1
|
Park SY, Schott N. Age differences in prefrontal cortex activity during dual-task tandem gait: An fNIRS study. Brain Res 2025; 1856:149603. [PMID: 40157413 DOI: 10.1016/j.brainres.2025.149603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Tandem Gait (TG) under dual-task (DT) conditions may facilitate the investigation of important aspects of dynamic balance and mobility, particularly concerning pathological motor and cognitive aging processes. Our study aims to identify age-related differences in behavioral and neural changes caused by interference during dual-task while TG. 20 young (YA, age 21.3 ± 1.86) and 12 middle-aged adults (MA, age 55.3 ± 3.81) had to perform TG cognitive tasks ((a) recite the alphabet backward, (b) recite numbers and letters alternately (oral TMT-B), and (c) count backward from a given 3-digit number in steps of 3), and DT (TG + cognitive tasks) for 30 s each. The cortical activation of the frontal lobe was recorded using an 8 sources × 8 detectors fNIRS system. On the behavioral data, MA displayed a notably reduced number of accurate motor responses compared to YA, though their cognitive responses remained comparable. From a neural perspective, the linear mixed model revealed significant task- and group-related interaction effects only in the left dorsal lateral PFC. Compared to YA, the MA showed lower activation over time during DT, which can be attributed to the limitation of neural resources in the frontal lobe. This downregulation may be due to overload, indicating that MA are approaching their neural resources' capacity limit, particularly when confronted with complex motor task demands.
Collapse
Affiliation(s)
- Soo-Yong Park
- Department of Sport and Exercise Science, Institute of Sport Psychology & Human Movement Science, University of Stuttgart, Germany.
| | - Nadja Schott
- Department of Sport and Exercise Science, Institute of Sport Psychology & Human Movement Science, University of Stuttgart, Germany
| |
Collapse
|
2
|
Hernandez ME, Motl RW, Foley FW, Izzetoglu M, Wagshul M, Holtzer R. Within-session dual-task walking practice improves gait variability in older adults with multiple sclerosis. Gait Posture 2025; 119:171-177. [PMID: 40122015 PMCID: PMC12048238 DOI: 10.1016/j.gaitpost.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Greater gait variability is associated with falls in aging and multiple sclerosis. However, whether older adults with MS (OAMS), show higher gait variability relative to healthy older adults (HOA), under single and dual-task walking conditions, has not been reported. Furthermore, it is unclear whether practice may improve gait variability in both groups. RESEARCH QUESTION Is gait variability higher in OAMS relative to HOA, particularly in DTW compared to STW? Furthermore, does practice result in decreased gait variability in both groups, notably under DTW compared to STW? METHODS We examined the effect of within-session practice on gait variability during single (STW) and dual (DTW) task gait conditions. OAMS (n = 97, mean±SD age: 65 ± 5 years, 66 females) and HOA (n = 113, mean±SD age: 68 ± 7 years, 73 females) were recruited. Practice effects on gait variability were evaluated over three repeated counterbalanced STW and DTW trials. Gait variability measures included Coefficient of Variation (CV) in stride velocity, stride length, and swing time. RESULTS OAMS demonstrated higher gait variability, on all measures, relative to HOA during both STW and DTW (P < 0.001). Gait variability on all measures was higher in DTW compared to STW, (P < 0.05). Practice resulted in decreased gait variability (P < 0.01) on all measures in both OAMS and HOA. Furthermore, practice resulted in decreased temporal gait variability, as measured by swing time CV, under DTW in particular (P < 0.05). SIGNIFICANCE In conclusion, OAMS exhibited greater gait variability than HOA, yet both groups demonstrated decreases in temporal and spatial gait variability after within-session practice, notably under DTW, which in turn may reduce fall risk.
