C, McEwen S, McIntosh A, Melicher T, Mesholam-Gately RI, Michie PT, Mowry B, Mueller BA, Newell DT, O'Donnell P, Oertel-Knöchel V, Oestreich L, Paciga SA, Pantelis C, Pasternak O, Pearlson G, Pellicano GR, Pereira A, Pineda Zapata J, et alKelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C, Andreassen OA, Arango C, Banaj N, Bouix S, Bousman CA, Brouwer RM, Bruggemann J, Bustillo J, Cahn W, Calhoun V, Cannon D, Carr V, Catts S, Chen J, Chen JX, Chen X, Chiapponi C, Cho KK, Ciullo V, Corvin AS, Crespo-Facorro B, Cropley V, De Rossi P, Diaz-Caneja CM, Dickie EW, Ehrlich S, Fan FM, Faskowitz J, Fatouros-Bergman H, Flyckt L, Ford JM, Fouche JP, Fukunaga M, Gill M, Glahn DC, Gollub R, Goudzwaard ED, Guo H, Gur RE, Gur RC, Gurholt TP, Hashimoto R, Hatton SN, Henskens FA, Hibar DP, Hickie IB, Hong LE, Horacek J, Howells FM, Hulshoff Pol HE, Hyde CL, Isaev D, Jablensky A, Jansen PR, Janssen J, Jönsson EG, Jung LA, Kahn RS, Kikinis Z, Liu K, Klauser P, Knöchel C, Kubicki M, Lagopoulos J, Langen C, Lawrie S, Lenroot RK, Lim KO, Lopez-Jaramillo C, Lyall A, Magnotta V, Mandl RCW, Mathalon DH, McCarley RW, McCarthy-Jones S, McDonald C, McEwen S, McIntosh A, Melicher T, Mesholam-Gately RI, Michie PT, Mowry B, Mueller BA, Newell DT, O'Donnell P, Oertel-Knöchel V, Oestreich L, Paciga SA, Pantelis C, Pasternak O, Pearlson G, Pellicano GR, Pereira A, Pineda Zapata J, Piras F, Potkin SG, Preda A, Rasser PE, Roalf DR, Roiz R, Roos A, Rotenberg D, Satterthwaite TD, Savadjiev P, Schall U, Scott RJ, Seal ML, Seidman LJ, Shannon Weickert C, Whelan CD, Shenton ME, Kwon JS, Spalletta G, Spaniel F, Sprooten E, Stäblein M, Stein DJ, Sundram S, Tan Y, Tan S, Tang S, Temmingh HS, Westlye LT, Tønnesen S, Tordesillas-Gutierrez D, Doan NT, Vaidya J, van Haren NEM, Vargas CD, Vecchio D, Velakoulis D, Voineskos A, Voyvodic JQ, Wang Z, Wan P, Wei D, Weickert TW, Whalley H, White T, Whitford TJ, Wojcik JD, Xiang H, Xie Z, Yamamori H, Yang F, Yao N, Zhang G, Zhao J, van Erp TGM, Turner J, Thompson PM, Donohoe G. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry 2018; 23:1261-1269. [PMID: 29038599 PMCID: PMC5984078 DOI: 10.1038/mp.2017.170] [Show More Authors] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/02/2017] [Accepted: 06/07/2017] [Indexed: 12/15/2022]
Abstract
The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.
Collapse
Affiliation(s)
- S Kelly
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA,Harvard Medical School, Boston, MA, USA,Imaging Genetics Center, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA. E-mail:
| | - N Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - A Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - P Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - I Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - C Alloza
- University of Edinburgh, Edinburgh, UK
| | | | - C Arango
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - N Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - S Bouix
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - C A Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, VIC, Australia,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia,Department of General Practice, The University of Melbourne, Parkville, VIC, Australia,Swinburne University of Technology, Melbourne, VIC, Australia
| | - R M Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J Bruggemann
- Neuroscience Research Australia and School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - J Bustillo
- University of New Mexico, Albuquerque, NM, USA
| | - W Cahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - V Calhoun
- The Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA,The Mind Research Network, Albuquerque, NM, USA
| | - D Cannon
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - V Carr
- Neuroscience Research Australia and School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - S Catts
- Discipline of Psychiatry, School of Medicine, University of Queensland, Herston, QLD, Australia
| | - J Chen
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - J-x Chen
- Beijing Huilongguan Hospital, Beijing, China
| | - X Chen
- Worldwide Research and Development, Pfizer, Cambridge, MA, USA
| | | | - Kl K Cho
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - V Ciullo
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - A S Corvin
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Crespo-Facorro
- University Hospital Marqués de Valdecilla, IDIVAL, Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain,CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - V Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - P De Rossi
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy,Department NESMOS, Faculty of Medicine and Psychology, University ‘Sapienza’ of Rome, Rome, Italy,Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - C M Diaz-Caneja
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - E W Dickie
- Center for Addiction and Mental Health, Toronto, ON, Canada
| | - S Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Technische Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden, Germany
| | - F-m Fan
- Beijing Huilongguan Hospital, Beijing, China
| | - J Faskowitz
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - H Fatouros-Bergman
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - L Flyckt
- University of New South Wales, School of Psychiatry, Sydney, NSW, Australia,The University of Queensland, Queensland Brain Institute and Centre for Advanced Imaging, Brisbane, QLD, Australia
| | - J M Ford
- University of California, VAMC, San Francisco, CA, USA
| | - J-P Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - M Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - M Gill
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - D C Glahn
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital and Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - R Gollub
- Harvard Medical School, Boston, MA, USA,Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - E D Goudzwaard
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - H Guo
- Zhumadian Psychiatry Hospital, Henan Province, China
| | - R E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - R C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - T P Gurholt
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - R Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan,Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - S N Hatton
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - F A Henskens
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia,Health Behaviour Research Group, University of Newcastle, Callaghan, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - D P Hibar
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - I B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - L E Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J Horacek
- National Institute of Mental Health, Klecany, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - F M Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - H E Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C L Hyde
- Worldwide Research and Development, Pfizer, Cambridge, MA, USA
| | - D Isaev
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - A Jablensky
- University of Western Australia, Perth, WA, Australia
| | - P R Jansen
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J Janssen
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E G Jönsson
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - L A Jung
- Laboratory for Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - R S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Z Kikinis
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - K Liu
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - P Klauser
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, VIC, Australia,Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia,Department of Psychiatry, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - C Knöchel
- Laboratory for Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - M Kubicki
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Lagopoulos
- Sunshine Coast Mind and Neuroscience Institute, University of the Sunshine Coast QLD, Australia, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - C Langen
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S Lawrie
- University of Edinburgh, Edinburgh, UK
| | - R K Lenroot
- Neuroscience Research Australia and School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - K O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - C Lopez-Jaramillo
- Research Group in Psychiatry (GIPSI), Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Mood Disorder Program, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - A Lyall
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - R C W Mandl
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D H Mathalon
- University of California, VAMC, San Francisco, CA, USA
| | | | - S McCarthy-Jones
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - C McDonald
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - S McEwen
