1
|
Hecht EE, Vijayakumar S, Becker Y, Hopkins WD. Individual variation in the chimpanzee arcuate fasciculus predicts vocal and gestural communication. Nat Commun 2025; 16:3681. [PMID: 40246833 PMCID: PMC12006310 DOI: 10.1038/s41467-025-58784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Whether language has its evolutionary origins in vocal or gestural communication has long been a matter of debate. In humans, the arcuate fasciculus, a major fronto-temporal white matter tract, is left-lateralized, is larger than in nonhuman apes, and is linked to language. However, the extent to which the arcuate fasciculus of nonhuman apes is linked to vocal and/or manual communication is currently unknown. Here, using probabilistic tractography in 67 chimpanzees (45 female, 22 male), we report that the chimpanzee arcuate fasciculus is not left-lateralized at the population level, in marked contrast with humans. However, individual variation in the anatomy and leftward asymmetry of the chimpanzee arcuate fasciculus is associated with individual variation in the use of both communicative gestures and communicative sounds under volitional orofacial motor control. This indicates that the arcuate fasciculus likely supported both vocal and gestural communication in the chimpanzee/human last common ancestor, 6-7 million years ago.
Collapse
Affiliation(s)
- Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Suhas Vijayakumar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Neuroimaging Center, Focus Program Translational Neuroscience Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Yannick Becker
- Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - William D Hopkins
- Department of Comparative Medicine & Michael E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA.
| |
Collapse
|
2
|
Ramírez-Guerrero JJ, Narganes-Pineda C, Martín-Signes M, Chica AB. Exploring the causal involvement of the rIPL and white matter interindividual variability in spatial orienting and consciousness. Neuroimage 2025; 310:121137. [PMID: 40089220 DOI: 10.1016/j.neuroimage.2025.121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Spatial attention enables the selection of relevant over irrelevant stimuli through dorsal and ventral fronto-parietal networks. These networks are connected through long white matter tracts, such as the superior longitudinal fasciculus (SLF) and the Inferior Fronto-Occipital fasciculus (IFOF). OBJECTIVE/HYPOTHESIS The main purpose of this study was to explore, in healthy participants, the causal role of the right Inferior Parietal Lobe (rIPL) in spatial orienting and conscious perception. We also explored how interindividual differences in the microstructural properties of white matter were related to the effects of transcranial magnetic stimulation (TMS) and, secondarily, to attentional orienting effects in the control stimulation condition. METHODS Participants (n=51) performed a behavioural task involving the detection of a visual stimulus at the threshold of consciousness, preceded by either central (endogenous) or peripheral (exogenous) cues. After cue onset, a burst of TMS pulses was applied over the rIPL or a control active region (vertex). White matter properties were explored through diffusion-weighted imaging tractography and whole-brain NODDI analysis. RESULTS TMS over the rIPL (compared to the control condition) did not modulate spatial attention nor conscious perception, but it decreased accuracy when attention was endogenously oriented (compared to the exogenous condition) and speeded up reaction times when targets were presented in the attended right hemifield (compared to the left hemifield). Part of the variability in the TMS and attentional orienting effects were explained by the integrity of the SLF and the IFOF. CONCLUSIONS Individual variability in attentional orienting effects was associated with the anatomical links between attentional networks. Negative correlations between TMS effects and relevant white matter tracts were interpreted as compensatory mechanisms, while positive correlations with tracts innervating the stimulated area could reflect a TMS signal propagation effect. These results will contribute to the understanding of the role of white matter variability in the susceptibility to neuromodulation, with potential implications for research and clinical treatment.
Collapse
Affiliation(s)
- Joaquín J Ramírez-Guerrero
- Mind, Brain and Behavior Research Centre (CIMCYC), and Experimental Psychology Department, University of Granada, 18071 Granada, Spain
| | - Cristina Narganes-Pineda
- Mind, Brain and Behavior Research Centre (CIMCYC), and Experimental Psychology Department, University of Granada, 18071 Granada, Spain
| | - Mar Martín-Signes
- Mind, Brain and Behavior Research Centre (CIMCYC), and Experimental Psychology Department, University of Granada, 18071 Granada, Spain.
| | - Ana B Chica
- Mind, Brain and Behavior Research Centre (CIMCYC), and Experimental Psychology Department, University of Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
Zhang E, Hauson AO, Pollard AA, Zelman D, Ulibarri M, Kapalka G, Fortea L, Radua J. Lateralized white matter integrity changes across the lifespan in major depression: AES-SDM meta-analysis. Psychiatry Res Neuroimaging 2025; 348:111960. [PMID: 40048924 DOI: 10.1016/j.pscychresns.2025.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 03/15/2025]
Abstract
This meta-analysis examined white matter fractional anisotropy (FA) differences across the lifespan to better understand underlying neurobiological mechanisms of major depressive disorder (MDD). Using anisotropic effect size-based-signed differential mapping (AES-SDM), the study meta-analyzed 67 whole-brain FA voxel-based analysis (VBA) and tract-based spatial statistics (TBSS) studies. The sample included 3620 individuals with MDD and 3764 age-matched healthy controls, ranging from adolescence to older adulthood. AES-SDM uses anisotropic kernels combined with random-effects models and permutation tests to perform robust neuroimaging meta-analysis. Between-group analyses uncovered a lateralization effect: Adolescent and adult MDD were associated with left-hemisphere abnormalities, while older adult MDD was associated with right-hemisphere abnormalities. Specifically, MDD was associated with lower left anterior thalamic projection, left pons, left corticospinal projection, and left cingulum FA in adolescents; lower left optic radiation, left striatum, left cingulum, and left inferior longitudinal fasciculus FA in adults; and lower right anterior thalamic projection, right fronto-occipital fasciculus, right striatum, right superior longitudinal fasciculus, and left inferior longitudinal fasciculus FA in older adults. The laterality seen in the current data and previous research could potentially serve as biomarkers to improve diagnostic accuracy. It is recommended that future white matter MDD primary studies include more adolescents and older adults.
Collapse
Affiliation(s)
- Emily Zhang
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; California School of Professional Psychology, Clinical Psychopharmacology MS Program, San Diego, CA, USA.
| | - Anna A Pollard
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA
| | - Diane Zelman
- California School of Professional Psychology, Clinical Psychology PhD Program, San Francisco, CA, USA
| | - Monica Ulibarri
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA
| | - George Kapalka
- California School of Professional Psychology, Clinical Psychopharmacology MS Program, San Diego, CA, USA
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Amandola M, Farber K, Kidambi R, Leung (梁海松) HC. Large-Scale High-Resolution Probabilistic Maps of the Human Superior Longitudinal Fasciculus Subdivisions and their Cortical Terminations. J Neurosci 2025; 45:e0821242025. [PMID: 40127934 PMCID: PMC12044037 DOI: 10.1523/jneurosci.0821-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/26/2025] Open
Abstract
The superior longitudinal fasciculus (SLF) is the large white matter association tract connecting the prefrontal and posterior parietal cortices. Past studies in non-human primates have parcellated the SLF into three subdivisions and have outlined the specific cortico-cortical organization and terminations for each subdivision. However, it is difficult to characterize these structural connections in humans to the specificity of tract-tracing studies in animals. This has led to disagreement on how the SLF subdivisions are organized in the human brain, including if the dorsomedial SLF (SLF-I) is part of the cingulum subsystem. Here, we present a novel large-scale, probabilistic map of the SLF subdivisions, using high-resolution diffusion imaging data from the Human Connectome Project (HCP). We used image data from 302 adult males and 405 adult females to model the three SLF subdivisions in each hemisphere, and attempted to characterize the frontal and parietal termination points for each subdivision. SLF subdivisions were successfully modeled in each subject, showing the dorsomedial-to-ventrolateral organization similar to that in nonhuman primate histological studies. We also found minimal differences between SLF-I models with and without the cingulate gyrus excluded, suggesting that the SLF-I may be a separable tract from the cingulum. Lastly, the SLF subdivisions showed differentiable associations with major cognitive domains such as memory and executive functions. While histological confirmation is needed beyond tractography, these probabilistic masks offer a first step in guiding future exploration of frontoparietal organization by providing detailed characterization of the SLF subdivisions and their potential cortical terminations.Significance statement The prefrontal and posterior parietal areas are interconnected via the SLF, which has been characterized in great detail in monkeys. However, it is difficult to map the SLF organization in the human brain, and previous diffusion MRI findings have been inconsistent. Using diffusion MRI data from 707 individuals, our probabilistic tractography revealed dorsomedial-to-ventrolateral organization of the three SLF subdivisions and their cortical terminations. Our tractography also suggests limited shared volume between the SLF-I and the cingulum, a controversy in recent literature. The SLF subdivisions also differ in their cognitive associations. As a result, we created a large-scale, high-resolution probabilistic parcellation of the SLF, representing an advancement toward standardizing the mapping of human frontoparietal structural connections for clinical and scientific research.
Collapse
Affiliation(s)
- Matthew Amandola
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, New York 11794
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee 37232
| | - Katherine Farber
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, New York 11794
| | - Roma Kidambi
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794
| | - Hoi-Chung Leung (梁海松)
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
5
|
Bryant KL, Camilleri J, Warrington S, Blazquez Freches G, Sotiropoulos SN, Jbabdi S, Eickhoff S, Mars RB. Connectivity profile and function of uniquely human cortical areas. J Neurosci 2025; 45:e2017242025. [PMID: 40097185 PMCID: PMC11984073 DOI: 10.1523/jneurosci.2017-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/10/2025] [Accepted: 02/15/2025] [Indexed: 03/19/2025] Open
Abstract
Determining the brain specializations unique to humans requires directly comparative anatomical information from other primates, especially our closest relatives. Human (Homo sapiens) (m/f), chimpanzee (Pan troglodytes) (f), and rhesus macaque (Macaca mulatta) (m/f) white matter atlases were used to create connectivity blueprints, i.e., descriptions of the cortical grey matter in terms of the connectivity with homologous white matter tracts. This allowed a quantitative comparative of cortical organization across the species. We identified human-unique connectivity profiles concentrated in temporal and parietal cortices, and hominid-unique organization in prefrontal cortex. Functional decoding revealed human-unique hotspots correlated with language processing and social cognition. Overall, our results counter models that assign primacy to prefrontal cortex for human uniqueness.Significance statement Understanding what makes the human brain unique requires direct comparisons with other primates, particularly our closest relatives. Using connectivity blueprints, we compared to cortical organization of the human to that of the macaque and, for the first time, the chimpanzee. This approach revealed human-specific connectivity patterns in the temporal and parietal lobes, regions linked to language and social cognition. These findings challenge traditional views that prioritize the prefrontal cortex in defining human cognitive uniqueness, emphasizing instead the importance of temporal and parietal cortical evolution in shaping our species' abilities.