Collapse
Affiliation(s)
- Manuel E Hernandez
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States; Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States; Neuroscience Program, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States; Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States; Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, United States
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, PA, United States
| | - Mark Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
3
|
Jiang S, Qiu Z, Cai X, You T, Fu X, Chen G, Li H, Ou H. Functional connectivity and characteristics of cortical brain networks of elderly individuals under different motor cognitive tasks based on functional near-infrared spectroscopy. Front Hum Neurosci 2025; 19:1563338. [PMID: 40342543 PMCID: PMC12058795 DOI: 10.3389/fnhum.2025.1563338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
Objective This study aimed to investigate age-related changes in brain functional connectivity during various motor and cognitive tasks, providing evidence for evaluating and intervening in brain aging. Methods 15 elderly participants (ELD) and 30 young controls (YOU) were assessed. fNIRS haemodynamic responses were recorded during the Purdue nail board motor task, continuous minus 7 cognitive task, and motor-cognitive dual task. Differences in brain activation, functional connectivity, integral values, and barycentre values between the groups were compared using oxygenated haemoglobin (HbO) concentrations over time. Results The ELD group performed significantly worse than the YOU group (p < 0.05). ELD participants showed significantly lower activation in the LSMA during motor tasks (p < 0.05), the RDLPFC and LDLPFC during cognitive tasks (p < 0.05), and both RSMA and LSMA during dual tasks (p < 0.05). Functional connectivity between LDLPFC, RSMA, LSMA, and RDLPFC-LDLPFC, LSMA-RSMA in the ELD group was significantly lower than in the YOU group (p < 0.05). The ELD group also had lower connectivity in RSMA, RDLPFC-LDLPFC, and LSMA-RSMA during cognitive tasks (p < 0.05). The centre of gravity for the ELD group was significantly lower during dual tasks compared to the YOU group (p < 0.05). In cognitive tasks, the ELD group showed significantly lower RSMA centre of gravity and integral values compared to dual tasks (p = 0.05). Conclusion Elderly individuals exhibit lower cortical brain connectivity than young people across various tasks. fNIRS-based cerebral haemodynamics provide a useful quantitative measure for evaluating age-related brain changes.
Collapse
Affiliation(s)
- Shanshan Jiang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Fifth Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Zhiqing Qiu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Fifth Clinical College, Guangzhou Medical University, Guangzhou, China
| | | | - Tingting You
- The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Xinyu Fu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Fifth Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Guanzhou Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Fifth Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Haoda Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Fifth Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Haining Ou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Cotton K, Verghese J. Two Decades of the Walking While Talking Test: A Narrative Review. J Am Med Dir Assoc 2025; 26:105454. [PMID: 39798591 DOI: 10.1016/j.jamda.2024.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/15/2025]
Abstract
OBJECTIVES Early research reported that older adults who stopped walking when they began a conversation were more likely to fall in the future. As a systematic measure of dual-task performance, Verghese and colleagues developed the Walking While Talking (WWT) test, in which a person walks at a normal pace while reciting alternate letters of the alphabet. The present paper highlights key findings from the 2 decades of research using the WWT test. DESIGN Narrative review. SETTINGS AND PARTICIPANTS People who completed the WWT test in clinical and research settings. METHODS A literature review was conducted for studies using the WWT test from 2002 until April 2024. RESULTS Several studies reported that the WWT test is an easy-to-administer assessment with high face and concurrent validity and good reliability in different populations. Most studies were conducted in older adults; however, the WWT test has also been used in other clinical groups, such as adults with multiple sclerosis. Many studies investigated the cognitive and motor correlates of WWT, finding that performance on the WWT test is consistently associated with balance, executive function, and memory. Several studies have linked the neural underpinnings of WWT performance to the prefrontal cortex and motor regions. Further, the WWT test has been used to predict important outcomes such as dementia or future falls and a limited number of studies have used WWT performance as an outcome of clinical interventions, with mixed results. CONCLUSIONS AND IMPLICATIONS Several important directions for future research concerning the WWT test remain, such as an expansion of its clinical applications and a better understanding of the longitudinal trajectory of WWT performance. However, the WWT test is an easy-to-administer, reliable, and sensitive measure of dual-task performance and is useful in many clinical and research settings.