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - T Melicher
- Third Faculty of Medicine, Charles University, Prague, Czech Republic,The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - R I Mesholam-Gately
- Harvard Medical School and Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess, Medical Center, Boston, MA, USA
| | - P T Michie
- Hunter Medical Research Institute, Newcastle, NSW, Australia,The University of Newcastle, Newcastle, NSW, Australia,Schizophrenia Research Institute, Sydney, NSW, Australia
| | - B Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia and Queensland Centre for Mental Health Research, Brisbane and Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | - B A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - D T Newell
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - P O'Donnell
- Worldwide Research and Development, Pfizer, Cambridge, MA, USA
| | - V Oertel-Knöchel
- Laboratory for Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - L Oestreich
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia and Queensland Centre for Mental Health Research, Brisbane and Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | - S A Paciga
- Worldwide Research and Development, Pfizer, Cambridge, MA, USA
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, VIC, Australia,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia,Schizophrenia Research Institute, Sydney, NSW, Australia,Centre for Neural Engineering (CfNE), Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC, Australia
| | - O Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - G Pearlson
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital and Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - G R Pellicano
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - A Pereira
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | | | - F Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy,School of Biomedical Sciences, Faculty of Health, the University of Newcastle, Callaghan, NSW, Australia
| | - S G Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - A Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - P E Rasser
- Hunter Medical Research Institute, Newcastle, NSW, Australia,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia
| | - D R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - R Roiz
- University Hospital Marqués de Valdecilla, IDIVAL, Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain,CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - A Roos
- SU/UCT MRC Unit on Anxiety and Stress Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - D Rotenberg
- Center for Addiction and Mental Health, Toronto, ON, Canada
| | - T D Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - P Savadjiev
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - U Schall
- Hunter Medical Research Institute, Newcastle, NSW, Australia,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia
| | - R J Scott
- Hunter Medical Research Institute, Newcastle, NSW, Australia,School of Biomedical Sciences, Faculty of Health, the University of Newcastle, Callaghan, NSW, Australia
| | - M L Seal
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
| | - L J Seidman
- Harvard Medical School, Boston, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Harvard Medical School and Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess, Medical Center, Boston, MA, USA
| | - C Shannon Weickert
- Schizophrenia Research Institute, Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - C D Whelan
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - M E Shenton
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA,VA Boston Healthcare System, Boston, MA, USA
| | - J S Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - G Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy,Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - F Spaniel
- National Institute of Mental Health, Klecany, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - E Sprooten
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital and Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - M Stäblein
- Laboratory for Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - D J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa,Department of Psychiatry and MRC Unit on Anxiety and Stress Disorders, University of Cape Town, Cape Town, South Africa
| | - S Sundram
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia,Department of Psychiatry, School of Clinical Sciences, Monash University and Monash Health, Clayton, VIC, Australia
| | - Y Tan
- Beijing Huilongguan Hospital, Beijing, China
| | - S Tan
- Beijing Huilongguan Hospital, Beijing, China
| | - S Tang
- Chongqing Three Gorges Central Hospital, Chongqing, China
| | - H S Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - L T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| | - S Tønnesen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - D Tordesillas-Gutierrez
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain,Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | - N T Doan
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - J Vaidya
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - N E M van Haren
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C D Vargas
- Research Group in Psychiatry (GIPSI), Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - D Vecchio
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - D Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - A Voineskos
- Kimel Family Translational Imaging-Genetics Research Laboratory, Campbell Family Mental Health Research Institute, CAMH Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - J Q Voyvodic
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Z Wang
- Beijing Huilongguan Hospital, Beijing, China
| | - P Wan
- Zhumadian Psychiatry Hospital, Henan Province, China
| | - D Wei
- Luoyang Fifth People's Hospital, Henan Province, China
| | - T W Weickert
- Schizophrenia Research Institute, Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - H Whalley
- University of Edinburgh, Edinburgh, UK
| | - T White
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - T J Whitford
- University of New South Wales, School of Psychiatry, Sydney, NSW, Australia
| | - J D Wojcik
- Harvard Medical School and Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess, Medical Center, Boston, MA, USA
| | - H Xiang
- Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Z Xie
- Worldwide Research and Development, Pfizer, Cambridge, MA, USA
| | - H Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - F Yang
- Beijing Huilongguan Hospital, Beijing, China
| | - N Yao
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - G Zhang
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore, MD, USA
| | - J Zhao
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland,School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi’an, Shaanxi, China
| | - T G M van Erp
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - J Turner
- Psychology Department & Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - P M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - G Donohoe
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
30
|
Shahab S, Stefanik L, Foussias G, Lai MC, Anderson KK, Voineskos AN. Sex and Diffusion Tensor Imaging of White Matter in Schizophrenia: A Systematic Review Plus Meta-analysis of the Corpus Callosum. Schizophr Bull 2018; 44:203-221. [PMID: 28449132 PMCID: PMC5767963 DOI: 10.1093/schbul/sbx049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sex is considered an understudied variable in health research. Schizophrenia is a brain disorder with known sex differences in epidemiology and clinical presentation. We systematically reviewed the literature for sex-based differences of diffusion properties of white matter tracts in schizophrenia. We then conducted a meta-analysis examining sex-based differences in the genu and splenium of the corpus callosum in schizophrenia. Medline and Embase were searched to identify relevant papers. Studies fulfilling the following criteria were included: (1) included individuals with a diagnosis of schizophrenia, (2) included a control group of healthy individuals, (3) included both sexes in the patient and the control groups, (4) used diffusion tensor imaging, and (5) involved analyzing metrics of white matter microstructural integrity. Fractional anisotropy (FA) was used as the measure of interest in the meta-analysis. Of 730 studies reviewed, 75 met the inclusion criteria. Most showed no effect of sex, however, those that did found either that females have lower FA than males, or that the effect of disease in females is larger than that in males. The findings of the meta-analysis in the corpus callosum supported this result. There is a recognized need for studies on schizophrenia with a sufficient sample of female patients. Lack of power undermines the ability to detect sex-based differences. Understanding the sex-specific impact of illness on neural circuits may help inform development of new treatments, and improvement of existing interventions.
