1
|
Barroso J, Branco P, Apkarian AV. The causal role of brain circuits in osteoarthritis pain. Nat Rev Rheumatol 2025; 21:261-274. [PMID: 40164779 DOI: 10.1038/s41584-025-01234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Osteoarthritis (OA) is a leading cause of chronic pain worldwide, resulting in substantial disability and placing a substantial burden on patients and society. The hallmark symptom of OA is joint pain. Despite extensive research, new treatments for OA pain remain limited, partly owing to a lack of understanding of underlying pain mechanisms. For a long time, OA pain was seen as a reflection of nociceptive activity at the joint level, and the brain has been viewed as a passive recipient of such information. In this Review, we challenge these concepts and discuss how, over time, the activation of peripheral nociceptors leads to adaptations in the brain that dictate the properties and experience of OA pain. These adaptations are further influenced by the inherent properties of the brain. We review general concepts that distinguish pain from nociception, present evidence on the incongruity between joint injury and experience of OA pain, and review brain circuits that are crucial in the perception of OA pain. Finally, we propose a model that integrates nociception, spinal-cord mechanisms, and central nervous system dynamics, each contributing uniquely to pain perception. This framework has the potential to inform the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Joana Barroso
- Department of Anaesthesiology and Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Paulo Branco
- Department of Anaesthesiology and Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
| | - A Vania Apkarian
- Department of Anaesthesiology and Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
2
|
Carmichael O. The Role of fMRI in Drug Development: An Update. ADVANCES IN NEUROBIOLOGY 2023; 30:299-333. [PMID: 36928856 DOI: 10.1007/978-3-031-21054-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Functional magnetic resonance imaging (fMRI) of the brain is a technology that holds great potential for increasing the efficiency of drug development for the central nervous system (CNS). In preclinical studies and both early- and late-phase human trials, fMRI has the potential to improve cross-species translation of drug effects, help to de-risk compounds early in development, and contribute to the portfolio of evidence for a compound's efficacy and mechanism of action. However, to date, the utilization of fMRI in the CNS drug development process has been limited. The purpose of this chapter is to explore this mismatch between potential and utilization. This chapter provides introductory material related to fMRI and drug development, describes what is required of fMRI measurements for them to be useful in a drug development setting, lists current capabilities of fMRI in this setting and challenges faced in its utilization, and ends with directions for future development of capabilities in this arena. This chapter is the 5-year update of material from a previously published workshop summary (Carmichael et al., Drug DiscovToday 23(2):333-348, 2018).
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
3
|
Pan TT, Pan F, Gao W, Hu SS, Wang D. Involvement of Macrophages and Spinal Microglia in Osteoarthritis Pain. Curr Rheumatol Rep 2021; 23:29. [PMID: 33893883 DOI: 10.1007/s11926-021-00997-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Chronic pain in osteoarthritis (OA) is characterized by pain sensitization, which involves both peripheral and central mechanisms. Studies suggest synovial macrophage and spinal microglia are implicated in pain sensitization in OA. We, therefore, reviewed the evidence of whether synovial macrophage and spinal microglia facilitated pain sensitization at diverse levels and how this event occurred in OA. RECENT FINDINGS Peripherally, joint inflammation is now believed to be a source of OA-related pain. Synovial macrophages accumulate in OA inflamed synovium and display a pro-inflammatory phenotype. Abundant macrophage-derived pro-inflammatory cytokines and other pain-causing substance facilitate hyperexcitation of primary sensory neuron in OA-related pain. Thus, activated synovial macrophage was considered a predictor for phenotyping of OA pain clinically. In response to affected joint-derived strong nociception, aberrant neuronal excitability is often associated with the hyperactivity of microglia in the spinal dorsal horn, thereby leading to central sensitization. Hyperactivity of synovial macrophage and spinal microglia underlies the mechanisms of pain sensitization at the peripheral and central level in OA. This concept provides not only a clinically relevant strategy for identifying the phenotype of OA-related pain but also has the potential to develop individualized interventions for OA, particularly in those patients with hyperactivity of macrophage and microglia.