Collapse
Affiliation(s)
- Katherine L. Bryant
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
- Institute for Language, Cognition and the Brain (ILCB), Aix-Marseille University, Marseille 13604, France
| | - Julia Camilleri
- Institute of Neuroscience and Medicine: Brain and Behavior (INM-7), Research Center Jülich, Jülich 52428, Germany
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, United Kingdom
| | - Guilherme Blazquez Freches
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 HD, The Netherlands
| | - Stamatios N. Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham NG1 5DU, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Simon Eickhoff
- Institute of Neuroscience and Medicine: Brain and Behavior (INM-7), Research Center Jülich, Jülich 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 HD, The Netherlands
| |
Collapse
|
6
|
Zhu M, Wang X, Zhao X, Cai Q. Intrahemispheric White Matter Asymmetries and Interhemispheric Connections Underlying the Lateralization of Language Production and Spatial Attention in Left-Handers. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2025; 6:nol_a_00153. [PMID: 39830069 PMCID: PMC11740161 DOI: 10.1162/nol_a_00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/04/2024] [Indexed: 01/22/2025]
Abstract
Leftward language production and rightward spatial attention are salient features of functional organization in most humans, but their anatomical basis remains unclear. Interhemispheric connections and intrahemispheric white matter asymmetries have been proposed as important factors underlying functional lateralization. To investigate the role of white matter connectivity in functional lateralization, we first identified 96 left-handers using visual half field naming tasks. They were then divided into atypical and typical functional dominance based on the lateralization of brain activation in a word generation task (for language production) and a landmark task (for spatial attention). Using a novel fixel-based framework, we obtained fiber-specific properties of white matter pathways. Results showed, first, that differences between two language dominance groups occurred in the asymmetry of the superior longitudinal fasciculus-III (SLF-III), whereas differences between two spatial attention dominance groups occurred in the rostrum and rostral body of the corpus callosum. However, the directions of functional lateralization were not associated with the directions of white matter asymmetries. Second, the degree of language lateralization was predicted by SLF-III asymmetry and the rostral body of the corpus callosum, whereas the degree of spatial attention lateralization was predicted by the rostrum of the corpus callosum. Notably, the degree of each functional lateralization was negatively correlated with the anterior and middle callosal connections, supporting the excitatory model of the corpus callosum. The results suggest that language lateralization is shaped by a combined effect of intra- and interhemispheric connections, whereas spatial attention lateralization relies more on interhemispheric connections.
Collapse
Affiliation(s)
- Miaomiao Zhu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Institute of Brain Science and Education Innovation, East China Normal University, Shanghai, China
| | - Xiao Wang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xier Zhao
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Institute of Brain Science and Education Innovation, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| |
Collapse
|
7
|
Brosse S, Tremblay C, Mérida I, Frasnelli J. Specific structural changes in Parkinson's disease-related olfactory dysfunction compared to others forms of olfactory dysfunction. Front Neural Circuits 2024; 18:1503841. [PMID: 39606791 PMCID: PMC11598501 DOI: 10.3389/fncir.2024.1503841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
ContextOlfactory dysfunction (OD) is a common early symptom of Parkinson’s disease (PD). However, OD is not specific to PD, as approximatively 20% of the general population exhibit different forms of OD. To use olfactory measures for early Parkinson screening, it is crucial to distinguish PD-related OD from Non-Parkinsonian OD (NPOD).Objectives and hypothesisThis study aimed to compare the structural changes associated with PD-related OD (n = 15) with NPOD (n = 15), focusing on gray matter volumes and white matter fiber integrity in chemosensory regions. We hypothesized that PD-related OD presents specific structural alterations in these regions.MethodsParticipants underwent a 3 T MRI scan, which included anatomical T1 and diffusion-weighted imaging. Gray and white matter integrity were assessed using both whole-brain analyses (voxel-based morphometry—VBM and tract-based spatial statistics—TBSS, respectively) and localized approaches, including regions of interest and tractography.ResultsPD patients exhibited significantly higher gray matter volume in the left insula using restricted regions-of-interest analyses, while no other significant gray or white matter differences were found between groups.ConclusionStructural imaging of the gray matter, particularly the insula, but not of white matter, differentiates PD-related OD from NPOD.
Collapse
Affiliation(s)
- Sarah Brosse
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Cécilia Tremblay
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, United States
| | | | - Johannes Frasnelli
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Research Center of the Sacré Coeur Hospital of Montreal, Montreal, QC, Canada
| |
Collapse
|
8
|
Patel AD. Beat-based dancing to music has evolutionary foundations in advanced vocal learning. BMC Neurosci 2024; 25:65. [PMID: 39506663 PMCID: PMC11539772 DOI: 10.1186/s12868-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/09/2024] [Indexed: 11/08/2024] Open
Abstract
Dancing to music is ancient and widespread in human cultures. While dance shows great cultural diversity, it often involves nonvocal rhythmic movements synchronized to musical beats in a predictive and tempo-flexible manner. To date, the only nonhuman animals known to spontaneously move to music in this way are parrots. This paper proposes that human-parrot similarities in movement to music and in the neurobiology of advanced vocal learning hold clues to the evolutionary foundations of human dance. The proposal draws on recent research on the neurobiology of parrot vocal learning by Jarvis and colleagues and on a recent cortical model for speech motor control by Hickock and colleagues. These two lines of work are synthesized to suggest that gene regulation changes associated with the evolution of a dorsal laryngeal pitch control pathway in ancestral humans fortuitously strengthened auditory-parietal cortical connections that support beat-based rhythmic processing. More generally, the proposal aims to explain how and why the evolution of strong forebrain auditory-motor integration in the service of learned vocal control led to a capacity and proclivity to synchronize nonvocal movements to the beat. The proposal specifies cortical brain pathways implicated in the origins of human beat-based dancing and leads to testable predictions and suggestions for future research.
Collapse
Affiliation(s)
- Aniruddh D Patel
- Department of Psychology, Tufts University, 490 Boston Ave., Medford, MA, 02155, USA.
- Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
9
|
Bryant KL, Manger PR, Bertelsen MF, Khrapitchev AA, Sallet J, Benn RA, Mars RB. A map of white matter tracts in a lesser ape, the lar gibbon. Brain Struct Funct 2024; 229:1839-1854. [PMID: 37904002 PMCID: PMC11485112 DOI: 10.1007/s00429-023-02709-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/01/2023] [Indexed: 11/01/2023]
Abstract
The recent development of methods for constructing directly comparable white matter atlases in primate brains from diffusion MRI allows us to probe specializations unique to humans, great apes, and other primate taxa. Here, we constructed the first white matter atlas of a lesser ape using an ex vivo diffusion-weighted scan of a brain from a young adult (5.5 years) male lar gibbon. We find that white matter architecture of the gibbon temporal lobe suggests specializations that are reminiscent of those previously reported for great apes, specifically, the expansion of the arcuate fasciculus and the inferior longitudinal fasciculus in the temporal lobe. Our findings suggest these white matter expansions into the temporal lobe were present in the last common ancestor to hominoids approximately 16 million years ago and were further modified in the great ape and human lineages. White matter atlases provide a useful resource for identifying neuroanatomical differences and similarities between humans and other primate species and provide insight into the evolutionary variation and stasis of brain organization.
Collapse
Affiliation(s)
- Katherine L Bryant
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université, Marseille, France.
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Stem Cell and Brain Research Institute, Université Lyon 1, Inserm, Bron, France
| | - R Austin Benn
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Integrative Neuroscience and Cognition Center, Université de Paris, CNRS, Paris, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Cini NT, Pennisi M, Genc S, Spandidos DA, Falzone L, Mitsias PD, Tsatsakis A, Taghizadehghalehjoughi A. Glioma lateralization: Focus on the anatomical localization and the distribution of molecular alterations (Review). Oncol Rep 2024; 52:139. [PMID: 39155859 PMCID: PMC11358673 DOI: 10.3892/or.2024.8798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
It is well known how the precise localization of glioblastoma multiforme (GBM) predicts the direction of tumor spread in the surrounding neuronal structures. The aim of the present review is to reveal the lateralization of GBM by evaluating the anatomical regions where it is frequently located as well as the main molecular alterations observed in different brain regions. According to the literature, the precise or most frequent lateralization of GBM has yet to be determined. However, it can be said that GBM is more frequently observed in the frontal lobe. Tractus and fascicles involved in GBM appear to be focused on the corticospinal tract, superior longitudinal I, II and III fascicles, arcuate fascicle long segment, frontal strait tract, and inferior fronto‑occipital fasciculus. Considering the anatomical features of GBM and its brain involvement, it is logical that the main brain regions involved are the frontal‑temporal‑parietal‑occipital lobes, respectively. Although tumor volumes are higher in the right hemisphere, it has been determined that the prognosis of patients diagnosed with cancer in the left hemisphere is worse, probably reflecting the anatomical distribution of some detrimental alterations such as TP53 mutations, PTEN loss, EGFR amplification, and MGMT promoter methylation. There are theories stating that the right hemisphere is less exposed to external influences in its development as it is responsible for the functions necessary for survival while tumors in the left hemisphere may be more aggressive. To shed light on specific anatomical and molecular features of GBM in different brain regions, the present review article is aimed at describing the main lateralization pathways as well as gene mutations or epigenetic modifications associated with the development of brain tumors.
Collapse
Affiliation(s)
- Nilgun Tuncel Cini
- Department of Anatomy, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Sidika Genc
- Department of Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Panayiotis D. Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
11
|
Inglis FM, Taylor PA, Andrews EF, Pascalau R, Voss HU, Glen DR, Johnson PJ. A diffusion tensor imaging white matter atlas of the domestic canine brain. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-21. [PMID: 39301427 PMCID: PMC11409835 DOI: 10.1162/imag_a_00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024]
Abstract
There is increasing reliance on magnetic resonance imaging (MRI) techniques in both research and clinical settings. However, few standardized methods exist to permit comparative studies of brain pathology and function. To help facilitate these studies, we have created a detailed, MRI-based white matter atlas of the canine brain using diffusion tensor imaging. This technique, which relies on the movement properties of water, permits the creation of a three-dimensional diffusivity map of white matter brain regions that can be used to predict major axonal tracts. To generate an atlas of white matter tracts, thirty neurologically and clinically normal dogs underwent MRI imaging under anesthesia. High-resolution, three-dimensional T1-weighted sequences were collected and averaged to create a population average template. Diffusion-weighted imaging sequences were collected and used to generate diffusivity maps, which were then registered to the T1-weighted template. Using these diffusivity maps, individual white matter tracts-including association, projection, commissural, brainstem, olfactory, and cerebellar tracts-were identified with reference to previous canine brain atlas sources. To enable the use of this atlas, we created downloadable overlay files for each white matter tract identified using manual segmentation software. In addition, using diffusion tensor imaging tractography, we created tract files to delineate major projection pathways. This comprehensive white matter atlas serves as a standard reference to aid in the interpretation of quantitative changes in brain structure and function in clinical and research settings.
