1
|
Peng B, Dong K, Liu Q, Li J, Zhao Y, Huang X, Chen M, Wu X, Dai G, Liu D, Li Y, Li J, Chen X, Liu P, Li T, Liu H. Causal Contributions and Interhemispheric Interactions of the Left and Right Supramarginal Gyri in Vocal Feedback Control: Insights From Dual-Site Transcranial Magnetic Stimulation. Psychophysiology 2025; 62:e70054. [PMID: 40197765 DOI: 10.1111/psyp.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/05/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The bilateral supramarginal gyri (SMGs) have been implicated in sensorimotor control of speech production, yet their precise roles and interhemispheric interactions are poorly understood. This event-related potential study employed dual-site continuous theta burst stimulation (c-TBS) over the bilateral SMGs simultaneously to investigate their functional dynamics in vocal motor control. Following unilateral and bilateral c-TBS over the SMG as well as sham stimulation, participants vocalized the vowel sounds while exposed to unexpected pitch perturbations in auditory feedback. Unilateral real c-TBS paired with contralateral sham stimulation led to reduced vocal compensation magnitudes and latencies and decreased P2 responses compared to bilateral sham stimulation, with no differences between left and right SMG stimulation. Source localization revealed that decreased P2 responses following left SMG stimulation localized to left-lateralized dorsolateral prefrontal cortex, supplementary motor area, SMG, middle temporal gyrus, and temporo-parietal junction, whereas such decreases following right SMG stimulation involved left-lateralized primary motor cortex, premotor cortex, and middle temporal gyrus. These findings suggest that both SMGs are causally involved in vocal feedback control through distinct but interconnected networks. Surprisingly, dual-site c-TBS over the bilateral SMG did not alter vocal compensation or cortical activity, suggesting an interhemispheric balancing mechanism for fine-tuning vocal production. Our results offer novel insights into the bihemispheric coordination of auditory-vocal integration, highlighting potential treatment for speech disorders by modulating interhemispheric interactions.
Collapse
Affiliation(s)
- Bo Peng
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke Dong
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingqing Liu
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiating Li
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Zhao
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Huang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mingyun Chen
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiuqin Wu
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongxu Liu
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongxue Li
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xi Chen
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Liu
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingni Li
- Centre for eye and Vision Research (CEVR), Hong Kong SAR, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Sun Yat-sen University, China
| |
Collapse
|
2
|
Senthinathan DA, Adams SG, Page AD, Jog M. Loudness perception deficits during altered and absent auditory feedback in Parkinson's disease. Front Hum Neurosci 2025; 19:1521748. [PMID: 40225839 PMCID: PMC11985790 DOI: 10.3389/fnhum.2025.1521748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/05/2025] [Indexed: 04/15/2025] Open
Abstract
Patients with Parkinson's disease (PD) present with speech difficulties including abnormal speech intensity regulation. It is possible that the neural circuitry in speech may be unique and more complex compared to the other major motor symptoms. The current study aimed to provide a better understanding of the sensorimotor integration and loudness perception deficits in PD using an altered intensity feedback (AIF) paradigm. Twenty-six participants with PD and 26 neurologically healthy control participants completed a magnitude production task (normal loudness, 2× louder, 4× louder, and max loudness) while being presented with AIF and background noise. The task was repeated in complete masking noise and loudness perception ratings were obtained in all conditions (no noise and background noise). Results suggest that unlike previous studies in other sensorimotor domains, individuals with PD display a reduced reliance on auditory sensory feedback such that during a speech magnitude production task, their perception of those productions may rely less on the auditory sensory feedback being received. Loudness perception results in the absence of auditory feedback suggest a modulating effect of sensory feedback on somatosensation or sense of effort in PD.
Collapse
Affiliation(s)
- Dona Anita Senthinathan
- Department of Speech-Language Pathology, SUNY Buffalo State University, Buffalo, NY, United States
| | - Scott G. Adams
- Department of Health and Rehabilitation Sciences, Western University, London, ON, Canada
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Allyson D. Page
- Department of Health and Rehabilitation Sciences, Western University, London, ON, Canada
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| |
Collapse
|
3
|
Yamashita M, Shou Q, Mizuno Y. Association of chronotype with language and episodic memory processing in children: implications for brain structure. Front Integr Neurosci 2024; 18:1437585. [PMID: 39170667 PMCID: PMC11335642 DOI: 10.3389/fnint.2024.1437585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Chronotype refers to individual preference in circadian cycles and is associated with psychiatric problems. It is mainly classified into early (those who prefer to be active in the morning and sleep and wake up early) and late (those who prefer to be active in the evening and sleep and wake up late) chronotypes. Although previous research has demonstrated associations between chronotype and cognitive function and brain structure in adults, little is known regarding these associations in children. Here, we aimed to investigate the relationship between chronotype and cognitive function in children. Moreover, based on the significant association between chronotype and specific cognitive functions, we extracted regions-of-interest (ROI) and examined the association between chronotype and ROI volumes. Methods Data from 4,493 children (mean age of 143.06 months) from the Adolescent Brain Cognitive Development Study were obtained, wherein chronotype (mid-sleep time on free days corrected for sleep debt on school days) was assessed by the Munich Chronotype Questionnaire. Subsequently, the associations between chronotype, cognitive function, and ROI volumes were evaluated using linear mixed-effects models. Results Behaviorally, chronotype was negatively associated with vocabulary knowledge, reading skills, and episodic memory performance. Based on these associations, the ROI analysis focused on language-related and episodic memory-related areas revealed a negative association between chronotype and left precentral gyrus and right posterior cingulate cortex volumes. Furthermore, the precentral gyrus volume was positively associated with vocabulary knowledge and reading skills, while the posterior cingulate cortex volume was positively associated with episodic memory performance. Discussion These results suggest that children with late chronotype have lower language comprehension and episodic memory and smaller brain volumes in the left precentral gyrus and right posterior cingulate cortex associated with these cognitive functions.
Collapse
Affiliation(s)
- Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Qiulu Shou
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Yoshifumi Mizuno
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
4
|
Dedry M, Maryn Y, Szmalec A, Lith-Bijl JV, Dricot L, Desuter G. Neural Correlates of Healthy Sustained Vowel Phonation Tasks: A Systematic Review and Meta-Analysis of Neuroimaging Studies. J Voice 2024; 38:969.e5-969.e19. [PMID: 35305893 DOI: 10.1016/j.jvoice.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This review of the methodology and results of studies involving a sustained vowel phonation task during functional Magnetic Resonance Imaging (fMRI) aims to contribute to the identification of brain regions involved in phonation for healthy subjects. DATA SOURCES This review was performed using the PubMed electronic database. REVIEW METHODS A review was conducted, according to PRISMA guidelines, between September and November 2020, using the following search term pairs: "fMRI and Phonation" and "fMRI and Voice." Activation likelihood estimation analysis was performed. A qualitative analysis was also performed to specify the frequency of activation of each region, as well as the various activation clusters within a single region. RESULTS Seven studies were included and analyzed. Five of the seven studies were selected for the activation likelihood estimation meta-analysis which revealed significant convergent activation for only one cluster located in the left precentral gyrus (BA4). A qualitative review provides an overview of brain activation. Primary motor and premotor areas were the only activated areas in all studies included. Other regions previously considered to be implicated in phonation were often activated in sustained vowel phonation tasks. Additionally, areas generally associated with articulation or language also showed activation. CONCLUSION Methodological recommendations are suggested to isolate the phonatory component and reduce variability between future studies. Based on the qualitative analysis, this review does not support a distinction between regions more related to phonation and regions more related to articulation. Further research is required seeking to isolate the vocal component and to improve insight into human brain network involved in phonation.
Collapse
Affiliation(s)
- Marie Dedry
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Youri Maryn
- European Institute for ORL-HNS, Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp, Belgium; Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium; Faculty of Education, Health and Social Work, University College Ghent, Gent, Belgium; Phonanium, Lokeren, Belgium
| | - Arnaud Szmalec
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Department of Experimental Psychology, Faculty of Psychology and Educational Science, University of Ghent, Gent, Belgium
| | | | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Gauthier Desuter
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Otolaryngology, Head and Neck Surgery Department, Voice and Swallowing Clinic, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Bruxelles, Belgium
| |
Collapse
|
5
|
Manes JL, Bullock L, Meier AM, Turner RS, Richardson RM, Guenther FH. A neurocomputational view of the effects of Parkinson's disease on speech production. Front Hum Neurosci 2024; 18:1383714. [PMID: 38812472 PMCID: PMC11133703 DOI: 10.3389/fnhum.2024.1383714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of this article is to review the scientific literature concerning speech in Parkinson's disease (PD) with reference to the DIVA/GODIVA neurocomputational modeling framework. Within this theoretical view, the basal ganglia (BG) contribute to several different aspects of speech motor learning and execution. First, the BG are posited to play a role in the initiation and scaling of speech movements. Within the DIVA/GODIVA framework, initiation and scaling are carried out by initiation map nodes in the supplementary motor area acting in concert with the BG. Reduced support of the initiation map from the BG in PD would result in reduced movement intensity as well as susceptibility to early termination of movement. A second proposed role concerns the learning of common speech sequences, such as phoneme sequences comprising words; this view receives support from the animal literature as well as studies identifying speech sequence learning deficits in PD. Third, the BG may play a role in the temporary buffering and sequencing of longer speech utterances such as phrases during conversational speech. Although the literature does not support a critical role for the BG in representing sequence order (since incorrectly ordered speech is not characteristic of PD), the BG are posited to contribute to the scaling of individual movements in the sequence, including increasing movement intensity for emphatic stress on key words. Therapeutic interventions for PD have inconsistent effects on speech. In contrast to dopaminergic treatments, which typically either leave speech unchanged or lead to minor improvements, deep brain stimulation (DBS) can degrade speech in some cases and improve it in others. However, cases of degradation may be due to unintended stimulation of efferent motor projections to the speech articulators. Findings of spared speech after bilateral pallidotomy appear to indicate that any role played by the BG in adult speech must be supplementary rather than mandatory, with the sequential order of well-learned sequences apparently represented elsewhere (e.g., in cortico-cortical projections).
Collapse
Affiliation(s)
- Jordan L. Manes
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Latané Bullock
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Andrew M. Meier
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
| | - Robert S. Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Frank H. Guenther
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
6
|
Gao K, He H, Lu B, Xie Q, Lu J, Yao D, Luo C, Li G. Discrepant changes in structure-function coupling in dancers and musicians. Cereb Cortex 2024; 34:bhae068. [PMID: 38489785 DOI: 10.1093/cercor/bhae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Dance and music are well known to improve sensorimotor skills and cognitive functions. To reveal the underlying mechanism, previous studies focus on the brain plastic structural and functional effects of dance and music training. However, the discrepancy training effects on brain structure-function relationship are still blurred. Thus, proficient dancers, musicians, and controls were recruited in this study. The graph signal processing framework was employed to quantify the region-level and network-level relationship between brain function and structure. The results showed the increased coupling strength of the right ventromedial putamen in the dance and music groups. Distinctly, enhanced coupling strength of the ventral attention network, increased coupling strength of the right inferior frontal gyrus opercular area, and increased function connectivity of coupling function signal between the right and left middle frontal gyrus were only found in the dance group. Besides, the dance group indicated enhanced coupling function connectivity between the left inferior parietal lobule caudal area and the left superior parietal lobule intraparietal area compared with the music groups. The results might illustrate dance and music training's discrepant effect on the structure-function relationship of the subcortical and cortical attention networks. Furthermore, dance training seemed to have a greater impact on these networks.