Collapse
Affiliation(s)
- Ting-Ting Pan
- Department of Anesthesiology, Pain Clinic, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, TAS, 7000, Australia
| | - Wei Gao
- Department of Anesthesiology, Pain Clinic, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shan-Shan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
| | - Di Wang
- Department of Anesthesiology, Pain Clinic, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
4
|
Inami C, Tanihira H, Kikuta S, Ogasawara O, Sobue K, Kume K, Osanai M, Ohsawa M. Visualization of Brain Activity in a Neuropathic Pain Model Using Quantitative Activity-Dependent Manganese Magnetic Resonance Imaging. Front Neural Circuits 2019; 13:74. [PMID: 31849617 PMCID: PMC6889800 DOI: 10.3389/fncir.2019.00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 10/31/2019] [Indexed: 11/13/2022] Open
Abstract
Human brain imaging studies have revealed several regions that are activated in patients with chronic pain. In rodent brains, functional changes due to chronic pain have not been fully elucidated, as brain imaging techniques such as functional magnetic resonance imaging and positron emission tomography (PET) require the use of anesthesia to suppress movement. Consequently, conclusions derived from existing imaging studies in rodents may not accurately reflect brain activity under awake conditions. In this study, we used quantitative activation-induced manganese-enhanced magnetic resonance imaging to directly capture the previous brain activity of awake mice. We also observed and quantified the brain activity of the spared nerve injury (SNI) neuropathic pain model during awake conditions. SNI-operated mice exhibited a robust decrease of mechanical nociceptive threshold 14 days after nerve injury. Imaging on SNI-operated mice revealed increased neural activity in the limbic system and secondary somatosensory, sensory-motor, piriform, and insular cortex. We present the first study demonstrating a direct measurement of awake neural activity in a neuropathic pain mouse model.
Collapse
Affiliation(s)
- Chihiro Inami
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroki Tanihira
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Satomi Kikuta
- Graduate School of Medicine, Tohoku University, Sendai, Japan.,Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Osamu Ogasawara
- Department of Anesthesiology, Graduate School of Medicine, Nagoya City University, Nagoya, Japan
| | - Kazuya Sobue
- Department of Anesthesiology, Graduate School of Medicine, Nagoya City University, Nagoya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Osanai
- Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Division of Health Sciences, Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
5
|
Shirai T, Yano M, Natsume T, Awaga Y, Itani Y, Hama A, Matsuda A, Takamatsu H. Pharmacologic Modulation of Noxious Stimulus-evoked Brain Activation in Cynomolgus Macaques Observed with Functional Neuroimaging. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 59:94-103. [PMID: 31753062 DOI: 10.30802/aalas-jaalas-18-000143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Maintaining effective analgesia during invasive procedures performed under general anesthesia is important for minimizing postoperative complications and ensuring satisfactory patient wellbeing and recovery. While patients under deep sedation may demonstrate an apparent lack of response to noxious stimulation, areas of the brain related to pain perception may still be activated. Thus, these patients may still experience pain during invasive procedures. The current study used anesthetized or sedated cynomolgus macaques and functional magnetic resonance imaging (fMRI) to assess the activation of the parts of the brain involved in pain perception during the application of peripheral noxious stimuli. Noxious pressure applied to the foot resulted in the bilateral activation of secondary somatosensory cortex (SII) and insular cortex (Ins), which are both involved in pain perception, in macaques under either propofol or pentobarbital sedation. No activation of SII/Ins was observed in macaques treated with either isoflurane or a combination of medetomidine, midazolam, and butorphanol. No movement or other reflexes were observed in response to noxious pressure during stimulation under anesthesia or sedation. The current findings show that despite the lack of visible behavioral symptoms of pain during anesthesia or sedation, brain activation suggests the presence of pain depending on the anesthetic agent used. These data suggest that fMRI could be used to noninvasively assess pain and to confirm the analgesic efficacy of currently used anesthetics. By assessing analgesic efficacy, researchers may refine their experiments, and design protocols that improve analgesia under anesthesia.