Collapse
Affiliation(s)
- Fiona M Inglis
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Paul A Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, United States
| | - Erica F Andrews
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Raluca Pascalau
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Henning U Voss
- Cornell Magnetic Resonance Imaging Facility, College of Human Ecology, Cornell University, Cornell, Ithaca, NY, United States
| | - Daniel R Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, United States
| | - Philippa J Johnson
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Manrique HM, Friston KJ, Walker MJ. 'Snakes and ladders' in paleoanthropology: From cognitive surprise to skillfulness a million years ago. Phys Life Rev 2024; 49:40-70. [PMID: 38513522 DOI: 10.1016/j.plrev.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/23/2024]
Abstract
A paradigmatic account may suffice to explain behavioral evolution in early Homo. We propose a parsimonious account that (1) could explain a particular, frequently-encountered, archeological outcome of behavior in early Homo - namely, the fashioning of a Paleolithic stone 'handaxe' - from a biological theoretic perspective informed by the free energy principle (FEP); and that (2) regards instances of the outcome as postdictive or retrodictive, circumstantial corroboration. Our proposal considers humankind evolving as a self-organizing biological ecosystem at a geological time-scale. We offer a narrative treatment of this self-organization in terms of the FEP. Specifically, we indicate how 'cognitive surprises' could underwrite an evolving propensity in early Homo to express sporadic unorthodox or anomalous behavior. This co-evolutionary propensity has left us a legacy of Paleolithic artifacts that is reminiscent of a 'snakes and ladders' board game of appearances, disappearances, and reappearances of particular archeological traces of Paleolithic behavior. When detected in the Early and Middle Pleistocene record, anthropologists and archeologists often imagine evidence of unusual or novel behavior in terms of early humankind ascending the rungs of a figurative phylogenetic 'ladder' - as if these corresponded to progressive evolution of cognitive abilities that enabled incremental achievements of increasingly innovative technical prowess, culminating in the cognitive ascendancy of Homo sapiens. The conjecture overlooks a plausible likelihood that behavior by an individual who was atypical among her conspecifics could have been disregarded in a community of Hominina (for definition see Appendix 1) that failed to recognize, imagine, or articulate potential advantages of adopting hitherto unorthodox behavior. Such failure, as well as diverse fortuitous demographic accidents, would cause exceptional personal behavior to be ignored and hence unremembered. It could disappear by a pitfall, down a 'snake', as it were, in the figurative evolutionary board game; thereby causing a discontinuity in the evolution of human behavior that presents like an evolutionary puzzle. The puzzle discomforts some paleoanthropologists trained in the natural and life sciences. They often dismiss it, explaining it away with such self-justifying conjectures as that, maybe, separate paleospecies of Homo differentially possessed different cognitive abilities, which, supposedly, could account for the presence or absence in the Pleistocene archeological record of traces of this or that behavioral outcome or skill. We argue that an alternative perspective - that inherits from the FEP and an individual's 'active inference' about its surroundings and of its own responses - affords a prosaic, deflationary, and parsimonious way to account for appearances, disappearances, and reappearances of particular behavioral outcomes and skills of early humankind.
Collapse
Affiliation(s)
- Héctor Marín Manrique
- Department of Psychology and Sociology, Universidad de Zaragoza, Ciudad Escolar, s/n, Teruel 44003, Spain
| | - Karl John Friston
- Imaging Neuroscience, Institute of Neurology, and The Wellcome Centre for Human Imaging, University College London, London WC1N 3AR, UK
| | - Michael John Walker
- Physical Anthropology, Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad de Murcia, Campus Universitario de Espinardo Edificio 20, Murcia 30100, Spain.
| |
Collapse
|
13
|
Taçyıldız AE, Barut O, Üçer M, Özgündüz Y, Bozyiğit B, Tanriover N. Improving the Visualization of Superior Longitudinal Fascicule-2 and Superior Longitudinal Fascicule -3 Using Photoshop Filters. World Neurosurg 2024; 185:e1136-e1143. [PMID: 38493894 DOI: 10.1016/j.wneu.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Several studies are currently exploring the anatomical origins of superior longitudinal fascicule (SLF) 2 and SLF-3, which are components of the frontoparietal network. This study aimed to achieve optimum visualization of the anatomical corridors of these fibers using Photoshop filters. METHODS Four postmortem brain hemispheres were dissected in accordance with the method proposed by Klingler and Ludwig. Dissections were performed under a surgical microscope (Carl Zeiss AG, Oberkochen, Germany) at 4× and 40× magnification. All dissections were documented at each stage using a professional digital camera (Canon EOS 600D) with a macro 100 mm lens (Canon), ring-flash attachment (Canon), and professional tripod (Manfrotto 808 C4). We aimed to improve the visual quality of the images by avoiding monotone using various the features and filters in Photoshop. RESULTS SLF-2 originates from the angular gyrus (Brodmann area [BA] 39) in the right hemisphere and has been observed to project fibers from BA7 and BA19 and toward BA8, 9, 10, and 46. Further, these fibers traverse from the depths of BA40, 2, 3, 1, and 6 as they progress. SLF-2 also projects fibers from the supramarginal gyrus in the left hemisphere. SLF-3 lies between the supramarginal gyrus and the inferior frontal lobe in both the right and left hemispheres. CONCLUSIONS The visual descriptions of the dissections were enriched after using Photoshop to avoid monotony. Increasing the visual quality with Photoshop features enable us to gain a better understanding of these pathways. Additionally, it facilitates the comprehension of the symptoms associated with pathology. We hope these results will further aid in reducing the occurrence of postoperative complications.
Collapse
Affiliation(s)
- Abdullah Emre Taçyıldız
- Faculty of Medicine, Department of Neurosurgery, Karabük University, Karabük, Turkey; Cerrahpasa Medical Faculty, Department of Neurosurgery, Microsurgical Neuroanatomy Laboratory, Istanbul University, Istanbul, Turkey.
| | - Ozan Barut
- Cerrahpasa Medical Faculty, Department of Neurosurgery, Microsurgical Neuroanatomy Laboratory, Istanbul University, Istanbul, Turkey; Department of Neurosurgery, Bingöl State Hospital, Bingöl, Turkey
| | - Melih Üçer
- Faculty of Medicine, Department of Neurosurgery, Biruni University, Istanbul, Turkey
| | - Yaser Özgündüz
- Cerrahpasa Medical Faculty, Department of Neurosurgery, Microsurgical Neuroanatomy Laboratory, Istanbul University, Istanbul, Turkey; Department of Neurosurgery, Aksaray Training and Research Hospital, Aksaray, Turkey
| | - Bülent Bozyiğit
- Department of Neurosurgery, Private Health Hospital, İzmir, Turkey
| | - Necmettin Tanriover
- Cerrahpasa Medical Faculty, Department of Neurosurgery, Istanbul University, Istanbul, Turkey
| |
Collapse
|
14
|
Pittella JEH. The uniqueness of the human brain: a review. Dement Neuropsychol 2024; 18:e20230078. [PMID: 38628563 PMCID: PMC11019715 DOI: 10.1590/1980-5764-dn-2023-0078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 04/19/2024] Open
Abstract
The purpose of this review is to highlight the most important aspects of the anatomical and functional uniqueness of the human brain. For this, a comparison is made between our brains and those of our closest ancestors (chimpanzees and bonobos) and human ancestors. During human evolution, several changes occurred in the brain, such as an absolute increase in brain size and number of cortical neurons, in addition to a greater degree of functional lateralization and anatomical asymmetry. Also, the cortical cytoarchitecture became more diversified and there was an increase in the number of intracortical networks and networks extending from the cerebral cortex to subcortical structures, with more neural networks being invested in multisensory and sensory-motor-affective-cognitive integration. These changes permitted more complex, flexible and versatile cognitive abilities and social behavior, such as shared intentionality and symbolic articulated language, which, in turn, made possible the formation of larger social groups and cumulative cultural evolution that are characteristic of our species.
Collapse
Affiliation(s)
- José Eymard Homem Pittella
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Anatomia Patológica e Medicina Legal, Belo Horizonte MG, Brazil
| |
Collapse
|
15
|
Deferm W, Tang T, Moerkerke M, Daniels N, Steyaert J, Alaerts K, Ortibus E, Naulaers G, Boets B. Subtle microstructural alterations in white matter tracts involved in socio-emotional processing after very preterm birth. Neuroimage Clin 2024; 41:103580. [PMID: 38401459 PMCID: PMC10944182 DOI: 10.1016/j.nicl.2024.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Children born very preterm (VPT, < 32 weeks of gestation) have an increased risk of developing socio-emotional difficulties. Possible neural substrates for these socio-emotional difficulties are alterations in the structural connectivity of the social brain due to premature birth. The objective of the current study was to study microstructural white matter integrity in VPT versus full-term (FT) born school-aged children along twelve white matter tracts involved in socio-emotional processing. Diffusion MRI scans were obtained from a sample of 35 VPT and 38 FT 8-to-12-year-old children. Tractography was performed using TractSeg, a state-of-the-art neural network-based approach, which offers investigation of detailed tract profiles of fractional anisotropy (FA). Group differences in FA along the tracts were investigated using both a traditional and complementary functional data analysis approach. Exploratory correlations were performed between the Social Responsiveness Scale (SRS-2), a parent-report questionnaire assessing difficulties in social functioning, and FA along the tract. Both analyses showed significant reductions in FA for the VPT group along the middle portion of the right SLF I and an anterior portion of the left SLF II. These group differences possibly indicate altered white matter maturation due to premature birth and may contribute to altered functional connectivity in the Theory of Mind network which has been documented in earlier work with VPT samples. Apart from reduced social motivation in the VPT group, there were no significant group differences in reported social functioning, as assessed by SRS-2. We found that in the VPT group higher FA values in segments of the left SLF I and right SLF II were associated with better social functioning. Surprisingly, the opposite was found for segments in the right IFO, where higher FA values were associated with worse reported social functioning. Since no significant correlations were found for the FT group, this relationship may be specific for VPT children. The current study overcomes methodological limitations of previous studies by more accurately segmenting white matter tracts using constrained spherical deconvolution based tractography, by applying complementary tractometry analysis approaches to estimate changes in FA more accurately, and by investigating the FA profile along the three components of the SLF.
Collapse
Affiliation(s)
- Ward Deferm
- Center for Developmental Psychiatry, KU Leuven, Belgium.
| | - Tiffany Tang
- Center for Developmental Psychiatry, KU Leuven, Belgium
| | | | - Nicky Daniels
- Neuromotor Rehabilitation Research Group, KU Leuven, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, KU Leuven, Belgium; Child Psychiatry, UZ Leuven, Belgium
| | - Kaat Alaerts
- Neuromotor Rehabilitation Research Group, KU Leuven, Belgium
| | | | - Gunnar Naulaers
- Neonatal Intensive Care Unit - Neonatology, UZ Leuven, Belgium; UZ Leuven & Center for Developmental Disorders, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, KU Leuven, Belgium
| |
Collapse
|
16
|
Chauvel M, Uszynski I, Herlin B, Popov A, Leprince Y, Mangin JF, Hopkins WD, Poupon C. In vivo mapping of the deep and superficial white matter connectivity in the chimpanzee brain. Neuroimage 2023; 282:120362. [PMID: 37722605 PMCID: PMC11751957 DOI: 10.1016/j.neuroimage.2023.120362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023] Open
Abstract
Mapping the chimpanzee brain connectome and comparing it to that of humans is key to our understanding of similarities and differences in primate evolution that occurred after the split from their common ancestor around 6 million years ago. In contrast to studies on macaque species' brains, fewer studies have specifically addressed the structural connectivity of the chimpanzee brain and its comparison with the human brain. Most comparative studies in the literature focus on the anatomy of the cortex and deep nuclei to evaluate how their morphology and asymmetry differ from that of the human brain, and some studies have emerged concerning the study of brain connectivity among humans, monkeys, and apes. In this work, we established a new white matter atlas of the deep and superficial white matter structural connectivity in chimpanzees. In vivo anatomical and diffusion-weighted magnetic resonance imaging (MRI) data were collected on a 3-Tesla MRI system from 39 chimpanzees. These datasets were subsequently processed using a novel fiber clustering pipeline adapted to the chimpanzee brain, enabling us to create two novel deep and superficial white matter connectivity atlases representative of the chimpanzee brain. These atlases provide the scientific community with an important and novel set of reference data for understanding the commonalities and differences in structural connectivity between the human and chimpanzee brains. We believe this study to be innovative both in its novel approach and in mapping the superficial white matter bundles in the chimpanzee brain, which will contribute to a better understanding of hominin brain evolution.