Collapse
Affiliation(s)
- Kexin Gao
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, Center for Information in Medicine, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Xiyuan Ave, West Hi-Tech Zone, Sichuan 611731, China
| | - Hui He
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, Center for Information in Medicine, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Xiyuan Ave, West Hi-Tech Zone, Sichuan 611731, China
| | - Bao Lu
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, Center for Information in Medicine, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Xiyuan Ave, West Hi-Tech Zone, Sichuan 611731, China
| | - Qiushui Xie
- Beijing Dance Academy, Wanshousi Road, Haidian District, Beijing, 100081, China
| | - Jing Lu
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, Center for Information in Medicine, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Xiyuan Ave, West Hi-Tech Zone, Sichuan 611731, China
| | - Dezhong Yao
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, Center for Information in Medicine, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Xiyuan Ave, West Hi-Tech Zone, Sichuan 611731, China
| | - Cheng Luo
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, Center for Information in Medicine, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Xiyuan Ave, West Hi-Tech Zone, Sichuan 611731, China
| | - Gujing Li
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, Center for Information in Medicine, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Xiyuan Ave, West Hi-Tech Zone, Sichuan 611731, China
| |
Collapse
|
7
|
Kapsner-Smith MR, Abur D, Eadie TL, Stepp CE. Test-Retest Reliability of Behavioral Assays of Feedforward and Feedback Auditory-Motor Control of Voice and Articulation. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:34-48. [PMID: 37992404 PMCID: PMC11000789 DOI: 10.1044/2023_jslhr-23-00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE Behavioral assays of feedforward and feedback auditory-motor control of voice and articulation frequently are used to make inferences about underlying neural mechanisms and to study speech development and disorders. However, no studies have examined the test-retest reliability of such measures, which is critical for rigorous study of auditory-motor control. Thus, the purpose of the present study was to assess the reliability of assays of feedforward and feedback control in voice versus articulation domains. METHOD Twenty-eight participants (14 cisgender women, 12 cisgender men, one transgender man, one transmasculine/nonbinary) who denied any history of speech, hearing, or neurological impairment were measured for responses to predictable versus unexpected auditory feedback perturbations of vocal (fundamental frequency, fo) and articulatory (first formant, F1) acoustic parameters twice, with 3-6 weeks between sessions. Reliability was measured with intraclass correlations. RESULTS Opposite patterns of reliability were observed for fo and F1; fo reflexive responses showed good reliability and fo adaptive responses showed poor reliability, whereas F1 reflexive responses showed poor reliability and F1 adaptive responses showed moderate reliability. However, a criterion-referenced categorical measurement of fo adaptive responses as typical versus atypical showed substantial test-retest agreement. CONCLUSIONS Individual responses to some behavioral assays of auditory-motor control of speech should be interpreted with caution, which has implications for several fields of research. Additional research is needed to establish reliable criterion-referenced measures of F1 adaptive responses as well as fo and F1 reflexive responses. Furthermore, the opposite patterns of test-retest reliability observed for voice versus articulation add to growing evidence for differences in underlying neural control mechanisms.
Collapse
Affiliation(s)
| | - Defne Abur
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
- Department of Computational Linguistics, Center for Language and Cognition, University of Groningen, the Netherlands
- Research School of Behavioral and Cognitive Neurosciences, University of Groningen, the Netherlands
| | - Tanya L. Eadie
- Department of Speech and Hearing Sciences, University of Washington, Seattle
| | - Cara E. Stepp
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
- Department of Biomedical Engineering, Boston University, MA
- Department of Otolaryngology–Head and Neck Surgery, Boston University School of Medicine, MA
| |
Collapse
|
8
|
Zhao S, Dai G, Li J, Zhu X, Huang X, Li Y, Tan M, Wang L, Fang P, Chen X, Yan N, Liu H. An interpretable model based on graph learning for diagnosis of Parkinson's disease with voice-related EEG. NPJ Digit Med 2024; 7:3. [PMID: 38182737 PMCID: PMC10770376 DOI: 10.1038/s41746-023-00983-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024] Open
Abstract
Parkinson's disease (PD) exhibits significant clinical heterogeneity, presenting challenges in the identification of reliable electroencephalogram (EEG) biomarkers. Machine learning techniques have been integrated with resting-state EEG for PD diagnosis, but their practicality is constrained by the interpretable features and the stochastic nature of resting-state EEG. The present study proposes a novel and interpretable deep learning model, graph signal processing-graph convolutional networks (GSP-GCNs), using event-related EEG data obtained from a specific task involving vocal pitch regulation for PD diagnosis. By incorporating both local and global information from single-hop and multi-hop networks, our proposed GSP-GCNs models achieved an averaged classification accuracy of 90.2%, exhibiting a significant improvement of 9.5% over other deep learning models. Moreover, the interpretability analysis revealed discriminative distributions of large-scale EEG networks and topographic map of microstate MS5 learned by our models, primarily located in the left ventral premotor cortex, superior temporal gyrus, and Broca's area that are implicated in PD-related speech disorders, reflecting our GSP-GCN models' ability to provide interpretable insights identifying distinctive EEG biomarkers from large-scale networks. These findings demonstrate the potential of interpretable deep learning models coupled with voice-related EEG signals for distinguishing PD patients from healthy controls with accuracy and elucidating the underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Shuzhi Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiyan Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongxue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingdan Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Fang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Manes JL, Kurani AS, Herschel E, Roberts AC, Tjaden K, Parrish T, Corcos DM. Premotor cortex is hypoactive during sustained vowel production in individuals with Parkinson's disease and hypophonia. Front Hum Neurosci 2023; 17:1250114. [PMID: 37941570 PMCID: PMC10629592 DOI: 10.3389/fnhum.2023.1250114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Hypophonia is a common feature of Parkinson's disease (PD); however, the contribution of motor cortical activity to reduced phonatory scaling in PD is still not clear. Methods In this study, we employed a sustained vowel production task during functional magnetic resonance imaging to compare brain activity between individuals with PD and hypophonia and an older healthy control (OHC) group. Results When comparing vowel production versus rest, the PD group showed fewer regions with significant BOLD activity compared to OHCs. Within the motor cortices, both OHC and PD groups showed bilateral activation of the laryngeal/phonatory area (LPA) of the primary motor cortex as well as activation of the supplementary motor area. The OHC group also recruited additional activity in the bilateral trunk motor area and right dorsal premotor cortex (PMd). A voxel-wise comparison of PD and HC groups showed that activity in right PMd was significantly lower in the PD group compared to OHC (p < 0.001, uncorrected). Right PMd activity was positively correlated with maximum phonation time in the PD group and negatively correlated with perceptual severity ratings of loudness and pitch. Discussion Our findings suggest that hypoactivation of PMd may be associated with abnormal phonatory control in PD.
Collapse
Affiliation(s)
- Jordan L. Manes
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
| | - Ajay S. Kurani
- Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL, United States
- Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Ellen Herschel
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Angela C. Roberts
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
- Canadian Centre for Activity and Aging, Western University, London, ON, Canada
- Department of Computer Science, Western University, London, ON, Canada
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Kris Tjaden
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Todd Parrish
- Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Liu D, Chang Y, Dai G, Guo Z, Jones JA, Li T, Chen X, Chen M, Li J, Wu X, Liu P, Liu H. Right, but not left, posterior superior temporal gyrus is causally involved in vocal feedback control. Neuroimage 2023; 278:120282. [PMID: 37468021 DOI: 10.1016/j.neuroimage.2023.120282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/25/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
The posterior superior temporal gyrus (pSTG) has been implicated in the integration of auditory feedback and motor system for controlling vocal production. However, the question as to whether and how the pSTG is causally involved in vocal feedback control is currently unclear. To this end, the present study selectively stimulated the left or right pSTG with continuous theta burst stimulation (c-TBS) in healthy participants, then used event-related potentials to investigate neurobehavioral changes in response to altered auditory feedback during vocal pitch regulation. The results showed that, compared to control (vertex) stimulation, c-TBS over the right pSTG led to smaller vocal compensations for pitch perturbations accompanied by smaller cortical N1 and larger P2 responses. Enhanced P2 responses received contributions from the right-lateralized temporal and parietal regions as well as the insula, and were significantly correlated with suppressed vocal compensations. Surprisingly, these effects were not found when comparing c-TBS over the left pSTG with control stimulation. Our findings provide evidence, for the first time, that supports a causal relationship between right, but not left, pSTG and auditory-motor integration for vocal pitch regulation. This lends support to a right-lateralized contribution of the pSTG in not only the bottom-up detection of vocal feedback errors but also the involvement of driving motor commands for error correction in a top-down manner.
Collapse
Affiliation(s)
- Dongxu Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yichen Chang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Guo
- School of Computer, Zhuhai College of Science and Technology, Zhuhai, China
| | - Jeffery A Jones
- Department of Psychology and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Tingni Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Centre for Eye and Vision Research, 17W Science Park, Hong Kong SAR, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyun Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuqin Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Cuadros J, Z-Rivera L, Castro C, Whitaker G, Otero M, Weinstein A, Martínez-Montes E, Prado P, Zañartu M. DIVA Meets EEG: Model Validation Using Formant-Shift Reflex. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:7512. [PMID: 38435340 PMCID: PMC10906992 DOI: 10.3390/app13137512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The neurocomputational model 'Directions into Velocities of Articulators' (DIVA) was developed to account for various aspects of normal and disordered speech production and acquisition. The neural substrates of DIVA were established through functional magnetic resonance imaging (fMRI), providing physiological validation of the model. This study introduces DIVA_EEG an extension of DIVA that utilizes electroencephalography (EEG) to leverage the high temporal resolution and broad availability of EEG over fMRI. For the development of DIVA_EEG, EEG-like signals were derived from original equations describing the activity of the different DIVA maps. Synthetic EEG associated with the utterance of syllables was generated when both unperturbed and perturbed auditory feedback (first formant perturbations) were simulated. The cortical activation maps derived from synthetic EEG closely resembled those of the original DIVA model. To validate DIVA_EEG, the EEG of individuals with typical voices (N = 30) was acquired during an altered auditory feedback paradigm. The resulting empirical brain activity maps significantly overlapped with those predicted by DIVA_EEG. In conjunction with other recent model extensions, DIVA_EEG lays the foundations for constructing a complete neurocomputational framework to tackle vocal and speech disorders, which can guide model-driven personalized interventions.
Collapse
Affiliation(s)
- Jhosmary Cuadros
- Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal 5001, Venezuela
| | - Lucía Z-Rivera
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2350026, Chile
| | - Christian Castro
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2350026, Chile
| | - Grace Whitaker
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Mónica Otero
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8420524, Chile
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago 8580000, Chile
| | - Alejandro Weinstein
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2350026, Chile
| | | | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 7510602, Chile
| | - Matías Zañartu
- Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| |
Collapse
|
12
|
Li T, Zhu X, Wu X, Gong Y, Jones JA, Liu P, Chang Y, Yan N, Chen X, Liu H. Continuous theta burst stimulation over left and right supramarginal gyri demonstrates their involvement in auditory feedback control of vocal production. Cereb Cortex 2022; 33:11-22. [PMID: 35174862 DOI: 10.1093/cercor/bhac049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
The supramarginal gyrus (SMG) has been implicated in auditory-motor integration for vocal production. However, whether the SMG is bilaterally or unilaterally involved in auditory feedback control of vocal production in a causal manner remains unclear. The present event-related potential (ERP) study investigated the causal roles of the left and right SMG to auditory-vocal integration using neuronavigated continuous theta burst stimulation (c-TBS). Twenty-four young adults produced sustained vowel phonations and heard their voice unexpectedly pitch-shifted by ±200 cents after receiving active or sham c-TBS over the left or right SMG. As compared to sham stimulation, c-TBS over the left or right SMG led to significantly smaller vocal compensations for pitch perturbations that were accompanied by smaller cortical P2 responses. Moreover, no significant differences were found in the vocal and ERP responses when comparing active c-TBS over the left vs. right SMG. These findings provide neurobehavioral evidence for a causal influence of both the left and right SMG on auditory feedback control of vocal production. Decreased vocal compensations paralleled by reduced P2 responses following c-TBS over the bilateral SMG support their roles for auditory-motor transformation in a bottom-up manner: receiving auditory feedback information and mediating vocal compensations for feedback errors.