Collapse
Affiliation(s)
- Saba Shahab
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada
| | - Laura Stefanik
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George Foussias
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Meng-Chuan Lai
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Kelly K Anderson
- Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Department of Epidemiology & Biostatistics and Psychiatry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aristotle N Voineskos
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,To whom correspondence should be addressed; 250 College Street, Toronto, ON M5T 1R8, Canada; tel: 416-535-8501 ext. 33977, fax: 416-260-4162, e-mail:
| |
Collapse
|
31
|
Elucidation of shared and specific white matter findings underlying psychopathology clusters in schizophrenia. Asian J Psychiatr 2017; 30:144-151. [PMID: 28938151 DOI: 10.1016/j.ajp.2017.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Schizophrenia is associated with diverse white matter (WM) brain abnormalities. In this study, we sought to examine the WM microstructural findings which underlie clinical psychopathology clusters in schizophrenia and hypothesized that these symptom clusters are associated with common and unique WM tracts. METHODS Overall, 76 healthy controls (HC), and 148 patients with schizophrenia (SZ) were recruited and severity of symptomatology in schizophrenia was assessed using the Positive and Negative Syndrome Scale. WM fractional anisotropy (FA) values were extracted from their diffusion tensor images. Psychopathology clusters were first determined using factor analysis and the relationship between these symptom factors and FA values were then assessed with structural equation modelling, which included covariates such as age, sex, duration of illness and medications prescribed. RESULTS Patients with schizophrenia had reduced FA in the genu of corpus callosum (gCC) compared to HC. A three-factor model, namely Positive, Negative, Disorganised factors, was determined as the best fit for the data. All three psychopathology factors were associated with decreased FA in the gCC and bilateral cingulate gyrus. Higher Negative factor scores were uniquely associated with decreased FA in the right sagittal striatum and right superior longitudinal fasciculus. CONCLUSIONS This study found shared and specific WM changes and their associations with specific symptom clusters, which potentially allows for monitoring of such white matter findings associated with clinical presentations in schizophrenia over treatment and illness course.
Collapse
|
32
|
Sun ZY, Gu HS, Chen X, Zhang L, Li XM, Zhang JW, Li L. A novel flavanone derivative ameliorates cuprizone-induced behavioral changes and white matter pathology in the brain of mice. Psychiatry Res 2017; 257:249-259. [PMID: 28783571 DOI: 10.1016/j.psychres.2017.07.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/04/2017] [Accepted: 07/30/2017] [Indexed: 11/24/2022]
Abstract
Recent studies have shown that white matter lesions play an important role in the pathogenesis of schizophrenia. DHF-6 is a novel flavanone derivative synthesized in our laboratory. The purpose of the present study was to investigate the effects of DHF-6 on behavioral changes and white matter pathology in a 0.2% cuprizone-fed C57BL/6 mice model. The results showed that cuprizone induced a decrease in spontaneous alternations in the Y-maze test, an increase in locomotor activity in the open field test, demyelination determined by electron microscopy, a decline in the expression of myelin basic protein (MBP), a decrease in the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs), and an activation of microglia and astrocytes in the corpus callosum measured by western blot and/or immunocytochemical analyses. Intragastric administration of DHF-6 (25 and 50mg/kg) for 5-weeks increased the spontaneous alternations, reduced locomotor activity, reversed demyelination and MBP decrease, promoted OPCs differentiation into mature OLs, and inhibited the activation of microglia and astrocytes. These results suggest that DHF-6 may improve cognitive impairment and the positive symptoms of schizophrenia by alleviating white matter lesions via facilitating remyelination and inhibiting neuroinflammation, thus may be beneficial in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Zheng-Yu Sun
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Hong-Shun Gu
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xi Chen
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xin-Min Li
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Jian-Wei Zhang
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Lin Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| |
Collapse
|
33
|
Enlarged lateral ventricles inversely correlate with reduced corpus callosum central volume in first episode schizophrenia: association with functional measures. Brain Imaging Behav 2017; 10:1264-1273. [PMID: 26678596 DOI: 10.1007/s11682-015-9493-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lateral and third ventricles, as well as the corpus callosum (CC), are known to be affected in schizophrenia. Here we investigate whether abnormalities in the lateral ventricles (LVs), third ventricle, and corpus callosum are related to one another in first episode schizophrenia (FESZ), and whether such abnormalities show progression over time. Nineteen FESZ and 19 age- and handedness-matched controls were included in the study. MR images were acquired on a 3-Tesla MRI at baseline and ~1.2 years later. FreeSurfer v.5.3 was employed for segmentation. Two-way or univariate ANCOVAs were used for statistical analysis, where the covariate was intracranial volume. Group and gender were included as between-subjects factors. Percent volume changes between baseline and follow-up were used to determine volume changes at follow-up. Bilateral LV and third ventricle volumes were significantly increased, while central CC volume was significantly decreased in patients compared to controls at baseline and at follow-up. In FESZ, the bilateral LV volume was also inversely correlated with volume of the central CC. This inverse correlation was not present in controls. In FESZ, an inverse correlation was found between percent volume increase from baseline to follow-up for bilateral LVs and lesser improvement in the Global Assessment of Functioning score. Significant correlations were observed for abnormalities of central CC, LVs and third ventricle volumes in FESZ, suggesting a common neurodevelopmental origin in schizophrenia. Enlargement of ventricles was associated with less improvement in global functioning over time.