Collapse
|
6
|
McDougall JJ. Osteoarthritis is a neurological disease – an hypothesis. OSTEOARTHRITIS AND CARTILAGE OPEN 2019; 1:100005. [DOI: 10.1016/j.ocarto.2019.100005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
|
7
|
Tracey I, Woolf CJ, Andrews NA. Composite Pain Biomarker Signatures for Objective Assessment and Effective Treatment. Neuron 2019; 101:783-800. [PMID: 30844399 PMCID: PMC6800055 DOI: 10.1016/j.neuron.2019.02.019] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 02/09/2023]
Abstract
Pain is a subjective sensory experience that can, mostly, be reported but cannot be directly measured or quantified. Nevertheless, a suite of biomarkers related to mechanisms, neural activity, and susceptibility offer the possibility-especially when used in combination-to produce objective pain-related indicators with the specificity and sensitivity required for diagnosis and for evaluation of risk of developing pain and of analgesic efficacy. Such composite biomarkers will also provide improved understanding of pain pathophysiology.
Collapse
Affiliation(s)
- Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Clifford J Woolf
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, 02115 MA, USA.
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, 02115 MA, USA
| |
Collapse
|
8
|
Shidahara Y, Natsume T, Awaga Y, Ogawa S, Yamoto K, Okamoto S, Hama A, Hayashi I, Takamatsu H, Magata Y. Distinguishing analgesic drugs from non-analgesic drugs based on brain activation in macaques with oxaliplatin-induced neuropathic pain. Neuropharmacology 2019; 149:204-211. [PMID: 30817933 DOI: 10.1016/j.neuropharm.2019.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/28/2019] [Accepted: 02/24/2019] [Indexed: 11/16/2022]
Abstract
The antineoplastic agent oxaliplatin is a first-line treatment for colorectal cancer. However, neuropathic pain, characterized by hypersensitivity to cold, emerges soon after treatment. In severe instances, dose reduction or curtailing treatment may be necessary. While a number of potential treatments for oxaliplatin-induced neuropathic pain have been proposed based on preclinical findings, few have demonstrated efficacy in randomized, placebo-controlled clinical studies. This failure could be related, in part, to the use of rodents as the primary preclinical species, as there are a number of distinctions in pain-related mechanisms between rodents and humans. Also, an indicator of preclinical pharmacological efficacy less subjective than behavioral endpoints that is translatable to clinical usage is lacking. Three days after oxaliplatin treatment in Macaca fascicularis, a significantly reduced response latency to cold (10 °C) water was observed, indicating cold hypersensitivity. Cold-evoked bilateral activation of the secondary somatosensory (SII) and insular (Ins) cortex was observed with functional magnetic resonance imaging. Duloxetine alleviated cold hypersensitivity and significantly attenuated activation in both SII and Ins. By contrast, neither clinically used analgesics pregabalin nor tramadol affected cold hypersensitivity and cold-evoked activation of SII and Ins. The current findings suggest that suppressing SII and Ins activation leads to antinociception, and, therefore, could be used as a non-behavioral indicator of analgesic efficacy in patients with oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Yuka Shidahara
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Takahiro Natsume
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Yūji Awaga
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Shin'ya Ogawa
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Kurumi Yamoto
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Shinichi Okamoto
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Aldric Hama
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan.
| | - Ikuo Hayashi
- Hamamatsu Pharma Research, USA, Inc., San Diego, CA, USA
| | | | - Yasuhiro Magata
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka Prefecture, Japan
| |
Collapse
|
9
|
Brederson JD, Chu KL, Xu J, Nikkel AL, Markosyan S, Jarvis MF, Edelmayer R, Bitner RS, McGaraughty S. Characterization and comparison of rat monosodium iodoacetate and medial meniscal tear models of osteoarthritic pain. J Orthop Res 2018; 36:2109-2117. [PMID: 29430715 DOI: 10.1002/jor.23869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/07/2018] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a degenerative form of arthritis that can result in loss of joint function and chronic pain. The pathological pain state that develops with OA disease involves plastic changes in the peripheral and central nervous systems, however, the cellular mechanisms underlying OA are not fully understood. We characterized the medial meniscal tear (MMT) surgical model and the intra-articular injection of monosodium