1
|
Peterson BS, Delavari S, Sadik J, Ersland L, Elgen IB, Sawardekar S, Bansal R, Aukland SM. Brain tissue microstructure in a prospective, longitudinal, population-based cohort of preterm and term-born young adults. J Child Psychol Psychiatry 2025; 66:635-649. [PMID: 39561978 PMCID: PMC12018296 DOI: 10.1111/jcpp.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Fifteen million infants annually are born prematurely, placing them at high risk for life-long adverse neurodevelopmental outcomes. Whether brain tissue abnormalities that accompany preterm birth persist into young adulthood and are associated with long-term cognitive or psychiatric outcomes is not known. METHODS From infancy into young adulthood, we followed a population-based sample of consecutively identified preterm infants and their matched term controls. The preterm group was born at an average gestational age of 31.5 ± 2.6 weeks. We obtained Diffusion Tensor Imaging scans and assessed cognitive and psychiatric outcomes in young adulthood, at a mean age of 19 (range 17.6-20.8) years. Usable data were acquired from 180 participants (89 preterm, 91 term). RESULTS Preterm birth was associated with lower fractional anisotropy (FA) and higher average diffusion coefficient (ADC) values in deep white matter tracts of the internal capsule, cerebral peduncles, inferior frontal-occipital fasciculus, sagittal stratum and splenium of the corpus callosum, as well as in grey matter of the caudate, putamen and thalamus. A younger gestational age at birth accentuated these tissue abnormalities. Perinatal characteristics, including lower 5-min APGAR score, history of bronchopulmonary dysplasia, more days of oxygen supplementation and multiple births all increased ADC values in deep white matter tracts and grey matter throughout the brain. Preterm individuals had significantly lower full-scale IQ and more frequent lifetime psychiatric disorders. Those with psychiatric illnesses had significantly higher ADC and lower FA values throughout the deep posterior white matter. CONCLUSIONS Abnormalities in brain tissue microstructure associated with preterm birth persist into young adulthood and likely represent disordered myelination and accompanying axonal pathology. These disturbances are associated with a higher likelihood of developing a psychiatric disorder by young adulthood. Brain tissue disturbances were accentuated in those born at younger gestational ages and in those with a history of perinatal complications associated with infection and inflammation.
Collapse
Affiliation(s)
- Bradley S. Peterson
- Institute for the Developing MindChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of PsychiatryKeck School of Medicine at the University of Southern CaliforniaLos AngelesCAUSA
| | - Sahar Delavari
- Institute for the Developing MindChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of PsychiatryKeck School of Medicine at the University of Southern CaliforniaLos AngelesCAUSA
| | - Jonathan Sadik
- Institute for the Developing MindChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of PsychiatryKeck School of Medicine at the University of Southern CaliforniaLos AngelesCAUSA
| | - Lars Ersland
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Department of Clinical EngineeringHaukeland University HospitalBergenNorway
| | - Irene B. Elgen
- Division of Psychiatry, Department of Child and Adolescent PsychiatryHaukeland University HospitalBergenNorway
| | - Siddhant Sawardekar
- Institute for the Developing MindChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Ravi Bansal
- Institute for the Developing MindChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of PsychiatryKeck School of Medicine at the University of Southern CaliforniaLos AngelesCAUSA
| | - Stein Magnus Aukland
- Department of RadiologyHaukeland University HospitalBergenNorway
- Department of Clinical MedicineUniversity of BergenBergenNorway
| |
Collapse
|
2
|
Gondová A, Neumane S, Arichi T, Dubois J. Early Development and Co-Evolution of Microstructural and Functional Brain Connectomes: A Multi-Modal MRI Study in Preterm and Full-Term Infants. Hum Brain Mapp 2025; 46:e70186. [PMID: 40099852 PMCID: PMC11915347 DOI: 10.1002/hbm.70186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/07/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025] Open
Abstract
Functional networks characterized by coherent neural activity across distributed brain regions have been observed to emerge early in neurodevelopment. Synchronized maturation across regions that relate to functional connectivity (FC) could be partially reflected in the developmental changes in underlying microstructure. Nevertheless, covariation of regional microstructural properties, termed "microstructural connectivity" (MC), and its relationship to the emergence of functional specialization during the early neurodevelopmental period remain poorly understood. We investigated the evolution of MC and FC postnatally across a set of cortical and subcortical regions, focusing on 45 preterm infants scanned longitudinally, and compared to 45 matched full-term neonates as part of the developing Human Connectome Project (dHCP) using direct comparisons of grey-matter connectivity strengths as well as network-based analyses. Our findings revealed a global strengthening of both MC and FC with age, with connection-specific variability influenced by the connection maturational stage. Prematurity at term-equivalent age was associated with significant connectivity disruptions, particularly in FC. During the preterm period, direct comparisons of MC and FC strength showed a positive linear relationship, which seemed to weaken with development. On the other hand, overlaps between MC- and FC-derived networks (estimated with Mutual Information) increased with age, suggesting a potential convergence towards a shared underlying network structure that may support the co-evolution of microstructural and functional systems. Our study offers novel insights into the dynamic interplay between microstructural and functional brain development and highlights the potential of MC as a complementary descriptor for characterizing brain network development and alterations due to perinatal insults such as premature birth.
Collapse
Affiliation(s)
- Andrea Gondová
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
| | - Sara Neumane
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Tomoki Arichi
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Paediatric Neurosciences, Evelina London Children's HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Jessica Dubois
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
| |
Collapse
|
3
|
Hagiwara A, Kamio S, Kikuta J, Nakaya M, Uchida W, Fujita S, Nikola S, Akasahi T, Wada A, Kamagata K, Aoki S. Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques. Invest Radiol 2025; 60:162-174. [PMID: 39724579 PMCID: PMC11801466 DOI: 10.1097/rli.0000000000001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 12/28/2024]
Abstract
ABSTRACT The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases. Age-related brain volume changes encompass a decrease in gray matter and an increase in ventricular volume, associated with cognitive decline. White matter hyperintensities, detected by FLAIR, are common and linked to cognitive impairments and increased risk of stroke and dementia. Tissue relaxometry reveals age-related changes in relaxivity, aiding the distinction between normal aging and pathological conditions. Myelin content, measurable by MRI, changes with age and is associated with cognitive and motor function alterations. Iron accumulation, detected by susceptibility-sensitive MRI, increases in certain brain regions with age, potentially contributing to neurodegenerative processes. Diffusion MRI provides detailed insights into microstructural changes such as neurite density and orientation. Neurofluid imaging, using techniques like gadolinium-based contrast agents and diffusion MRI, reveals age-related changes in cerebrospinal and interstitial fluid dynamics, crucial for brain health and waste clearance. This review offers a comprehensive overview of age-related brain changes revealed by various MRI techniques. Understanding these changes helps differentiate between normal aging and pathological conditions, aiding the development of interventions to mitigate age-related cognitive decline and other symptoms. Recent advances in machine learning and artificial intelligence have enabled novel methods for estimating brain age, offering also potential biomarkers for neurological and psychiatric disorders.
Collapse
|
4
|
Wang SM, Wen HJ, Huang F, Sun CW, Huang CM, Wang SL. White matter microstructural integrity mediates associations between prenatal endocrine-disrupting chemicals exposure and intelligence in adolescents. Neuroimage Clin 2025; 45:103758. [PMID: 39983551 PMCID: PMC11889738 DOI: 10.1016/j.nicl.2025.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) and phthalic acid esters (PAEs) are well-known endocrine-disrupting chemicals (EDCs) that potentially affect child neurodevelopment. We aimed to investigate the effects of prenatal exposure to PFAS and PAEs on macro- and micro-structural brain development and intelligence in adolescents using multimodal neuroimaging techniques. We employed structural magnetic resonance imaging (MRI) and various diffusion MRI techniques, including diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and neurite orientation dispersion and density imaging (NODDI), to assess the gray-matter macrostructure and white-matter microstructural integrity and complexity. Participants were drawn from a birth cohort of 52 mother-child pairs in central Taiwan recruited in 2001, and the adolescent intelligence quotient (IQ) scores were assessed using the Wechsler Intelligence Scale. Nine PFAS concentrations of cord blood and maternal serum samples were obtained from the children's mothers during the third trimester of pregnancy (27-40 weeks) using a liquid chromatography system coupled to a triple-quadrupole mass spectrometer, while maternal urinary phthalates were used to evaluate PAEs exposure. Our results showed significant associations between prenatal exposure to PFAS and phthalates with changes in specific fronto-parietal regions of the adolescent male brain, including reduced cortical thickness in the inferior frontal gyrus and right superior parietal cortex, which are involved in language, memory, and executive function. A dose-response association was observed, with higher levels of PFAS and PAE exposure modulating altered white-matter fiber integrity in the superior cerebellar peduncle and inferior cerebellar peduncle of the male and female adolescent brains. In addition, higher levels of prenatal exposure to EDCs were associated with lower IQ scores in adolescents. Mediation analyses further revealed that white-matter microstructure of inter-hemispheric and cerebellar fibers mediated the association between prenatal EDC exposure and adolescent IQ scores in female adolescents. Our multimodal human neuroimaging findings suggest that prenatal exposure to EDCs may have long-lasting effects on neuroanatomical development, neural fiber connectivity, and intelligence in adolescents, and highlight the importance of using advanced diffusion imaging techniques, including DKI and NODDI, to detect neurodevelopmental changes and their brain-behavioral consequences with the risks associated with these environmental exposures.
Collapse
Affiliation(s)
- Shi-Ming Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Taiwan; Department of Computer Science, National Yang Ming Chiao Tung University, Taiwan
| | - Hui-Ju Wen
- Institute of Earth Science, Academia Sinica, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Fan Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Taiwan; International Ph.D. Program in Interdisciplinary Neuroscience (University System of Taiwan), National Yang Ming Chiao Tung University, Taiwan
| | - Chien-Wen Sun
- Institute of Earth Science, Academia Sinica, Taipei, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Taiwan; International Ph.D. Program in Interdisciplinary Neuroscience (University System of Taiwan), National Yang Ming Chiao Tung University, Taiwan.
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
5
|
Trò R, Roascio M, Tortora D, Severino M, Rossi A, Garyfallidis E, Arnulfo G, Fato MM, Fadnavis S. Multi-view fusion of diffusion MRI microstructural models: a preterm birth study. Front Neurosci 2024; 18:1480735. [PMID: 39758885 PMCID: PMC11695353 DOI: 10.3389/fnins.2024.1480735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Objective High Angular Resolution Diffusion Imaging (HARDI) models have emerged as a valuable tool for investigating microstructure with a higher degree of detail than standard diffusion Magnetic Resonance Imaging (dMRI). In this study, we explored the potential of multiple advanced microstructural diffusion models for investigating preterm birth in order to identify non-invasive markers of altered white matter development. Approach Rather than focusing on a single MRI modality, we studied on a compound of HARDI techniques in 46 preterm babies studied on a 3T scanner at term-equivalent age and in 23 control neonates born at term. Furthermore, we investigated discriminative patterns of preterm birth using multiple analysis methods, drawn from two only seemingly divergent modeling goals, namely inference and prediction. We thus resorted to (i) a traditional univariate voxel-wise inferential method, as the Tract-Based Spatial Statistics (TBSS) approach; (ii) a univariate predictive approach, as the Support Vector Machine (SVM) classification; and (iii) a multivariate predictive Canonical Correlation Analysis (CCA). Main results The TBSS analysis revealed significant differences between preterm and term cohorts in several white matter areas for multiple HARDI features. SVM classification on skeletonized HARDI measures yielded satisfactory accuracy, particularly for highly informative parameters about fiber directionality. Assessment of the degree of overlap between the two methods in voting for the most discriminating features exhibited a good, though parameter-dependent, rate of agreement. Finally, CCA identified joint changes precisely for those measures exhibiting less correspondence between TBSS and SVM. Significance Our results suggest that a data-driven intramodal imaging approach is crucial for gathering deep and complementary information. The main contribution of this methodological outline is to thoroughly investigate prematurity-related white matter changes through different inquiry focuses, with a view to addressing this issue, both aiming toward mechanistic insight and optimizing predictive accuracy.