Collapse
Affiliation(s)
- Maëlig Chauvel
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France.
| | - Ivy Uszynski
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France
| | - Bastien Herlin
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France; Hôpital de la Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - Alexandros Popov
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France
| | - Yann Leprince
- UNIACT, NeuroSpin, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
| | - Jean-François Mangin
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France
| | - William D Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States of America
| | - Cyril Poupon
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Tosoni A, Capotosto P, Baldassarre A, Spadone S, Sestieri C. Neuroimaging evidence supporting a dual-network architecture for the control of visuospatial attention in the human brain: a mini review. Front Hum Neurosci 2023; 17:1250096. [PMID: 37841074 PMCID: PMC10571720 DOI: 10.3389/fnhum.2023.1250096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Neuroimaging studies conducted in the last three decades have distinguished two frontoparietal networks responsible for the control of visuospatial attention. The present review summarizes recent findings on the neurophysiological mechanisms implemented in both networks and describes the evolution from a model centered on the distinction between top-down and bottom-up attention to a model that emphasizes the dynamic interplay between the two networks based on attentional demands. The role of the dorsal attention network (DAN) in attentional orienting, by boosting behavioral performance, has been investigated with multiple experimental approaches. This research effort allowed us to trace a distinction between DAN regions involved in shifting vs. maintenance of attention, gather evidence for the modulatory influence exerted by the DAN over sensory cortices, and identify the electrophysiological correlates of the orienting function. Simultaneously, other studies have contributed to reframing our understanding of the functions of the ventral attention network (VAN) and its relevance for behavior. The VAN is not simply involved in bottom-up attentional capture but interacts with the DAN during reorienting to behaviorally relevant targets, exhibiting a general resetting function. Further studies have confirmed the selective rightward asymmetry of the VAN, proposed a functional dissociation along the anteroposterior axis, and suggested hypotheses about its emergence during the evolution of the primate brain. Finally, novel models of network interactions explain the expression of complex attentional functions and the emergence and restorations of symptoms characterizing unilateral spatial neglect. These latter studies emphasize the importance of considering patterns of network interactions for understanding the consequences of brain lesions.
Collapse
Affiliation(s)
- Annalisa Tosoni
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC) and ITAB, Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | | | | |
Collapse
|
18
|
Manrique HM, Walker MJ. To copy or not to copy? That is the question! From chimpanzees to the foundation of human technological culture. Phys Life Rev 2023; 45:6-24. [PMID: 36931123 DOI: 10.1016/j.plrev.2023.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
A prerequisite for copying innovative behaviour faithfully is the capacity of observers' brains, regarded as 'hierarchically mechanistic minds', to overcome cognitive 'surprisal' (see 2.), by maximising the evidence for their internal models, through active inference. Unlike modern humans, chimpanzees and other great apes show considerable limitations in their ability, or 'Zone of Bounded Surprisal', to overcome cognitive surprisal induced by innovative or unorthodox behaviour that rarely, therefore, is copied precisely or accurately. Most can copy adequately what is within their phenotypically habitual behavioural repertoire, in which technology plays scant part. Widespread intra- and intergenerational social transmission of complex technological innovations is not a hall-mark of great-ape taxa. 3 Ma, precursors of the genus Homo made stone artefacts, and stone-flaking likely was habitual before 2 Ma. After that time, early Homo erectus has left traces of technological innovations, though faithful copying of these and their intra- and intergenerational social transmission were rare before 1 Ma. This likely owed to a cerebral infrastructure of interconnected neuronal systems more limited than ours. Brains were smaller in size than ours, and cerebral neuronal systems ceased to develop when early Homo erectus attained full adult maturity by the mid-teen years, whereas its development continues until our mid-twenties nowadays. Pleistocene Homo underwent remarkable evolutionary adaptation of neurobiological propensities, and cerebral aspects are discussed that, it is proposed here, plausibly, were fundamental for faithful copying, which underpinned social transmission of technologies, cumulative learning, and culture. Here, observers' responses to an innovation are more important for ensuring its transmission than is an innovator's production of it, because, by themselves, the minimal cognitive prerequisites that are needed for encoding and assimilating innovations are insufficient for practical outcomes to accumulate and spread intra- and intergenerationally.
Collapse
Affiliation(s)
- Héctor M Manrique
- Departamento de Psicología y Sociología, Universidad de Zaragoza, Campus Universitario de Teruel, 44003, Teruel, Spain.
| | - Michael J Walker
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad de Murcia, Campus Universitario de Espinardo Edificio 20, 30100 Murcia, Spain.
| |
Collapse
|
19
|
Neuroplasticity enables bio-cultural feedback in Paleolithic stone-tool making. Sci Rep 2023; 13:2877. [PMID: 36807588 PMCID: PMC9938911 DOI: 10.1038/s41598-023-29994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Stone-tool making is an ancient human skill thought to have played a key role in the bio-cultural co-evolutionary feedback that produced modern brains, culture, and cognition. To test the proposed evolutionary mechanisms underpinning this hypothesis we studied stone-tool making skill learning in modern participants and examined interactions between individual neurostructural differences, plastic accommodation, and culturally transmitted behavior. We found that prior experience with other culturally transmitted craft skills increased both initial stone tool-making performance and subsequent neuroplastic training effects in a frontoparietal white matter pathway associated with action control. These effects were mediated by the effect of experience on pre-training variation in a frontotemporal pathway supporting action semantic representation. Our results show that the acquisition of one technical skill can produce structural brain changes conducive to the discovery and acquisition of additional skills, providing empirical evidence for bio-cultural feedback loops long hypothesized to link learning and adaptive change.
Collapse
|
20
|
Giarrocco F, Averbeck BB. Anatomical organization of forebrain circuits in the primate. Brain Struct Funct 2023; 228:393-411. [PMID: 36271258 PMCID: PMC9944689 DOI: 10.1007/s00429-022-02586-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022]
Abstract
The primate forebrain is a complex structure. Thousands of connections have been identified between cortical areas, and between cortical and sub-cortical areas. Previous work, however, has suggested that a number of principles can be used to reduce this complexity. Here, we integrate four principles that have been put forth previously, including a nested model of neocortical connectivity, gradients of connectivity between frontal cortical areas and the striatum and thalamus, shared patterns of sub-cortical connectivity between connected posterior and frontal cortical areas, and topographic organization of cortical-striatal-pallidal-thalamocortical circuits. We integrate these principles into a single model that accounts for a substantial amount of connectivity in the forebrain. We then suggest that studies in evolution and development can account for these four principles, by assuming that the ancestral vertebrate pallium was dominated by medial, hippocampal and ventral-lateral, pyriform areas, and at most a small dorsal pallium. The small dorsal pallium expanded massively in the lineage leading to primates. During this expansion, topological, adjacency relationships were maintained between pallial and sub-pallial areas. This maintained topology led to the connectivity gradients seen between cortex, striatum, pallidum, and thalamus.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Building 49 Room 1B80, 49 Convent Drive MSC 4415, Bethesda, MD, 20892-4415, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Building 49 Room 1B80, 49 Convent Drive MSC 4415, Bethesda, MD, 20892-4415, USA.
| |
Collapse
|
21
|
Caspar KR, Pallasdies F, Mader L, Sartorelli H, Begall S. The evolution and biological correlates of hand preferences in anthropoid primates. eLife 2022; 11:e77875. [PMID: 36454207 PMCID: PMC9714969 DOI: 10.7554/elife.77875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
The evolution of human right-handedness has been intensively debated for decades. Manual lateralization patterns in non-human primates have the potential to elucidate evolutionary determinants of human handedness, but restricted species samples and inconsistent methodologies have so far limited comparative phylogenetic studies. By combining original data with published literature reports, we assembled data on hand preferences for standardized object manipulation in 1786 individuals from 38 species of anthropoid primates, including monkeys, apes, and humans. Based on that, we employ quantitative phylogenetic methods to test prevalent hypotheses on the roles of ecology, brain size, and tool use in primate handedness evolution. We confirm that human right-handedness represents an unparalleled extreme among anthropoids and found taxa displaying population-level handedness to be rare. Species-level direction of manual lateralization was largely uniform among non-human primates and did not strongly correlate with any of the selected biological predictors, nor with phylogeny. In contrast, we recovered highly variable patterns of hand preference strength, which show signatures of both ecology and phylogeny. In particular, terrestrial primates tend to display weaker hand preferences than arboreal species. These results challenge popular ideas on primate handedness evolution, including the postural origins hypothesis. Furthermore, they point to a potential adaptive benefit of disparate lateralization strength in primates, a measure of hand preference that has often been overlooked in the past. Finally, our data show that human lateralization patterns do not align with trends found among other anthropoids, suggesting that unique selective pressures gave rise to the unusual hand preferences of our species.
Collapse
Affiliation(s)
- Kai R Caspar
- Department of General Zoology, University of Duisburg-EssenEssenGermany
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life SciencesPrahaCzech Republic
| | - Fabian Pallasdies
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
| | - Larissa Mader
- Department of General Zoology, University of Duisburg-EssenEssenGermany
| | | | - Sabine Begall
- Department of General Zoology, University of Duisburg-EssenEssenGermany
| |
Collapse
|
22
|
Bullock DN, Hayday EA, Grier MD, Tang W, Pestilli F, Heilbronner SR. A taxonomy of the brain's white matter: twenty-one major tracts for the 21st century. Cereb Cortex 2022; 32:4524-4548. [PMID: 35169827 PMCID: PMC9574243 DOI: 10.1093/cercor/bhab500] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/26/2023] Open
Abstract
The functional and computational properties of brain areas are determined, in large part, by their connectivity profiles. Advances in neuroimaging and network neuroscience allow us to characterize the human brain noninvasively, but a comprehensive understanding of the human brain demands an account of the anatomy of brain connections. Long-range anatomical connections are instantiated by white matter, which itself is organized into tracts. These tracts are often disrupted by central nervous system disorders, and they can be targeted by neuromodulatory interventions, such as deep brain stimulation. Here, we characterized the connections, morphology, traversal, and functions of the major white matter tracts in the brain. There are major discrepancies across different accounts of white matter tract anatomy, hindering our attempts to accurately map the connectivity of the human brain. However, we are often able to clarify the source(s) of these discrepancies through careful consideration of both histological tract-tracing and diffusion-weighted tractography studies. In combination, the advantages and disadvantages of each method permit novel insights into brain connectivity. Ultimately, our synthesis provides an essential reference for neuroscientists and clinicians interested in brain connectivity and anatomy, allowing for the study of the association of white matter's properties with behavior, development, and disorders.