Collapse
Affiliation(s)
- Tingni Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiuqin Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yulai Gong
- Department of Neurological Rehabilitation, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611135, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yichen Chang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
13
|
Dai G, Chen M, Chen X, Guo Z, Li T, Jones JA, Wu X, Li J, Liu P, Liu H, Liu D. A causal link between left supplementary motor area and auditory-motor control of vocal production: Evidence by continuous theta burst stimulation. Neuroimage 2022; 264:119767. [PMID: 36435342 DOI: 10.1016/j.neuroimage.2022.119767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
The supplementary motor area (SMA) has been implicated in the feedforward control of speech production. Whether this region is involved in speech motor control through auditory feedback, however, remains uncertain. The present event-related potential (ERP) study examined the role of the left SMA in vocal pitch regulation in a causal manner by combining auditory feedback manipulations and neuronavigated continuous theta bust stimulation (c-TBS). After receiving c-TBS over the left SMA or the control site (vertex), twenty young adults vocalized the vowel sound /u/ while hearing their voice unexpectedly pitch-shifted -50 or -200 cents. Compared to the control stimulation, c-TBS over the left SMA led to decreased vocal compensations for pitch perturbations of -50 and -200 cents. A significant decrease of N1 and P2 responses to -200 cents perturbations was also found when comparing active and control stimulation. Major neural generators of decreased P2 responses included the right-lateralized superior and middle temporal gyrus and angular gyrus. Notably, a significant correlation was found between active-control differences in the vocal compensation and P2 responses for the -200 cents perturbations. These findings provide neurobehavioral evidence for a causal link between the left SMA and auditory-motor integration for vocal pitch regulation, suggesting that the left SMA receives auditory feedback information and mediates vocal compensations for feedback errors in a bottom-up manner.
Collapse
Affiliation(s)
- Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mingyun Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiqiang Guo
- School of Computer, Zhuhai College of Science and Technology, Zhuhai, China
| | - Tingni Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Xiuqin Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Dongxu Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
14
|
Li T, Chang Y, Zhao S, Jones JA, Chen X, Gan C, Wu X, Dai G, Li J, Shen Y, Liu P, Liu H. The left inferior frontal gyrus is causally linked to vocal feedback control: evidence from high-definition transcranial alternating current stimulation. Cereb Cortex 2022; 33:5625-5635. [PMID: 36376991 DOI: 10.1093/cercor/bhac447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Current models of speech motor control propose a role for the left inferior frontal gyrus (IFG) in feedforward control of speech production. There is evidence, however, that has implicated the functional relevance of the left IFG for the neuromotor processing of vocal feedback errors. The present event-related potential (ERP) study examined whether the left IFG is causally linked to auditory feedback control of vocal production with high-definition transcranial alternating current stimulation (HD-tACS). After receiving active or sham HD-tACS over the left IFG at 6 or 70 Hz, 20 healthy adults vocalized the vowel sounds while hearing their voice unexpectedly pitch-shifted by ±200 cents. The results showed that 6 or 70 Hz HD-tACS over the left IFG led to larger magnitudes and longer latencies of vocal compensations for pitch perturbations paralleled by larger ERP P2 responses than sham HD-tACS. Moreover, there was a lack of frequency specificity that showed no significant differences between 6 and 70 Hz HD-tACS. These findings provide first causal evidence linking the left IFG to vocal pitch regulation, suggesting that the left IFG is an important part of the feedback control network that mediates vocal compensations for auditory feedback errors.
Collapse
Affiliation(s)
- Tingni Li
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Yichen Chang
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Shuzhi Zhao
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Jeffery A Jones
- Wilfrid Laurier University Psychology Department and Laurier Centre for Cognitive Neuroscience, , Waterloo, Ontario N2L 3C5 , Canada
| | - Xi Chen
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Chu Gan
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Xiuqin Wu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Guangyan Dai
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Jingting Li
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Ying Shen
- The First Affiliated Hospital of Nanjing Medical University Rehabilitation Medicine Center, , Nanjing 210029 , China
| | - Peng Liu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Hanjun Liu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
- Zhongshan School of Medicine, Sun Yat-sen University Guangdong Provincial Key Laboratory of Brain Function and Disease, , Guangzhou 510080 , China
| |
Collapse
|
15
|
Dynamic auditory contributions to error detection revealed in the discrimination of Same and Different syllable pairs. Neuropsychologia 2022; 176:108388. [PMID: 36183800 DOI: 10.1016/j.neuropsychologia.2022.108388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
During speech production auditory regions operate in concert with the anterior dorsal stream to facilitate online error detection. As the dorsal stream also is known to activate in speech perception, the purpose of the current study was to probe the role of auditory regions in error detection during auditory discrimination tasks as stimuli are encoded and maintained in working memory. A priori assumptions are that sensory mismatch (i.e., error) occurs during the discrimination of Different (mismatched) but not Same (matched) syllable pairs. Independent component analysis was applied to raw EEG data recorded from 42 participants to identify bilateral auditory alpha rhythms, which were decomposed across time and frequency to reveal robust patterns of event related synchronization (ERS; inhibition) and desynchronization (ERD; processing) over the time course of discrimination events. Results were characterized by bilateral peri-stimulus alpha ERD transitioning to alpha ERS in the late trial epoch, with ERD interpreted as evidence of working memory encoding via Analysis by Synthesis and ERS considered evidence of speech-induced-suppression arising during covert articulatory rehearsal to facilitate working memory maintenance. The transition from ERD to ERS occurred later in the left hemisphere in Different trials than in Same trials, with ERD and ERS temporally overlapping during the early post-stimulus window. Results were interpreted to suggest that the sensory mismatch (i.e., error) arising from the comparison of the first and second syllable elicits further processing in the left hemisphere to support working memory encoding and maintenance. Results are consistent with auditory contributions to error detection during both encoding and maintenance stages of working memory, with encoding stage error detection associated with stimulus concordance and maintenance stage error detection associated with task-specific retention demands.
Collapse
|
16
|
Weerathunge HR, Tomassi NE, Stepp CE. What Can Altered Auditory Feedback Paradigms Tell Us About Vocal Motor Control in Individuals With Voice Disorders? PERSPECTIVES OF THE ASHA SPECIAL INTEREST GROUPS 2022; 7:959-976. [PMID: 37397620 PMCID: PMC10312128 DOI: 10.1044/2022_persp-21-00195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Purpose The goal of this review article is to provide a summary of the progression of altered auditory feedback (AAF) as a method to understand the pathophysiology of voice disorders. This review article focuses on populations with voice disorders that have thus far been studied using AAF, including individuals with Parkinson's disease, cerebellar degeneration, hyperfunctional voice disorders, vocal fold paralysis, and laryngeal dystonia. Studies using AAF have found that individuals with Parkinson's disease, cerebellar degeneration, and laryngeal dystonia have hyperactive auditory feedback responses due to differing underlying causes. In persons with PD, the hyperactivity may be a compensatory mechanism for atypically weak feedforward motor control. In individuals with cerebellar degeneration and laryngeal dystonia, the reasons for hyperactivity remain unknown. Individuals with hyperfunctional voice disorders may have auditory-motor integration deficits, suggesting atypical updating of feedforward motor control. Conclusions These findings have the potential to provide critical insights to clinicians in selecting the most effective therapy techniques for individuals with voice disorders. Future collaboration between clinicians and researchers with the shared objective of improving AAF as an ecologically feasible and valid tool for clinical assessment may provide more personalized therapy targets for individuals with voice disorders.
Collapse
Affiliation(s)
- Hasini R. Weerathunge
- Department of Biomedical Engineering, Boston University, MA
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Nicole E. Tomassi
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
- Graduate Program for Neuroscience, Boston University, MA
| | - Cara E. Stepp
- Department of Biomedical Engineering, Boston University, MA
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
- Department of Otolaryngology—Head and Neck Surgery, Boston University School of Medicine, MA
| |
Collapse
|
17
|
Steurer H, Schalling E, Franzén E, Albrecht F. Characterization of Mild and Moderate Dysarthria in Parkinson's Disease: Behavioral Measures and Neural Correlates. Front Aging Neurosci 2022; 14:870998. [PMID: 35651530 PMCID: PMC9148995 DOI: 10.3389/fnagi.2022.870998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose Alterations in speech and voice are among the most common symptoms in Parkinson's disease (PD), often resulting in motor speech disorders such as hypokinetic dysarthria. We investigated dysarthria, verbal fluency, executive functions, and global cognitive function in relation to structural and resting-state brain changes in people with PD. Methods Participants with mild-moderate PD (n = 83) were recruited within a randomized controlled trial and divided into groups with varying degrees of dysarthria: no dysarthria (noDPD), mild dysarthria (mildDPD), moderate dysarthria (modDPD), and also combined mildDPD and modDPD into one group (totDPD). Voice sound level and dysphonia, verbal fluency, motor symptoms, executive functions, disease severity, global cognition, and neuroimaging were compared between groups. Gray matter volume and intensity of spontaneous brain activity were analyzed. Additionally, regressions between behavioral and neuroimaging data were performed. Results The groups differed significantly in mean voice sound level, dysphonia, and motor symptom severity. Comparing different severity levels of dysarthria to noDPD, groups differed focally in resting-state activity, but not in brain structure. In totDPD, lower scores on semantic verbal fluency, a composite score of executive functions, and global cognition correlated with lower superior temporal gyrus volume. Conclusion This study shows that severity of dysarthria may be related to underlying structural and resting-state brain alterations in PD as well as behavioral changes. Further, the superior temporal gyrus may play an important role in executive functions, language, and global cognition in people with PD and dysarthria.
Collapse
Affiliation(s)
- Hanna Steurer
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Speech and Language Pathology, Karolinska Institutet, Stockholm, Sweden
- R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Ellika Schalling
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Speech and Language Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Public Health and Caring Sciences, Speech-Language Pathology, Uppsala University, Uppsala, Sweden
| | - Erika Franzén
- R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Karolinska University Hospital, Women’s Health and Allied Health Professionals, Stockholm, Sweden
| | - Franziska Albrecht
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Karolinska University Hospital, Women’s Health and Allied Health Professionals, Stockholm, Sweden
| |
Collapse
|
18
|
Li Y, Li Q, Li T, Zhou Z, Xu Y, Yang Y, Chen J, Guo H. Construction and Multiple Feature Classification Based on a High-Order Functional Hypernetwork on fMRI Data. Front Neurosci 2022; 16:848363. [PMID: 35495049 PMCID: PMC9043754 DOI: 10.3389/fnins.2022.848363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Resting-state functional connectivity hypernetworks, in which multiple nodes can be connected, are an effective technique for diagnosing brain disease and performing classification research. Conventional functional hypernetworks can characterize the complex interactions within the human brain in a static form. However, an increasing body of evidence demonstrates that even in a resting state, neural activity in the brain still exhibits transient and subtle dynamics. These dynamic changes are essential for understanding the basic characteristics underlying brain organization and may correlate significantly with the pathological mechanisms of brain diseases. Therefore, considering the dynamic changes of functional connections in the resting state, we proposed methodology to construct resting state high-order functional hyper-networks (rs-HOFHNs) for patients with depression and normal subjects. Meanwhile, we also introduce a novel property (the shortest path) to extract local features with traditional local properties (cluster coefficients). A subgraph feature-based method was introduced to characterize information relating to global topology. Two features, local features and subgraph features that showed significant differences after feature selection were subjected to multi-kernel learning for feature fusion and classification. Compared with conventional hyper network models, the high-order hyper network obtained the best classification performance, 92.18%, which indicated that better classification performance can be achieved if we needed to consider multivariate interactions and the time-varying characteristics of neural interaction simultaneously when constructing a network.