iodoacetate (MIA) chemical model of OA in rats. Both models produced histological changes in the knee joint and associated bones consistent with OA pathology. Both models also increased p38 activation in the L3, but not L4 dorsal root ganglia (DRG), increased tyrosine hydroxylase immunostaining in the L3 DRG indicating sympathetic sprouting, and increased phosphorylated (p)CREB in thalamic neurons. In MIA-OA, but not MMT-OA rats, p38 and pERK were increased in the spinal cord, and pCREB was enhanced in the prefrontal cortex. Using in vivo electrophysiology, elevated spontaneous activity and increased responsiveness of wide dynamic range neurons to stimulation of the knee was found in both models. However, a more widespread sensitization was observed in the MIA-OA rats as neurons with paw receptive fields spontaneously fired at a greater rate in MIA-OA than MMT-OA rats. Taken together, the MIA and MMT models of OA share several common features associated with histopathology and sensitization of primary somatosensory pathways, but, observed differences between the models highlights unique consequences of the related specific injuries, and these differences should be considered when choosing an OA model and when interpreting data outcomes. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
| | - Katharine L Chu
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Jun Xu
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Arthur L Nikkel
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Stella Markosyan
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Michael F Jarvis
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Rebecca Edelmayer
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Robert S Bitner
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Steve McGaraughty
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| |
Collapse
|
10
|
Carmichael O, Schwarz AJ, Chatham CH, Scott D, Turner JA, Upadhyay J, Coimbra A, Goodman JA, Baumgartner R, English BA, Apolzan JW, Shankapal P, Hawkins KR. The role of fMRI in drug development. Drug Discov Today 2018; 23:333-348. [PMID: 29154758 PMCID: PMC5931333 DOI: 10.1016/j.drudis.2017.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
Functional magnetic resonance imaging (fMRI) has been known for over a decade to have the potential to greatly enhance the process of developing novel therapeutic drugs for prevalent health conditions. However, the use of fMRI in drug development continues to be relatively limited because of a variety of technical, biological, and strategic barriers that continue to limit progress. Here, we briefly review the roles that fMRI can have in the drug development process and the requirements it must meet to be useful in this setting. We then provide an update on our current understanding of the strengths and limitations of fMRI as a tool for drug developers and recommend activities to enhance its utility.
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | | | - Christopher H Chatham
- Translational Medicine Neuroscience and Biomarkers, Roche Innovation Center, Basel, Switzerland
| | | | - Jessica A Turner
- Psychology Department & Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | | | - Richard Baumgartner
- Biostatistics and Research Decision Sciences (BARDS), Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - John W Apolzan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | |
Collapse
|
11
|
Upadhyay J, Geber C, Hargreaves R, Birklein F, Borsook D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neurosci Biobehav Rev 2018; 84:407-423. [PMID: 28807753 PMCID: PMC5729102 DOI: 10.1016/j.neubiorev.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Assessing clinical pain and metrics related to function or quality of life predominantly relies on patient reported subjective measures. These outcome measures are generally not applicable to the preclinical setting where early signs pointing to analgesic value of a therapy are sought, thus introducing difficulties in animal to human translation in pain research. Evaluating brain function in patients and respective animal model(s) has the potential to characterize mechanisms associated with pain or pain-related phenotypes and thereby provide a means of laboratory to clinic translation. This review summarizes the progress made towards understanding of brain function in clinical and preclinical pain states elucidated using an imaging approach as well as the current level of validity of translational pain imaging. We hypothesize that neuroimaging can describe the central representation of pain or pain phenotypes and yields a basis for the development and selection of clinically relevant animal assays. This approach may increase the probability of finding meaningful new analgesics that can help satisfy the significant unmet medical needs of patients.