Collapse
Affiliation(s)
- Daniel N Bullock
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena A Hayday
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark D Grier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Tang
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Franco Pestilli
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
23
|
Association between Motor Planning and the Frontoparietal Network in Children: An Exploratory Multimodal Study. J Int Neuropsychol Soc 2022; 28:926-936. [PMID: 34674790 DOI: 10.1017/s1355617721001168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Evidence from adult literature shows the involvement of cortical grey matter areas of the frontoparietal lobe and the white matter bundle, the superior longitudinal fasciculus (SLF) in motor planning. This is yet to be confirmed in children. METHOD A multimodal study was designed to probe the neurostructural basis of childhood motor planning. Behavioural (motor planning), magnetic resonance imaging (MRI) and diffusion weighted imaging (DWI) data were acquired from 19 boys aged 8-11 years. Motor planning was assessed using the one and two colour sequences of the octagon task. The MRI data were preprocessed and analysed using FreeSurfer 6.0. Cortical thickness and cortical surface area were extracted from the caudal middle frontal gyrus (MFG), superior frontal gyrus (SFG), precentral gyrus (PcG), supramarginal gyrus (SMG), superior parietal lobe (SPL) and the inferior parietal lobe (IPL) using the Desikan-Killiany atlas. The DWI data were preprocessed and analysed using ExploreDTI 4.8.6 and the white matter tract, the SLF was reconstructed. RESULTS Motor planning of the two colour sequence was associated with cortical thickness of the bilateral MFG and left SFG, PcG, IPL and SPL. The right SLF was related to motor planning for the two colour sequence as well as with the left cortical thickness of the SFG. CONCLUSION Altogether, morphology within frontodorsal circuity, and the white matter bundles that support communication between them, may be associated with individual differences in childhood motor planning.
Collapse
|
24
|
Comparing human and chimpanzee temporal lobe neuroanatomy reveals modifications to human language hubs beyond the frontotemporal arcuate fasciculus. Proc Natl Acad Sci U S A 2022; 119:e2118295119. [PMID: 35787056 PMCID: PMC9282369 DOI: 10.1073/pnas.2118295119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The biological foundation for the language-ready brain in the human lineage remains a debated subject. In humans, the arcuate fasciculus (AF) white matter and the posterior portions of the middle temporal gyrus are crucial for language. Compared with other primates, the human AF has been shown to dramatically extend into the posterior temporal lobe, which forms the basis of a number of models of the structural connectivity basis of language. Recent advances in both language research and comparative neuroimaging invite a reassessment of the anatomical differences in language streams between humans and our closest relatives. Here, we show that posterior temporal connectivity via the AF in humans compared with chimpanzees is expanded in terms of its connectivity not just to the ventral frontal cortex but also to the parietal cortex. At the same time, posterior temporal regions connect more strongly to the ventral white matter in chimpanzees as opposed to humans. This pattern is present in both brain hemispheres. Additionally, we show that the anterior temporal lobe harbors a combination of connections present in both species through the inferior fronto-occipital fascicle and human-unique expansions through the uncinate and middle and inferior longitudinal fascicles. These findings elucidate structural changes that are unique to humans and may underlie the anatomical foundations for full-fledged language capacity.
Collapse
|
25
|
Janelle F, Iorio-Morin C, D'amour S, Fortin D. Superior Longitudinal Fasciculus: A Review of the Anatomical Descriptions With Functional Correlates. Front Neurol 2022; 13:794618. [PMID: 35572948 PMCID: PMC9093186 DOI: 10.3389/fneur.2022.794618] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
The superior longitudinal fasciculus (SLF) is part of the longitudinal association fiber system, which lays connections between the frontal lobe and other areas of the ipsilateral hemisphere. As a dominant association fiber bundle, it should correspond to a well-defined structure with a clear anatomical definition. However, this is not the case, and a lot of confusion and overlap surrounds this entity. In this review/opinion study, we survey relevant current literature on the topic and try to clarify the definition of SLF in each hemisphere. After a comparison of postmortem dissections and data obtained from diffusion MRI studies, we discuss the specifics of this bundle regarding its anatomical landmarks, differences in lateralization, as well as individual variability. We also discuss the confusion regarding the arcuate fasciculus in relation to the SLF. Finally, we recommend a nomenclature based on the findings exposed in this review and finalize with a discussion on relevant functional correlates of the structure.
Collapse
|
26
|
Miyamoto K, Setsuie R, Miyashita Y. Conversion of concept-specific decision confidence into integrative introspection in primates. Cell Rep 2022; 38:110581. [PMID: 35354028 DOI: 10.1016/j.celrep.2022.110581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Introspection based on the integration of uncertain evidence is critical for acting upon abstract thinking and imagining future scenarios. However, it is unknown how confidence read-outs from multiple sources of different concepts are integrated, especially considering the relationships among the concepts. In this study, monkeys performed wagering based on an estimation of their performance in a preceding mnemonic decision. We found that the longer the response times for post-decision wagering, the more relieved the impairments having been caused by frontal disruption. This suggests the existence of a time-consuming compensatory metacognitive process. We found posterior inferior parietal lobe (pIPL) as its candidate, which was not coding the wagering per se (i.e., just high bet or low bet), but became more active when monkeys successfully chose the optimal bet option based on mnemonic decision performance. Thereafter, the pIPL prompts dorsal anterior cingulate cortex to carry the chosen wagering option. Our findings suggest a role for the pIPL in metacognitive concept integration.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Experimental Psychology, University of Oxford, Oxford, OXON OX1 3TA, UK; Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Rieko Setsuie
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory for Cognition Circuit Dynamics, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan; Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| | - Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory for Cognition Circuit Dynamics, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
27
|
González-López P, Cossu G, Thomas CM, Marston JS, Gómez C, Pralong E, Messerer M, Daniel RT. Cadaveric White Matter Dissection Study of the Telencephalic Flexure: Surgical Implications. Front Neurol 2022; 13:757757. [PMID: 35242095 PMCID: PMC8886146 DOI: 10.3389/fneur.2022.757757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Neurosurgery has traditionally been overtly focused on the study of anatomy and functions of cortical areas with microsurgical techniques aimed at preserving eloquent cortices. In the last two decades, there has been ever-increasing data emerging from advances in neuroimaging (principally diffusion tensor imaging) and clinical studies (principally from awake surgeries) that point to the important contribution of white matter tracts (WMT) that influence neurological function as part of a brain network. Major scientific consortiums worldwide, currently working on this human brain connectome, are providing evidence that is dramatically altering the manner in which we view neurosurgical procedures. The development of the telencephalic flexure, a major landmark during the human embryogenesis of the central nervous system (CNS), severely affects the cortical/subcortical anatomy in and around the sylvian fissure and thus the different interacting brain networks. Indeed, the telencephalic flexure modifies the anatomy of the human brain with the more posterior areas becoming ventral and lateral and associative fibers connecting the anterior areas with the previous posterior ones follow the flexure, thus becoming semicircular. In these areas, the projection, association, and commissural fibers intermingle with some WMT remaining curved and others longitudinal. Essentially the ultimate shape and location of these tracts are determined by the development of the telencephalic flexure. Five adult human brains were dissected (medial to lateral and lateral to medial) with a view to describing this intricate anatomy. To better understand the 3D orientation of the WMT of the region we have correlated the cadaveric data with the anatomy presented in the literature of the flexure during human neuro-embryogenesis in addition to cross-species comparisons of the flexure. The precise definition of the connectome of the telencephalic flexure is primordial during glioma surgery and for disconnective epilepsy surgery in this region.
Collapse
Affiliation(s)
| | - Giulia Cossu
- University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | | | | | - Cristina Gómez
- Hospital General Universitario de Alicante, Alicante, Spain
| | - Etienne Pralong
- University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Mahmoud Messerer
- University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Roy T Daniel
- University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Margiotoudi K, Bohn M, Schwob N, Taglialatela J, Pulvermüller F, Epping A, Schweller K, Allritz M. Bo-NO-bouba-kiki: picture-word mapping but no spontaneous sound symbolic speech-shape mapping in a language trained bonobo. Proc Biol Sci 2022; 289:20211717. [PMID: 35105236 PMCID: PMC8808101 DOI: 10.1098/rspb.2021.1717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Humans share the ability to intuitively map 'sharp' or 'round' pseudowords, such as 'bouba' versus 'kiki', to abstract edgy versus round shapes, respectively. This effect, known as sound symbolism, appears early in human development. The phylogenetic origin of this phenomenon, however, is unclear: are humans the only species capable of experiencing correspondences between speech sounds and shapes, or could similar effects be observed in other animals? Thus far, evidence from an implicit matching experiment failed to find evidence of this sound symbolic matching in great apes, suggesting its human uniqueness. However, explicit tests of sound symbolism have never been conducted with nonhuman great apes. In the present study, a language-competent bonobo completed a cross-modal matching-to-sample task in which he was asked to match spoken English words to pictures, as well as 'sharp' or 'round' pseudowords to shapes. Sound symbolic trials were interspersed among English words. The bonobo matched English words to pictures with high accuracy, but did not show any evidence of spontaneous sound symbolic matching. Our results suggest that speech exposure/comprehension alone cannot explain sound symbolism. This lends plausibility to the hypothesis that biological differences between human and nonhuman primates could account for the putative human specificity of this effect.
Collapse
Affiliation(s)
- Konstantina Margiotoudi
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität Berlin, Berlin, Germany
- Laboratory of Cognitive Psychology, CNRS and Aix-Marseille University, Marseille, France
| | - Manuel Bohn
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Natalie Schwob
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Jared Taglialatela
- Ape Cognition and Conservation Initiative, Des Moines, IA, USA
- Department of Ecology, Evolution and Organismal Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Cluster of Excellence ‘Matters of Activity’, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Amanda Epping
- Ape Cognition and Conservation Initiative, Des Moines, IA, USA
| | - Ken Schweller
- Ape Cognition and Conservation Initiative, Des Moines, IA, USA
| | - Matthias Allritz
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife KY16 9JP, UK
| |
Collapse
|
29
|
The evolution of combinatoriality and compositionality in hominid tool use: a comparative perspective. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-021-00267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Aykan S, Puglia MH, Kalaycıoğlu C, Pelphrey KA, Tuncalı T, Nalçacı E. Right Anterior Theta Hypersynchrony as a Quantitative Measure Associated with Autistic Traits and K-Cl Cotransporter KCC2 Polymorphism. J Autism Dev Disord 2022; 52:61-72. [PMID: 33635423 DOI: 10.1007/s10803-021-04924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Our aim was to use theta coherence as a quantitative trait to investigate the relation of the polymorphisms in NKCC1 (rs3087889) and KCC2 (rs9074) channel protein genes to autistic traits (AQ) in neurotypicals. Coherence values for candidate connection regions were calculated from eyes-closed resting EEGs in two independent groups. Hypersynchrony within the right anterior region was related to AQ in both groups (p < 0.05), and variability in this hypersynchrony was related to the rs9074 polymorphism in the total group (p < 0.05). In conclusion, theta hypersynchrony within the right anterior region during eyes-closed rest can be considered a quantitative measure for autistic traits. Replicating our findings in two independent populations with different backgrounds strengthens the validity of the current study.