Collapse
Affiliation(s)
- Yao Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Qifan Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Tao Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Zijing Zhou
- College of Software, Taiyuan University of Technology, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanli Yang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Junjie Chen
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Hao Guo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
19
|
Wang H, Yu K, Yang T, Zeng L, Li J, Dai C, Peng Z, Shao Y, Fu W, Qi J. Altered Functional Connectivity in the Resting State Neostriatum After Complete Sleep Deprivation: Impairment of Motor Control and Regulatory Network. Front Neurosci 2021; 15:665687. [PMID: 34483817 PMCID: PMC8416068 DOI: 10.3389/fnins.2021.665687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Sleep loss not only compromises individual physiological functions but also induces a psychocognitive decline and even impairs the motor control and regulatory network. In this study, we analyzed whole-brain functional connectivity changes in the putamen and caudate nucleus as seed points in the neostriatum after 36 h of complete sleep deprivation in 30 healthy adult men by resting state functional magnetic resonance imaging to investigate the physiological mechanisms involved in impaired motor control and regulatory network in individuals in the sleep-deprived state. The functional connectivity between the putamen and the bilateral precentral, postcentral, superior temporal, and middle temporal gyrus, and the left caudate nucleus and the postcentral and inferior temporal gyrus were significantly reduced after 36 h of total sleep deprivation. This may contribute to impaired motor perception, fine motor control, and speech motor control in individuals. It may also provide some evidence for neurophysiological changes in the brain in the sleep-deprived state and shed new light on the study of the neostriatum in the basal ganglia.
Collapse
Affiliation(s)
- Haiteng Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Ke Yu
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Tianyi Yang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Lingjing Zeng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jialu Li
- School of Psychology, Beijing Sport University, Beijing, China
| | - Cimin Dai
- School of Psychology, Beijing Sport University, Beijing, China
| | - Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Weiwei Fu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianlin Qi
- Air Force Medical Center, Beijing, China
| |
Collapse
|
20
|
Lin Q, Chang Y, Liu P, Jones JA, Chen X, Peng D, Chen M, Wu C, Liu H. Cerebellar Continuous Theta Burst Stimulation Facilitates Auditory-Vocal Integration in Spinocerebellar Ataxia. Cereb Cortex 2021; 32:455-466. [PMID: 34240142 DOI: 10.1093/cercor/bhab222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinical studies have shown the efficacy of transcranial magnetic stimulation in treating movement disorders in patients with spinocerebellar ataxia (SCA). However, whether similar effects occur for their speech motor disorders remains largely unknown. The present event-related potential study investigated whether and how abnormalities in auditory-vocal integration associated with SCA can be modulated by neuronavigated continuous theta burst stimulation (c-TBS) over the right cerebellum. After receiving active or sham cerebellar c-TBS, 19 patients with SCA were instructed to produce sustained vowels while hearing their voice unexpectedly pitch-shifted by ±200 cents. Behaviorally, active cerebellar c-TBS led to smaller magnitudes of vocal compensations for pitch perturbations than sham stimulation. Parallel modulatory effects were also observed at the cortical level, as reflected by increased P1 and P2 responses but decreased N1 responses elicited by active cerebellar c-TBS. Moreover, smaller magnitudes of vocal compensations were predicted by larger amplitudes of cortical P1 and P2 responses. These findings provide the first neurobehavioral evidence that c-TBS over the right cerebellum produces modulatory effects on abnormal auditory-motor integration for vocal pitch regulation in patients with SCA, offering a starting point for the treatment of speech motor disorders associated with SCA with cerebellar c-TBS.
Collapse
Affiliation(s)
- Qing Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yichen Chang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danhua Peng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Frankford SA, Heller Murray ES, Masapollo M, Cai S, Tourville JA, Nieto-Castañón A, Guenther FH. The Neural Circuitry Underlying the "Rhythm Effect" in Stuttering. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2325-2346. [PMID: 33887150 PMCID: PMC8740675 DOI: 10.1044/2021_jslhr-20-00328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Purpose Stuttering is characterized by intermittent speech disfluencies, which are dramatically reduced when speakers synchronize their speech with a steady beat. The goal of this study was to characterize the neural underpinnings of this phenomenon using functional magnetic resonance imaging. Method Data were collected from 16 adults who stutter and 17 adults who do not stutter while they read sentences aloud either in a normal, self-paced fashion or paced by the beat of a series of isochronous tones ("rhythmic"). Task activation and task-based functional connectivity analyses were carried out to compare neural responses between speaking conditions and groups after controlling for speaking rate. Results Adults who stutter produced fewer disfluent trials in the rhythmic condition than in the normal condition. Adults who stutter did not have any significant changes in activation between the rhythmic condition and the normal condition, but when groups were collapsed, participants had greater activation in the rhythmic condition in regions associated with speech sequencing, sensory feedback control, and timing perception. Adults who stutter also demonstrated increased functional connectivity among cerebellar regions during rhythmic speech as compared to normal speech and decreased connectivity between the left inferior cerebellum and the left prefrontal cortex. Conclusions Modulation of connectivity in the cerebellum and prefrontal cortex during rhythmic speech suggests that this fluency-inducing technique activates a compensatory timing system in the cerebellum and potentially modulates top-down motor control and attentional systems. These findings corroborate previous work associating the cerebellum with fluency in adults who stutter and indicate that the cerebellum may be targeted to enhance future therapeutic interventions. Supplemental Material https://doi.org/10.23641/asha.14417681.
Collapse
Affiliation(s)
- Saul A. Frankford
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | | | - Matthew Masapollo
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | - Shanqing Cai
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | - Jason A. Tourville
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | | | - Frank H. Guenther
- Department of Speech, Language & Hearing Sciences, Boston University, MA
- Department of Biomedical Engineering, Boston University, MA
- Department of Radiology, Massachusetts General Hospital, Boston
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge
| |
Collapse
|
22
|
Chen N, Zhao C, Wang M, Jones JA, Liu P, Chen X, Gong G, Liu H. Linking Cortical Morphology to Interindividual Variability in Auditory Feedback Control of Vocal Production. Cereb Cortex 2021; 31:2932-2943. [PMID: 33454738 DOI: 10.1093/cercor/bhaa401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Speakers regulate vocal motor behaviors in a compensatory manner when perceiving errors in auditory feedback. Little is known, however, about the source of interindividual variability that exists in the degree to which speakers compensate for perceived errors. The present study included 40 young adults to investigate whether individual differences in auditory integration for vocal pitch regulation, as indexed by vocal compensations for pitch perturbations in auditory feedback, can be predicted by cortical morphology as assessed by gray-matter volume, cortical thickness, and surface area in a whole-brain manner. The results showed that greater gray-matter volume in the left inferior parietal lobule and greater cortical thickness and surface area in the left superior/middle temporal gyrus, temporal pole, inferior/superior parietal lobule, and precuneus predicted larger vocal responses. Greater cortical thickness in the right inferior frontal gyrus and superior parietal lobule and surface area in the left precuneus and cuneus were significantly correlated with smaller magnitudes of vocal responses. These findings provide the first evidence that vocal compensations for feedback errors are predicted by the structural morphology of the frontal and tempo-parietal regions, and further our understanding of the neural basis that underlies interindividual variability in auditory-motor control of vocal production.
Collapse
Affiliation(s)
- Na Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jeffery A Jones
- Psychology Department, Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Gaolong Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
23
|
Peng D, Lin Q, Chang Y, Jones JA, Jia G, Chen X, Liu P, Liu H. A Causal Role of the Cerebellum in Auditory Feedback Control of Vocal Production. THE CEREBELLUM 2021; 20:584-595. [PMID: 33555544 DOI: 10.1007/s12311-021-01230-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 01/01/2023]
Abstract
Accumulating evidence demonstrates that the cerebellum is involved in a variety of cognitive functions. Recently, impaired auditory-motor integration for vocal control has been identified in patients with cerebellar degeneration, characterized by abnormally enhanced vocal compensations for pitch perturbations. However, the causal relationship between the cerebellum and auditory feedback during vocal production remains unclear. By applying anodal transcranial direct current stimulation (a-tDCS) over right cerebellum, the present study investigated cerebellar contributions to auditory-motor processing of feedback errors during vocal pitch regulation. Twenty young adults participated in a frequency-altered-feedback (FAF) task, in which they vocalized vowel sounds and heard their voice unexpectedly pitch-shifted by ± 50 or ± 200 cents. Active or sham cerebellar a-tDCS was applied either prior to or during the FAF task. Compensatory vocal responses to pitch perturbations were measured and compared across the conditions. Active cerebellar a-tDCS led to significantly larger and slower vocal compensations for pitch perturbations than sham stimulation. Moreover, this modulatory effect was observed regardless of the timing of cerebellar a-tDCS as well as the size and direction of the pitch perturbation. These findings provide the first causal evidence that the cerebellum is essentially involved in auditory feedback control of vocal production. Enhanced and slowed vocal compensations caused by cerebellar a-tDCS may be related to its inhibition on the prefrontal cortex that exerts inhibitory control over vocal compensation behavior, suggesting the importance of the cerebrocerebellar connections in this feedback control process.
Collapse
Affiliation(s)
- Danhua Peng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yichen Chang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Guoqing Jia
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Hosaka T, Kimura M, Yotsumoto Y. Neural representations of own-voice in the human auditory cortex. Sci Rep 2021; 11:591. [PMID: 33436798 PMCID: PMC7804419 DOI: 10.1038/s41598-020-80095-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
We have a keen sensitivity when it comes to the perception of our own voices. We can detect not only the differences between ourselves and others, but also slight modifications of our own voices. Here, we examined the neural correlates underlying such sensitive perception of one's own voice. In the experiments, we modified the subjects' own voices by using five types of filters. The subjects rated the similarity of the presented voices to their own. We compared BOLD (Blood Oxygen Level Dependent) signals between the voices that subjects rated as least similar to their own voice and those they rated as most similar. The contrast revealed that the bilateral superior temporal gyrus exhibited greater activities while listening to the voice least similar to their own voice and lesser activation while listening to the voice most similar to their own. Our results suggest that the superior temporal gyrus is involved in neural sharpening for the own-voice. The lesser degree of activations observed by the voices that were similar to the own-voice indicates that these areas not only respond to the differences between self and others, but also respond to the finer details of own-voices.