Collapse
Affiliation(s)
| | - Christian Geber
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany; DRK Schmerz-Zentrum Mainz, Mainz, Germany
| | - Richard Hargreaves
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States
| | - Frank Birklein
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany
| | - David Borsook
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
12
|
Smith SM, Dworkin RH, Turk DC, Baron R, Polydefkis M, Tracey I, Borsook D, Edwards RR, Harris RE, Wager TD, Arendt-Nielsen L, Burke LB, Carr DB, Chappell A, Farrar JT, Freeman R, Gilron I, Goli V, Haeussler J, Jensen T, Katz NP, Kent J, Kopecky EA, Lee DA, Maixner W, Markman JD, McArthur JC, McDermott MP, Parvathenani L, Raja SN, Rappaport BA, Rice ASC, Rowbotham MC, Tobias JK, Wasan AD, Witter J. The Potential Role of Sensory Testing, Skin Biopsy, and Functional Brain Imaging as Biomarkers in Chronic Pain Clinical Trials: IMMPACT Considerations. THE JOURNAL OF PAIN 2017; 18:757-777. [PMID: 28254585 PMCID: PMC5484729 DOI: 10.1016/j.jpain.2017.02.429] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/19/2017] [Accepted: 02/16/2017] [Indexed: 02/08/2023]
Abstract
Valid and reliable biomarkers can play an important role in clinical trials as indicators of biological or pathogenic processes or as a signal of treatment response. Currently, there are no biomarkers for pain qualified by the U.S. Food and Drug Administration or the European Medicines Agency for use in clinical trials. This article summarizes an Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials meeting in which 3 potential biomarkers were discussed for use in the development of analgesic treatments: 1) sensory testing, 2) skin punch biopsy, and 3) brain imaging. The empirical evidence supporting the use of these tests is described within the context of the 4 categories of biomarkers: 1) diagnostic, 2) prognostic, 3) predictive, and 4) pharmacodynamic. Although sensory testing, skin punch biopsy, and brain imaging are promising tools for pain in clinical trials, additional evidence is needed to further support and standardize these tests for use as biomarkers in pain clinical trials. PERSPECTIVE The applicability of sensory testing, skin biopsy, and brain imaging as diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for use in analgesic treatment trials is considered. Evidence in support of their use and outlining problems is presented, as well as a call for further standardization and demonstrations of validity and reliability.
Collapse
|
13
|
Nagakura Y. The need for fundamental reforms in the pain research field to develop innovative drugs. Expert Opin Drug Discov 2016; 12:39-46. [PMID: 27838932 DOI: 10.1080/17460441.2017.1261108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Chronic pain is a major healthcare issue owing to its high prevalence, significant physical and emotional burden on the patients, and huge financial burden on the society. The efficacy of currently available medications is unsatisfactory owing to their limited effect size and the low responder rate (less than 50%). Thus, there is a large unmet need for innovative therapies for chronic pain. Areas covered: In this review, the author points out the need for fundamental reforms in pain research. For the last several decades, drug discovery research has extensively focused on designing new therapies using animal models of chronic pain. It has, however, made insufficient progress with respect to the launch of innovative analgesic drugs, because the translation from preclinical to clinical stages has not been satisfactory. Thus, the strategies for developing innovative analgesic drugs are discussed. Expert opinion: Points to be considered in the discovery of drugs for pain relief include: (1) the exclusion of bias incorporation and the alignment of clinical and preclinical endpoints in the assessment of analgesic efficacy; (2) the understanding of primary unmet needs; (3) the assessment of new therapies by biomarker-prioritized frameworks, and (4) the stratification of chronic pain sufferers.
Collapse
Affiliation(s)
- Yukinori Nagakura
- a Faculty of Pharmaceutical Sciences , Aomori University , Aomori-shi , Aomori , Japan
| |
Collapse
|
14
|
Willett NJ, Thote T, Hart M, Moran S, Guldberg RE, Kamath RV. Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography. Osteoarthritis Cartilage 2016; 24:1604-12. [PMID: 27155345 DOI: 10.1016/j.joca.2016.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The development of effective therapies for cartilage protection has been limited by a lack of efficient quantitative cartilage imaging modalities in pre-clinical in vivo models. Our objectives were two-fold: first, to validate a new contrast-enhanced 3D imaging analysis technique, equilibrium partitioning of an ionic contrast agent-micro computed tomography (EPIC-μCT), in a rat medial meniscal transection (MMT) osteoarthritis (OA) model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. METHODS Rats underwent MMT surgery and tissues were harvested at 1, 2, and 3 weeks post-surgery or rats received an MMPi or vehicle treatment and tissues harvested 3 weeks post-surgery. Parameters of disease progression were evaluated using histopathology and EPIC-μCT. Correlations and power analyses were performed to compare the techniques. RESULTS EPIC-μCT was shown to provide simultaneous 3D quantification of multiple parameters, including cartilage degeneration and osteophyte formation. In MMT animals treated with MMPi, OA progression was attenuated, as measured by 3D parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed that 3D parameters for EPIC-μCT were more sensitive than 2D parameters requiring fewer animals to detect a therapeutic effect of MMPi. 2D parameters were comparable between EPIC-μCT and histopathology. CONCLUSION This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies.