Collapse
|
34
|
Alloza C, Bastin ME, Cox SR, Gibson J, Duff B, Semple SI, Whalley HC, Lawrie SM. Central and non-central networks, cognition, clinical symptoms, and polygenic risk scores in schizophrenia. Hum Brain Mapp 2017; 38:5919-5930. [PMID: 28881417 DOI: 10.1002/hbm.23798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/02/2017] [Accepted: 08/24/2017] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia is a complex disorder that may be the result of aberrant connections between specific brain regions rather than focal brain abnormalities. Here, we investigate the relationships between brain structural connectivity as described by network analysis, intelligence, symptoms, and polygenic risk scores (PGRS) for schizophrenia in a group of patients with schizophrenia and a group of healthy controls. Recently, researchers have shown an interest in the role of high centrality networks in the disorder. However, the importance of non-central networks still remains unclear. Thus, we specifically examined network-averaged fractional anisotropy (mean edge weight) in central and non-central subnetworks. Connections with the highest betweenness centrality within the average network (>75% of centrality values) were selected to represent the central subnetwork. The remaining connections were assigned to the non-central subnetwork. Additionally, we calculated graph theory measures from the average network (connections that occur in at least 2/3 of participants). Density, strength, global efficiency, and clustering coefficient were significantly lower in patients compared with healthy controls for the average network (pFDR < 0.05). All metrics across networks were significantly associated with intelligence (pFDR < 0.05). There was a tendency towards significance for a correlation between intelligence and PGRS for schizophrenia (r = -0.508, p = 0.052) that was significantly mediated by central and non-central mean edge weight and every graph metric from the average network. These results are consistent with the hypothesis that intelligence deficits are associated with a genetic risk for schizophrenia, which is mediated via the disruption of distributed brain networks. Hum Brain Mapp 38:5919-5930, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clara Alloza
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, United Kingdom
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom.,Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, United Kingdom
| | - Jude Gibson
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Barbara Duff
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Scott I Semple
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Saia-Cereda VM, Santana AG, Schmitt A, Falkai P, Martins-de-Souza D. The Nuclear Proteome of White and Gray Matter from Schizophrenia Postmortem Brains. MOLECULAR NEUROPSYCHIATRY 2017; 3:37-52. [PMID: 28879200 PMCID: PMC5582429 DOI: 10.1159/000477299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SCZ) is a serious neuropsychiatric disorder that manifests through several symptoms from early adulthood. Numerous studies over the last decades have led to significant advances in increasing our understanding of the factors involved in SCZ. For example, mass spectrometry-based proteomic analysis has provided important insights by uncovering protein dysfunctions inherent to SCZ. Here, we present a comprehensive analysis of the nuclear proteome of postmortem brain tissues from corpus callosum (CC) and anterior temporal lobe (ATL). We show an overview of the role of deregulated nuclear proteins in these two main regions of the brain: the first, mostly composed of glial cells and axons of neurons, and the second, represented mainly by neuronal cell bodies. These samples were collected from SCZ patients in an attempt to characterize the role of the nucleus in the disease process. With the ATL nucleus enrichment, we found 224 proteins present at different levels, and 76 of these were nuclear proteins. In the CC analysis, we identified 119 present at different levels, and 24 of these were nuclear proteins. The differentially expressed nuclear proteins of ATL are mainly associated with the spliceosome, whereas those of the CC region are associated with calcium/calmodulin signaling.
Collapse
Affiliation(s)
- Verônica M. Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Aline G. Santana
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany
- Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- UNICAMP's Neurobiology Center, Campinas, Brazil
| |
Collapse
|
36
|
Lui S, Zhou XJ, Sweeney JA, Gong Q. Psychoradiology: The Frontier of Neuroimaging in Psychiatry. Radiology 2017; 281:357-372. [PMID: 27755933 DOI: 10.1148/radiol.2016152149] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Unlike neurologic conditions, such as brain tumors, dementia, and stroke, the neural mechanisms for all psychiatric disorders remain unclear. A large body of research obtained with structural and functional magnetic resonance imaging, positron emission tomography/single photon emission computed tomography, and optical imaging has demonstrated regional and illness-specific brain changes at the onset of psychiatric disorders and in individuals at risk for such disorders. Many studies have shown that psychiatric medications induce specific measurable changes in brain anatomy and function that are related to clinical outcomes. As a result, a new field of radiology, termed psychoradiology, seems primed to play a major clinical role in guiding diagnostic and treatment planning decisions in patients with psychiatric disorders. This article will present the state of the art in this area, as well as perspectives regarding preparations in the field of radiology for its evolution. Furthermore, this article will (a) give an overview of the imaging and analysis methods for psychoradiology; (b) review the most robust and important radiologic findings and their potential clinical value from studies of major psychiatric disorders, such as depression and schizophrenia; and (c) describe the main challenges and future directions in this field. An ongoing and iterative process of developing biologically based nomenclatures with which to delineate psychiatric disorders and translational research to predict and track response to different therapeutic drugs is laying the foundation for a shift in diagnostic practice in psychiatry from a psychologic symptom-based approach to an imaging-based approach over the next generation. This shift will require considerable innovations for the acquisition, analysis, and interpretation of brain images, all of which will undoubtedly require the active involvement of radiologists. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Su Lui
- From the Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China (S.L., J.A.S., Q.G.); and Center for MR Research and Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois at Chicago, Chicago, Ill (X.J.Z.)
| | - Xiaohong Joe Zhou
- From the Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China (S.L., J.A.S., Q.G.); and Center for MR Research and Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois at Chicago, Chicago, Ill (X.J.Z.)
| | - John A Sweeney
- From the Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China (S.L., J.A.S., Q.G.); and Center for MR Research and Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois at Chicago, Chicago, Ill (X.J.Z.)
| | - Qiyong Gong
- From the Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China (S.L., J.A.S., Q.G.); and Center for MR Research and Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois at Chicago, Chicago, Ill (X.J.Z.)