Collapse
Affiliation(s)
- Taishi Hosaka
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Marino Kimura
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Yotsumoto
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Dietziker J, Staib M, Frühholz S. Neural competition between concurrent speech production and other speech perception. Neuroimage 2020; 228:117710. [PMID: 33385557 DOI: 10.1016/j.neuroimage.2020.117710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/28/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022] Open
Abstract
Understanding others' speech while individuals simultaneously produce speech utterances implies neural competition and requires specific mechanisms for a neural resolution given that previous studies proposed opposing signal dynamics for both processes in the auditory cortex (AC). We here used neuroimaging in humans to investigate this neural competition by lateralized stimulations with other speech samples and ipsilateral or contralateral lateralized feedback of actively produced self speech utterances in the form of various speech vowels. In experiment 1, we show, first, that others' speech classifications during active self speech lead to activity in the planum temporale (PTe) when both self and other speech samples were presented together to only the left or right ear. The contralateral PTe also seemed to indifferently respond to single self and other speech samples. Second, specific activity in the left anterior superior temporal cortex (STC) was found during dichotic stimulations (i.e. self and other speech presented to separate ears). Unlike previous studies, this left anterior STC activity supported self speech rather than other speech processing. Furthermore, right mid and anterior STC was more involved in other speech processing. These results signify specific mechanisms for self and other speech processing in the left and right STC beyond a more general speech processing in PTe. Third, other speech recognition in the context of listening to recorded self speech in experiment 2 led to largely symmetric activity in STC and additionally in inferior frontal subregions. The latter was previously reported to be generally relevant for other speech perception and classification, but we found frontal activity only when other speech classification was challenged by recorded but not by active self speech samples. Altogether, unlike formerly established brain networks for uncompetitive other speech perception, active self speech during other speech perception seemingly leads to a neural reordering, functional reassignment, and unusual lateralization of AC and frontal brain activations.
Collapse
Affiliation(s)
- Joris Dietziker
- Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland.
| | - Matthias Staib
- Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sascha Frühholz
- Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland; Department of Psychology, University of Oslo, Norway.
| |
Collapse
|
26
|
Meekings S, Scott SK. Error in the Superior Temporal Gyrus? A Systematic Review and Activation Likelihood Estimation Meta-Analysis of Speech Production Studies. J Cogn Neurosci 2020; 33:422-444. [PMID: 33326327 DOI: 10.1162/jocn_a_01661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Evidence for perceptual processing in models of speech production is often drawn from investigations in which the sound of a talker's voice is altered in real time to induce "errors." Methods of acoustic manipulation vary but are assumed to engage the same neural network and psychological processes. This paper aims to review fMRI and PET studies of altered auditory feedback and assess the strength of the evidence these studies provide for a speech error correction mechanism. Studies included were functional neuroimaging studies of speech production in neurotypical adult humans, using natural speech errors or one of three predefined speech manipulation techniques (frequency altered feedback, delayed auditory feedback, and masked auditory feedback). Seventeen studies met the inclusion criteria. In a systematic review, we evaluated whether each study (1) used an ecologically valid speech production task, (2) controlled for auditory activation caused by hearing the perturbation, (3) statistically controlled for multiple comparisons, and (4) measured behavioral compensation correlating with perturbation. None of the studies met all four criteria. We then conducted an activation likelihood estimation meta-analysis of brain coordinates from 16 studies that reported brain responses to manipulated over unmanipulated speech feedback, using the GingerALE toolbox. These foci clustered in bilateral superior temporal gyri, anterior to cortical fields typically linked to error correction. Within the limits of our analysis, we conclude that existing neuroimaging evidence is insufficient to determine whether error monitoring occurs in the posterior superior temporal gyrus regions proposed by models of speech production.
Collapse
|
27
|
Nonverbal auditory communication - Evidence for integrated neural systems for voice signal production and perception. Prog Neurobiol 2020; 199:101948. [PMID: 33189782 DOI: 10.1016/j.pneurobio.2020.101948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
While humans have developed a sophisticated and unique system of verbal auditory communication, they also share a more common and evolutionarily important nonverbal channel of voice signaling with many other mammalian and vertebrate species. This nonverbal communication is mediated and modulated by the acoustic properties of a voice signal, and is a powerful - yet often neglected - means of sending and perceiving socially relevant information. From the viewpoint of dyadic (involving a sender and a signal receiver) voice signal communication, we discuss the integrated neural dynamics in primate nonverbal voice signal production and perception. Most previous neurobiological models of voice communication modelled these neural dynamics from the limited perspective of either voice production or perception, largely disregarding the neural and cognitive commonalities of both functions. Taking a dyadic perspective on nonverbal communication, however, it turns out that the neural systems for voice production and perception are surprisingly similar. Based on the interdependence of both production and perception functions in communication, we first propose a re-grouping of the neural mechanisms of communication into auditory, limbic, and paramotor systems, with special consideration for a subsidiary basal-ganglia-centered system. Second, we propose that the similarity in the neural systems involved in voice signal production and perception is the result of the co-evolution of nonverbal voice production and perception systems promoted by their strong interdependence in dyadic interactions.
Collapse
|
28
|
Berro DH, Lemée JM, Leiber LM, Emery E, Menei P, Ter Minassian A. Overt speech feasibility using continuous functional magnetic resonance imaging: Isolation of areas involved in phonology and prosody. J Neurosci Res 2020; 98:2554-2565. [PMID: 32896001 DOI: 10.1002/jnr.24723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023]
Abstract
To avoid motion artifacts, almost all speech-related functional magnetic resonance imagings (fMRIs) are performed covertly to detect language activations. This method may be difficult to execute, especially by patients with brain tumors, and does not allow the identification of phonological areas. Here, we aimed to evaluate overt task feasibility. Thirty-three volunteers participated in this study. They performed two functional sessions of covert and overt generation of a short sentence semantically linked with a word. Three main contrasts were performed: Covert and Overt for the isolation of language-activated areas, and Overt > Covert for the isolation of the motor cortical activation of speech. fMRI data preprocessing was performed with and without unwarping, and with and without regression of movement parameters as confounding variables. All types of results were compared to each other. For the Overt contrast, Dice coefficients showed strong overlap between each pair of types of results: 0.98 for the pair with and without unwarping, and 0.9 for the pair with and without movement parameter regression. The Overt > Covert contrast allowed isolation of motor laryngeal activations with high statistical reliability and revealed the right-lateralized temporal activity related to acoustic feedback. Overt speaking during magnetic resonance imaging induced few artifacts and did not significantly affect the results, allowing the identification of areas involved in primary motor control and prosodic regulation of speech. Unwarping and motion artifact regression in the postprocessing step, seem to not be necessary. Changes in lateralization of cortical activity by overt speech shall be explored before using these tasks for presurgical mapping.
Collapse
Affiliation(s)
- David Hassanein Berro
- Department of Neurosurgery, University Hospital of Caen Normandy, Caen, France.,Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France.,INSERM, CRCINA, Equipe 17, Bâtiment IRIS, Angers, France
| | - Jean-Michel Lemée
- INSERM, CRCINA, Equipe 17, Bâtiment IRIS, Angers, France.,Department of Neurosurgery, University Hospital of Angers, Angers, France
| | | | - Evelyne Emery
- Department of Neurosurgery, University Hospital of Caen Normandy, Caen, France.,INSERM, UMR-S U1237, PhIND Group, GIP Cyceron, Caen, France
| | - Philippe Menei
- INSERM, CRCINA, Equipe 17, Bâtiment IRIS, Angers, France.,Department of Neurosurgery, University Hospital of Angers, Angers, France
| | - Aram Ter Minassian
- Department of Anesthesiology, University Hospital of Angers, Angers, France.,LARIS, ISISV Team, University of Angers, Angers, France
| |
Collapse
|
29
|
Guidotti L, Negroni D, Sironi L, Stecco A. Neural Correlates of Esophageal Speech: An fMRI Pilot Study. J Voice 2020; 36:288.e1-288.e14. [PMID: 32768157 DOI: 10.1016/j.jvoice.2020.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The esophageal speech is one of the possible alaryngeal voices resulting after total laryngectomy. Its production is made by the regurgitation of the air coming from the esophagus, sonorized through the passage from the walls of the upper esophageal sphincter. The neural correlates of this voice have never been investigated, while the neural control of laryngeal voice has been already documented by different studies. METHODS Four patients using esophageal speech after total laryngectomy and four healthy controls underwent functional magnetic resonance imaging. The fMRI experiment was carried out using a "Block Design Paradigm." RESULTS Comparison of the phonation task in the two groups revealed higher brain activities in the cingulate gyrus, the cerebellum and the medulla as well as lower brain activities in the precentral gyrus, the inferior and middle frontal gyrus and the superior temporal gyrus in the laryngectomized group. CONCLUSIONS The findings in this pilot study provide insight into neural phonation control in laryngectomized patients with esophageal speech. The imaging results demonstrated that in patients with esophageal speech, altered brain activities can be observed. The adaptive changes in the brain following laryngectomy reflect the changes in the body and in the voice modality. In addition, this pilot study establishes that a blocked design fMRI is sensitive enough to define a neural network associated with esophageal voice and lays the foundation for further studies in this field.
Collapse
Affiliation(s)
- Lucilla Guidotti
- Department of Head and Neck Surgery, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy.
| | - Davide Negroni
- Department of Radiology, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Luigi Sironi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | - Alessandro Stecco
- Department of Radiology, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| |
Collapse
|
30
|
Zhang L, Li W, Wang L, Bai T, Ji GJ, Wang K, Tian Y. Altered functional connectivity of right inferior frontal gyrus subregions in bipolar disorder: a resting state fMRI study. J Affect Disord 2020; 272:58-65. [PMID: 32379621 DOI: 10.1016/j.jad.2020.03.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/04/2020] [Accepted: 03/29/2020] [Indexed: 11/26/2022]
Abstract
The right inferior frontal gyrus (rIFG) is a key cortical node in the circuits of emotion and cognitive control, and it has been frequently associated with bipolar disorder (BP); however, a reliable pattern of aberrant rIFG activation and connectivity in bipolar disorder has yet to be established. To further elucidate rIFG abnormalities in different states of bipolar disorder, we examined activation and functional connectivity (FC) in five subregions of rIFG in bipolar disorder. A total of 83 participants, including those with bipolar depression (BPD; n = 25) and bipolar mania (BPM; n = 37) along with healthy control (HC) subjects (n = 26), were examined by resting state functional magnetic resonance imaging (rs-fMRI). Both BPD and BPM groups showed higher values of amplitude of low-frequency fluctuations (ALFF) than healthy control in four of the five rIFG subregions except cluster 2(posterior-ventral rIFG). Using five subregions of rIFG as seeds, the decreased FC in bipolar disorder was mainly between posterior-ventral rIFG(cluster 2) and multiple brain regions including the postcentral gyrus, the precentral gyrus, paracentral lobule, lingual Gyrus, fusiform and cerebellum posterior lobe. These results indicated that local activity and FC were altered within specific subregions of the rIFG in BP. These findings may provide the distinct functional connectivity of rIFG subregions in BP and suggest that the cluster2 (posterior-ventral rIFG) circuitry plays a crucial role in BP. Also, such abnormalities might help define a more precise intervention targets.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Wenfei Li
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Long Wang
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Tongjian Bai
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China;; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China;; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
31
|
Liu D, Dai G, Liu C, Guo Z, Xu Z, Jones JA, Liu P, Liu H. Top–Down Inhibitory Mechanisms Underlying Auditory–Motor Integration for Voice Control: Evidence by TMS. Cereb Cortex 2020; 30:4515-4527. [PMID: 32147719 DOI: 10.1093/cercor/bhaa054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The dorsolateral prefrontal cortex (DLPFC) has been implicated in auditory–motor integration for accurate control of vocal production, but its precise role in this feedback-based process remains largely unknown. To this end, the present event-related potential study applied a transcranial magnetic stimulation (TMS) protocol, continuous theta-burst stimulation (c-TBS), to disrupt cortical activity in the left DLPFC as young adults vocalized vowel sounds while hearing their voice unexpectedly shifted upwards in pitch. The results showed that, as compared to the sham condition, c-TBS over left DLPFC led to significantly larger vocal compensations for pitch perturbations that were accompanied by significantly smaller cortical P2 responses. Source localization analyses revealed that this brain activity pattern was the result of reduced activation in the left superior frontal gyrus and right inferior parietal lobule (supramarginal gyrus). These findings demonstrate c-TBS-induced modulatory effects of DLPFC on the neurobehavioral processing of vocal pitch regulation, suggesting that disrupting prefrontal function may impair top–down inhibitory control mechanisms that prevent speech production from being excessively influenced by auditory feedback, resulting in enhanced vocal compensations for feedback perturbations. This is the first study that provides direct evidence for a causal role of the left DLPFC in auditory feedback control of vocal production.