Collapse
Affiliation(s)
- N J Willett
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - T Thote
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - M Hart
- AbbVie Bioresearch Center, Worcester, MA, USA.
| | - S Moran
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - R E Guldberg
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - R V Kamath
- AbbVie Bioresearch Center, Worcester, MA, USA.
| |
Collapse
|
15
|
Abaei M, Sagar DR, Stockley EG, Spicer CH, Prior M, Chapman V, Auer DP. Neural correlates of hyperalgesia in the monosodium iodoacetate model of osteoarthritis pain. Mol Pain 2016; 12:12/0/1744806916642445. [PMID: 27068285 PMCID: PMC4956384 DOI: 10.1177/1744806916642445] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/07/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The mechanisms driving osteoarthritic pain remain poorly understood, but there is increasing evidence for a role of the central nervous system in the chronification of pain. We used functional magnetic resonance imaging to investigate the influence of a model of unilateral knee osteoarthritis on nociceptive processing. RESULTS Four to five weeks post intra-articular injection of monosodium iodoacetate (MIA, 1 mg) into the left knee, Sprague Dawley rats were anesthetized for functional magnetic resonance imaging studies to characterize the neural response to a noxious stimulus (intra-articular capsaicin injection). In a two-arm cross-over design, 5 µM/50 µl capsaicin was injected into either the left knee (n = 8, CAPS-MIA) or right control knee (n = 8, CAPS-CON), preceded by contralateral vehicle (SAL) injection. To assess neural correlates of mechanical hyperalgesia, hindpaws were stimulated with von Frey hairs (8 g: MIA; 15 g: control knee, based on behavioral withdrawal responses). The CAPS-MIA group exhibited significant activation of the periaqueductal gray, unilateral thalamus and bilateral mensencephalon, superior-colliculus, and hippocampus, with no significant activation in the other groups/conditions. Capsaicin injection increased functional connectivity in the mid-brain network and mediodorsal thalamic nucleus, hippocampus, and globus pallidus, which was significantly stronger in CAPS-MIA compared to CAPS-CON groups. Mechanical stimulation of the hyperalgesic (ipsilateral to MIA knee) and normalgesic (contralateral) hindpaws evoked qualitatively different brain activation with more widespread brainstem and anterior cingulate (ACC) activation when stimulating the hyperalgesic paw, and clearer frontal sensory activation from the normalgesic paw. CONCLUSIONS We provide evidence for modulation of nociceptive processing in a chronic knee osteoarthritis pain model with stronger brain activation and alteration of brain networks induced by the pro-nociceptive stimulus. We also report a shift to a medial pain activation pattern following stimulation of the hyperalgesic hindpaw. Taken together, our data support altered neural pain processing as a result of peripheral and central pain sensitization in this model.
Collapse
Affiliation(s)
- Maryam Abaei
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Devi R Sagar
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Elizabeth G Stockley
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Clare H Spicer
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Malcolm Prior
- Medical Imaging Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Victoria Chapman
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Dorothee P Auer
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK Medical Imaging Unit, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
16
|
Intra-articular (IA) ropivacaine microparticle suspensions reduce pain, inflammation, cytokine, and substance p levels significantly more than oral or IA celecoxib in a rat model of arthritis. Inflammation 2015; 38:40-60. [PMID: 25189465 DOI: 10.1007/s10753-014-0006-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Current therapeutic treatment options for osteoarthritis entail significant safety concerns. A novel ropivacaine crystalline microsuspension for bolus intra-articular (IA) delivery was thus developed and studied in a peptidoglycan polysaccharide (PGPS)-induced ankle swelling rat model. Compared with celecoxib controls, both oral and IA, ropivacaine IA treatment resulted in a significant reduction of pain upon successive PGPS reactivation, as demonstrated in two different pain models, gait analysis and incapacitance testing. The reduction in pain was attended by a significant reduction in histological inflammation, which in turn was accompanied by significant reductions in the cytokines IL-18 and IL-1β. This may have been due to inhibition of substance P, which was also significantly reduced. Pharmacokinetic analysis indicated that the analgesic effects outlasted measurable ropivacaine levels in either blood or tissue. The results are discussed in the context of pharmacologic mechanisms both of local anesthetics as well as inflammatory arthritis.