| |
Collapse
|
37
|
Abstract
BACKGROUND Recently, it was reported that antipsychotic treatment reverted Contactin Associated Protein-Like 3 (CASPR3, same as CNTNAP3) mRNA expressions in leukocytes of schizophrenia (SCZ) subjects to the same levels as healthy controls. CASPR3 was expressed in various regions of the mice brain (cortex, frontal lobes, corpus callosum, hippocampus, etc.). Thus, this study evaluated CASPR3 mRNA expression in SCZ subjects to find a new clue of schizophrenia pathogenesis. METHODS One hundred SCZ subjects and 100 age-matched controls were compared. Levels of CASPR3 mRNA in leukocytes were analysed with a quantitative real-time PCR method using TaqMan probes. RESULTS CASPR3 mRNA expression was significantly higher in leukocytes of SCZ subjects than controls. However, there were no significant correlations between expression level and any clinical parameters in 50 SCZ subjects. CONCLUSION Considering that CASPR3 is involved in building the brain neural network and autophagy in circulating leukocytes, abnormal CASPR3 expression in SCZ subjects may be associated with the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Mitsuo Okita
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Yuta Yoshino
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Jun-Ichi Iga
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Shu-Ichi Ueno
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| |
Collapse
|
38
|
Aging of cerebral white matter. Ageing Res Rev 2017; 34:64-76. [PMID: 27865980 DOI: 10.1016/j.arr.2016.11.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions.
Collapse
|
39
|
Lang X, Wang L, Zhuo CJ, Jia F, Wang LN, Wang CL. Reduction of Interhemispheric Functional Connectivity in Sensorimotor and Visual Information Processing Pathways in Schizophrenia. Chin Med J (Engl) 2017; 129:2422-2426. [PMID: 27748333 PMCID: PMC5072253 DOI: 10.4103/0366-6999.191758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies have demonstrated interhemispheric functional connectivity alterations in schizophrenia. However, the relationship between these alterations and the disease state of schizophrenia is largely unknown. Therefore, we aimed to investigate this relationship using voxel-mirrored homotopic connectivity (VMHC) method. Methods: This study enrolled 36 schizophrenia patients with complete remission, 58 schizophrenia patients with incomplete remission and 55 healthy controls. The VMHC was calculated based on resting-state functional magnetic resonance imaging data. Differences in VMHC among three groups were compared using one-way analysis of variance. A brain region with a significant difference in VMHC was defined as a region of interest (ROI), and the mean VMHC value in the ROI was extracted for the post hoc analysis, i.e., pair-wise comparisons across the three groups. Results: VMHC in the visual region (inferior occipital and fusiform gyri) and the sensorimotor region (paracentral lobule) showed significant differences among the three groups (P < 0.05, a false discovery rate method corrected). Pair-wise comparisons in the post hoc analysis showed that VMHC of the visual and sensorimotor regions in schizophrenia patients with complete remission and incomplete remission was lower than that in healthy controls (P < 0.05, Bonferroni corrected); however, there was no significant difference between the two patient subgroups. Conclusions: Interhemispheric functional connectivity in the sensorimotor and visual processing pathways was reduced in patients with schizophrenia, but this reduction was unrelated to the disease state; thus, this reduction may serve as a trait marker of schizophrenia.
Collapse
Affiliation(s)
- Xu Lang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Le Wang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chuan-Jun Zhuo
- Tianjin Anning Hospital, Tianjin 300300; Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin 300070, China
| | - Feng Jia
- Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin 300070, China
| | - Li-Na Wang
- Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin 300070, China
| | - Chun-Li Wang
- Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin 300070, China
| |
Collapse
|
40
|
Café-Mendes C, Ferro E, Torrão A, Crunfli F, Rioli V, Schmitt A, Falkai P, Britto L, Turck C, Martins-de-Souza D. Peptidomic analysis of the anterior temporal lobe and corpus callosum from schizophrenia patients. J Proteomics 2017; 151:97-105. [DOI: 10.1016/j.jprot.2016.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/17/2016] [Accepted: 05/23/2016] [Indexed: 12/22/2022]
|
41
|
Differential proteome and phosphoproteome may impact cell signaling in the corpus callosum of schizophrenia patients. Schizophr Res 2016; 177:70-77. [PMID: 27094720 DOI: 10.1016/j.schres.2016.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a multifactorial disease in both clinical and molecular terms. Thus, depicting the molecular aspects of the disease will contribute to the understanding of its biochemical mechanisms and consequently may lead to the development of new treatment strategies. The protein phosphorylation/dephosphorylation switch acts as the main mechanism for regulating cellular signaling. Moreover, approximately onethird of human proteins are phosphorylable. Thus, identifying proteins differentially phosphorylated in schizophrenia postmortem brains may improve our understanding of the molecular basis of brain function in this disease. Hence, we quantified the phosphoproteome of corpus callosum samples collected post mortem from schizophrenia patients and healthy controls. We used state-of-the-art, bottom-up shotgun mass spectrometry in a two-dimensional liquid chromatography-tandem mass spectrometry setup in the MSE mode with label-free quantification. We identified 60,634 peptides, belonging to 3283 proteins. Of these, 68 proteins were differentially phosphorylated, and 56 were differentially expressed. These proteins are mostly involved in signaling pathways, such as ephrin B and ciliary neurotrophic factor signaling. The data presented here are novel because this was the very first phosphoproteome analysis of schizophrenia brains. They support the important role of glial cells, especially astrocytes, in schizophrenia and help to further the understanding of the molecular aspects of this disease. Our findings indicate a need for further studies on cell signaling, which might shape the development of treatment strategies.