Collapse
Affiliation(s)
- Rosella Trò
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Monica Roascio
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | - Gabriele Arnulfo
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Marco Massimo Fato
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Shreyas Fadnavis
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Park S, Lee K, Moon E, Park JC, Kwon B, Lee DH, Suh DC, Song Y. Endovascular Treatment With Targeted Embolization of Cavernous Sinus Dural Arteriovenous Fistulas: A Single-Center Study. Korean J Radiol 2024; 25:1083-1092. [PMID: 39543865 PMCID: PMC11604336 DOI: 10.3348/kjr.2024.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVE To assess the feasibility, efficacy, and safety of targeted embolization for cavernous sinus dural arteriovenous fistulas (CSDAVF). MATERIALS AND METHODS This retrospective study investigated patients with CSDAVF who underwent endovascular treatment at a tertiary hospital between October 1991 and March 2023. Treatment strategies were determined based on clinical symptoms and shunt characteristics. Targeted or non-targeted curative embolization was performed to achieve complete shunt occlusion. Initially, targeted embolization, selective occlusion of the shunted pouch while preserving the normal cavernous sinus lumen, was conducted, should that fail, non-targeted embolization was performed. In contrast, palliative embolization solely reduced shunt flow. Clinical signs, imaging characteristics, and outcomes were evaluated according to the agreed treatment strategy. RESULTS In total, 198 patients with CSDAVF (mean age 59.0 ± 12.1 years, 23.2% male) participated in this study. Of which, 94 patients (47.5%) were treated with targeted embolization, 75 (37.9%) with non-targeted embolization, and 29 (14.6%) with palliative treatment. For patients undergoing curative embolization, 55.7% (94/169) successfully achieved targeted embolization; this procedure was usually used to treat focal fistulas (restrictive or late-restrictive types), whereas diffuse fistulas (proliferative type) often underwent non-targeted or palliative embolization. For patients that underwent targeted embolization, the rate of complete or near-complete occlusion on immediate post-treatment digital subtraction angiography was 93.6% (88/94), with a complication rate of 2.1% (2/94), symptom improvement rate of 96.8% (91/94), and retreatment rate of 5.3% (5/94). No serious complications were reported during follow-up. CONCLUSION When successful, targeted embolization of CSDAVF causes low rates of cranial nerve palsy, retreatment, and good clinical outcomes.
Collapse
Affiliation(s)
- Sangil Park
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea
| | - Kyubong Lee
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunji Moon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung Cheol Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Boseong Kwon
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Deok Hee Lee
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Chul Suh
- Department of Neurointervention, GangNam St. Peter's Hospital, Seoul, Republic of Korea
| | - Yunsun Song
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
White P, Ranasinghe S, Chen J, Van de Looij Y, Sizonenko S, Prasad J, Berry M, Bennet L, Gunn A, Dean J. Comparative utility of MRI and EEG for early detection of cortical dysmaturation after postnatal systemic inflammation in the neonatal rat. Brain Behav Immun 2024; 121:104-118. [PMID: 39043347 DOI: 10.1016/j.bbi.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Exposure to postnatal systemic inflammation is associated with increased risk of brain injury in preterm infants, leading to impaired maturation of the cerebral cortex and adverse neurodevelopmental outcomes. However, the optimal method for identifying cortical dysmaturation is unclear. Herein, we compared the utility of electroencephalography (EEG), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) at different recovery times after systemic inflammation in newborn rats. METHODS Sprague Dawley rat pups of both sexes received single-daily lipopolysaccharide (LPS; 0.3 mg/kg i.p.; n = 51) or saline (n = 55) injections on postnatal days (P)1, 2, and 3. A subset of these animals were implanted with EEG electrodes. Cortical EEG was recorded for 30 min from unanesthetized, unrestrained pups at P7, P14, and P21, and in separate groups, brain tissues were collected at these ages for ex-vivo MRI analysis (9.4 T) and Golgi-Cox staining (to assess neuronal morphology) in the motor cortex. RESULTS Postnatal inflammation was associated with reduced cortical pyramidal neuron arborization from P7, P14, and P21. These changes were associated with dysmature EEG features (e.g., persistence of delta waveforms, higher EEG amplitude, reduced spectral edge frequency) at P7 and P14, and higher EEG power in the theta and alpha ranges at P21. By contrast, there were no changes in cortical DTI or NODDI in LPS rats at P7 or P14, while there was an increase in cortical fractional anisotropy (FA) and decrease in orientation dispersion index (ODI) at P21. CONCLUSIONS EEG may be useful for identifying the early evolution of impaired cortical development after early life postnatal systemic inflammation, while DTI and NODDI seem to be more suited to assessing established cortical changes.
Collapse
Affiliation(s)
- Petra White
- University of Auckland, Auckland, New Zealand
| | | | - Joseph Chen
- University of Auckland, Auckland, New Zealand
| | - Yohan Van de Looij
- University of Geneva, Geneva, Switzerland; Lausanne Federal Polytechnic School, Lausanne, Switzerland
| | | | - Jaya Prasad
- University of Auckland, Auckland, New Zealand
| | - Mary Berry
- University of Otago, Wellington, New Zealand
| | | | | | - Justin Dean
- University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
DiPiero MA, Rodrigues PG, Justman M, Roche S, Bond E, Gonzalez JG, Davidson RJ, Planalp EM, Dean DC. Gray matter based spatial statistics framework in the 1-month brain: insights into gray matter microstructure in infancy. Brain Struct Funct 2024:10.1007/s00429-024-02853-w. [PMID: 39313671 DOI: 10.1007/s00429-024-02853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The neurodevelopmental epoch from fetal stages to early life embodies a critical window of peak growth and plasticity in which differences believed to be associated with many neurodevelopmental and psychiatric disorders first emerge. Obtaining a detailed understanding of the developmental trajectories of the cortical gray matter microstructure is necessary to characterize differential patterns of neurodevelopment that may subserve future intellectual, behavioral, and psychiatric challenges. The neurite orientation dispersion density imaging (NODDI) Gray-Matter Based Spatial Statistics (GBSS) framework leverages information from the NODDI model to enable sensitive characterization of the gray matter microstructure while limiting partial volume contamination and misregistration errors between images collected in different spaces. However, limited contrast of the underdeveloped brain poses challenges for implementing this framework with infant diffusion MRI (dMRI) data. In this work, we aim to examine the development of cortical microstructure in infants. We utilize the NODDI GBSS framework and propose refinements to the original framework that aim to improve the delineation and characterization of gray matter in the infant brain. Taking this approach, we cross-sectionally investigate age relationships in the developing gray matter microstructural organization in infants within the first month of life and reveal widespread relationships with the gray matter architecture.
Collapse
Affiliation(s)
- Marissa A DiPiero
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - McKaylie Justman
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Sophia Roche
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Elizabeth Bond
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Jose Guerrero Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Planalp
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Lv S, Tai H, Sun J, Zhuo Z, Duan Y, Liu S, Wang A, Zhang Z, Liu Y. Mapping macrostructural and microstructural brain alterations in patients with neuronal intranuclear inclusion disease. Neuroradiology 2024; 66:1373-1382. [PMID: 38866958 DOI: 10.1007/s00234-024-03406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND PURPOSE Neuronal intranuclear inclusion disease (NIID) is a rare complex neurodegenerative disorder presents with various radiological features. The study aimed to investigate the structural abnormalities in NIID using multi-shell diffusion MR. MATERIALS AND METHODS Twenty-eight patients with adult-onset NIID and 32 healthy controls were included. Volumetric and diffusion MRI measures, including volume, fractional anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF) of six brain structures, including cortex, subcortical GM, cerebral WM, cerebellar GM and WM, and brainstem, were obtained and compared between NIID and healthy controls. Associations between MRI measures and clinical variables were investigated. RESULTS Brain lesions of NIID included corticomedullary junction lesions on DWI, confluent leukoencephalopathy, lesions on callosum, cerebellar middle peduncle, cerebellar paravermal area and brainstem, and brain atrophy. Compared to healthy controls, NIID showed extensive volume loss of all the six brain regions (all p < 0.001); lower FA in cerebral WM (p < 0.001); higher MD in all WM regions; lower ODI in cortex (p < 0.001); higher ODI in subcortical GM (p < 0.001) and brainstem (p = 0.016); lower ICVF in brainstem (p = 0.001), and cerebral WM (p < 0.001); higher ISOVF in all the brain regions (p < 0.001). Higher MD of cerebellar WM was associated with worse cognitive level as evaluated by MoCA scores (p = 0.011). CONCLUSIONS NIID patients demonstrated widespread brain atrophy but heterogeneous diffusion alterations. Cerebellar WM integrity impairment was correlated with the cognitive decline. The findings of the current study offer a sophisticated picture of brain structural alterations in NIID.
Collapse
Affiliation(s)
- Shan Lv
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongfei Tai
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shaocheng Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - An Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
10
|
Sa de Almeida J, Baud O, Fau S, Barcos-Munoz F, Courvoisier S, Lordier L, Lazeyras F, Hüppi PS. Music impacts brain cortical microstructural maturation in very preterm infants: A longitudinal diffusion MR imaging study. Dev Cogn Neurosci 2023; 61:101254. [PMID: 37182337 PMCID: PMC10200857 DOI: 10.1016/j.dcn.2023.101254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023] Open
Abstract
Preterm birth disrupts important neurodevelopmental processes occurring from mid-fetal to term-age. Musicotherapy, by enriching infants' sensory input, might enhance brain maturation during this critical period of activity-dependent plasticity. To study the impact of music on preterm infants' brain structural changes, we recruited 54 very preterm infants randomized to receive or not a daily music intervention, that have undergone a longitudinal multi-shell diffusion MRI acquisition, before the intervention (at 33 weeks' gestational age) and after it (at term-equivalent-age). Using whole-brain fixel-based (FBA) and NODDI analysis (n = 40), we showed a longitudinal increase of fiber cross-section (FC) and fiber density (FD) in all major cerebral white matter fibers. Regarding cortical grey matter, FD decreased while FC and orientation dispersion index (ODI) increased, reflecting intracortical multidirectional complexification and intracortical myelination. The music intervention resulted in a significantly higher longitudinal increase of FC and ODI in cortical paralimbic regions, namely the insulo-orbito-temporopolar complex, precuneus/posterior cingulate gyrus, as well as the auditory association cortex. Our results support a longitudinal early brain macro and microstructural maturation of white and cortical grey matter in preterm infants. The music intervention led to an increased intracortical complexity in regions important for socio-emotional development, known to be impaired in preterm infants.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland.
| | - Olivier Baud
- Division of Neonatal and Intensive Care, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Sebastien Fau
- Division of Neonatal and Intensive Care, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Francisca Barcos-Munoz
- Division of Neonatal and Intensive Care, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Sebastien Courvoisier
- Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland; Department of Radiology and Medical Informatics, Geneva, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland; Department of Radiology and Medical Informatics, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Planalp EM, Dowe KN, Alexander AL, Goldsmith HH, Davidson RJ, Dean DC. White matter microstructure predicts individual differences in infant fear (But not anger and sadness). Dev Sci 2023; 26:e13340. [PMID: 36367143 PMCID: PMC10079554 DOI: 10.1111/desc.13340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/19/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
We examine neural correlates of discrete expressions of negative emotionality in infants to determine whether the microstructure of white matter tracts at 1 month of age foreshadows the expression of specific negative emotions later in infancy. Infants (n = 103) underwent neuroimaging at 1-month, and mothers reported on infant fear, sadness, and anger at 6, 12, and 18 months using the Infant Behavior Questionnaire-Revised. Levels and developmental change in fear, sadness, and anger were estimated from mother reports. Relations between MRI and infant emotion indicated that 1-month white matter microstructure was differentially associated with level and change in infant fear, but not anger or sadness, in the left stria terminalis (p < 0.05, corrected), a tract that connects frontal and tempo-parietal regions and has been implicated in emerging psychopathology in adults. More relaxed constraints on significance (p < 0.10, corrected) revealed that fear was associated with lower white matter microstructure bilaterally in the inferior portion of the stria terminalis and regions within the sagittal stratum. Results suggest the neurobehavioral uniqueness of fear as early as 1 month of age in regions that are associated with potential longer-term outcomes. This work highlights the early neural precursors of fearfulness, adding to literature explaining the psychobiological accounts of affective development. HIGHLIGHTS: Expressions of infant fear and anger, but not sadness, increase from 6 to 18 months of age. Early neural architecture in the stria terminalis is related to higher initial levels and increasing fear in infancy. After accounting for fear, anger and sadness do not appear to be associated with differences in early white matter microstructure. This work identifies early neural precursors of fearfulness as early as 1-month of age.