Collapse
|
17
|
Sharif-Naeini R. Contribution of mechanosensitive ion channels to somatosensation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:53-71. [PMID: 25744670 DOI: 10.1016/bs.pmbts.2014.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanotransduction, the conversion of a mechanical stimulus into an electrical signal, is a central mechanism to several physiological functions in mammals. It relies on the function of mechanosensitive ion channels (MSCs). Although the first single-channel recording from MSCs dates back to 30 years ago, the identity of the genes encoding MSCs has remained largely elusive. Because these channels have an important role in the development of mechanical hypersensitivity, a better understanding of their function may lead to the identification of selective inhibitors and generate novel therapeutic pathways in the treatment of chronic pain. Here, I will describe our current understanding of the role MSCs may play in somatosensation and the potential candidate genes proposed to encode them.
Collapse
Affiliation(s)
- Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Fuggle NR, Howe FA, Allen RL, Sofat N. New insights into the impact of neuro-inflammation in rheumatoid arthritis. Front Neurosci 2014; 8:357. [PMID: 25414636 PMCID: PMC4222329 DOI: 10.3389/fnins.2014.00357] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/17/2014] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is considered to be, in many respects, an archetypal autoimmune disease that causes activation of pro-inflammatory pathways resulting in joint and systemic inflammation. RA remains a major clinical problem with the development of several new therapies targeted at cytokine inhibition in recent years. In RA, biologic therapies targeted at inhibition of tumor necrosis factor alpha (TNFα) have been shown to reduce joint inflammation, limit erosive change, reduce disability and improve quality of life. The cytokine TNFα has a central role in systemic RA inflammation and has also been shown to have pro-inflammatory effects in the brain. Emerging data suggests there is an important bidirectional communication between the brain and immune system in inflammatory conditions like RA. Recent work has shown how TNF inhibitor therapy in people with RA is protective for Alzheimer's disease. Functional MRI studies to measure brain activation in people with RA to stimulus by finger joint compression, have also shown that those who responded to TNF inhibition showed a significantly greater activation volume in thalamic, limbic, and associative areas of the brain than non-responders. Infections are the main risk of therapies with biologic drugs and infections have been shown to be related to disease flares in RA. Recent basic science data has also emerged suggesting that bacterial components including lipopolysaccharide induce pain by directly activating sensory neurons that modulate inflammation, a previously unsuspected role for the nervous system in host-pathogen interactions. In this review, we discuss the current evidence for neuro-inflammation as an important factor that impacts on disease persistence and pain in RA.
Collapse
Affiliation(s)
- Nicholas R Fuggle
- Institute of Infection and Immunity, St. George's University London, UK
| | - Franklyn A Howe
- Neuroscience Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University London, UK
| | - Rachel L Allen
- Institute of Infection and Immunity, St. George's University London, UK
| | - Nidhi Sofat
- Institute of Infection and Immunity, St. George's University London, UK
| |
Collapse
|
19
|
Kim CE, Kim YK, Chung G, Im HJ, Lee DS, Kim J, Kim SJ. Identifying neuropathic pain using 18F-FDG micro-PET: A multivariate pattern analysis. Neuroimage 2014; 86:311-6. [DOI: 10.1016/j.neuroimage.2013.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/30/2013] [Accepted: 10/01/2013] [Indexed: 01/03/2023] Open
|
20
|
Mosher TJ, Walker EA, Petscavage-Thomas J, Guermazi A. Osteoarthritis year 2013 in review: imaging. Osteoarthritis Cartilage 2013; 21:1425-35. [PMID: 23891696 DOI: 10.1016/j.joca.2013.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/24/2013] [Accepted: 07/13/2013] [Indexed: 02/02/2023]
Abstract
PURPOSE To review recent original research publications related to imaging of osteoarthritis (OA) and identify emerging trends and significant advances. METHODS Relevant articles were identified through a search of the PubMed database using the query terms "OA" in combination with "imaging", "radiography", "MRI", "ultrasound", "computed tomography", and "nuclear medicine"; either published or in press between March 2012 and March 2013. Abstracts were reviewed to exclude review articles, case reports, and studies not focused on imaging using routine clinical imaging measures. RESULTS Initial query yielded 932 references, which were reduced to 328 citations following the initial review. MRI (118 references) and radiography (129 refs) remain the primary imaging modalities in OA studies, with fewer reports using computed tomography (CT) (35 refs) and ultrasound (23 refs). MRI parametric mapping techniques remain an active research area (33 refs) with growth in T2*- and T1-rho mapping publications compared to prior years. Although the knee is the major joint studied (210 refs) there is interest in the hip (106 refs) and hand (29 refs). Imaging continues to focus on evaluation of cartilage (173 refs) and bone (119 refs). CONCLUSION Imaging plays a major role in OA research with publications continuing along traditional lines of investigation. Translational and clinical research application of compositional MRI techniques is becoming more common driven in part by the availability of T2 mapping data from the Osteoarthritis Initiative (OAI). New imaging techniques continue to be developed with a goal of identifying methods with greater specificity and responsiveness to changes in the joint, and novel functional neuroimaging techniques to study central pain. Publications related to imaging of OA continue to be heavily focused on quantitative and semiquantitative MRI evaluation of the knee with increasing application of compositional MRI techniques in the hip.