Collapse
|
42
|
Van Schependom J, Jain S, Cambron M, Vanbinst AM, De Mey J, Smeets D, Nagels G. Reliability of measuring regional callosal atrophy in neurodegenerative diseases. NEUROIMAGE-CLINICAL 2016; 12:825-831. [PMID: 27830115 PMCID: PMC5094205 DOI: 10.1016/j.nicl.2016.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/13/2016] [Indexed: 11/21/2022]
Abstract
The Corpus Callosum (CC) is an important structure connecting the two brain hemispheres. As several neurodegenerative diseases are known to alter its shape, it is an interesting structure to assess as biomarker. Yet, currently, the CC-segmentation is often performed manually and is consequently an error prone and time-demanding procedure. In this paper, we present an accurate and automated method for corpus callosum segmentation based on T1-weighted MRI images. After the initial construction of a CC atlas based on healthy controls, a new image is subjected to a mid-sagittal plane (MSP) detection algorithm and a 3D affine registration in order to initialise the CC within the extracted MSP. Next, an active shape model is run to extract the CC. We calculated the reliability of most popular CC features (area, circularity, corpus callosum index and thickness profile) in healthy controls, Alzheimer's Disease patients and Multiple Sclerosis patients. Importantly, we also provide inter-scanner reliability estimates. We obtained an intra-class correlation coefficient (ICC) of over 0.95 for most features and most datasets. The inter-scanner reliability assessed on the MS patients was remarkably well and ranged from 0.77 to 0.97. In summary, we have constructed an algorithm that reliably detects the CC in 3D T1 images in a fully automated way in healthy controls and different neurodegenerative diseases. Although the CC area and the circularity are the most reliable features (ICC > 0.97); the reliability of the thickness profile (ICC > 0.90; excluding the tip) is sufficient to warrant its inclusion in future clinical studies. A completely automated segmentation of the Corpus Callosum Both traditional features and the thickness profile using Laplace's equation are calculated. Excellent reproducibility and accuracy in healthy controls Excellent reproducibility and accuracy in Alzheimer's Dementia and Multiple Sclerosis patients Excellent inter-scanner reliability enabling the pooling of multi-center data
Collapse
Affiliation(s)
- Jeroen Van Schependom
- Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Radiology, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Saurabh Jain
- Icometrix NV, Kolonel Begaultlaan 1B, 3012 Leuven, Belgium
| | - Melissa Cambron
- Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Anne-Marie Vanbinst
- Radiology, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Johan De Mey
- Radiology, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dirk Smeets
- Icometrix NV, Kolonel Begaultlaan 1B, 3012 Leuven, Belgium
| | - Guy Nagels
- Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Faculté de Psychologie et des Sciences de l'Education, Place du Parc 20, 7000 Mons, Belgium; National MS Center Melsbroek, Vanheylenstraat 16, 1820 Melsbroek, Belgium
| |
Collapse
|
43
|
Diffusion Tensor MR Imaging Evaluation of Callosal Abnormalities in Schizophrenia: A Meta-Analysis. PLoS One 2016; 11:e0161406. [PMID: 27536773 PMCID: PMC4990171 DOI: 10.1371/journal.pone.0161406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022] Open
Abstract
Widespread white matter (WM) abnormalities have been found in patients with schizophrenia. Corpus callosum (CC) is the key area that connects the left and right brain hemispheres. However, the results of studies considering different subregions of the CC as regions of interest in patients with schizophrenia have been inconsistent. To obtain a more consistent evaluation of the diffusion characteristics change of the corpus callosum (CC) related to schizophrenia. A meta-analysis involving fractional anisotropy (FA) values in the CC of 729 schizophrenic subjects and 682 healthy controls from 22 studies was conducted. Overall FA values in the CC of the schizophrenic group were less than that of the healthy control group [weighted mean difference (WMD) = -0.021,P< 0.001]. So were the FA values in the genus region (WMD = -0.019, P< 0.001) and the splenium region (WMD = -0.020, P< 0.001) of the CC respectively. The FA reduction was also significant in subjects with chronic schizophrenia (WMD = -0.032, P< 0.001) and first-episode schizophrenia (WMD = -0.014, P = 0.001). In present study, we demonstrated an overall FA decrease in the CC of schizophrenic patients. In the two subgroup analyses of the genu vs splenium region and chronic vs first-episode schizophrenia, the decrease of all groups was significant. Further studies with more homogenous populations and standardized DTI protocols are needed to confirm and extend these findings.
Collapse
|
44
|
Nascimento JM, Garcia S, Saia-Cereda VM, Santana AG, Brandao-Teles C, Zuccoli GS, Junqueira DG, Reis-de-Oliveira G, Baldasso PA, Cassoli JS, Martins-de-Souza D. Proteomics and molecular tools for unveiling missing links in the biochemical understanding of schizophrenia. Proteomics Clin Appl 2016; 10:1148-1158. [DOI: 10.1002/prca.201600021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Juliana M. Nascimento
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Sheila Garcia
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Verônica M. Saia-Cereda
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Aline G. Santana
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Caroline Brandao-Teles
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Giuliana S. Zuccoli
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Danielle G. Junqueira
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Guilherme Reis-de-Oliveira
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Paulo A. Baldasso
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Juliana S. Cassoli
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| |
Collapse
|
45
|
Xuan Y, Yan G, Wu R, Huang Q, Li X, Xu H. The cuprizone-induced changes in (1)H-MRS metabolites and oxidative parameters in C57BL/6 mouse brain: Effects of quetiapine. Neurochem Int 2015; 90:185-92. [PMID: 26340869 DOI: 10.1016/j.neuint.2015.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/13/2015] [Accepted: 08/30/2015] [Indexed: 02/05/2023]
Abstract
Cuprizone is a copper-chelating agent and able to induce oligodendrocyte loss and demyelination in C57BL/6 mouse brain. Recent studies have used the cuprizone-fed mouse as an animal model of schizophrenia to examine putative roles of altered oligodendrocytes in this mental disorder. The present study reported the effects of cuprizone on the brain metabolites and oxidative parameters with the aim of providing neurochemical evidence for the application of the cuprizone mouse as an animal model of schizophrenia. In addition, we examined effects of quetiapine on the cuprizone-induced changes in brain metabolites and oxidative parameters; this atypical antipsychotic was shown to ameliorate the cuprizone-induced demyelination and behavioral changes in previous studies. C57BL/6 mice were fed a standard rodent chow without or with cuprizone (0.2% w/w) for four weeks during which period they were given sterilized saline or quetiapine in saline. The results of the proton magnetic resonance spectroscopy (1H-MRS) showed that cuprizone-feeding decreased (1)H-MRS signals of N-acetyl-l-aspartate (NAA), total NAA (NAA + NAAG), and choline-containing compounds (phosphorylcholine and glycerophosphorylcholine), suggestive of mitochondrial dysfunction in brain neurons. Biochemical analyses showed lower activities of catalase and glutathione peroxidase, but higher levels of malondialdehyde and H2O2 in the brain tissue of cuprizone-fed mice, indicative of an oxidative stress. These cuprizone-induced changes were effectively relieved in the mice co-administered with cuprizone and quetiapine, although the antipsychotic alone showed no effect. These findings suggest the toxic effects of cuprizone on mitochondria and an antioxidant capacity of quetiapine, by which this antipsychotic relieves the cuprizone-induced mitochondrial dysfunction in brain cells.