Collapse
Affiliation(s)
- Simge Aykan
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey.
| | - Meghan H Puglia
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Canan Kalaycıoğlu
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey
| | - Kevin A Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Timur Tuncalı
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Erhan Nalçacı
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
31
|
Preuss TM, Wise SP. Evolution of prefrontal cortex. Neuropsychopharmacology 2022; 47:3-19. [PMID: 34363014 PMCID: PMC8617185 DOI: 10.1038/s41386-021-01076-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Subdivisions of the prefrontal cortex (PFC) evolved at different times. Agranular parts of the PFC emerged in early mammals, and rodents, primates, and other modern mammals share them by inheritance. These are limbic areas and include the agranular orbital cortex and agranular medial frontal cortex (areas 24, 32, and 25). Rodent research provides valuable insights into the structure, functions, and development of these shared areas, but it contributes less to parts of the PFC that are specific to primates, namely, the granular, isocortical PFC that dominates the frontal lobe in humans. The first granular PFC areas evolved either in early primates or in the last common ancestor of primates and tree shrews. Additional granular PFC areas emerged in the primate stem lineage, as represented by modern strepsirrhines. Other granular PFC areas evolved in simians, the group that includes apes, humans, and monkeys. In general, PFC accreted new areas along a roughly posterior to anterior trajectory during primate evolution. A major expansion of the granular PFC occurred in humans in concert with other association areas, with modifications of corticocortical connectivity and gene expression, although current evidence does not support the addition of a large number of new, human-specific PFC areas.
Collapse
Affiliation(s)
- Todd M Preuss
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
| | - Steven P Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Bethesda, MD, 20814, USA
| |
Collapse
|
32
|
Maffei C, Lee C, Planich M, Ramprasad M, Ravi N, Trainor D, Urban Z, Kim M, Jones RJ, Henin A, Hofmann SG, Pizzagalli DA, Auerbach RP, Gabrieli JDE, Whitfield-Gabrieli S, Greve DN, Haber SN, Yendiki A. Using diffusion MRI data acquired with ultra-high gradient strength to improve tractography in routine-quality data. Neuroimage 2021; 245:118706. [PMID: 34780916 PMCID: PMC8835483 DOI: 10.1016/j.neuroimage.2021.118706] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022] Open
Abstract
The development of scanners with ultra-high gradient strength, spearheaded by the Human Connectome Project, has led to dramatic improvements in the spatial, angular, and diffusion resolution that is feasible for in vivo diffusion MRI acquisitions. The improved quality of the data can be exploited to achieve higher accuracy in the inference of both microstructural and macrostructural anatomy. However, such high-quality data can only be acquired on a handful of Connectom MRI scanners worldwide, while remaining prohibitive in clinical settings because of the constraints imposed by hardware and scanning time. In this study, we first update the classical protocols for tractography-based, manual annotation of major white-matter pathways, to adapt them to the much greater volume and variability of the streamlines that can be produced from today’s state-of-the-art diffusion MRI data. We then use these protocols to annotate 42 major pathways manually in data from a Connectom scanner. Finally, we show that, when we use these manually annotated pathways as training data for global probabilistic tractography with anatomical neighborhood priors, we can perform highly accurate, automated reconstruction of the same pathways in much lower-quality, more widely available diffusion MRI data. The outcomes of this work include both a new, comprehensive atlas of WM pathways from Connectom data, and an updated version of our tractography toolbox, TRActs Constrained by UnderLying Anatomy (TRACULA), which is trained on data from this atlas. Both the atlas and TRACULA are distributed publicly as part of FreeSurfer. We present the first comprehensive comparison of TRACULA to the more conventional, multi-region-of-interest approach to automated tractography, and the first demonstration of training TRACULA on high-quality, Connectom data to benefit studies that use more modest acquisition protocols.
Collapse
Affiliation(s)
- C Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - C Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Planich
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Ramprasad
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - N Ravi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - D Trainor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Z Urban
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - R J Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - A Henin
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - S G Hofmann
- Department of Clinical Psychology, Philipps University Marburg, Germany; Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - D A Pizzagalli
- McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | | | - J D E Gabrieli
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - D N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - S N Haber
- McLean Hospital and Harvard Medical School, Belmont, MA, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY, USA
| | - A Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
33
|
Becker Y, Loh KK, Coulon O, Meguerditchian A. The Arcuate Fasciculus and language origins: Disentangling existing conceptions that influence evolutionary accounts. Neurosci Biobehav Rev 2021; 134:104490. [PMID: 34914937 DOI: 10.1016/j.neubiorev.2021.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
The Arcuate Fasciculus (AF) is of considerable interdisciplinary interest, because of its major implication in language processing. Theories about language brain evolution are based on anatomical differences in the AF across primates. However, changing methodologies and nomenclatures have resulted in conflicting findings regarding interspecies AF differences: Historical knowledge about the AF originated from human blunt dissections and later from monkey tract-tracing studies. Contemporary tractography studies reinvestigate the fasciculus' morphology, but remain heavily bound to unclear anatomical priors and methodological limitations. First, we aim to disentangle the influences of these three epistemological steps on existing AF conceptions, and to propose a contemporary model to guide future work. Second, considering the influence of various AF conceptions, we discuss four key evolutionary changes that propagated current views about language evolution: 1) frontal terminations, 2) temporal terminations, 3) greater Dorsal- versus Ventral Pathway expansion, 4) lateralisation. We conclude that new data point towards a more shared AF anatomy across primates than previously described. Language evolution theories should incorporate this continuous AF evolution across primates.
Collapse
Affiliation(s)
- Yannick Becker
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France.
| | - Kep Kee Loh
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France; Station de Primatologie CNRS, Rousset, France
| |
Collapse
|
34
|
Bryant KL, Ardesch DJ, Roumazeilles L, Scholtens LH, Khrapitchev AA, Tendler BC, Wu W, Miller KL, Sallet J, van den Heuvel MP, Mars RB. Diffusion MRI data, sulcal anatomy, and tractography for eight species from the Primate Brain Bank. Brain Struct Funct 2021; 226:2497-2509. [PMID: 34264391 PMCID: PMC8608778 DOI: 10.1007/s00429-021-02268-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
Large-scale comparative neuroscience requires data from many species and, ideally, at multiple levels of description. Here, we contribute to this endeavor by presenting diffusion and structural MRI data from eight primate species that have not or rarely been described in the literature. The selected samples from the Primate Brain Bank cover a prosimian, New and Old World monkeys, and a great ape. We present preliminary labelling of the cortical sulci and tractography of the optic radiation, dorsal part of the cingulum bundle, and dorsal parietal-frontal and ventral temporal-frontal longitudinal white matter tracts. Both dorsal and ventral association fiber systems could be observed in all samples, with the dorsal tracts occupying much less relative volume in the prosimian than in other species. We discuss the results in the context of known primate specializations and present hypotheses for further research. All data and results presented here are available online as a resource for the scientific community.
Collapse
Affiliation(s)
- Katherine L Bryant
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK
| | - Dirk Jan Ardesch
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lianne H Scholtens
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alexandre A Khrapitchev
- Department of Oncology, University of Oxford, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Oxford, UK
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Bedini M, Baldauf D. Structure, function and connectivity fingerprints of the frontal eye field versus the inferior frontal junction: A comprehensive comparison. Eur J Neurosci 2021; 54:5462-5506. [PMID: 34273134 PMCID: PMC9291791 DOI: 10.1111/ejn.15393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 02/01/2023]
Abstract
The human prefrontal cortex contains two prominent areas, the frontal eye field and the inferior frontal junction, that are crucially involved in the orchestrating functions of attention, working memory and cognitive control. Motivated by comparative evidence in non-human primates, we review the human neuroimaging literature, suggesting that the functions of these regions can be clearly dissociated. We found remarkable differences in how these regions relate to sensory domains and visual topography, top-down and bottom-up spatial attention, spatial versus non-spatial (i.e., feature- and object-based) attention and working memory and, finally, the multiple-demand system. Functional magnetic resonance imaging (fMRI) studies using multivariate pattern analysis reveal the selectivity of the frontal eye field and inferior frontal junction to spatial and non-spatial information, respectively. The analysis of functional and effective connectivity provides evidence of the modulation of the activity in downstream visual areas from the frontal eye field and inferior frontal junction and sheds light on their reciprocal influences. We therefore suggest that future studies should aim at disentangling more explicitly the role of these regions in the control of spatial and non-spatial selection. We propose that the analysis of the structural and functional connectivity (i.e., the connectivity fingerprints) of the frontal eye field and inferior frontal junction may be used to further characterize their involvement in a spatial ('where') and a non-spatial ('what') network, respectively, highlighting segregated brain networks that allow biasing visual selection and working memory performance to support goal-driven behaviour.
Collapse
Affiliation(s)
- Marco Bedini
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
36
|
Cheng L, Zhang Y, Li G, Wang J, Sherwood C, Gong G, Fan L, Jiang T. Connectional asymmetry of the inferior parietal lobule shapes hemispheric specialization in humans, chimpanzees, and rhesus macaques. eLife 2021; 10:e67600. [PMID: 34219649 PMCID: PMC8257252 DOI: 10.7554/elife.67600] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022] Open
Abstract
The inferior parietal lobule (IPL) is one of the most expanded cortical regions in humans relative to other primates. It is also among the most structurally and functionally asymmetric regions in the human cerebral cortex. Whether the structural and connectional asymmetries of IPL subdivisions differ across primate species and how this relates to functional asymmetries remain unclear. We identified IPL subregions that exhibited positive allometric in both hemispheres, scaling across rhesus macaque monkeys, chimpanzees, and humans. The patterns of IPL subregions asymmetry were similar in chimpanzees and humans, but no IPL asymmetries were evident in macaques. Among the comparative sample of primates, humans showed the most widespread asymmetric connections in the frontal, parietal, and temporal cortices, constituting leftward asymmetric networks that may provide an anatomical basis for language and tool use. Unique human asymmetric connectivity between the IPL and primary motor cortex might be related to handedness. These findings suggest that structural and connectional asymmetries may underlie hemispheric specialization of the human brain.
Collapse
Affiliation(s)
- Luqi Cheng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
| | - Gang Li
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiaojian Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Center for Language and Brain, Shenzhen Institute of NeuroscienceShenzhenChina
| | - Chet Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
37
|
Leroux E, Poirel N, Dollfus S. Anatomical Connectivity of the Visuospatial Attentional Network in Schizophrenia: A Diffusion Tensor Imaging Tractography Study. J Neuropsychiatry Clin Neurosci 2021; 32:266-273. [PMID: 31948322 DOI: 10.1176/appi.neuropsych.19040101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE In healthy individuals, the visuospatial attentional network consists of frontoparietal bundles; however, the anatomical organization of this network in persons with schizophrenia remains largely unknown. Using diffusion tensor imaging-based tractography, the authors investigated the white matter integrity and volume of frontoparietal and frontotemporo-occipital bundles in the right and left hemispheres and studied their structural asymmetry in persons with schizophrenia and in healthy individuals. METHODS This study included 34 participants with schizophrenia and 69 healthy individuals. Integrity parameters and volume were calculated in the three branches of the superior longitudinal fasciculus (SLF I, II, and III), the inferior longitudinal fasciculus, and the inferior fronto-occipital fasciculus in both hemispheres. RESULTS In the SLF II and SLF III of the right hemisphere, healthy individuals showed greater integrity, compared with participants with schizophrenia. Both groups presented increased integrity in the SLF III of the right hemisphere, compared with the SLF III of the left hemisphere, but only healthy individuals had this pattern regarding the SLF II. Bundle volumes did not differ between groups. CONCLUSIONS This study is the first to describe the structural hemispheric lateralization and organization of the visuospatial attentional network in persons with schizophrenia. The main findings indicate loss of integrity in the SLF II, associated with loss of asymmetry in participants with schizophrenia, compared with healthy individuals, suggesting a potential substrate of attentional deficits.