Collapse
Affiliation(s)
- Dongxu Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Churong Liu
- Rehabilitation Training Center, Guangzhou 999 Brain Hospital, Guangzhou 510510, China
| | - Zhiqiang Guo
- Department of Computer Science and Technology, Zhuhai College of Jilin University, Zhuhai 519041, China
| | - Zhiqin Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
32
|
Event-related potential correlates of auditory feedback control of vocal production in experienced singers. Neuroreport 2020; 31:325-331. [PMID: 32058428 DOI: 10.1097/wnr.0000000000001410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Considerable evidence has shown that experienced singers are capable of voluntarily suppressing vocal compensations for consistent pitch perturbations in auditory feedback. Our recent behavioral study found that singers also compensated for brief pitch perturbations to a lesser degree than nonsingers in an involuntary manner. In the present event-related potential study, we investigated the neural correlates of involuntary vocal pitch regulation in experienced singers. All participants were instructed to vocalize the vowel sounds while their voice was unexpectedly shifted in pitch by -50 and -200 cents. The results revealed decreased cortical N1 and P2 responses to pitch perturbations and reduced involuntary vocal compensations for singers when compared to nonsingers. Moreover, larger vocal responses were significantly correlated with smaller cortical P2 responses for nonsingers, whereas this brain-behavior relationship did not exist for singers. These findings demonstrate that the cortical processing of involuntary auditory-motor integration for vocal pitch regulation can be shaped as a function of singing experience, suggesting that experienced singers may be less influenced by auditory feedback and rely more on somatosensory feedback or feedforward control as a consequence of singing training as compared to nonsingers.
Collapse
|
33
|
Sares AG, Deroche MLD, Ohashi H, Shiller DM, Gracco VL. Neural Correlates of Vocal Pitch Compensation in Individuals Who Stutter. Front Hum Neurosci 2020; 14:18. [PMID: 32161525 PMCID: PMC7053555 DOI: 10.3389/fnhum.2020.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Stuttering is a disorder that impacts the smooth flow of speech production and is associated with a deficit in sensorimotor integration. In a previous experiment, individuals who stutter were able to vocally compensate for pitch shifts in their auditory feedback, but they exhibited more variability in the timing of their corrective responses. In the current study, we focused on the neural correlates of the task using functional MRI. Participants produced a vowel sound in the scanner while hearing their own voice in real time through headphones. On some trials, the audio was shifted up or down in pitch, eliciting a corrective vocal response. Contrasting pitch-shifted vs. unshifted trials revealed bilateral superior temporal activation over all the participants. However, the groups differed in the activation of middle temporal gyrus and superior frontal gyrus [Brodmann area 10 (BA 10)], with individuals who stutter displaying deactivation while controls displayed activation. In addition to the standard univariate general linear modeling approach, we employed a data-driven technique (independent component analysis, or ICA) to separate task activity into functional networks. Among the networks most correlated with the experimental time course, there was a combined auditory-motor network in controls, but the two networks remained separable for individuals who stuttered. The decoupling of these networks may account for temporal variability in pitch compensation reported in our previous work, and supports the idea that neural network coherence is disturbed in the stuttering brain.
Collapse
Affiliation(s)
- Anastasia G. Sares
- Speech Motor Control Lab, Integrated Program in Neuroscience and School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language, and Music, Montreal, QC, Canada
| | - Mickael L. D. Deroche
- Centre for Research on Brain, Language, and Music, Montreal, QC, Canada
- Laboratory for Hearing and Cognition, Department of Psychology, Concordia University, Montreal, QC, Canada
| | | | - Douglas M. Shiller
- Centre for Research on Brain, Language, and Music, Montreal, QC, Canada
- École d’orthophonie et d’audiologie, Université de Montréal, Montreal, QC, Canada
| | - Vincent L. Gracco
- Speech Motor Control Lab, Integrated Program in Neuroscience and School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language, and Music, Montreal, QC, Canada
- Haskins Laboratories, New Haven, CT, United States
| |
Collapse
|
34
|
Patel S, Gao L, Wang S, Gou C, Manes J, Robin DA, Larson CR. Comparison of volitional opposing and following responses across speakers with different vocal histories. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4244. [PMID: 31893753 PMCID: PMC7043849 DOI: 10.1121/1.5134769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Research has shown that people who are instructed to volitionally respond to pitch-shifted feedback either produce responses that follow the shift direction with a short latency of 100-200 ms or oppose the shift direction with longer latencies of 300-400 ms. This difference in response latencies prompted a comparison of three groups of vocalists with differing abilities, non-trained English-speaking subjects, non-trained Mandarin-speaking subjects, and trained English-speaking singers. All subjects produced short latency following responses and long latency opposing responses, and in most cases the opposing responses were preceded by a shorter latency following response. Across groups, the magnitudes of the opposing and following responses were largest for the Mandarin speakers. Singers produced the smallest opposing response magnitudes, suggesting differences in the pitch goals of the two groups. Opposing response latencies were longest for the English and Mandarin speaking subjects and shortest for the trained singers, demonstrating that musical training increases the speed of producing the opposing responses. The presence of similar latencies of small following responses preceding larger opposing responses in all groups suggests that the tendency to mimic changes in sounds to which a person is attending are not influenced by vocal training or experience.
Collapse
Affiliation(s)
- Sona Patel
- Department of Speech-Language Pathology, Seton Hall University, 340 Kingsland Street, Building 123, Nutley, New Jersey 07110, USA
| | - Li Gao
- Northwestern University, Frances Searle Building, 2240 Campus Drive, Room 3-247, Evanston, Illinois 60208-2952, USA
| | - Sophie Wang
- Northwestern University, Frances Searle Building, 2240 Campus Drive, Room 3-247, Evanston, Illinois 60208-2952, USA
| | - Christine Gou
- Northwestern University, Frances Searle Building, 2240 Campus Drive, Room 3-247, Evanston, Illinois 60208-2952, USA
| | - Jordan Manes
- Northwestern University, Frances Searle Building, 2240 Campus Drive, Room 3-247, Evanston, Illinois 60208-2952, USA
| | - Donald A Robin
- Communication Sciences and Disorders, University of New Hampshire, Hewitt Hall, Room 153, Durham, New Hampshire 03824, USA
| | - Charles R Larson
- Northwestern University, Frances Searle Building, 2240 Campus Drive, Room 3-247, Evanston, Illinois 60208-2952, USA
| |
Collapse
|
35
|
Naunheim ML, Yung KC, Schneider SL, Henderson-Sabes J, Kothare H, Hinkley LB, Mizuiri D, Klein DJ, Houde JF, Nagarajan SS, Cheung SW. Cortical networks for speech motor control in unilateral vocal fold paralysis. Laryngoscope 2019; 129:2125-2130. [PMID: 30570142 DOI: 10.1002/lary.27730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/09/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate brain networks for motor control of voice production in patients with treated unilateral vocal fold paralysis (UVFP). STUDY DESIGN Cross-sectional comparison. METHODS Nine UVFP patients treated by type I thyroplasty, and 11 control subjects were compared using magnetoencephalographic imaging to measure beta band (12-30 Hz) neural oscillations during voice production with perturbation of pitch feedback. Differences in beta band power relative to baseline were analyzed to identify cortical areas with abnormal activity within the 400 ms perturbation period and 125 ms beyond, for a total of 525 ms. RESULTS Whole-brain task-induced beta band activation patterns were qualitatively similar in both treated UVFP patients and healthy controls. Central vocal motor control plasticity in UVFP was expressed within constitutive components of central human communication networks identified in healthy controls. Treated UVFP patients exhibited statistically significant enhancement (P < 0.05) in beta band activity following pitch perturbation onset in left auditory cortex to 525 ms, left premotor cortex to 225 ms, and left and right frontal cortex to 525 ms. CONCLUSION This study further corroborates that a peripheral motor impairment of the larynx can affect central cortical networks engaged in auditory feedback processing, vocal motor control, and judgment of voice-as-self. Future research to dissect functional relationships among constitutive cortical networks could reveal neurophysiological bases of central contributions to voice production impairment in UVFP. Those novel insights would motivate innovative treatments to improve voice production and reduce misalignment of voice-quality judgment between clinicians and patients. LEVEL OF EVIDENCE 3b Laryngoscope, 129:2125-2130, 2019.
Collapse
Affiliation(s)
- Molly L Naunheim
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| | - Katherine C Yung
- San Francisco Voice & Swallowing, University of California, San Francisco, California, U.S.A
| | - Sarah L Schneider
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| | - Jennifer Henderson-Sabes
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| | - Hardik Kothare
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, U.S.A
| | - Leighton B Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, U.S.A
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, U.S.A
| | - David J Klein
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| | - John F Houde
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| | - Srikantan S Nagarajan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, U.S.A
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| |
Collapse
|
36
|
Parrell B, Houde J. Modeling the Role of Sensory Feedback in Speech Motor Control and Learning. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:2963-2985. [PMID: 31465712 PMCID: PMC6813034 DOI: 10.1044/2019_jslhr-s-csmc7-18-0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/08/2018] [Accepted: 02/22/2019] [Indexed: 05/14/2023]
Abstract
Purpose While the speech motor system is sensitive to feedback perturbations, sensory feedback does not seem to be critical to speech motor production. How the speech motor system is able to be so flexible in its use of sensory feedback remains an open question. Method We draw on evidence from a variety of disciplines to summarize current understanding of the sensory systems' role in speech motor control, including both online control and motor learning. We focus particularly on computational models of speech motor control that incorporate sensory feedback, as these models provide clear encapsulations of different theories of sensory systems' function in speech production. These computational models include the well-established directions into velocities of articulators model and computational models that we have been developing in our labs based on the domain-general theory of state feedback control (feedback aware control of tasks in speech model). Results After establishing the architecture of the models, we show that both the directions into velocities of articulators and state feedback control/feedback aware control of tasks models can replicate key behaviors related to sensory feedback in the speech motor system. Although the models agree on many points, the underlying architecture of the 2 models differs in a few key ways, leading to different predictions in certain areas. We cover key disagreements between the models to show the limits of our current understanding and point toward areas where future experimental studies can resolve these questions. Conclusions Understanding the role of sensory information in the speech motor system is critical to understanding speech motor production and sensorimotor learning in healthy speakers as well as in disordered populations. Computational models, with their concrete implementations and testable predictions, are an important tool to understand this process. Comparison of different models can highlight areas of agreement and disagreement in the field and point toward future experiments to resolve important outstanding questions about the speech motor control system.