Collapse
Affiliation(s)
| | - Kristin N Dowe
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - H Hill Goldsmith
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard J Davidson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
13
|
Wang W, Yu Q, Liang W, Xu F, Li Z, Tang Y, Liu S. Altered cortical microstructure in preterm infants at term-equivalent age relative to term-born neonates. Cereb Cortex 2023; 33:651-662. [PMID: 35259759 DOI: 10.1093/cercor/bhac091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
Preterm (PT) birth is a potential factor for abnormal brain development. Although various alterations of cortical structure and functional connectivity in preterm infants have been reported, the underlying microstructural foundation is still undetected thoroughly in PT infants relative to full-term (FT) neonates. To detect the very early cortical microstructural alteration noninvasively with advanced neurite orientation dispersion and density imaging (NODDI) on a whole-brain basis, we used multi-shell diffusion MRI of healthy newborns selected from the Developing Human Connectome Project. 73 PT infants and 69 FT neonates scanned at term-equivalent age were included in this study. By extracting the core voxels of gray matter (GM) using GM-based spatial statistics (GBSS), we found that comparing to FT neonates, infants born preterm showed extensive lower neurite density in both primary and higher-order association cortices (FWE corrected, P < 0.025). Higher orientation dispersion was only found in very preterm subgroup in the orbitofrontal cortex, fronto-insular cortex, entorhinal cortex, a portion of posterior cingular gyrus, and medial parieto-occipital cortex. This study provided new insights into exploring structural MR for functional and behavioral variations in preterm population, and these findings may have marked clinical importance, particularly in the guidance of ameliorating the development of premature brain.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Qiaowen Yu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Wenjia Liang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Zhuoran Li
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
14
|
Neubauer A, Menegaux A, Wendt J, Li HB, Schmitz-Koep B, Ruzok T, Thalhammer M, Schinz D, Bartmann P, Wolke D, Priller J, Zimmer C, Rueckert D, Hedderich DM, Sorg C. Aberrant claustrum structure in preterm-born neonates: an MRI study. Neuroimage Clin 2023; 37:103286. [PMID: 36516730 PMCID: PMC9755238 DOI: 10.1016/j.nicl.2022.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The human claustrum is a gray matter structure in the white matter between insula and striatum. Previous analysis found altered claustrum microstructure in very preterm-born adults associated with lower cognitive performance. As the claustrum development is related to hypoxia-ischemia sensitive transient cell populations being at-risk in premature birth, we hypothesized that claustrum structure is already altered in preterm-born neonates. We studied anatomical and diffusion-weighted MRIs of 83 preterm- and 83 term-born neonates at term-equivalent age. Additionally, claustrum development was analyzed both in a spectrum of 377 term-born neonates and longitudinally in 53 preterm-born subjects. Data was provided by the developing Human Connectome Project. Claustrum development showed increasing volume, increasing fractional anisotropy (FA), and decreasing mean diffusivity (MD) around term both across term- and preterm-born neonates. Relative to term-born ones, preterm-born neonates had (i) increased absolute and relative claustrum volumes, both indicating increased cellular and/or extracellular matter and being in contrast to other subcortical gray matter regions of decreased volumes such as thalamus; (ii) lower claustrum FA and higher claustrum MD, pointing at increased extracellular matrix and impaired axonal integrity; and (iii) aberrant covariance between claustrum FA and MD, respectively, and that of distributed gray matter regions, hinting at relatively altered claustrum microstructure. Results together demonstrate specifically aberrant claustrum structure in preterm-born neonates, suggesting altered claustrum development in prematurity, potentially relevant for later cognitive performance.
Collapse
Affiliation(s)
- Antonia Neubauer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany.
| | - Aurore Menegaux
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Jil Wendt
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Hongwei Bran Li
- Department of Informatics, Technical University of Munich, Germany; Department of Quantitative Biomedicine, University of Zurich, Switzerland
| | - Benita Schmitz-Koep
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Tobias Ruzok
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Melissa Thalhammer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - David Schinz
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Germany; Neuropsychiatry, Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Daniel Rueckert
- School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany; Department of Informatics, Technical University of Munich, Germany; Department of Computing, Imperial College London, UK
| | - Dennis M Hedderich
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany; Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Germany
| |
Collapse
|
15
|
Kraguljac NV, Guerreri M, Strickland MJ, Zhang H. Neurite Orientation Dispersion and Density Imaging in Psychiatric Disorders: A Systematic Literature Review and a Technical Note. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:10-21. [PMID: 36712566 PMCID: PMC9874146 DOI: 10.1016/j.bpsgos.2021.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 02/01/2023] Open
Abstract
While major psychiatric disorders lack signature diagnostic neuropathologies akin to dementias, classic postmortem studies have established microstructural involvement, i.e., cellular changes in neurons and glia, as a key pathophysiological finding. Advanced magnetic resonance imaging techniques allow mapping of cellular tissue architecture and microstructural abnormalities in vivo, which holds promise for advancing our understanding of the pathophysiology underlying psychiatric disorders. Here, we performed a systematic review of case-control studies using neurite orientation dispersion and density imaging (NODDI) to assess brain microstructure in psychiatric disorders and a selective review of technical considerations in NODDI. Of the 584 potentially relevant articles, 18 studies met the criteria to be included in this systematic review. We found a general theme of abnormal gray and white matter microstructure across the diagnostic spectrum. We also noted significant variability in patterns of neurite density and fiber orientation within and across diagnostic groups, as well as associations between brain microstructure and phenotypical variables. NODDI has been successfully used to detect subtle microstructure abnormalities in patients with psychiatric disorders. Given that NODDI indices may provide a more direct link to pathophysiological processes, this method may not only contribute to advancing our mechanistic understanding of disease processes, it may also be well positioned for next-generation biomarker development studies.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michele Guerreri
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Molly Jordan Strickland
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
16
|
Brain Development and Maternal Behavior in Relation to Cognitive and Language Outcomes in Preterm-Born Children. Biol Psychiatry 2022; 92:663-673. [PMID: 35599181 DOI: 10.1016/j.biopsych.2022.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Children born very preterm (≤32 weeks gestational age) show poorer cognitive and language development compared with their term-born peers. The importance of supportive maternal responses to the child's cues for promoting neurodevelopment is well established. However, little is known about whether supportive maternal behavior can buffer the association of early brain dysmaturation with cognitive and language performance. METHODS Infants born very preterm (N = 226) were recruited from the neonatal intensive care unit for a prospective, observational cohort study. Chart review (e.g., size at birth, postnatal infection) was conducted from birth to discharge. Magnetic resonance imaging, including diffusion tensor imaging, was acquired at approximately 32 weeks postmenstrual age and again at term-equivalent age. Fractional anisotropy, a quantitative measure of brain maturation, was obtained from 11 bilateral regions of interest in the cortical gray matter. At 3 years (n = 187), neurodevelopmental testing (Bayley Scales of Infant and Toddler Development-III) was administered, and parent-child interaction was filmed. Maternal behavior was scored using the Emotional Availability Scale-IV. A total of 146 infants with neonatal brain imaging and follow-up data were included for analysis. Generalized estimating equations were used to examine whether maternal support interacted with mean fractional anisotropy values to predict Cognitive and Language scores at 3 years, accounting for confounding neonatal and maternal factors. RESULTS Higher maternal support significantly moderated cortical fractional anisotropy values at term-equivalent age to predict higher Cognitive (interaction term β = 2.01, p = .05) and Language (interaction term β = 1.85, p = .04) scores. CONCLUSIONS Findings suggest that supportive maternal behavior following early brain dysmaturation may provide an opportunity to promote optimal neurodevelopment in children born very preterm.
Collapse
|
17
|
Radhakrishnan H, Bennett IJ, Stark CE. Higher-order multi-shell diffusion measures complement tensor metrics and volume in gray matter when predicting age and cognition. Neuroimage 2022; 253:119063. [PMID: 35272021 PMCID: PMC10538083 DOI: 10.1016/j.neuroimage.2022.119063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Recent advances in diffusion-weighted imaging have enabled us to probe the microstructure of even gray matter non-invasively. However, these advanced multi-shell protocols are often not included in large-scale studies as they significantly increase scan time. In this study, we investigated whether one set of multi-shell diffusion metrics commonly used in gray matter (as derived from Neurite Orientation Dispersion and Density Imaging, NODDI) provide enough additional information over typical tensor and volume metrics to justify the increased acquisition time, using the cognitive aging framework in the human hippocampus as a testbed. We first demonstrated that NODDI metrics are robust and reliable by replicating previous findings from our lab in a larger population of 79 younger (20.41 ± 1.89 years, 46 females) and 75 older (73.56 ± 6.26 years, 45 females) adults, showing that these metrics in the hippocampal subfields are sensitive to age and memory performance. We then asked how these subfield specific hippocampal NODDI metrics compared with standard tensor metrics and volume in predicting age and memory ability. We discovered that both NODDI and tensor measures separately predicted age and cognition in comparable capacities. However, integrating these modalities together considerably increased the predictive power of our logistic models, indicating that NODDI and tensor measures may be capturing independent microstructural information. We use these findings to encourage neuroimaging data collection consortiums to include a multi-shell diffusion sequence in their protocols since existing NODDI measures (and potential future multi-shell measures) may be able to capture microstructural variance that is missed by traditional approaches, even in studies exclusively examining gray matter.
Collapse
Affiliation(s)
- Hamsanandini Radhakrishnan
- Mathematical, Computational and Systems Biology, University of California, Postal Address: 1400 Biological Sciences III, Irvine, CA 92697, United States
| | - Ilana J Bennett
- Department of Psychology, University of California Riverside, Riverside, California, United States
| | - Craig El Stark
- Mathematical, Computational and Systems Biology, University of California, Postal Address: 1400 Biological Sciences III, Irvine, CA 92697, United States; Department of Neurobiology and Behavior, University of California, Irvine, California 92697, United States.