Collapse
Affiliation(s)
- T J Mosher
- Department of Radiology, Penn State Hershey Medical Center, Hershey, PA, USA.
| | | | | | | |
Collapse
|
21
|
Zhang RX, Ren K, Dubner R. Osteoarthritis pain mechanisms: basic studies in animal models. Osteoarthritis Cartilage 2013; 21:1308-15. [PMID: 23973145 PMCID: PMC3771690 DOI: 10.1016/j.joca.2013.06.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a complex and painful disease of the whole joint. At present there are no satisfying agents for treating OA. To promote OA research and improved treatment, this review summarizes current preclinical evidence on the development of OA. METHODS Preclinical OA research was searched and key findings are summarized and commented. RESULTS Mechanisms of OA-associated pain have been studied in rodent knee OA models produced by intra-knee injection of the chondrocyte glycolytic inhibitor mono-iodoacetate (MIA), surgery, or spontaneous development in some species. These models are clinically relevant in terms of histological damage and functional changes, and are used to study mechanisms underlying mechanical, thermal, ambulatory, body weight supporting-evoked, and ongoing OA pain. Recent peripheral, spinal, and supraspinal biochemical and electrophysiological studies in these models suggest that peripheral pro-inflammatory mediators and neuropeptides sensitize knee nociceptors. Spinal cytokines and neuropeptides promote OA pain, and peripheral and spinal cannabinoids inhibit OA pain respectively through cannabinoid-1 (CB1) and CB1/CB2 receptors. TRPV1 and metalloproteinases contribute and supraspinal descending facilitation of 5-hydroxytryptamine (5-HT)/5-HT 3 receptors may also contribute to OA pain. Conditioned place preference tests demonstrate that OA pain induces aversive behaviors, suggesting the involvement of brain. During OA, brain functional connectivity is enhanced, but at present it is unclear how this change is related to OA pain. CONCLUSION Animal studies demonstrate that peripheral and central sensitization contributes to OA pain, involving inflammatory cytokines, neuropeptides, and a variety of chemical mediators. Interestingly, brainstem descending facilitation of 5-HT/5-HT3 receptors plays a role OA pain.
Collapse
Affiliation(s)
- Rui-Xin Zhang
- Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Ke Ren
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD 21201 USA
| | - Ronald Dubner
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD 21201 USA
| |
Collapse
|
22
|
Hooker B, Tobon G, Baker S, Zhu C, Hesterman J, Schmidt K, Rajagovindan R, Chandran P, Joshi S, Bannon A, Hoppin J, Beaver J, Fox G, Day M, Upadhyay J. Gabapentin-induced pharmacodynamic effects in the spinal nerve ligation model of neuropathic pain. Eur J Pain 2013; 18:223-37. [DOI: 10.1002/j.1532-2149.2013.00364.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 12/15/2022]
Affiliation(s)
- B.A. Hooker
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | | | - S.J. Baker
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - C. Zhu
- Neuroscience Discovery; Abbvie Inc.; North Chicago USA
| | | | | | - R. Rajagovindan
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - P. Chandran
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - S.K. Joshi
- Neuroscience Discovery; Abbvie Inc.; North Chicago USA
| | - A.W. Bannon
- Neuroscience Discovery; Abbvie Inc.; North Chicago USA
| | | | - J. Beaver
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - G.B. Fox
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - M. Day
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - J. Upadhyay
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| |
Collapse
|