Collapse
Affiliation(s)
- Benjamin Parrell
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison
| | - John Houde
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco
| |
Collapse
|
37
|
Wang W, Wei L, Chen N, Jones JA, Gong G, Liu H. Decreased Gray-Matter Volume in Insular Cortex as a Correlate of Singers' Enhanced Sensorimotor Control of Vocal Production. Front Neurosci 2019; 13:815. [PMID: 31427924 PMCID: PMC6688740 DOI: 10.3389/fnins.2019.00815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence has shown enhanced sensorimotor control of vocal production as a consequence of extensive singing experience. The neural basis of this ability, however, is poorly understood. Given that the insula mediates motor aspects of vocal production, the present study investigated structural plasticity in insula induced by singing experience and its link to auditory feedback control of vocal production. Voxel-based morphometry (VBM) was used to examine the differences in gray matter (GM) volume in the insula of 21 singers and 21 non-singers. An auditory feedback perturbation paradigm was used to examine the differences in auditory-motor control of vocal production between singers and non-singers. Both groups vocalized sustained vowels while hearing their voice unexpectedly pitch-shifted −50 or −200 cents (200 ms duration). VBM analyses showed that singers exhibited significantly lower GM volumes in the bilateral insula than non-singers. When exposed to pitch perturbations in voice auditory feedback, singers involuntarily compensated for pitch perturbations in voice auditory feedback to a significantly lesser degree than non-singers. Moreover, across the two sizes of pitch perturbations, the magnitudes of vocal compensations were positively correlated with the total regional GM volumes in the bilateral insula. These results indicate that extensive singing training leads to decreased GM volumes in insula and suggest that morphometric plasticity in insula contributes to the enhanced sensorimotor control of vocal production observed in singers.
Collapse
Affiliation(s)
- Wenda Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lirao Wei
- Department of Music, Guangdong University of Education, Guangzhou, China
| | - Na Chen
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Li W, Zhuang J, Guo Z, Jones JA, Xu Z, Liu H. Cerebellar contribution to auditory feedback control of speech production: Evidence from patients with spinocerebellar ataxia. Hum Brain Mapp 2019; 40:4748-4758. [PMID: 31365181 DOI: 10.1002/hbm.24734] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/17/2019] [Accepted: 07/15/2019] [Indexed: 11/10/2022] Open
Abstract
The cerebellum has been implicated in the feedforward control of speech production. However, the role of the cerebellum in the feedback control of speech production remains unclear. To address this question, the present event-related potential study examined the behavioral and neural correlates of auditory feedback control of vocal production in patients with spinocerebellar ataxia (SCA) and healthy controls. All participants were instructed to produce sustained vowels while hearing their voice unexpectedly pitch-shifted -200 or -500 cents. The behavioral results revealed significantly larger vocal compensations for pitch perturbations in patients with SCA relative to healthy controls. At the cortical level, patients with SCA exhibited significantly smaller cortical P2 responses that were source localized in the right superior temporal gyrus, primary auditory cortex, and supramarginal gyrus than healthy controls. These findings indicate that reduced brain activity in the right temporal and parietal regions are significant neural contributors to abnormal auditory-motor processing of vocal pitch regulation as a consequence of cerebellar degeneration, which may be related to disrupted reciprocal interactions between the cerebellum and cortical regions that support the top-down modulation of auditory-vocal integration. These differences in behavior and cortical activity between healthy controls and patients with SCA demonstrate that the cerebellum is not only essential for feedforward control but also plays a crucial role in the feedback-based control of speech production.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong ProvincialPeople's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajun Zhuang
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong
| | - Zhiqiang Guo
- Department of Computer Science and Technology, Zhuhai College of Jilin University, Zhuhai, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Zhiqin Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Johnson JF, Belyk M, Schwartze M, Pinheiro AP, Kotz SA. The role of the cerebellum in adaptation: ALE meta-analyses on sensory feedback error. Hum Brain Mapp 2019; 40:3966-3981. [PMID: 31155815 PMCID: PMC6771970 DOI: 10.1002/hbm.24681] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023] Open
Abstract
It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies.
Collapse
Affiliation(s)
| | - Michel Belyk
- Maastricht University, Maastricht, the Netherlands.,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | | | - Ana P Pinheiro
- Faculdade de Psicologia - Universidade de Lisboa, Lisboa, Portugal
| | - Sonja A Kotz
- Maastricht University, Maastricht, the Netherlands.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
40
|
Finkel S, Veit R, Lotze M, Friberg A, Vuust P, Soekadar S, Birbaumer N, Kleber B. Intermittent theta burst stimulation over right somatosensory larynx cortex enhances vocal pitch-regulation in nonsingers. Hum Brain Mapp 2019; 40:2174-2187. [PMID: 30666737 PMCID: PMC6865578 DOI: 10.1002/hbm.24515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 02/02/2023] Open
Abstract
While the significance of auditory cortical regions for the development and maintenance of speech motor coordination is well established, the contribution of somatosensory brain areas to learned vocalizations such as singing is less well understood. To address these mechanisms, we applied intermittent theta burst stimulation (iTBS), a facilitatory repetitive transcranial magnetic stimulation (rTMS) protocol, over right somatosensory larynx cortex (S1) and a nonvocal dorsal S1 control area in participants without singing experience. A pitch-matching singing task was performed before and after iTBS to assess corresponding effects on vocal pitch regulation. When participants could monitor auditory feedback from their own voice during singing (Experiment I), no difference in pitch-matching performance was found between iTBS sessions. However, when auditory feedback was masked with noise (Experiment II), only larynx-S1 iTBS enhanced pitch accuracy (50-250 ms after sound onset) and pitch stability (>250 ms after sound onset until the end). Results indicate that somatosensory feedback plays a dominant role in vocal pitch regulation when acoustic feedback is masked. The acoustic changes moreover suggest that right larynx-S1 stimulation affected the preparation and involuntary regulation of vocal pitch accuracy, and that kinesthetic-proprioceptive processes play a role in the voluntary control of pitch stability in nonsingers. Together, these data provide evidence for a causal involvement of right larynx-S1 in vocal pitch regulation during singing.
Collapse
Affiliation(s)
- Sebastian Finkel
- Institute of Medical Psychology and Behavioral NeurobiologyEberhard Karls University TübingenTübingenGermany
| | - Ralf Veit
- Institute of Medical Psychology and Behavioral NeurobiologyEberhard Karls University TübingenTübingenGermany
| | - Martin Lotze
- Functional Imaging Unit; Center for Diagnostic Radiology and NeuroradiologyUniversity of GreifswaldGreifswaldGermany
| | - Anders Friberg
- Department of Speech, Music and HearingKTH Royal Institute of TechnologyStockholmSweden
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Surjo Soekadar
- Department of Psychiatry and Psychotherapy and Neuroscience Research Center (NWFZ)Charité Campus Mitte (CCM)BerlinGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital of TübingenTübingenGermany
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral NeurobiologyEberhard Karls University TübingenTübingenGermany
- Wyss Center for Bio and NeuroengineeringGenevaSwitzerland
| | - Boris Kleber
- Institute of Medical Psychology and Behavioral NeurobiologyEberhard Karls University TübingenTübingenGermany
- Center for Music in the Brain, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
41
|
Ranasinghe KG, Kothare H, Kort N, Hinkley LB, Beagle AJ, Mizuiri D, Honma SM, Lee R, Miller BL, Gorno-Tempini ML, Vossel KA, Houde JF, Nagarajan SS. Neural correlates of abnormal auditory feedback processing during speech production in Alzheimer's disease. Sci Rep 2019; 9:5686. [PMID: 30952883 PMCID: PMC6450891 DOI: 10.1038/s41598-019-41794-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/13/2019] [Indexed: 11/24/2022] Open
Abstract
Accurate integration of sensory inputs and motor commands is essential to achieve successful behavioral goals. A robust model of sensorimotor integration is the pitch perturbation response, in which speakers respond rapidly to shifts of the pitch in their auditory feedback. In a previous study, we demonstrated abnormal sensorimotor integration in patients with Alzheimer's disease (AD) with an abnormally enhanced behavioral response to pitch perturbation. Here we examine the neural correlates of the abnormal pitch perturbation response in AD patients, using magnetoencephalographic imaging. The participants phonated the vowel /α/ while a real-time signal processor briefly perturbed the pitch (100 cents, 400 ms) of their auditory feedback. We examined the high-gamma band (65-150 Hz) responses during this task. AD patients showed significantly reduced left prefrontal activity during the early phase of perturbation and increased right middle temporal activity during the later phase of perturbation, compared to controls. Activity in these brain regions significantly correlated with the behavioral response. These results demonstrate that impaired prefrontal modulation of speech-motor-control network and additional recruitment of right temporal regions are significant mediators of aberrant sensorimotor integration in patients with AD. The abnormal neural integration mechanisms signify the contribution of cortical network dysfunction to cognitive and behavioral deficits in AD.
Collapse
Affiliation(s)
- Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Hardik Kothare
- Speech Neuroscience Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
- UC Berkeley - UCSF, Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Naomi Kort
- Speech Neuroscience Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Leighton B Hinkley
- Speech Neuroscience Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Alexander J Beagle
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Danielle Mizuiri
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Susanne M Honma
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Richard Lee
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Keith A Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
- N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, and Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John F Houde
- Speech Neuroscience Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Srikantan S Nagarajan
- Speech Neuroscience Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| |
Collapse
|
42
|
Huang X, Fan H, Li J, Jones JA, Wang EQ, Chen L, Chen X, Liu H. External cueing facilitates auditory-motor integration for speech control in individuals with Parkinson's disease. Neurobiol Aging 2019; 76:96-105. [DOI: 10.1016/j.neurobiolaging.2018.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 01/13/2023]
|
43
|
The relationship of anxious and depressive symptoms in Parkinson's disease with voxel-based neuroanatomical and functional connectivity measures. J Affect Disord 2019; 245:580-588. [PMID: 30439681 DOI: 10.1016/j.jad.2018.10.364] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/12/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Anxiety and depression are two frequent comorbidities of Parkinson's disease (PD). However, the underlying neural mechanism is still unclear and the studies on their neural correlates were insufficient. METHODS Using voxel-based neuroanatomical and functional connectivity (FC) measures, i.e. grey matter volume, fractional anisotropy, and weighted degree centrality (WD), we examined their correlations with the severity levels of anxious and depressive symptoms in 36 PD patients. RESULTS Positive correlations were shown between anxiety and the WDs in the left amygdala, and between depression and short-ranged WDs in the left parahippocampal gyrus. Using these two regions as the seeds, we found that the severity levels of anxiety and depression were positively correlated with the FCs between the two seeds and the areas in the default mode network (DMN), while negatively correlated with the FCs between the two seeds and the prefrontal and superior temporal cortices. Anxiety was also positively correlated with the FC between the amygdala and the superior parietal lobule. LIMITATIONS The severity levels of anxious and depressive symptoms of our participants is relatively mild than some previous studies. The cross-sectional design of this study cannot clarify the etiological relationship between PD and two comorbidities. CONCLUSIONS Our results were in line with the key roles of the amygdala and parahippocampal gyrus in anxiety and depression, and reflected the distinct effects of the DMN, prefrontal and superior temporal cortices, and sensory-motor regions on emotional regulation. The identification of these neural substrates might assist clinical monitoring mood disturbances in PD.
Collapse
|
44
|
Effects of COMT polymorphism on the cortical processing of vocal pitch regulation. Neuroreport 2018; 29:1530-1536. [PMID: 30300332 DOI: 10.1097/wnr.0000000000001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent evidence has shown that auditory-motor integration for speech production is influenced by cognitive functions such as working memory and attention, suggesting that speech motor control is likely modulated by mechanisms mediated by prefrontal regions. Catechol-O-methyltransferase (COMT) gene plays an important role in dopamine breakdown in the prefrontal cortex and has been associated with a variety of prefrontal cognitive functions. The present event-related potential study investigated the association between COMT ValMet polymorphism and auditory-motor processing of vocal feedback errors. A sample of 131 Chinese young female adults was genotyped for rs4680 and produced sustained vowels while hearing their voice unexpectedly shifted down in pitch by 50 or 200 cents. The behavioral results showed no effects of COMT ValMet on vocal compensations for pitch perturbations. However, individuals with the Met allele produced significantly larger P2 responses to -200 cents perturbations than individuals with the Val/Val genotype. These results suggest the existence of a relationship between COMT ValMet polymorphism and self-monitoring of speech feedback errors, and they provide insights into our understanding of the top-down modulations of speech motor control mediated by prefrontal regions.