Collapse
Affiliation(s)
- Elise Leroux
- The Department of Psychiatry, Université de Caen Normandie, Caen, France (Leroux, Dollfus); Université de Paris, LaPsyDÉ, UMR 8240, CNRS, Paris (Poirel); Institut Universitaire de France, Paris (Poirel); Service de Psychiatrie Adulte, Centre Hospitalier Universitaire de Caen, Caen, France (Dollfus); and the Department of Psychiatry, UFR de Médecine, Université de Caen Normandie, Caen, France (Dollfus)
| | - Nicolas Poirel
- The Department of Psychiatry, Université de Caen Normandie, Caen, France (Leroux, Dollfus); Université de Paris, LaPsyDÉ, UMR 8240, CNRS, Paris (Poirel); Institut Universitaire de France, Paris (Poirel); Service de Psychiatrie Adulte, Centre Hospitalier Universitaire de Caen, Caen, France (Dollfus); and the Department of Psychiatry, UFR de Médecine, Université de Caen Normandie, Caen, France (Dollfus)
| | - Sonia Dollfus
- The Department of Psychiatry, Université de Caen Normandie, Caen, France (Leroux, Dollfus); Université de Paris, LaPsyDÉ, UMR 8240, CNRS, Paris (Poirel); Institut Universitaire de France, Paris (Poirel); Service de Psychiatrie Adulte, Centre Hospitalier Universitaire de Caen, Caen, France (Dollfus); and the Department of Psychiatry, UFR de Médecine, Université de Caen Normandie, Caen, France (Dollfus)
| |
Collapse
|
38
|
Vergani F, Ghimire P, Rajashekar D, Dell'acqua F, Lavrador JP. Superior longitudinal fasciculus (SLF) I and II: an anatomical and functional review. J Neurosurg Sci 2021; 65:560-565. [PMID: 33940781 DOI: 10.23736/s0390-5616.21.05327-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review, we summarise the current knowledge regarding the Superior Longitudinal Fasciculus (SLF) I and II. These fibres represent a longitudinal association tract between the parietal and frontal lobes of the brain. We highlight the anatomical representation of the SLF I and II in the primate and in the human brain. The fibres of the SLF I extend from the superior parietal lobule and precuneus, running anteriorly to reach the superior frontal gyrus and the supplementary motor area. The anatomy of the SLF I is debated in the literature, with some Authors questioning the existence of the SLF I as an individual tract. The SLF II is located inferiorly and laterally compared to the SLF I. The fibres of the SLF II extend from the inferior parietal lobule to the middle frontal gyrus. The putative functions of these tracts are reviewed, with particular regards to intraoperative findings and their relevance in applied neurosurgery. Considered together, the two tracts link associative parietal areas with premotor and supplementary motor frontal areas. The two tracts seem therefore involved in supporting the integration of sensory information and motor planning, finalised to visuospatial attention and complex motor behaviour. Finally, we discuss future directions for further study of these fibre tracts, highlighting the need for more detailed anatomical study of the SLF I and additional intraoperative tests that have been suggested to explore the function of these tracts during surgery.
Collapse
Affiliation(s)
- Francesco Vergani
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK -
| | - Prajwal Ghimire
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Devika Rajashekar
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Flavio Dell'acqua
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IOPPN), King's College London, London, UK
| | - Jose P Lavrador
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
39
|
Asano R. The evolution of hierarchical structure building capacity for language and music: a bottom-up perspective. Primates 2021; 63:417-428. [PMID: 33839984 PMCID: PMC9463250 DOI: 10.1007/s10329-021-00905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022]
Abstract
A central property of human language is its hierarchical structure. Humans can flexibly combine elements to build a hierarchical structure expressing rich semantics. A hierarchical structure is also considered as playing a key role in many other human cognitive domains. In music, auditory-motor events are combined into hierarchical pitch and/or rhythm structure expressing affect. How did such a hierarchical structure building capacity evolve? This paper investigates this question from a bottom-up perspective based on a set of action-related components as a shared basis underlying cognitive capacities of nonhuman primates and humans. Especially, I argue that the evolution of hierarchical structure building capacity for language and music is tractable for comparative evolutionary study once we focus on the gradual elaboration of shared brain architecture: the cortico-basal ganglia-thalamocortical circuits for hierarchical control of goal-directed action and the dorsal pathways for hierarchical internal models. I suggest that this gradual elaboration of the action-related brain architecture in the context of vocal control and tool-making went hand in hand with amplification of working memory, and made the brain ready for hierarchical structure building in language and music.
Collapse
Affiliation(s)
- Rie Asano
- Systematic Musicology, Institute of Musicology, University of Cologne, Cologne, Germany.
| |
Collapse
|
40
|
Zheng Y, Wang D, Ye Q, Zou F, Li Y, Kwok SC. Diffusion property and functional connectivity of superior longitudinal fasciculus underpin human metacognition. Neuropsychologia 2021; 156:107847. [PMID: 33812946 DOI: 10.1016/j.neuropsychologia.2021.107847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/08/2021] [Accepted: 03/27/2021] [Indexed: 12/13/2022]
Abstract
Metacognition as the capacity of monitoring one's own cognition operates across domains. Here, we addressed whether metacognition in different cognitive domains rely on common or distinct neural substrates with combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) techniques. After acquiring DTI and resting-state fMRI data, we asked participants to perform a temporal-order memory task and a perceptual discrimination task, followed by trial-specific confidence judgments. DTI analysis revealed that the structural integrity (indexed by fractional anisotropy) in the anterior portion of right superior longitudinal fasciculus (SLF) was associated with both perceptual and mnemonic metacognitive abilities. Using perturbed mnemonic metacognitive scores produced by inhibiting the precuneus using TMS, the mnemonic metacognition scores did not correlate with individuals' SLF structural integrity anymore, revealing the relevance of this tract in memory metacognition. To further verify the involvement of several cortical regions connected by SLF, we took the TMS-targeted precuneus region as a seed in a functional connectivity analysis and found the functional connectivity between precuneus and two SLF-connected regions (inferior parietal cortex and precentral gyrus) mediated mnemonic metacognition performance. These results illustrate the importance of SLF and a putative white-matter grey-matter circuitry that supports human metacognition.
Collapse
Affiliation(s)
- Yunxuan Zheng
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Danni Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qun Ye
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Department of Psychology (Scarborough), University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Futing Zou
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Department of Psychology, University of Oregon, Eugene, OR, 97403, USA
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China; Shanghai Changning Mental Health Center, China.
| |
Collapse
|
41
|
Richard N, Desmurget M, Teillac A, Beuriat PA, Bardi L, Coudé G, Szathmari A, Mottolese C, Sirigu A, Hiba B. Anatomical bases of fast parietal grasp control in humans: A diffusion-MRI tractography study. Neuroimage 2021; 235:118002. [PMID: 33789136 DOI: 10.1016/j.neuroimage.2021.118002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/26/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.
Collapse
Affiliation(s)
- Nathalie Richard
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Michel Desmurget
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Achille Teillac
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Institut de neurosciences cognitives et intégratives d'Aquitaine, CNRS / UMR 5287, 33076 Bordeaux, France
| | - Pierre-Aurélien Beuriat
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Lara Bardi
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Gino Coudé
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Alexandru Szathmari
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Carmine Mottolese
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Angela Sirigu
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Bassem Hiba
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France.
| |
Collapse
|
42
|
Nakajima R, Kinoshita M, Shinohara H, Nakada M. The superior longitudinal fascicle: reconsidering the fronto-parietal neural network based on anatomy and function. Brain Imaging Behav 2021; 14:2817-2830. [PMID: 31468374 DOI: 10.1007/s11682-019-00187-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Due primarily to the extensive disposition of fibers and secondarily to the methodological preferences of researchers, the superior longitudinal fasciculus (SLF) subdivisions have multiple names, complicating SLF research. Here, we collected and reassessed existing knowledge regarding the SLF, which we used to propose a four-term classification of the SLF based mainly on function: dorsal SLF, ventral SLF, posterior SLF, and arcuate fasciculus (AF); these correspond to the traditional SLF II, SLF III or anterior AF, temporoparietal segment of the SLF or posterior AF, and AF or AF long segment, respectively. Each segment has a distinct functional role. The dorsal SLF is involved in visuospatial attention and motor control, while the ventral SLF is associated with language-related networks, auditory comprehension, and articulatory processing in the left hemisphere. The posterior SLF is involved in language-related processing, including auditory comprehension, reading, and lexical access, while the AF is associated with language-related activities, such as phonological processing; the right AF plays a role in social cognition and visuospatial attention. This simple proposed classification permits a better understanding of the SLF and may comprise a convenient classification for use in research and clinical practice relating to brain function.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational therapy, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| |
Collapse
|
43
|
Amemiya K, Naito E, Takemura H. Age dependency and lateralization in the three branches of the human superior longitudinal fasciculus. Cortex 2021; 139:116-133. [PMID: 33852990 DOI: 10.1016/j.cortex.2021.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
The superior longitudinal fascicle/fasciculus (SLF) is a major white matter tract connecting the frontal and parietal cortices in humans. Although the SLF has often been analyzed as a single entity, several studies have reported that the SLF is segregated into three distinct branches (SLF I, II, and III). They have also reported the right lateralization of the SLF III volume and discussed its relationship with lateralized cortical functions in the fronto-parietal network. However, to date, the homogeneity or heterogeneity of the age dependency and lateralization properties of SLF branches have not been fully clarified. Through this study, we aimed to clarify the age dependency and lateralization of SLF I-III by analyzing diffusion-weighted MRI (dMRI) and quantitative R1 (qR1) map datasets collected from a wide range of age groups, mostly comprising right-handed children, adolescents, adults, and seniors (6 to 81 years old). The age dependency in dMRI measurement (fractional anisotropy, FA) was heterogeneous among the three SLF branches, suggesting that these branches are regulated by distinct developmental and aging processes. Lateralization analysis on SLF branches revealed that the right SLF III was larger than the left SLF III in adults, replicating previous reports. FA measurement also suggested that, in addition to SLF III, SLF II was lateralized to the right hemisphere in adolescents and adults. We further found a left lateralization of SLF I in qR1 data, a microstructural measurement sensitive to myelin levels, in adults. These findings suggest that the SLF sub-bundles are distinct entities in terms of age dependency and lateralization.