| |
Collapse
|
18
|
Preziosa P, Pagani E, Bonacchi R, Cacciaguerra L, Falini A, Rocca MA, Filippi M. In vivo detection of damage in multiple sclerosis cortex and cortical lesions using NODDI. J Neurol Neurosurg Psychiatry 2022; 93:628-636. [PMID: 34799405 DOI: 10.1136/jnnp-2021-327803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/28/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To characterise in vivo the microstructural abnormalities of multiple sclerosis (MS) normal-appearing (NA) cortex and cortical lesions (CLs) and their relations with clinical phenotypes and disability using neurite orientation dispersion and density imaging (NODDI). METHODS One hundred and seventy-two patients with MS (101 relapsing-remitting multiple sclerosis (RRMS), 71 progressive multiple sclerosis (PMS)) and 62 healthy controls (HCs) underwent a brain 3T MRI. Brain cortex and CLs were segmented from three-dimensional T1-weighted and double inversion recovery sequences. Using NODDI on diffusion-weighted sequence, intracellular volume fraction (ICV_f) and Orientation Dispersion Index (ODI) were assessed in NA cortex and CLs with default or optimised parallel diffusivity for the cortex (D//=1.7 or 1.2 µm2/ms, respectively). RESULTS The NA cortex of patients with MS had significantly lower ICV_f versus HCs' cortex with both D// values (false discovery rate (FDR)-p <0.001). CLs showed significantly decreased ICV_f and ODI versus NA cortex of both HCs and patients with MS with both D// values (FDR-p ≤0.008). Patients with PMS versus RRMS had significantly decreased NA cortex ICV_f and ODI (FDR-p=0.050 and FDR-p=0.032) with only D//=1.7 µm2/ms. No CL microstructural differences were found between MS clinical phenotypes. MS NA cortex ICV_f and ODI were significantly correlated with disease duration, clinical disability, lesion burden and global and regional brain atrophy (r from -0.51 to 0.71, FDR-p from <0.001 to 0.045). CONCLUSIONS A significant neurite loss occurs in MS NA cortex. CLs show a further neurite density reduction and a reduced ODI suggesting a simplification of neurite complexity. NODDI is relevant to investigate in vivo the heterogeneous pathology affecting the MS cortex.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Raffaello Bonacchi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milano, Italy.,Department of Neuroradiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
19
|
Pierre WC, Zhang E, Londono I, De Leener B, Lesage F, Lodygensky GA. Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behav Brain Res 2022; 428:113884. [DOI: 10.1016/j.bbr.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
|
20
|
Motovylyak A, Vogt NM, Adluru N, Ma Y, Wang R, Oh JM, Kecskemeti SR, Alexander AL, Dean DC, Gallagher CL, Sager MA, Hermann BP, Rowley HA, Johnson SC, Asthana S, Bendlin BB, Okonkwo OC. Age-related differences in white matter microstructure measured by advanced diffusion MRI in healthy older adults at risk for Alzheimer's disease. AGING BRAIN 2022; 2:100030. [PMID: 36908893 PMCID: PMC9999444 DOI: 10.1016/j.nbas.2022.100030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022] Open
Abstract
Neurite orientation dispersion and density imaging (NODDI) is an advanced diffusion imaging technique, which can detect more distinct microstructural features compared to conventional Diffusion Tensor Imaging (DTI). NODDI allows the signal to be divided into multiple water compartments and derive measures for orientation dispersion index (ODI), neurite density index (NDI) and volume fraction of isotropic diffusion compartment (FISO). This study aimed to investigate which diffusion metric-fractional anisotropy (FA), mean diffusivity (MD), NDI, ODI, or FISO-is most influenced by aging and reflects cognitive function in a population of healthy older adults at risk for Alzheimer's disease (AD). Age was significantly associated with all but one diffusion parameters and regions of interest. NDI and MD in the cingulate region adjacent to the cingulate cortex showed a significant association with a composite measure of Executive Function and was proven to partially mediate the relationship between aging and Executive Function decline. These results suggest that both DTI and NODDI parameters are sensitive to age-related differences in white matter regions vulnerable to aging, particularly among older adults at risk for AD.
Collapse
Affiliation(s)
- Alice Motovylyak
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Nicholas M. Vogt
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, 1500 Highland Ave, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Yue Ma
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Rui Wang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- The Swedish School of Sport and Health Science, GIH, Lidingövägen 1, Box 5626, SE-11486 Stockholm, Sweden
| | - Jennifer M. Oh
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Steven R. Kecskemeti
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, 1500 Highland Ave, Madison, WI 53705, USA
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, 1500 Highland Ave, Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, 6001 Research Park Blvd, Madison, WI 53705, USA
| | - Douglas C. Dean
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, 1500 Highland Ave, Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Catherine L. Gallagher
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Mark A. Sager
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut St Suite 957, Madison, WI 53726, USA
| | - Bruce P. Hermann
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut St Suite 957, Madison, WI 53726, USA
| | - Howard A. Rowley
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| |
Collapse
|
21
|
Dimitrova R, Pietsch M, Ciarrusta J, Fitzgibbon SP, Williams LZJ, Christiaens D, Cordero-Grande L, Batalle D, Makropoulos A, Schuh A, Price AN, Hutter J, Teixeira RP, Hughes E, Chew A, Falconer S, Carney O, Egloff A, Tournier JD, McAlonan G, Rutherford MA, Counsell SJ, Robinson EC, Hajnal JV, Rueckert D, Edwards AD, O'Muircheartaigh J. Preterm birth alters the development of cortical microstructure and morphology at term-equivalent age. Neuroimage 2021; 243:118488. [PMID: 34419595 PMCID: PMC8526870 DOI: 10.1016/j.neuroimage.2021.118488] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.
Collapse
Affiliation(s)
- Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sean P Fitzgibbon
- Centre for Functional MRI of the Brain (FMRIB), Welcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Belgium
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Rui Pag Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Olivia Carney
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Faculty of Informatics and Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
22
|
Goddings AL, Roalf D, Lebel C, Tamnes CK. Development of white matter microstructure and executive functions during childhood and adolescence: a review of diffusion MRI studies. Dev Cogn Neurosci 2021; 51:101008. [PMID: 34492631 PMCID: PMC8424510 DOI: 10.1016/j.dcn.2021.101008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) provides indirect measures of white matter microstructure that can be used to make inferences about structural connectivity within the brain. Over the last decade, a growing literature of cross-sectional and longitudinal studies have documented relationships between dMRI indices and cognitive development. In this review, we provide a brief overview of dMRI methods and how they can be used to study white matter and connectivity and review the extant literature examining the links between dMRI indices and executive functions during development. We explore the links between white matter microstructure and specific executive functions: inhibition, working memory and cognitive shifting, as well as performance on complex executive function tasks. Concordance in findings across studies are highlighted, and potential explanations for discrepancies between results, together with challenges with using dMRI in child and adolescent populations, are discussed. Finally, we explore future directions that are necessary to better understand the links between child and adolescent development of structural connectivity of the brain and executive functions.
Collapse
Affiliation(s)
- Anne-Lise Goddings
- UCL Great Ormond Street Institute of Child Health, University College London, UK.
| | - David Roalf
- Department of Psychiatry, University of Pennsylvania, USA; Lifespan Brain Institute, Children's Hospital of Philadelphia and the University of Pennsylvania, USA
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Alberta, Canada
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
23
|
Vanes LD, Hadaya L, Kanel D, Falconer S, Ball G, Batalle D, Counsell SJ, Edwards AD, Nosarti C. Associations Between Neonatal Brain Structure, the Home Environment, and Childhood Outcomes Following Very Preterm Birth. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:146-155. [PMID: 34471914 PMCID: PMC8367847 DOI: 10.1016/j.bpsgos.2021.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Background Very preterm birth is associated with an increased risk of childhood psychopathology and cognitive deficits. However, the extent to which these developmental problems associated with preterm birth are amenable to environmental factors or determined by neurobiology at birth remains unclear. Methods We derived neonatal brain structural covariance networks using non-negative matrix factorization in 384 very preterm infants (median gestational age [range], 30.29 [23.57–32.86] weeks) who underwent magnetic resonance imaging at term-equivalent age (median postmenstrual age, 42.57 [37.86–44.86] weeks). Principal component analysis was performed on 32 behavioral and cognitive measures assessed at preschool age (n = 206; median age, 4.65 [4.19–7.17] years) to identify components of childhood psychopathology and cognition. The Cognitively Stimulating Parenting Scale assessed the level of cognitively stimulating experiences available to the child at home. Results Cognitively stimulating parenting was associated with reduced expression of a component reflecting developmental psychopathology and executive dysfunction consistent with the preterm phenotype (inattention-hyperactivity, autism spectrum behaviors, and lower executive function scores). In contrast, a component reflecting better general cognitive abilities was associated with larger neonatal gray matter volume in regions centered on key nodes of the salience network, but not with cognitively stimulating parenting. Conclusions Our results suggest that while neonatal brain structure likely influences cognitive abilities in very preterm children, the severity of behavioral symptoms that are typically observed in these children is sensitive to a cognitively stimulating home environment. Very preterm children may derive meaningful mental health benefits from access to cognitively stimulating experiences during childhood.
Collapse
Affiliation(s)
- Lucy D. Vanes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Address correspondence to Lucy D. Vanes, Ph.D.
| | - Laila Hadaya
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Dana Kanel
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Gareth Ball
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - A. David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
24
|
On the use of multicompartment models of diffusion and relaxation for placental imaging. Placenta 2021; 112:197-203. [PMID: 34392172 DOI: 10.1016/j.placenta.2021.07.302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/27/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Multi-compartment models of diffusion and relaxation are ubiquitous in magnetic resonance research especially applied to neuroimaging applications. These models are increasingly making their way into the world of placental imaging. This review provides a framework for their motivation and implementation and describes some of the outstanding questions that need to be answered before they can be routinely adopted.
Collapse
|
25
|
Raghavan S, Reid RI, Przybelski SA, Lesnick TG, Graff-Radford J, Schwarz CG, Knopman DS, Mielke MM, Machulda MM, Petersen RC, Jack CR, Vemuri P. Diffusion models reveal white matter microstructural changes with ageing, pathology and cognition. Brain Commun 2021; 3:fcab106. [PMID: 34136811 PMCID: PMC8202149 DOI: 10.1093/braincomms/fcab106] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 01/20/2023] Open
Abstract
White matter microstructure undergoes progressive changes during the lifespan, but the neurobiological underpinnings related to ageing and disease remains unclear. We used an advanced diffusion MRI, Neurite Orientation Dispersion and Density Imaging, to investigate the microstructural alterations due to demographics, common age-related pathological processes (amyloid, tau and white matter hyperintensities) and cognition. We also compared Neurite Orientation Dispersion and Density Imaging findings to the older Diffusion Tensor Imaging model-based findings. Three hundred and twenty-eight participants (264 cognitively unimpaired, 57 mild cognitive impairment and 7 dementia with a mean age of 68.3 ± 13.1 years) from the Mayo Clinic Study of Aging with multi-shell diffusion imaging, fluid attenuated inversion recovery MRI as well as amyloid and tau PET scans were included in this study. White matter tract level diffusion measures were calculated from Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging. Pearson correlation and multiple linear regression analyses were performed with diffusion measures as the outcome and age, sex, education/occupation, white matter hyperintensities, amyloid and tau as predictors. Analyses were also performed with each diffusion MRI measure as a predictor of cognitive outcomes. Age and white matter hyperintensities were the strongest predictors of all white matter diffusion measures with low associations with amyloid and tau. However, neurite density decrease from Neurite Orientation Dispersion and Density Imaging was observed with amyloidosis specifically in the temporal lobes. White matter integrity (mean diffusivity and free water) in the corpus callosum showed the greatest associations with cognitive measures. All diffusion measures provided information about white matter ageing and white matter changes due to age-related pathological processes and were associated with cognition. Neurite orientation dispersion and density imaging and diffusion tensor imaging are two different diffusion models that provide distinct information about variation in white matter microstructural integrity. Neurite Orientation Dispersion and Density Imaging provides additional information about synaptic density, organization and free water content which may aid in providing mechanistic insights into disease progression.
Collapse
Affiliation(s)
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA.,Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
26
|
Dibble M, Ang JZ, Mariga L, Molloy EJ, Bokde ALW. Diffusion Tensor Imaging in Very Preterm, Moderate-Late Preterm and Term-Born Neonates: A Systematic Review. J Pediatr 2021; 232:48-58.e3. [PMID: 33453200 DOI: 10.1016/j.jpeds.2021.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To examine white matter abnormalities, measured by diffusion tensor imaging, in very preterm (<32 weeks) and moderate-late preterm neonates (32-37 weeks) at term-equivalent age, compared with healthy full-term controls (≥37 weeks). STUDY DESIGN A search of Medline (PubMed) was conducted to identify studies with diffusion data collected on very preterm, moderate-late preterm and full-term neonates, using the guidelines from the Meta-analysis of Observational Studies in Epidemiology and PRISMA statements. RESULTS Eleven studies were included with diffusion tensor imaging data from 554 very preterm, 575 moderate-late preterm, and 318 full-term neonates. Widespread statistically significant diffusion measures were found in all preterm subgroups at term-equivalent age compared with full-term neonates, and this difference was more marked for the very preterm group. These abnormalities are suggestive of changes in the white matter microstructure in the preterm groups. The corpus callosum was a region of interest in both early and moderate-late preterm groups, which showed statistically significant diffusion measures in all 11 studies. CONCLUSIONS Microstructural white matter changes may underpin the increased risk of neurodevelopmental disability seen in preterm infants in later life. diffusion tensor imaging may therefore be a useful prognostic tool for neuro-disability in preterm neonates.