Collapse
Affiliation(s)
- Yinghua Xuan
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, China
| | - Gen Yan
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Xinmin Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
46
|
Saia-Cereda VM, Cassoli JS, Schmitt A, Falkai P, Nascimento JM, Martins-de-Souza D. Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains. Eur Arch Psychiatry Clin Neurosci 2015; 265:601-12. [PMID: 26232077 DOI: 10.1007/s00406-015-0621-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
Schizophrenia is an incurable and debilitating mental disorder that may affect up to 1% of the world population. Morphological, electrophysiological, and neurophysiological studies suggest that the corpus callosum (CC), which is the largest portion of white matter in the human brain and responsible for inter-hemispheric communication, is altered in schizophrenia patients. Here, we employed mass spectrometry-based proteomics to investigate the molecular underpinnings of schizophrenia. Brain tissue samples were collected postmortem from nine schizophrenia patients and seven controls at the University of Heidelberg, Germany. Because the CC has a signaling role, we collected cytoplasmic (soluble) proteins and submitted them to nano-liquid chromatography-mass spectrometry (nano LC-MS/MS). Proteomes were quantified by label-free spectral counting. We identified 5678 unique peptides that corresponded to 1636 proteins belonging to 1512 protein families. Of those proteins, 65 differed significantly in expression: 28 were upregulated and 37 downregulated. Our data increased significantly the knowledge derived from an earlier proteomic study of the CC. Among the differentially expressed proteins are those associated with cell growth and maintenance, such as neurofilaments and tubulins; cell communication and signaling, such as 14-3-3 proteins; and oligodendrocyte function, such as myelin basic protein and myelin-oligodendrocyte glycoprotein. Additionally, 30 of the differentially expressed proteins were found previously in other proteomic studies in postmortem brains; this overlap in findings validates the present study and indicates that these proteins may be markers consistently associated with schizophrenia. Our findings increase the understanding of schizophrenia pathophysiology and may serve as a foundation for further treatment strategies.
Collapse
Affiliation(s)
- Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Andrea Schmitt
- Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.
- Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil.
- UNICAMP's Neurobiology Center, Campinas, Brazil.
| |
Collapse
|
47
|
Patel VS, Kelly S, Wright C, Gupta CN, Arias-Vasquez A, Perrone-Bizzozero N, Ehrlich S, Wang L, Bustillo JR, Morris D, Corvin A, Cannon DM, McDonald C, Donohoe G, Calhoun VD, Turner JA. MIR137HG risk variant rs1625579 genotype is related to corpus callosum volume in schizophrenia. Neurosci Lett 2015; 602:44-9. [PMID: 26123324 DOI: 10.1016/j.neulet.2015.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Genome-wide association studies implicate the MIR137HG risk variant rs1625579 (MIR137HGrv) within the host gene for microRNA-137 as a potential regulator of schizophrenia susceptibility. We examined the influence of MIR137HGrv genotype on 17 subcortical and callosal volumes in a large sample of individuals with schizophrenia and healthy controls (n=841). Although the volumes were overall reduced relative to healthy controls, for individuals with schizophrenia the homozygous MIR137HGrv risk genotype was associated with attenuated reduction of mid-posterior corpus callosum volume (p=0.001), along with trend-level effects in the adjacent central and posterior corpus callosum. These findings are unique in the literature and remain robust after analysis in ethnically homogenous and single-scanner subsets of the larger sample. Thus, our study suggests that the mechanisms whereby MIR137HGrv works to increase schizophrenia risk are not those that generate the corpus callosum volume reductions commonly found in the disorder.
Collapse
Affiliation(s)
- Veena S Patel
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA.
| | - Sinead Kelly
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland.
| | - Carrie Wright
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Cota Navin Gupta
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA.
| | - Alejandro Arias-Vasquez
- Technische Universität Dresden, Faculty of Medicine, Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Stefan Ehrlich
- Technische Universität Dresden, Faculty of Medicine, Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Lei Wang
- Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA.
| | - Juan R Bustillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Derek Morris
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland; Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland.
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Colm McDonald
- Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Gary Donohoe
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland; Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Departments of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Jessica A Turner
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Departments of Psychology and Neurosciences, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
48
|
Chang X, Xi YB, Cui LB, Wang HN, Sun JB, Zhu YQ, Huang P, Collin G, Liu K, Xi M, Qi S, Tan QR, Miao DM, Yin H. Distinct inter-hemispheric dysconnectivity in schizophrenia patients with and without auditory verbal hallucinations. Sci Rep 2015; 5:11218. [PMID: 26053998 PMCID: PMC4459220 DOI: 10.1038/srep11218] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/19/2015] [Indexed: 01/26/2023] Open
Abstract
Evidence from behavioral, electrophysiological and diffusion-weighted imaging studies suggest that schizophrenia patients suffer from deficiencies in bilateral brain communication, and this disruption may be related to the occurrence of auditory verbal hallucinations (AVH). To increase our understanding of aberrant inter-hemispheric communication in relation to AVH, we recruited two groups of first-episode schizophrenia patients: one group with AVH (N = 18 AVH patients) and one without hallucinations (N = 18 Non-AVH patients), and 20 healthy controls. All participants received T1 structural imaging and resting-state fMRI scanning. We adopted a newly developed index, voxel-mirrored homotopic connectivity (VMHC), to quantitatively describe bilateral functional connectivity. The whole-brain VMHC measure was compared among the three groups and correlation analyses were conducted between symptomology scores and neurological measures. Our findings suggest all patients shared abnormalities in parahippocampus and striatum. Aberrant bilateral connectivity of default mode network (DMN), inferior frontal gyrus and cerebellum only showed in AVH patients, whereas aberrances in superior temporal gyrus and precentral gyrus were specific to Non-AVH patients. Meanwhile, inter-hemispheric connectivity of DMN correlated with patients' symptomatology scores. This study corroborates that schizophrenia is characterized by inter-hemispheric dysconnectivity, and suggests the localization of such abnormalities may be crucial to whether auditory verbal hallucinations develop.