Collapse
Affiliation(s)
- Kaoru Amemiya
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
44
|
Wang S, Rao J, Yue Y, Xue C, Hu G, Qi W, Ma W, Ge H, Zhang F, Zhang X, Chen J. Altered Frequency-Dependent Brain Activation and White Matter Integrity Associated With Cognition in Characterizing Preclinical Alzheimer's Disease Stages. Front Hum Neurosci 2021; 15:625232. [PMID: 33664660 PMCID: PMC7921321 DOI: 10.3389/fnhum.2021.625232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 01/21/2023] Open
Abstract
Background Subjective cognitive decline (SCD), non-amnestic mild cognitive impairment (naMCI), and amnestic mild cognitive impairment (aMCI) are regarded to be at high risk of converting to Alzheimer's disease (AD). Amplitude of low-frequency fluctuations (ALFF) can reflect functional deterioration while diffusion tensor imaging (DTI) is capable of detecting white matter integrity. Our study aimed to investigate the structural and functional alterations to further reveal convergence and divergence among SCD, naMCI, and aMCI and how these contribute to cognitive deterioration. Methods We analyzed ALFF under slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) bands and white matter fiber integrity among normal controls (CN), SCD, naMCI, and aMCI groups. Correlation analyses were further utilized among paired DTI alteration, ALFF deterioration, and cognitive decline. Results For ALFF calculation, ascended ALFF values were detected in the lingual gyrus (LING) and superior frontal gyrus (SFG) within SCD and naMCI patients, respectively. Descended ALFF values were presented mainly in the LING, SFG, middle frontal gyrus, and precuneus in aMCI patients compared to CN, SCD, and naMCI groups. For DTI analyses, white matter alterations were detected within the uncinate fasciculus (UF) in aMCI patients and within the superior longitudinal fasciculus (SLF) in naMCI patients. SCD patients presented alterations in both fasciculi. Correlation analyses revealed that the majority of these structural and functional alterations were associated with complicated cognitive decline. Besides, UF alterations were correlated with ALFF deterioration in the SFG within aMCI patients. Conclusions SCD shares structurally and functionally deteriorative characteristics with aMCI and naMCI, and tends to convert to either of them. Furthermore, abnormalities in white matter fibers may be the structural basis of abnormal brain activation in preclinical AD stages. Combined together, it suggests that structural and functional integration may characterize the preclinical AD progression.
Collapse
Affiliation(s)
- Siyu Wang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Jiang Rao
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, The Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chen Xue
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenying Ma
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Fourth Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Barron HC, Mars RB, Dupret D, Lerch JP, Sampaio-Baptista C. Cross-species neuroscience: closing the explanatory gap. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190633. [PMID: 33190601 PMCID: PMC7116399 DOI: 10.1098/rstb.2019.0633] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Neuroscience has seen substantial development in non-invasive methods available for investigating the living human brain. However, these tools are limited to coarse macroscopic measures of neural activity that aggregate the diverse responses of thousands of cells. To access neural activity at the cellular and circuit level, researchers instead rely on invasive recordings in animals. Recent advances in invasive methods now permit large-scale recording and circuit-level manipulations with exquisite spatio-temporal precision. Yet, there has been limited progress in relating these microcircuit measures to complex cognition and behaviour observed in humans. Contemporary neuroscience thus faces an explanatory gap between macroscopic descriptions of the human brain and microscopic descriptions in animal models. To close the explanatory gap, we propose adopting a cross-species approach. Despite dramatic differences in the size of mammalian brains, this approach is broadly justified by preserved homology. Here, we outline a three-armed approach for effective cross-species investigation that highlights the need to translate different measures of neural activity into a common space. We discuss how a cross-species approach has the potential to transform basic neuroscience while also benefiting neuropsychiatric drug development where clinical translation has, to date, seen minimal success. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Helen C. Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, CanadaM5G 1L7
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| |
Collapse
|
46
|
Bryant KL, Li L, Eichert N, Mars RB. A comprehensive atlas of white matter tracts in the chimpanzee. PLoS Biol 2020; 18:e3000971. [PMID: 33383575 PMCID: PMC7806129 DOI: 10.1371/journal.pbio.3000971] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/13/2021] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Chimpanzees (Pan troglodytes) are, along with bonobos, humans’ closest living relatives. The advent of diffusion MRI tractography in recent years has allowed a resurgence of comparative neuroanatomical studies in humans and other primate species. Here we offer, in comparative perspective, the first chimpanzee white matter atlas, constructed from in vivo chimpanzee diffusion-weighted scans. Comparative white matter atlases provide a useful tool for identifying neuroanatomical differences and similarities between humans and other primate species. Until now, comprehensive fascicular atlases have been created for humans (Homo sapiens), rhesus macaques (Macaca mulatta), and several other nonhuman primate species, but never in a nonhuman ape. Information on chimpanzee neuroanatomy is essential for understanding the anatomical specializations of white matter organization that are unique to the human lineage. Diffusion MRI tractography reveals the first complete atlas of white matter of the chimpanzee, with the potential to help understand differences between the organization of human and chimpanzee brains.
Collapse
Affiliation(s)
- Katherine L. Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Longchuan Li
- Marcus Autism Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, United States of America
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rogier B. Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Abstract
Comparative studies on brain asymmetry date back to the 19th century but then largely disappeared due to the assumption that lateralization is uniquely human. Since the reemergence of this field in the 1970s, we learned that left-right differences of brain and behavior exist throughout the animal kingdom and pay off in terms of sensory, cognitive, and motor efficiency. Ontogenetically, lateralization starts in many species with asymmetrical expression patterns of genes within the Nodal cascade that set up the scene for later complex interactions of genetic, environmental, and epigenetic factors. These take effect during different time points of ontogeny and create asymmetries of neural networks in diverse species. As a result, depending on task demands, left- or right-hemispheric loops of feedforward or feedback projections are then activated and can temporarily dominate a neural process. In addition, asymmetries of commissural transfer can shape lateralized processes in each hemisphere. It is still unclear if interhemispheric interactions depend on an inhibition/excitation dichotomy or instead adjust the contralateral temporal neural structure to delay the other hemisphere or synchronize with it during joint action. As outlined in our review, novel animal models and approaches could be established in the last decades, and they already produced a substantial increase of knowledge. Since there is practically no realm of human perception, cognition, emotion, or action that is not affected by our lateralized neural organization, insights from these comparative studies are crucial to understand the functions and pathologies of our asymmetric brain.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
48
|
Warrington S, Bryant KL, Khrapitchev AA, Sallet J, Charquero-Ballester M, Douaud G, Jbabdi S, Mars RB, Sotiropoulos SN. XTRACT - Standardised protocols for automated tractography in the human and macaque brain. Neuroimage 2020; 217:116923. [PMID: 32407993 PMCID: PMC7260058 DOI: 10.1016/j.neuroimage.2020.116923] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/27/2020] [Accepted: 05/01/2020] [Indexed: 01/19/2023] Open
Abstract
We present a new software package with a library of standardised tractography protocols devised for the robust automated extraction of white matter tracts both in the human and the macaque brain. Using in vivo data from the Human Connectome Project (HCP) and the UK Biobank and ex vivo data for the macaque brain datasets, we obtain white matter atlases, as well as atlases for tract endpoints on the white-grey matter boundary, for both species. We illustrate that our protocols are robust against data quality, generalisable across two species and reflect the known anatomy. We further demonstrate that they capture inter-subject variability by preserving tract lateralisation in humans and tract similarities stemming from twinship in the HCP cohort. Our results demonstrate that the presented toolbox will be useful for generating imaging-derived features in large cohorts, and in facilitating comparative neuroanatomy studies. The software, tractography protocols, and atlases are publicly released through FSL, allowing users to define their own tractography protocols in a standardised manner, further contributing to open science.
Collapse
Affiliation(s)
- Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK.
| | - Katherine L Bryant
- Donders Institute for Brain, Cognition, & Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alexandr A Khrapitchev
- CRUK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging - Department of Experimental Psychology, University of Oxford, UK; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Marina Charquero-Ballester
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, UK
| | - Gwenaëlle Douaud
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Donders Institute for Brain, Cognition, & Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK.
| |
Collapse
|
49
|
Pargeter J, Khreisheh N, Shea JJ, Stout D. Knowledge vs. know-how? Dissecting the foundations of stone knapping skill. J Hum Evol 2020; 145:102807. [DOI: 10.1016/j.jhevol.2020.102807] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
|
50
|
Komaitis S, Skandalakis GP, Kalyvas AV, Drosos E, Lani E, Emelifeonwu J, Liakos F, Piagkou M, Kalamatianos T, Stranjalis G, Koutsarnakis C. Dorsal component of the superior longitudinal fasciculus revisited: novel insights from a focused fiber dissection study. J Neurosurg 2020; 132:1265-1278. [PMID: 30835690 DOI: 10.3171/2018.11.jns182908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the anatomical consistency, morphology, axonal connectivity, and correlative topography of the dorsal component of the superior longitudinal fasciculus (SLF-I) since the current literature is limited and ambiguous. METHODS Fifteen normal, adult, formalin-fixed cerebral hemispheres were studied through a medial to lateral fiber microdissection technique. In 5 specimens, the authors performed stepwise focused dissections of the lateral cerebral aspect to delineate the correlative anatomy between the SLF-I and the other two SLF subcomponents, namely the SLF-II and SLF-III. RESULTS The SLF-I was readily identified as a distinct fiber tract running within the cingulate or paracingulate gyrus and connecting the anterior cingulate cortex, the medial aspect of the superior frontal gyrus, the pre-supplementary motor area (pre-SMA), the SMA proper, the paracentral lobule, and the precuneus. With regard to the morphology of the SLF-I, two discrete segments were consistently recorded: an anterior and a posterior segment. A clear cleavage plane could be developed between the SLF-I and the cingulum, thus proving their structural integrity. Interestingly, no anatomical connection was revealed between the SLF-I and the SLF-II/SLF-III complex. CONCLUSIONS Study results provide novel and robust anatomical evidence on the topography, morphology, and subcortical architecture of the SLF-I. This fiber tract was consistently recorded as a distinct anatomical entity of the medial cerebral aspect, participating in the axonal connectivity of high-order paralimbic areas.
Collapse
Affiliation(s)
- Spyridon Komaitis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- Departments of2Neurosurgery and
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | - Georgios P Skandalakis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | - Aristotelis V Kalyvas
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- Departments of2Neurosurgery and
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | - Evangelos Drosos
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- Departments of2Neurosurgery and
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | - Evgenia Lani
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | - John Emelifeonwu
- 4Department of Clinical Neurosciences, Western General Hospital; and
- 5Edinburgh Microneurosurgery Education Laboratory, Department of Clinical Neurosciences, Edinburgh, United Kingdom
| | - Faidon Liakos
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
| | - Maria Piagkou
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | | | - George Stranjalis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- Departments of2Neurosurgery and
- 6Hellenic Center for Neurosurgical Research, "Petros Kokkalis," Athens, Greece
| | - Christos Koutsarnakis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- Departments of2Neurosurgery and
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
- 5Edinburgh Microneurosurgery Education Laboratory, Department of Clinical Neurosciences, Edinburgh, United Kingdom
| |
Collapse
|