Collapse
Affiliation(s)
- Megan Dibble
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland.
| | - Jin Zhe Ang
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Liam Mariga
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Pediatrics and Child Health, Trinity College Dublin, Dublin, Ireland; Neonatologist and Pediatrician, CHI at Crumlin and Tallaght, Coombe Women and Infants University Hospital, Dublin, Ireland; Trinity Translational Medicine Institute (TTMI) & Trinity Research in Childhood Centre (TRICC), Trinity College Dublin, Dublin, Ireland
| | - Arun L W Bokde
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Dubois J, Alison M, Counsell SJ, Hertz‐Pannier L, Hüppi PS, Benders MJ. MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances. J Magn Reson Imaging 2021; 53:1318-1343. [PMID: 32420684 PMCID: PMC8247362 DOI: 10.1002/jmri.27192] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jessica Dubois
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Marianne Alison
- University of ParisNeuroDiderot, INSERM,ParisFrance
- Department of Pediatric RadiologyAPHP, Robert‐Debré HospitalParisFrance
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering & Imaging Sciences, King's College LondonLondonUK
| | - Lucie Hertz‐Pannier
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Petra S. Hüppi
- Division of Development and Growth, Department of Woman, Child and AdolescentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Manon J.N.L. Benders
- Department of NeonatologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
28
|
Prasad JD, van de Looij Y, Gunn KC, Ranchhod SM, White PB, Berry MJ, Bennet L, Sizonenko SV, Gunn AJ, Dean JM. Long-term coordinated microstructural disruptions of the developing neocortex and subcortical white matter after early postnatal systemic inflammation. Brain Behav Immun 2021; 94:338-356. [PMID: 33307171 DOI: 10.1016/j.bbi.2020.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Severe postnatal systemic infection is highly associated with persistent disturbances in brain development and neurobehavioral outcomes in survivors of preterm birth. However, the contribution of less severe but prolonged postnatal infection and inflammation to such disturbances is unclear. Further, the ability of modern imaging techniques to detect the underlying changes in cellular microstructure of the brain in these infants remains to be validated. We used high-field ex-vivo MRI, neurohistopathology, and behavioral tests in newborn rats to demonstrate that prolonged postnatal systemic inflammation causes subtle, persisting disturbances in brain development, with neurodevelopmental delays and mild motor impairments. Diffusion-tensor MRI and neurite orientation dispersion and density imaging (NODDI) revealed delayed maturation of neocortical and subcortical white matter microstructure. Analysis of pyramidal neurons showed that the cortical deficits involved impaired dendritic arborization and spine formation. Analysis of oligodendrocytes showed that the white matter deficits involved impaired oligodendrocyte maturation and axonal myelination. These findings indicate that prolonged postnatal inflammation, without severe infection, may critically contribute to the diffuse spectrum of brain pathology and subtle long-term disability in preterm infants, with a cellular mechanism involving oligodendrocyte and neuronal dysmaturation. NODDI may be useful for clinical detection of these microstructural deficits.
Collapse
Affiliation(s)
- Jaya D Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging - Animal Imaging and Technology, Lausanne Federal Polytechnic School, Lausanne, Switzerland
| | - Katherine C Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Sonya M Ranchhod
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Petra B White
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Mary J Berry
- The Department of Pediatrics and Health Care, University of Otago, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Stéphane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
29
|
Ball G, Seidlitz J, O’Muircheartaigh J, Dimitrova R, Fenchel D, Makropoulos A, Christiaens D, Schuh A, Passerat-Palmbach J, Hutter J, Cordero-Grande L, Hughes E, Price A, Hajnal JV, Rueckert D, Robinson EC, Edwards AD. Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain. PLoS Biol 2020; 18:e3000976. [PMID: 33226978 PMCID: PMC7721147 DOI: 10.1371/journal.pbio.3000976] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/07/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder. Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. A large neuroimaging study of newborn infants reveals how their cortical structure at birth is associated with patterns of gene expression in the fetal cortex and how this relationship is affected by preterm birth.
Collapse
Affiliation(s)
- Gareth Ball
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, United States of America
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daphna Fenchel
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Antonios Makropoulos
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Belgium
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | | | - Jana Hutter
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Anthony Price
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Jo V. Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | - Emma C. Robinson
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| |
Collapse
|
30
|
Kamiya K, Hori M, Aoki S. NODDI in clinical research. J Neurosci Methods 2020; 346:108908. [PMID: 32814118 DOI: 10.1016/j.jneumeth.2020.108908] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Diffusion MRI (dMRI) has proven to be a useful imaging approach for both clinical diagnosis and research investigating the microstructures of nervous tissues, and it has helped us to better understand the neurophysiological mechanisms of many diseases. Though diffusion tensor imaging (DTI) has long been the default tool to analyze dMRI data in clinical research, acquisition with stronger diffusion weightings beyond the DTI regimen is now possible with modern clinical scanners, potentially enabling even more detailed characterization of tissue microstructures. To take advantage of such data, neurite orientation dispersion and density imaging (NODDI) has been proposed as a way to relate the dMRI signal to tissue features via biophysically inspired modeling. The number of reports demonstrating the potential clinical utility of NODDI is rapidly increasing. At the same time, the pitfalls and limitations of NODDI, and general challenges in microstructure modeling, are becoming increasingly recognized by clinicians. dMRI microstructure modeling is a rapidly evolving field with great promise, where people from different scientific backgrounds, such as physics, medicine, biology, neuroscience, and statistics, are collaborating to build novel tools that contribute to improving human healthcare. Here, we review the applications of NODDI in clinical research and discuss future perspectives for investigations toward the implementation of dMRI microstructure imaging in clinical practice.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, The University of Tokyo, Tokyo, Japan; Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan.
| | - Masaaki Hori
- Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|
31
|
Kelly CJ, Christiaens D, Batalle D, Makropoulos A, Cordero-Grande L, Steinweg JK, O'Muircheartaigh J, Khan H, Lee G, Victor S, Alexander DC, Zhang H, Simpson J, Hajnal JV, Edwards AD, Rutherford MA, Counsell SJ. Abnormal Microstructural Development of the Cerebral Cortex in Neonates With Congenital Heart Disease Is Associated With Impaired Cerebral Oxygen Delivery. J Am Heart Assoc 2020; 8:e009893. [PMID: 30821171 PMCID: PMC6474935 DOI: 10.1161/jaha.118.009893] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Abnormal macrostructural development of the cerebral cortex has been associated with hypoxia in infants with congenital heart disease ( CHD ). Animal studies have suggested that hypoxia results in cortical dysmaturation at the cellular level. New magnetic resonance imaging techniques offer the potential to investigate the relationship between cerebral oxygen delivery and cortical microstructural development in newborn infants with CHD . Methods and Results We measured cortical macrostructural and microstructural properties in 48 newborn infants with serious or critical CHD and 48 age-matched healthy controls. Cortical volume and gyrification index were calculated from high-resolution structural magnetic resonance imaging. Neurite density and orientation dispersion indices were modeled using high-angular-resolution diffusion magnetic resonance imaging. Cerebral oxygen delivery was estimated in infants with CHD using phase contrast magnetic resonance imaging and preductal pulse oximetry. We used gray matter-based spatial statistics to examine voxel-wise group differences in cortical microstructure. Microstructural development of the cortex was abnormal in 48 infants with CHD , with regions of increased fractional anisotropy and reduced orientation dispersion index compared with 48 healthy controls, correcting for gestational age at birth and scan (family-wise error corrected for multiple comparisons at P<0.05). Regions of reduced cortical orientation dispersion index in infants with CHD were related to impaired cerebral oxygen delivery ( R2=0.637; n=39). Cortical orientation dispersion index was associated with the gyrification index ( R2=0.589; P<0.001; n=48). Conclusions This study suggests that the primary component of cerebral cortex dysmaturation in CHD is impaired dendritic arborization, which may underlie abnormal macrostructural findings reported in this population, and that the degree of impairment is related to reduced cerebral oxygen delivery.
Collapse
Affiliation(s)
- Christopher J Kelly
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Daan Christiaens
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Dafnis Batalle
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Antonios Makropoulos
- 2 Biomedical Image Analysis Group Department of Computing Imperial College London London United Kingdom
| | - Lucilio Cordero-Grande
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Johannes K Steinweg
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Jonathan O'Muircheartaigh
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom.,3 Department of Forensic and Neurodevelopmental Sciences King's College London Institute of Psychiatry, Psychology and Neuroscience London United Kingdom.,4 Department of Neuroimaging King's College London Institute of Psychiatry, Psychology and Neuroscience London United Kingdom.,5 MRC Centre for Neurodevelopmental Disorders King's College London London United Kingdom
| | - Hammad Khan
- 6 Neonatal Intensive Care Unit St Thomas' Hospital London United Kingdom
| | - Geraint Lee
- 6 Neonatal Intensive Care Unit St Thomas' Hospital London United Kingdom
| | - Suresh Victor
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Daniel C Alexander
- 7 Department of Computer Science and Centre for Medical Image Computing University College London London United Kingdom
| | - Hui Zhang
- 7 Department of Computer Science and Centre for Medical Image Computing University College London London United Kingdom
| | - John Simpson
- 8 Paediatric Cardiology Department Evelina London Children's Hospital St Thomas' Hospital London United Kingdom
| | - Joseph V Hajnal
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - A David Edwards
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom.,5 MRC Centre for Neurodevelopmental Disorders King's College London London United Kingdom
| | - Mary A Rutherford
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Serena J Counsell
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| |
Collapse
|
32
|
Nunes AS, Kozhemiako N, Hutcheon E, Chau C, Ribary U, Grunau RE, Doesburg SM. Atypical neuromagnetic resting activity associated with thalamic volume and cognitive outcome in very preterm children. Neuroimage Clin 2020; 27:102275. [PMID: 32480286 PMCID: PMC7264077 DOI: 10.1016/j.nicl.2020.102275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/11/2022]
Abstract
Children born very preterm, even in the absence of overt brain injury or major impairment, are at increased risk of cognitive difficulties. This risk is associated with developmental disruptions of the thalamocortical system during critical periods while in the neonatal intensive care unit. The thalamus is an important structure that not only relays sensory information but acts as a hub for integration of cortical activity which regulates cortical power across a range of frequencies. In this study, we investigate the association between atypical power at rest in children born very preterm at school age using magnetoencephalography (MEG), neurocognitive function and structural alterations related to the thalamus using MRI. Our results indicate that children born extremely preterm have higher power at slow frequencies (delta and theta) and lower power at faster frequencies (alpha and beta), compared to controls born full-term. A similar pattern of spectral power was found to be associated with poorer neurocognitive outcomes, as well as with normalized T1 intensity and the volume of the thalamus. Overall, this study provides evidence regarding relations between structural alterations related to very preterm birth, atypical oscillatory power at rest and neurocognitive difficulties at school-age children born very preterm.
Collapse
Affiliation(s)
- Adonay S Nunes
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - Nataliia Kozhemiako
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Evan Hutcheon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Cecil Chau
- Pediatrics Department, University of British Columbia, Vancouver, BC, Canada; B.C. Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Urs Ribary
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada; Pediatrics Department, University of British Columbia, Vancouver, BC, Canada; B.C. Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Ruth E Grunau
- Pediatrics Department, University of British Columbia, Vancouver, BC, Canada; B.C. Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sam M Doesburg
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
33
|
Pines AR, Cieslak M, Larsen B, Baum GL, Cook PA, Adebimpe A, Dávila DG, Elliott MA, Jirsaraie R, Murtha K, Oathes DJ, Piiwaa K, Rosen AFG, Rush S, Shinohara RT, Bassett DS, Roalf DR, Satterthwaite TD. Leveraging multi-shell diffusion for studies of brain development in youth and young adulthood. Dev Cogn Neurosci 2020; 43:100788. [PMID: 32510347 PMCID: PMC7200217 DOI: 10.1016/j.dcn.2020.100788] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Multi-shell imaging sequences may improve sensitivity to developmental effects. Models that leverage multi-shell information are often less sensitive to the confounding effects of motion. Multi-shell sequences and models that leverage this data may be of particular utility for studying the developing brain.