Collapse
Affiliation(s)
- Xiao Chang
- Department of Medical Psychology, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, P.R. China
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yi-Bin Xi
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, P.R. China
| | - Long-Biao Cui
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, P.R. China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, P.R. China
| | - Jin-Bo Sun
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi Province, 710126, P.R. China
| | - Yuan-Qiang Zhu
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi Province, 710126, P.R. China
| | - Peng Huang
- Department of Medical Psychology, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, P.R. China
| | - Guusje Collin
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kang Liu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, P.R. China
| | - Min Xi
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, P.R. China
| | - Shun Qi
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, P.R. China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, P.R. China
| | - Dan-Min Miao
- Department of Medical Psychology, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, P.R. China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, P.R. China
| |
Collapse
|
49
|
Ohtani T, Bouix S, Lyall AE, Hosokawa T, Saito Y, Melonakos E, Westin CF, Seidman LJ, Goldstein J, Mesholam-Gately R, Petryshen T, Wojcik J, Kubicki M. Abnormal white matter connections between medial frontal regions predict symptoms in patients with first episode schizophrenia. Cortex 2015; 71:264-76. [PMID: 26277547 DOI: 10.1016/j.cortex.2015.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/17/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The medial orbitofrontal cortex (mOFC) and rostral part of anterior cingulate cortex (rACC) have been suggested to be involved in the neural network of salience and emotional processing, and associated with specific clinical symptoms in schizophrenia. Considering the schizophrenia dysconnectivity hypothesis, the connectivity abnormalities between mOFC and rACC might be associated with clinical characteristics in first episode schizophrenia patients (FESZ). METHODS After parcellating mOFC into the anterior and posterior part, diffusion properties of the mOFC-rACC white matter connections for 21 patients with FESZ and 21 healthy controls (HCs) were examined using stochastic tractography, one of the most effective Diffusion Tensor Imaging (DTI) methods for examining tracts between adjacent gray matter (GM) regions. RESULTS Fractional anisotropy (FA) reductions were observed in bilateral posterior, but not anterior mOFC-rACC connections (left: p < .0001; right: p < .0001) in FESZ compared to HCs. In addition, reduced FA in the left posterior mOFC-rACC connection was associated with more severe anhedonia-asociality (rho = -.633, p = .006) and total score (rho = -.520, p = .032) in the Scale for the Assessment of Negative Symptoms (SANS); reduced FA in the right posterior mOFC-rACC connection was associated with more severe affective flattening (rho = -.644, p = .005), total score (rho = -.535, p = .027) in SANS, hallucinations (rho = -.551, p = .018), delusions (rho = -.632, p = .005) and total score (rho = -.721, p = .001) in the Scale for the Assessment of Positive Symptoms (SAPS) in FESZ. CONCLUSIONS The observed white matter abnormalities within the connections between mOFC and rACC might be associated with the psychopathology of the early stage of schizophrenia.
Collapse
Affiliation(s)
- Toshiyuki Ohtani
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA; Safety and Health Organization, Chiba University, Chiba City, Chiba, Japan
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taiga Hosokawa
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA; Tsuchida Hospital, Tokyo, Japan
| | - Yukiko Saito
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neuropsychiatry, Kansai Medical University, Moriguchi City, Osaka, Japan
| | - Eric Melonakos
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl-Fredrik Westin
- Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Larry J Seidman
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jill Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raquelle Mesholam-Gately
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tracey Petryshen
- Stanley Center of Psychiatry Research, Broad Institute of MIT and Harvard, Boston, MA, USA; Psychiatry and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Joanne Wojcik
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
50
|
Leroux E, Delcroix N, Dollfus S. Left-hemisphere lateralization for language and interhemispheric fiber tracking in patients with schizophrenia. Schizophr Res 2015; 165:30-7. [PMID: 25868933 DOI: 10.1016/j.schres.2015.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/24/2015] [Accepted: 03/22/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND It has been suggested that the degree of hemispheric specialization (HS) depends on the structural connectivity between the two hemispheres, that is to say the corpus callosum (CC). Studies, performed only on healthy participants, investigated this anatomo-functional relationship. Nevertheless, it has never been studied in schizophrenia. We therefore propose to study the anatomo-functional relationships between the integrity of interhemispheric connectivity and leftward functional lateralization for language in patients with schizophrenia compared with healthy participants, driven by a multimodal approach combining fMRI and DTI-based fiber tractography. We hypothesized that reduced leftward functional lateralization for language in patients with schizophrenia could be related to a callosal hypoconnectivity. MATERIALS AND METHODS Seventeen patients based on the DSM-IV, and 17 controls were included. The functional laterality index and interhemispheric diffusion values between homologue temporal regions, belonging to the language network, were individually extracted in order to study the anatomo-functional relationships. RESULTS In the patients, higher mean and radial diffusivity (RD) values (thicker myelin sheaths) were associated with less leftward lateralization. In contrast, the controls presented higher RD values and lower fractional anisotropy values (axonal loss) with more leftward lateralization. CONCLUSIONS Our study revealed a relationship between the CC and the HS for language, but did not provide evidence clarifying the direction of the relationship between callosal connectivity and functional lateralization for language. In particular, the present findings showed that the loss of integrity in interhemispheric callosal fibers was associated with reduced leftward cerebral dominance for language in patients with schizophrenia.
Collapse
Affiliation(s)
- Elise Leroux
- CHU de Caen, Service de Psychiatrie, Centre Esquirol, Caen F-14000, France; CNRS, UMR 6301 ISTCT, ISTS Team, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France.
| | - Nicolas Delcroix
- CNRS, UMS 3408, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France.
| | - Sonia Dollfus
- CHU de Caen, Service de Psychiatrie, Centre Esquirol, Caen F-14000, France; CNRS, UMR 6301 ISTCT, ISTS Team, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UFR de médecine (Medical School), Caen F-14000, France.
| |
Collapse
|