Collapse
|
45
|
Saltuklaroglu T, Bowers A, Harkrider AW, Casenhiser D, Reilly KJ, Jenson DE, Thornton D. EEG mu rhythms: Rich sources of sensorimotor information in speech processing. BRAIN AND LANGUAGE 2018; 187:41-61. [PMID: 30509381 DOI: 10.1016/j.bandl.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/27/2017] [Accepted: 09/23/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Tim Saltuklaroglu
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA.
| | - Andrew Bowers
- University of Arkansas, Epley Center for Health Professions, 606 N. Razorback Road, Fayetteville, AR 72701, USA
| | - Ashley W Harkrider
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Devin Casenhiser
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Kevin J Reilly
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - David E Jenson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Spokane, WA 99210-1495, USA
| | - David Thornton
- Department of Hearing, Speech, and Language Sciences, Gallaudet University, 800 Florida Avenue NE, Washington, DC 20002, USA
| |
Collapse
|
46
|
Li J, Hu H, Chen N, Jones JA, Wu D, Liu P, Liu H. Aging and Sex Influence Cortical Auditory-Motor Integration for Speech Control. Front Neurosci 2018; 12:749. [PMID: 30386204 PMCID: PMC6199396 DOI: 10.3389/fnins.2018.00749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
It is well known that acoustic change in speech production is subject to age-related declines. How aging alters cortical sensorimotor integration in speech control, however, remains poorly understood. The present event-related potential study examined the behavioral and neural effects of aging and sex on the auditory-motor processing of voice pitch errors. Behaviorally, older adults produced significantly larger vocal compensations for pitch perturbations than young adults across the sexes, while the effects of sex on vocal compensation did not exist for both young and older adults. At the cortical level, there was a significant interaction between aging and sex on the N1-P2 complex. Older males produced significantly smaller P2 amplitudes than young males, while young males produced significantly larger N1 and P2 amplitudes than young females. In addition, females produced faster N1 responses than males regardless of age, while young adults produced faster P2 responses than older adults across the sexes. These findings provide the first neurobehavioral evidence that demonstrates the aging influence on auditory feedback control of speech production, and highlight the importance of sex in understanding the aging of the neuromotor control of speech production.
Collapse
Affiliation(s)
- Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijing Hu
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| | - Na Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jeffery A Jones
- Department of Psychology and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Dan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Sares AG, Deroche MLD, Shiller DM, Gracco VL. Timing variability of sensorimotor integration during vocalization in individuals who stutter. Sci Rep 2018; 8:16340. [PMID: 30397215 PMCID: PMC6218511 DOI: 10.1038/s41598-018-34517-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
Persistent developmental stuttering affects close to 1% of adults and is thought to be a problem of sensorimotor integration. Previous research has demonstrated that individuals who stutter respond differently to changes in their auditory feedback while speaking. Here we explore a number of changes that accompany alterations in the feedback of pitch during vocal production. Participants sustained the vowel /a/ while hearing on-line feedback of their own voice through headphones. In some trials, feedback was briefly shifted up or down by 100 cents to simulate a vocal production error. As previously shown, participants compensated for the auditory pitch change by altering their vocal production in the opposite direction of the shift. The average compensatory response was smaller for adults who stuttered than for adult controls. Detailed analyses revealed that adults who stuttered had fewer trials with a robust corrective response, and that within the trials showing compensation, the timing of their responses was more variable. These results support the idea that dysfunctional sensorimotor integration in stuttering is characterized by timing variability, reflecting reduced coupling of the auditory and speech motor systems.
Collapse
Affiliation(s)
- Anastasia G Sares
- Integrated Program in Neuroscience and School of Communication Sciences and Disorders, McGill University, Montréal, QC, Canada.
- Centre for Research on Brain, Language, and Music, McGill University, Montréal, QC, Canada.
| | - Mickael L D Deroche
- Integrated Program in Neuroscience and School of Communication Sciences and Disorders, McGill University, Montréal, QC, Canada
- Centre for Research on Brain, Language, and Music, McGill University, Montréal, QC, Canada
| | - Douglas M Shiller
- École d'orthophonie et d'audiologie, Université de Montréal, Montréal, QC, Canada
- Centre for Research on Brain, Language, and Music, McGill University, Montréal, QC, Canada
| | - Vincent L Gracco
- Integrated Program in Neuroscience and School of Communication Sciences and Disorders, McGill University, Montréal, QC, Canada
- Haskins Laboratories, New Haven, CT, USA
- Centre for Research on Brain, Language, and Music, McGill University, Montréal, QC, Canada
| |
Collapse
|
48
|
Zhang S, Zhao J, Guo Z, Jones JA, Liu P, Liu H. The Association Between Genetic Variation in FOXP2 and Sensorimotor Control of Speech Production. Front Neurosci 2018; 12:666. [PMID: 30294257 PMCID: PMC6158330 DOI: 10.3389/fnins.2018.00666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Significant advances have been made in understanding the role of auditory feedback in sensorimotor integration for speech production. The neurogenetic basis of this feedback-based control process, however, remains largely unknown. Mutations of FOXP2 gene in humans are associated with severe deficits in speech motor behavior. The present study examined the associations between a FOXP2 common variant, rs6980093 (A/G), and the behavioral and event-related potential (ERP) responses to -50 and -200 cents pitch perturbations during vocal production in a sample of 133 Chinese adults. Behaviorally, the GG genotype was associated with significantly smaller vocal compensations for -200 cents perturbations relative to the AA and AG genotypes. Furthermore, both the AA and AG genotypes exhibited significant positive correlations between the degree of vocal compensation for -50 and -200 cents perturbations and the variability of normal voice fundamental frequency, whereas no such correlation existed for the GG genotype. At the cortical level, significantly larger P2 responses to -200 cents perturbations were associated with the GG genotype as compared to the AA and AG genotypes due to increased left-lateralized activity in the superior, middle, and inferior frontal gyrus, precentral gyrus, anterior cingulate cortex, middle temporal gyrus, and insula. The neurobehavioral responses to -50 cents perturbations, however, did not vary as a function of genotype. These findings present the first neurobehavioral evidence for an association between FOXP2 genetic variant and auditory-motor integration for vocal pitch regulation. The differential effects of FOXP2 genotypes at rs6980093 may reflect their influences on the weighting of feedback and feedforward control of speech production.
Collapse
Affiliation(s)
- Siyun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiangli Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Guo
- Department of Computer Science and Technology, Zhuhai College of Jilin University, Zhuhai, China
| | - Jeffery A Jones
- Department of Psychology, Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Manes JL, Tjaden K, Parrish T, Simuni T, Roberts A, Greenlee JD, Corcos DM, Kurani AS. Altered resting-state functional connectivity of the putamen and internal globus pallidus is related to speech impairment in Parkinson's disease. Brain Behav 2018; 8:e01073. [PMID: 30047249 PMCID: PMC6160640 DOI: 10.1002/brb3.1073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Speech impairment in Parkinson's disease (PD) is pervasive, with life-impacting consequences. Yet, little is known about how functional connections between the basal ganglia and cortex relate to PD speech impairment (PDSI). Whole-brain resting-state connectivity analyses of basal ganglia nuclei can expand the understanding of PDSI pathophysiology. METHODS Resting-state data from 89 right-handed subjects were downloaded from the Parkinson's Progression Markers Initiative database. Subjects included 12 older healthy controls ("OHC"), 42 PD patients without speech impairment ("PDN"), and 35 PD subjects with speech impairment ("PDSI"). Subjects were assigned to PDN and PDSI groups based on the Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III speech item scores ("0" vs. "1-4"). Whole-brain functional connectivity was calculated for four basal ganglia seeds in each hemisphere: putamen, caudate, external globus pallidus (GPe), and internal globus pallidus (GPi). For each seed region, group-averaged connectivity maps were compared among OHC, PDN, and PDSI groups using a multivariate ANCOVA controlling for the effects of age and sex. Subsequent planned pairwise t-tests were performed to determine differences between the three groups using a voxel-wise threshold of p < 0.001 and cluster-extent threshold of 272 mm3 (FWE<0.05). RESULTS In comparison with OHCs, both PDN and PDSI groups demonstrated significant differences in cortical connectivity with bilateral putamen, bilateral GPe, and right caudate. Compared to the PDN group, the PDSI subjects demonstrated significant differences in cortical connectivity with left putamen and left GPi. PDSI subjects had lower connectivity between the left putamen and left superior temporal gyrus compared to PDN. In addition, PDSI subjects had greater connectivity between left GPi and three cortical regions: left dorsal premotor/laryngeal motor cortex, left angular gyrus, and right angular gyrus. CONCLUSIONS The present findings suggest that speech impairment in PD is associated with altered cortical connectivity with left putamen and left GPi.
Collapse
Affiliation(s)
- Jordan L. Manes
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinois
| | - Kris Tjaden
- Department of Communication Disorders and SciencesUniversity at BuffaloBuffaloNew York
| | - Todd Parrish
- Department of RadiologyNorthwestern UniversityChicagoIllinois
| | - Tanya Simuni
- Ken and Ruth Davee Department of NeurologyNorthwestern UniversityChicagoIllinois
- The Parkinson's Disease and Movement Disorders ClinicNorthwestern UniversityChicagoIllinois
| | - Angela Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and DisordersNorthwestern UniversityEvanstonIllinois
| | | | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinois
| | - Ajay S. Kurani
- Department of RadiologyNorthwestern UniversityChicagoIllinois
| |
Collapse
|
50
|
Conde T, Gonçalves ÓF, Pinheiro AP. Stimulus complexity matters when you hear your own voice: Attention effects on self-generated voice processing. Int J Psychophysiol 2018; 133:66-78. [PMID: 30114437 DOI: 10.1016/j.ijpsycho.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/05/2018] [Accepted: 08/10/2018] [Indexed: 11/26/2022]
Abstract
The ability to discriminate self- and non-self voice cues is a fundamental aspect of self-awareness and subserves self-monitoring during verbal communication. Nonetheless, the neurofunctional underpinnings of self-voice perception and recognition are still poorly understood. Moreover, how attention and stimulus complexity influence the processing and recognition of one's own voice remains to be clarified. Using an oddball task, the current study investigated how self-relevance and stimulus type interact during selective attention to voices, and how they affect the representation of regularity during voice perception. Event-related potentials (ERPs) were recorded from 18 right-handed males. Pre-recorded self-generated (SGV) and non-self (NSV) voices, consisting of a nonverbal vocalization (vocalization condition) or disyllabic word (word condition), were presented as either standard or target stimuli in different experimental blocks. The results showed increased N2 amplitude to SGV relative to NSV stimuli. Stimulus type modulated later processing stages only: P3 amplitude was increased for SGV relative to NSV words, whereas no differences between SGV and NSV were observed in the case of vocalizations. Moreover, SGV standards elicited reduced N1 and P2 amplitude relative to NSV standards. These findings revealed that the self-voice grabs more attention when listeners are exposed to words but not vocalizations. Further, they indicate that detection of regularity in an auditory stream is facilitated for one's own voice at early processing stages. Together, they demonstrate that self-relevance affects attention to voices differently as a function of stimulus type.
Collapse
Affiliation(s)
- Tatiana Conde
- Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal; Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Óscar F Gonçalves
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal; Spaulding Center of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital & Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Ana P Pinheiro
- Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal; Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal; Cognitive Neuroscience Lab, Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|