Diffusion weighted imaging (DWI) has advanced our understanding of brain microstructure evolution over development. Recently, the use of multi-shell diffusion imaging sequences has coincided with advances in modeling the diffusion signal, such as Neurite Orientation Dispersion and Density Imaging (NODDI) and Laplacian-regularized Mean Apparent Propagator MRI (MAPL). However, the relative utility of recently-developed diffusion models for understanding brain maturation remains sparsely investigated. Additionally, despite evidence that motion artifact is a major confound for studies of development, the vulnerability of metrics derived from contemporary models to in-scanner motion has not been described. Accordingly, in a sample of 120 youth and young adults (ages 12–30) we evaluated metrics derived from diffusion tensor imaging (DTI), NODDI, and MAPL for associations with age and in-scanner head motion at multiple scales. Specifically, we examined mean white matter values, white matter tracts, white matter voxels, and connections in structural brain networks. Our results revealed that multi-shell diffusion imaging data can be leveraged to robustly characterize neurodevelopment, and demonstrate stronger age effects than equivalent single-shell data. Additionally, MAPL-derived metrics were less sensitive to the confounding effects of head motion. Our findings suggest that multi-shell imaging data and contemporary modeling techniques confer important advantages for studies of neurodevelopment.
Collapse
Affiliation(s)
- Adam R Pines
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Matthew Cieslak
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Graham L Baum
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Azeez Adebimpe
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Diego G Dávila
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Mark A Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Robert Jirsaraie
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Kristin Murtha
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Desmond J Oathes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Kayla Piiwaa
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Adon F G Rosen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Sage Rush
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Danielle S Bassett
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, United States; Santa Fe Institute, Santa Fe, NM, 87501, United States
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | | |
Collapse
|
34
|
Radhakrishnan H, Stark SM, Stark CEL. Microstructural Alterations in Hippocampal Subfields Mediate Age-Related Memory Decline in Humans. Front Aging Neurosci 2020; 12:94. [PMID: 32327992 PMCID: PMC7161377 DOI: 10.3389/fnagi.2020.00094] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Aging, even in the absence of clear pathology of dementia, is associated with cognitive decline. Neuroimaging, especially diffusion-weighted imaging, has been highly valuable in understanding some of these changes in live humans, non-invasively. Traditional tensor techniques have revealed that the integrity of the fornix and other white matter tracts significantly deteriorates with age, and that this deterioration is highly correlated with worsening cognitive performance. However, traditional tensor techniques are still not specific enough to indict explicit microstructural features that may be responsible for age-related cognitive decline and cannot be used to effectively study gray matter properties. Here, we sought to determine whether recent advances in diffusion-weighted imaging, including Neurite Orientation Dispersion and Density Imaging (NODDI) and Constrained Spherical Deconvolution, would provide more sensitive measures of age-related changes in the microstructure of the medial temporal lobe. We evaluated these measures in a group of young (ages 20-38 years old) and older (ages 59-84 years old) adults and assessed their relationships with performance on tests of cognition. We found that the fiber density (FD) of the fornix and the neurite density index (NDI) of the fornix, hippocampal subfields (DG/CA3, CA1, and subiculum), and parahippocampal cortex, varied as a function of age in a cross-sectional cohort. Moreover, in the fornix, DG/CA3, and CA1, these changes correlated with memory performance on the Rey Auditory Verbal Learning Test (RAVLT), even after regressing out the effect of age, suggesting that they were capturing neurobiological properties directly related to performance in this task. These measures provide more details regarding age-related neurobiological properties. For example, a change in fiber density could mean a reduction in axonal packing density or myelination, and the increase in NDI observed might be explained by changes in dendritic complexity or even sprouting. These results provide a far more comprehensive view than previously determined on the possible system-wide processes that may be occurring because of healthy aging and demonstrate that advanced diffusion-weighted imaging is evolving into a powerful tool to study more than just white matter properties.
Collapse
Affiliation(s)
- Hamsanandini Radhakrishnan
- Mathematical, Computational and Systems Biology, University of California, Irvine, Irvine, CA, United States
| | - Shauna M. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Craig E. L. Stark
- Mathematical, Computational and Systems Biology, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
35
|
Nazeri A, Schifani C, Anderson JAE, Ameis SH, Voineskos AN. In Vivo Imaging of Gray Matter Microstructure in Major Psychiatric Disorders: Opportunities for Clinical Translation. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:855-864. [PMID: 32381477 DOI: 10.1016/j.bpsc.2020.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Postmortem studies reveal that individuals with major neuropsychiatric disorders such as schizophrenia and autism spectrum disorder have gray matter microstructural abnormalities. These include abnormalities in neuropil organization, expression of proteins supporting neuritic and synaptic integrity, and myelination. Genetic and postmortem studies suggest that these changes may be causally linked to the pathogenesis of these disorders. Advances in diffusion-weighted magnetic resonance image (dMRI) acquisition techniques and biophysical modeling allow for the quantification of gray matter microstructure in vivo. While several biophysical models for imaging microstructural properties are available, one in particular, neurite orientation dispersion and density imaging (NODDI), holds great promise for clinical applications. NODDI can be applied to both gray and white matter and requires only a single extra shell beyond a standard dMRI acquisition. Since its development only a few years ago, the NODDI algorithm has been used to characterize gray matter microstructure in schizophrenia, Alzheimer's disease, healthy aging, and development. These investigations have shown that microstructural findings in vivo, using NODDI, align with postmortem findings. Not only do NODDI and other advanced dMRI-based modeling methods provide a window into the brain previously only available postmortem, but they may be more sensitive to certain brain changes than conventional magnetic resonance imaging approaches. This opens up exciting new possibilities for clinicians to more rapidly detect disease signatures and allows earlier intervention in the course of the disease. Given that neurites and gray matter microstructure have the capacity to rapidly remodel, these novel dMRI-based methods represent an opportunity to noninvasively monitor neuroplastic changes posttherapy within much shorter time scales.
Collapse
Affiliation(s)
- Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christin Schifani
- Kimel Family Translational Imaging Genetics Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - John A E Anderson
- Kimel Family Translational Imaging Genetics Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephanie H Ameis
- Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Centre for Brain and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging Genetics Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Lorio S, Adler S, Gunny R, D'Arco F, Kaden E, Wagstyl K, Jacques TS, Clark CA, Cross JH, Baldeweg T, Carmichael DW. MRI profiling of focal cortical dysplasia using multi-compartment diffusion models. Epilepsia 2020; 61:433-444. [PMID: 32065673 PMCID: PMC7154549 DOI: 10.1111/epi.16451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Objective Focal cortical dysplasia (FCD) lesion detection and subtyping remain challenging on conventional MRI. New diffusion models such as the spherical mean technique (SMT) and neurite orientation dispersion and density imaging (NODDI) provide measurements that potentially produce more specific maps of abnormal tissue microstructure. This study aims to assess the SMT and NODDI maps for computational and radiological lesion characterization compared to standard fractional anisotropy (FA) and mean diffusivity (MD). Methods SMT, NODDI, FA, and MD maps were calculated for 33 pediatric patients with suspected FCD (18 histologically confirmed). Two neuroradiologists scored lesion visibility on clinical images and diffusion maps. Signal profile changes within lesions and homologous regions were quantified using a surface‐based approach. Diffusion parameter changes at multiple cortical depths were statistically compared between FCD type IIa and type IIb. Results Compared to fluid‐attenuated inversion recovery (FLAIR) or T1‐weighted imaging, lesions conspicuity on NODDI intracellular volume fraction (ICVF) maps was better/equal/worse in 5/14/14 patients, respectively, while on SMT intra‐neurite volume fraction (INVF) in 3/3/27. Compared to FA or MD, lesion conspicuity on the ICVF was better/equal/worse in 27/4/2, while on the INVF in 20/7/6. Quantitative signal profiling demonstrated significant ICVF and INVF reductions in the lesions, whereas SMT microscopic mean, radial, and axial diffusivities were significantly increased. FCD type IIb exhibited greater changes than FCD type IIa. No changes were detected on FA or MD profiles. Significance FCD lesion‐specific signal changes were found in ICVF and INVF but not in FA and MD maps. ICVF and INVF showed greater contrast than FLAIR in some cases and had consistent signal changes specific to FCD, suggesting that they could improve current presurgical pediatric epilepsy imaging protocols and can provide features useful for automated lesion detection.
Collapse
Affiliation(s)
- Sara Lorio
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK.,School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, UK
| | - Sophie Adler
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | | | - Enrico Kaden
- Centre for Medical Image Computing, University College London, London, UK
| | - Konrad Wagstyl
- Brain Mapping Unit, Institute of Psychiatry, University of Cambridge, Cambridge, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Chris A Clark
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Judith Helen Cross
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Torsten Baldeweg
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - David W Carmichael
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK.,School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, UK
| |
Collapse
|
37
|
Galdi P, Blesa M, Stoye DQ, Sullivan G, Lamb GJ, Quigley AJ, Thrippleton MJ, Bastin ME, Boardman JP. Neonatal morphometric similarity mapping for predicting brain age and characterizing neuroanatomic variation associated with preterm birth. Neuroimage Clin 2020; 25:102195. [PMID: 32044713 PMCID: PMC7016043 DOI: 10.1016/j.nicl.2020.102195] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Multi-contrast MRI captures information about brain macro- and micro-structure which can be combined in an integrated model to obtain a detailed "fingerprint" of the anatomical properties of an individual's brain. Inter-regional similarities between features derived from structural and diffusion MRI, including regional volumes, diffusion tensor metrics, neurite orientation dispersion and density imaging measures, can be modelled as morphometric similarity networks (MSNs). Here, individual MSNs were derived from 105 neonates (59 preterm and 46 term) who were scanned between 38 and 45 weeks postmenstrual age (PMA). Inter-regional similarities were used as predictors in a regression model of age at the time of scanning and in a classification model to discriminate between preterm and term infant brains. When tested on unseen data, the regression model predicted PMA at scan with a mean absolute error of 0.70 ± 0.56 weeks, and the classification model achieved 92% accuracy. We conclude that MSNs predict chronological brain age accurately; and they provide a data-driven approach to identify networks that characterise typical maturation and those that contribute most to neuroanatomic variation associated with preterm birth.
Collapse
Affiliation(s)
- Paola Galdi
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Manuel Blesa
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David Q Stoye
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gillian J Lamb
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alan J Quigley
- Department of Radiology, Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
38
|
Boardman JP, Counsell SJ. Invited Review: Factors associated with atypical brain development in preterm infants: insights from magnetic resonance imaging. Neuropathol Appl Neurobiol 2019; 46:413-421. [PMID: 31747472 PMCID: PMC7496638 DOI: 10.1111/nan.12589] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
Preterm birth (PTB) is a leading cause of neurodevelopmental and neurocognitive impairment in childhood and is closely associated with psychiatric disease. The biological and environmental factors that confer risk and resilience for healthy brain development and long‐term outcome after PTB are uncertain, which presents challenges for risk stratification and for the discovery and evaluation of neuroprotective strategies. Neonatal magnetic resonance imaging reveals a signature of PTB that includes dysconnectivity of neural networks and atypical development of cortical and deep grey matter structures. Here we provide a brief review of perinatal factors that are associated with the MRI signature of PTB. We consider maternal and foetal factors including chorioamnionitis, foetal growth restriction, socioeconomic deprivation and prenatal alcohol, drug and stress exposures; and neonatal factors including co‐morbidities of PTB, nutrition, pain and medication during neonatal intensive care and variation conferred by the genome/epigenome. Association studies offer the first insights into pathways to adversity and resilience after PTB. Future challenges are to analyse quantitative brain MRI data with collateral biological and environmental data in study designs that support causal inference, and ultimately to use the output of such analyses to stratify infants for clinical trials of therapies designed to improve outcome.
Collapse
Affiliation(s)
- J P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - S J Counsell
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
39
|
Fukutomi H, Glasser MF, Murata K, Akasaka T, Fujimoto K, Yamamoto T, Autio JA, Okada T, Togashi K, Zhang H, Van Essen DC, Hayashi T. Diffusion Tensor Model links to Neurite Orientation Dispersion and Density Imaging at high b-value in Cerebral Cortical Gray Matter. Sci Rep 2019; 9:12246. [PMID: 31439874 PMCID: PMC6706419 DOI: 10.1038/s41598-019-48671-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are widely used models to infer microstructural features in the brain from diffusion-weighted MRI. Several studies have recently applied both models to increase sensitivity to biological changes, however, it remains uncertain how these measures are associated. Here we show that cortical distributions of DTI and NODDI are associated depending on the choice of b-value, a factor reflecting strength of diffusion weighting gradient. We analyzed a combination of high, intermediate and low b-value data of multi-shell diffusion-weighted MRI (dMRI) in healthy 456 subjects of the Human Connectome Project using NODDI, DTI and a mathematical conversion from DTI to NODDI. Cortical distributions of DTI and DTI-derived NODDI metrics were remarkably associated with those in NODDI, particularly when applied highly diffusion-weighted data (b-value = 3000 sec/mm2). This was supported by simulation analysis, which revealed that DTI-derived parameters with lower b-value datasets suffered from errors due to heterogeneity of cerebrospinal fluid fraction and partial volume. These findings suggest that high b-value DTI redundantly parallels with NODDI-based cortical neurite measures, but the conventional low b-value DTI is hard to reasonably characterize cortical microarchitecture.
Collapse
Affiliation(s)
- Hikaru Fukutomi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan ,0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Matthew F. Glasser
- 0000 0001 2355 7002grid.4367.6Department of Neuroscience, Washington University School of Medicine, Campus Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110 USA ,0000 0001 2355 7002grid.4367.6Department of Radiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Katsutoshi Murata
- Siemens Healthcare K.K., Gate City Osaki West Tower, 1-11-1, Osaki, Shinagawa-ku, Tokyo, 141-8644 Japan
| | - Thai Akasaka
- 0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Koji Fujimoto
- 0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Takayuki Yamamoto
- 0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Joonas A. Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Tomohisa Okada
- 0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Kaori Togashi
- 0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Hui Zhang
- 0000000121901201grid.83440.3bCentre for Medical Image Computing and Department of Computer Science, University College London, The Front Engineering Building, Floor 3, Malet Place, London, WC1E 7JE UK
| | - David C. Van Essen
- 0000 0001 2355 7002grid.4367.6Department of Neuroscience, Washington University School of Medicine, Campus Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,RIKEN Compass to Healthy Life Research Complex Program, Integrated Innovation Building (IIB), 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan.
| |
Collapse
|
40
|
Young JM, Vandewouw MM, Mossad SI, Morgan BR, Lee W, Smith ML, Sled JG, Taylor MJ. White matter microstructural differences identified using multi-shell diffusion imaging in six-year-old children born very preterm. NEUROIMAGE-CLINICAL 2019; 23:101855. [PMID: 31103872 PMCID: PMC6737393 DOI: 10.1016/j.nicl.2019.101855] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 10/29/2022]
Abstract
INTRODUCTION The underlying microstructural properties of white matter differences in children born very preterm (<32 weeks gestational age) can be investigated in depth using multi-shell diffusion imaging. The present study compared white matter across the whole brain using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) metrics in children born very preterm and full-term children at six years of age. We also investigated associations between white matter microstructure with early brain injury and developmental outcomes. METHOD Multi-shell diffusion imaging, T1-weighted anatomical MR images and developmental assessments were acquired in 23 children born very preterm (16 males; mean scan age: 6.57 ± 0.34 years) and 24 full-term controls (10 males, mean scan age: 6.62 ± 0.37 years). DTI metrics were obtained and neurite orientation dispersion index (ODI) and density index (NDI) were estimated using the NODDI diffusion model. FSL's tract-based spatial statistics were performed on traditional DTI metrics and NODDI metrics. Voxel-wise comparisons were performed to test between-group differences and within-group associations with developmental outcomes (intelligence and visual motor abilities) as well as early white matter injury and germinal matrix/intraventricular haemorrhage (GMH/IVH). RESULTS In comparison to term-born children, the children born very preterm exhibited lower fractional anisotropy (FA) across many white matter regions as well as higher mean diffusivity (MD), radial diffusivity (RD), and ODI. Within-group analyses of the children born very preterm revealed associations between higher FA and NDI with higher IQ and VMI. Lower ODI was found within the corona radiata in those with a history of white matter injury. Within the full-term group, associations were found between higher NDI and ODI with lower IQ. CONCLUSION Children born very preterm exhibit lower FA and higher ODI than full-term children. NODDI metrics provide more biologically specific information beyond DTI metrics as well as additional information of the impact of prematurity and white matter microstructure on cognitive outcomes at six years of age.
Collapse
Affiliation(s)
- Julia M Young
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Marlee M Vandewouw
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada
| | - Sarah I Mossad
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Benjamin R Morgan
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada
| | - Wayne Lee
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
| | - Mary Lou Smith
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - John G Sled
- Translational Medicine, SickKids Research Institute, Toronto, ON, Canada; Department of Biomedical Physics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Alexander DC, Dyrby TB, Nilsson M, Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR IN BIOMEDICINE 2019; 32:e3841. [PMID: 29193413 DOI: 10.1002/nbm.3841] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/09/2017] [Accepted: 09/11/2017] [Indexed: 05/22/2023]
Abstract
This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term.
Collapse
Affiliation(s)
- Daniel C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Markus Nilsson
- Clinical Sciences Lund, Department of Radiology, Lund University, Lund, Sweden
| | - Hui Zhang
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| |
Collapse
|
42
|
Counsell SJ, Arichi T, Arulkumaran S, Rutherford MA. Fetal and neonatal neuroimaging. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:67-103. [PMID: 31324329 DOI: 10.1016/b978-0-444-64029-1.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) can provide detail of the soft tissues of the fetal and neonatal brain that cannot be obtained by any other imaging modality. Conventional T1 and T2 weighted sequences provide anatomic detail of the normally developing brain and can demonstrate lesions, including those associated with preterm birth, hypoxic ischemic encephalopathy, perinatal arterial stroke, infections, and congenital malformations. Specialized imaging techniques can be used to assess cerebral vasculature (magnetic resonance angiography and venography), cerebral metabolism (magnetic resonance spectroscopy), cerebral perfusion (arterial spin labeling), and function (functional MRI). A wealth of quantitative tools, most of which were originally developed for the adult brain, can be applied to study the developing brain in utero and postnatally including measures of tissue microstructure obtained from diffusion MRI, morphometric studies to measure whole brain and regional tissue volumes, and automated approaches to study cortical folding. In this chapter, we aim to describe different imaging approaches for the fetal and neonatal brain, and to discuss their use in a range of clinical applications.
Collapse
Affiliation(s)
- Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
43
|
Pecheva D, Kelly C, Kimpton J, Bonthrone A, Batalle D, Zhang H, Counsell SJ. Recent advances in diffusion neuroimaging: applications in the developing preterm brain. F1000Res 2018; 7. [PMID: 30210783 PMCID: PMC6107996 DOI: 10.12688/f1000research.15073.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Measures obtained from diffusion-weighted imaging provide objective indices of white matter development and injury in the developing preterm brain. To date, diffusion tensor imaging (DTI) has been used widely, highlighting differences in fractional anisotropy (FA) and mean diffusivity (MD) between preterm infants at term and healthy term controls; altered white matter development associated with a number of perinatal risk factors; and correlations between FA values in the white matter in the neonatal period and subsequent neurodevelopmental outcome. Recent developments, including neurite orientation dispersion and density imaging (NODDI) and fixel-based analysis (FBA), enable white matter microstructure to be assessed in detail. Constrained spherical deconvolution (CSD) enables multiple fibre populations in an imaging voxel to be resolved and allows delineation of fibres that traverse regions of fibre-crossings, such as the arcuate fasciculus and cerebellar–cortical pathways. This review summarises DTI findings in the preterm brain and discusses initial findings in this population using CSD, NODDI, and FBA.
Collapse
Affiliation(s)
- Diliana Pecheva
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jessica Kimpton
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Alexandra Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
44
|
Batalle D, O'Muircheartaigh J, Makropoulos A, Kelly CJ, Dimitrova R, Hughes EJ, Hajnal JV, Zhang H, Alexander DC, Edwards AD, Counsell SJ. Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo. Neuroimage 2018; 185:764-775. [PMID: 29802969 PMCID: PMC6299264 DOI: 10.1016/j.neuroimage.2018.05.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/19/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Human cortical development during the third trimester is characterised by macro- and microstructural changes which are reflected in alterations in diffusion MRI (dMRI) measures, with significant decreases in cortical mean diffusivity (MD) and fractional anisotropy (FA). This has been interpreted as reflecting increased cellular density and dendritic arborisation. However, the fall in FA stops abruptly at 38 weeks post-menstrual age (PMA), and then tends to plateau, while MD continues to fall, suggesting a more complex picture and raising the hypothesis that after this age development is dominated by continuing increase in neural and organelle density rather than alterations in the geometry of dendritic trees. To test this, we used neurite orientation dispersion and density imaging (NODDI), acquiring multi-shell, high angular resolution dMRI and measures of cortical volume and mean curvature in 99 preterm infants scanned between 25 and 47 weeks PMA. We predicted that increased neurite and organelle density would be reflected in increases in neurite density index (NDI), while a relatively unchanging geometrical structure would be associated with constant orientation dispersion index (ODI). As dendritic arborisation is likely to be one of the drivers of gyrification, we also predicted that measures of cortical volume and curvature would correlate with ODI and show slower growth after 38 weeks. We observed a decrease of MD throughout the period, while cortical FA decreased from 25 to 38 weeks PMA and then increased. ODI increased up to 38 weeks and then plateaued, while NDI rose after 38 weeks. The evolution of ODI correlated with cortical volume and curvature. Regional analysis of cortical microstructure revealed a heterogenous pattern with increases in FA and NDI after 38 weeks confined to primary motor and sensory regions. These results support the interpretation that cortical development between 25 and 38 weeks PMA shows a predominant increase in dendritic arborisation and neurite growth, while between 38 and 47 weeks PMA it is dominated by increasing cellular and organelle density. DTI and NODDI cortical measures between 25 and 47 weeks GA Early cortical changes consistent with dendritic arborisation and neurite growth After 38 weeks cortical changes consistent with increasing cellular density Cortical curvature evolves in parallel with dendritic arborisation
Collapse
Affiliation(s)
- Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences & Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, United Kingdom
| | | | - Christopher J Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences & Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, United Kingdom
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, United Kingdom
| | - Daniel C Alexander
- Department of Computer Science & Centre for Medical Image Computing, University College London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom.
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom
| |
Collapse
|
45
|
Uddin LQ, Karlsgodt KH. Future Directions for Examination of Brain Networks in Neurodevelopmental Disorders. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY : THE OFFICIAL JOURNAL FOR THE SOCIETY OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY, AMERICAN PSYCHOLOGICAL ASSOCIATION, DIVISION 53 2018; 47:483-497. [PMID: 29634380 PMCID: PMC6842321 DOI: 10.1080/15374416.2018.1443461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodevelopmental disorders are associated with atypical development and maturation of brain networks. A recent focus on human connectomics research and the growing popularity of open science initiatives has created the ideal climate in which to make real progress toward understanding the neurobiology of disorders affecting youth. Here we outline future directions for neuroscience researchers examining brain networks in neurodevelopmental disorders, highlighting gaps in the current literature. We emphasize the importance of leveraging large neuroimaging and phenotypic data sets recently made available to the research community, and we suggest specific novel methodological approaches, including analysis of brain dynamics and structural connectivity, that have the potential to produce the greatest clinical insight. Transdiagnostic approaches will also become increasingly necessary as the Research Domain Criteria framework put forth by the National Institute of Mental Health permeates scientific discourse. During this exciting era of big data and increased computational sophistication of analytic tools, the possibilities for significant advancement in understanding neurodevelopmental disorders are limitless.
Collapse
Affiliation(s)
- Lucina Q. Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA 33124
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA 33136
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Katherine H. Karlsgodt
- Departments of Psychology and Psychiatry, University of California Los Angeles, Los Angeles, CA, USA 90095
| |
Collapse
|
46
|
Batalle D, Edwards AD, O'Muircheartaigh J. Annual Research Review: Not just a small adult brain: understanding later neurodevelopment through imaging the neonatal brain. J Child Psychol Psychiatry 2018; 59:350-371. [PMID: 29105061 PMCID: PMC5900873 DOI: 10.1111/jcpp.12838] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND There has been a recent proliferation in neuroimaging research focusing on brain development in the prenatal, neonatal and very early childhood brain. Early brain injury and preterm birth are associated with increased risk of neurodevelopmental disorders, indicating the importance of this early period for later outcome. SCOPE AND METHODOLOGY Although using a wide range of different methodologies and investigating diverse samples, the common aim of many of these studies has been to both track normative development and investigate deviations in this development to predict behavioural, cognitive and neurological function in childhood. Here we review structural and functional neuroimaging studies investigating the developing brain. We focus on practical and technical complexities of studying this early age range and discuss how neuroimaging techniques have been successfully applied to investigate later neurodevelopmental outcome. CONCLUSIONS Neuroimaging markers of later outcome still have surprisingly low predictive power and their specificity to individual neurodevelopmental disorders is still under question. However, the field is still young, and substantial challenges to both acquiring and modeling neonatal data are being met.
Collapse
Affiliation(s)
- Dafnis Batalle
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - A. David Edwards
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
- Department of NeuroimagingInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
47
|
Bouyssi-Kobar M, Brossard-Racine M, Jacobs M, Murnick J, Chang T, Limperopoulos C. Regional microstructural organization of the cerebral cortex is affected by preterm birth. Neuroimage Clin 2018; 18:871-880. [PMID: 29876271 PMCID: PMC5988027 DOI: 10.1016/j.nicl.2018.03.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 10/31/2022]
Abstract
Objectives To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. Study design We prospectively enrolled very preterm infants (gestational age (GA) at birth<32 weeks; birthweight<1500 g) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. Results We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Conclusions Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants.
Collapse
Affiliation(s)
- Marine Bouyssi-Kobar
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC 20010, USA; Institute for Biomedical Sciences, George Washington University, Washington, DC 20037, USA.
| | - Marie Brossard-Racine
- Department of Pediatrics Neurology, McGill University Health Center, Montreal, QC H4A3J1, Canada.
| | - Marni Jacobs
- Division of Biostatistics and Study Methodology, Children's Research Institute, Children's National Health System, Washington, DC 20010, USA.
| | - Jonathan Murnick
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC 20010, USA.
| | - Taeun Chang
- Department of Neurology, Children's National Health System, Washington, DC 20010, USA.
| | - Catherine Limperopoulos
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC 20010, USA.
| |
Collapse
|
48
|
Fukutomi H, Glasser MF, Zhang H, Autio JA, Coalson TS, Okada T, Togashi K, Van Essen DC, Hayashi T. Neurite imaging reveals microstructural variations in human cerebral cortical gray matter. Neuroimage 2018; 182:488-499. [PMID: 29448073 DOI: 10.1016/j.neuroimage.2018.02.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 01/08/2018] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
We present distinct patterns of neurite distribution in the human cerebral cortex using diffusion magnetic resonance imaging (MRI). We analyzed both high-resolution structural (T1w and T2w images) and diffusion MRI data in 505 subjects from the Human Connectome Project. Neurite distributions were evaluated using the neurite orientation dispersion and density imaging (NODDI) model, optimized for gray matter, and mapped onto the cortical surface using a method weighted towards the cortical mid-thickness to reduce partial volume effects. The estimated neurite density was high in both somatosensory and motor areas, early visual and auditory areas, and middle temporal area (MT), showing a strikingly similar distribution to myelin maps estimated from the T1w/T2w ratio. The estimated neurite orientation dispersion was particularly high in early sensory areas, which are known for dense tangential fibers and are classified as granular cortex by classical anatomists. Spatial gradients of these cortical neurite properties revealed transitions that colocalize with some areal boundaries in a recent multi-modal parcellation of the human cerebral cortex, providing mutually supportive evidence. Our findings indicate that analyzing the cortical gray matter neurite morphology using diffusion MRI and NODDI provides valuable information regarding cortical microstructure that is related to but complementary to myeloarchitecture.
Collapse
Affiliation(s)
- Hikaru Fukutomi
- RIKEN Center for Life Science Technologies, Kobe, Japan; Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Matthew F Glasser
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; St. Luke's Hospital, St. Louis, MO, USA
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, UK
| | | | - Timothy S Coalson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Tomohisa Okada
- RIKEN Center for Life Science Technologies, Kobe, Japan; Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Takuya Hayashi
- RIKEN Center for Life Science Technologies, Kobe, Japan; RIKEN Compass to Healthy Life Research Complex Program, Kobe, Japan.
| |
Collapse
|
49
|
Crombe A, Planche V, Raffard G, Bourel J, Dubourdieu N, Panatier A, Fukutomi H, Dousset V, Oliet S, Hiba B, Tourdias T. Deciphering the microstructure of hippocampal subfields with in vivo DTI and NODDI: Applications to experimental multiple sclerosis. Neuroimage 2018; 172:357-368. [PMID: 29409838 DOI: 10.1016/j.neuroimage.2018.01.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 12/23/2022] Open
Abstract
The hippocampus contains distinct populations of neurons organized into separate anatomical subfields and layers with differential vulnerability to pathological mechanisms. The ability of in vivo neuroimaging to pinpoint regional vulnerability is especially important for better understanding of hippocampal pathology at the early stage of neurodegenerative disorders and for monitoring future therapeutic strategies. This is the case for instance in multiple sclerosis whose neurodegenerative component can affect the hippocampus from the early stage. We challenged the capacity of two models, i.e. the classical diffusion tensor imaging (DTI) model and the neurite orientation dispersion and density imaging (NODDI) model, to compute quantitative diffusion MRI that could capture microstructural alterations in the individual hippocampal layers of experimental-autoimmune encephalomyelitis (EAE) mice, the animal model of multiple sclerosis. To achieve this, the hippocampal anatomy of a healthy mouse brain was first explored ex vivo with high resolution DTI and NODDI. Then, 18 EAE mice and 18 control mice were explored 20 days after immunization with in vivo diffusion MRI prior to sacrifice for the histological quantification of neurites and glial markers in each hippocampal layer. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) maps were computed from the DTI model while the orientation dispersion index (ODI), the neurite density index (NDI) and the volume fraction of isotropic diffusivity (isoVF) maps were computed from the NODDI model. We first showed in control mice that color-coded FA and ODI maps can delineate three main hippocampal layers. The quantification of FA, AD, RD, MD, ODI, NDI and isoVF presented differences within these 3 layers, especially within the molecular layer of the dentate gyrus which displayed a specific signature based on a combination of AD (or MD), ODI and NDI. Then, the comparison between EAE and control mice showed a decrease of AD (p = 0.036) and of MD (p = 0.033) selectively within the molecular layer of EAE mice while NODDI indices did not present any difference between EAE and control mice in any layer. Histological analyses confirmed the differential vulnerability of the molecular layer of EAE mice that exhibited decreased dendritic length and decreased dendritic complexity together with activated microglia. Dendritic length and intersections within the molecular layer were independent contributors to the observed decrease of AD (R2 = 0.37 and R2 = 0.40, p < 0.0001) and MD (R2 = 0.41 and R2 = 0.42, p < 0.0001). We therefore identified that NODDI maps can help to highlight the internal microanatomy of the hippocampus but NODDI still presents limitations in grey matter as it failed to capture selective dendritic alterations occurring at early stages of a neurodegenerative disease such as multiple sclerosis, whereas DTI maps were significantly altered.
Collapse
Affiliation(s)
- Amandine Crombe
- INSERM, U1215, Neurocentre Magendie, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; CNRS UMR 5536, Centre de Résonance Magnétique des Systèmes Biologiques, F-33000, Bordeaux, France; CHU de Bordeaux, F-33000, Bordeaux, France
| | - Vincent Planche
- INSERM, U1215, Neurocentre Magendie, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Gerard Raffard
- Univ. Bordeaux, F-33000, Bordeaux, France; CNRS UMR 5536, Centre de Résonance Magnétique des Systèmes Biologiques, F-33000, Bordeaux, France
| | - Julien Bourel
- INSERM, U1215, Neurocentre Magendie, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Nadège Dubourdieu
- INSERM, U1215, Neurocentre Magendie, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Aude Panatier
- INSERM, U1215, Neurocentre Magendie, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Hikaru Fukutomi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Vincent Dousset
- INSERM, U1215, Neurocentre Magendie, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; CHU de Bordeaux, F-33000, Bordeaux, France
| | - Stephane Oliet
- INSERM, U1215, Neurocentre Magendie, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Bassem Hiba
- Univ. Bordeaux, F-33000, Bordeaux, France; CNRS UMR 5229, Centre de Neurosciences Cognitives, F-69675, Bron, France.
| | - Thomas Tourdias
- INSERM, U1215, Neurocentre Magendie, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; CHU de Bordeaux, F-33000, Bordeaux, France.
| |
Collapse
|
50
|
Pannek K, Fripp J, George JM, Fiori S, Colditz PB, Boyd RN, Rose SE. Fixel-based analysis reveals alterations is brain microstructure and macrostructure of preterm-born infants at term equivalent age. NEUROIMAGE-CLINICAL 2018; 18:51-59. [PMID: 29868441 PMCID: PMC5984576 DOI: 10.1016/j.nicl.2018.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/08/2017] [Accepted: 01/06/2018] [Indexed: 12/13/2022]
Abstract
Preterm birth causes significant disruption in ongoing brain development, frequently resulting in adverse neurodevelopmental outcomes. Brain imaging using diffusion MRI may provide valuable insight into microstructural properties of the developing brain. The aim of this study was to establish whether the recently introduced fixel-based analysis method, with its associated measures of fibre density (FD), fibre bundle cross-section (FC), and fibre density and bundle cross-section (FDC), is suitable for the investigation of the preterm infant brain at term equivalent age. High-angular resolution diffusion weighted images (HARDI) of 55 preterm-born infants and 20 term-born infants, scanned around term-equivalent age, were included in this study (3 T, 64 directions, b = 2000 s/mm2). Postmenstrual age at the time of MRI, and intracranial volume (FC and FDC only), were identified as confounding variables. Gestational age at birth was correlated with all fixel measures in the splenium of the corpus callosum. Compared to term-born infants, preterm infants showed reduced FD, FC, and FDC in a number of regions, including the corpus callosum, anterior commissure, cortico-spinal tract, optic radiations, and cingulum. Preterm infants with minimal macroscopic brain abnormality showed more extensive reductions than preterm infants without any macroscopic brain abnormality; however, little differences were observed between preterm infants with no and with minimal brain abnormality. FC showed significant reductions in preterm versus term infants outside regions identified with FD and FDC, highlighting the complementary role of these measures. Fixel-based analysis identified both microstructural and macrostructural abnormalities in preterm born infants, providing a more complete picture of early brain development than previous diffusion tensor imaging (DTI) based approaches. Gestational age at birth associated with measurements in corpus callosum splenium. Preterms without macroscopic brain abnormality show differences to term infants. No differences between preterms with minimal versus without abnormality detected.
Collapse
Affiliation(s)
- Kerstin Pannek
- Australian E-Health Research Centre, CSIRO, Brisbane, Australia.
| | - Jurgen Fripp
- Australian E-Health Research Centre, CSIRO, Brisbane, Australia
| | - Joanne M George
- The University of Queensland, Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, Brisbane, Australia
| | | | - Paul B Colditz
- The University of Queensland, UQ Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia
| | - Roslyn N Boyd
- The University of Queensland, Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, Brisbane, Australia
| | - Stephen E Rose
- Australian E-Health Research Centre, CSIRO, Brisbane, Australia
| |
Collapse
|