Collapse
Affiliation(s)
- Kelly Cotton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Joe Verghese
- Department of Neurology, Renaissance School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
5
|
Christova M, Fresnoza S, Palli C, Staubmann W, Guggenberger B. Possible influence of sex on the relationship between dual-task gait costs and cognitive decline in older adults. PLoS One 2025; 20:e0317365. [PMID: 39883741 PMCID: PMC11781657 DOI: 10.1371/journal.pone.0317365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/26/2024] [Indexed: 02/01/2025] Open
Abstract
The impact of cognitive decline in older adults can be evaluated with dual-task gait (DTG) testing in which a cognitive task is performed during walking, leading to increased costs of gait. Previous research demonstrated that higher DTG costs correlate with increasing cognitive deficits and with age. The present study was conducted to explore whether the relationship between the DTG costs and cognitive abilities in older individuals is influenced by sex differences. To address this objective, we conducted a study with 216 elderly participants (age range: 60 to 75 years, 127 females). These underwent Cognitive Functional Dementia (CFD) testing to determine their cognitive abilities and DTG testing to evaluate their gait parameters (gait speed, cadence, stride length, stride variance, and stance phase duration) while performing a backward serial number counting task. We carried out a correlation analysis between the CFD scores and the DTG costs. The DTG costs were calculated as the percentage difference between the gait parameters in single- and in dual-task testing, and the effects were compared considering the factors of sex and age. A significant negative correlation between the CFD scores and the dual-task costs of gait parameters was found only in males. The DTG costs did not differ between the sexes, while women obtained superior scores in the CFD test. The higher DTG costs significantly correlated with older age in men. In summary, our study provides evidence that, unlike in women, the DTG costs during the backward serial number counting task significantly increase in older men, correlating with declines in cognitive performance and increasing age. These findings suggest that the assessment of DT gait characteristics in relation to cognitive decline in older adults may manifest differently between sexes.
Collapse
Affiliation(s)
- Monica Christova
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
- Institute of Physiotherapy, FH Joanneum University of Applied Sciences, Graz, Austria
| | - Shane Fresnoza
- Department of Psychology, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Christoph Palli
- Institute of Health Care and Nursing, FH Joanneum University of Applied Sciences, Graz, Austria
| | - Wolfgang Staubmann
- Institute of Dietetics and Nutrition, FH Joanneum University of Applied Sciences, Bad Gleichenberg, Austria
| | - Bernhard Guggenberger
- Institute of Physiotherapy, FH Joanneum University of Applied Sciences, Graz, Austria
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Hernandez ME, Motl RW, Foley FW, Izzetoglu M, Wagshul M, Holtzer R. Comparison of practice-related changes in dual task walking performance and neural efficiency between older adults with progressive and relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2025; 93:106224. [PMID: 39693703 PMCID: PMC12035826 DOI: 10.1016/j.msard.2024.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/18/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND There is limited research comparing both performance and brain control of walking between older adults with progressive and relapsing-remitting MS. OBJECTIVE This study compared older adults with progressive and relapsing-remitting MS for differences in prefrontal cortex (PFC) activation in single- and dual-task-walking and practice-related effects on neural efficiency, walking, and cognitive performances. METHODS Older adults with progressive (n = 32, age=65±6ys) and relapsing-remitting (n = 63, age=65±4ys) MS completed three conditions (single-task walk, single-task-alpha, i.e., cognitive interference task, and dual-task-walk) with three repeated trials wherein we measured PFC oxygenated hemoglobin (HbO2), stride velocity and letter generation rate. Task, trial, and group effects and interactions were analyzed using linear mixed effects models. RESULTS The task-related (i.e. single-to-dual task walking) increase in PFC HbO2 was greater in progressive than in relapsing-remitting MS (p < 0.001), while the practice-related decrease in dual-task PFC HbO2 was smaller in progressive than in relapsing-remitting MS (p < 0.001). Progressive MS was associated with slower stride velocity overall, but repeated trials resulted in faster stride velocity and correct letter generation rate for both groups. CONCLUSIONS Practice-related improvements in cognitive and motor performances coupled with reduced PFC HbO2 over dual-task walking trials suggest attenuated improvements of efficiency in brain control of attention-demanding locomotion in progressive MS.
Collapse
Affiliation(s)
- Manuel E Hernandez
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA; Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, PA, USA
| | - Mark Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Izzetoglu M, Holtzer R. Evaluation of Neural, Systemic and Extracerebral Activations During Active Walking Tasks in Older Adults Using fNIRS. IEEE Trans Neural Syst Rehabil Eng 2025; 33:807-817. [PMID: 40031581 PMCID: PMC12054330 DOI: 10.1109/tnsre.2025.3540673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Functional near infrared spectroscopy (fNIRS) is being increasingly used to assess brain hemodynamic responses during active walking in older adults due to its wearability, and relative immunity to motion artifacts. Specifically, fNIRS allows for continuous monitoring of brain activations that vary in response to experimental manipulations of cognitive demands during active walking tasks. Studies using fNIRS highlighted increased involvement of the prefrontal cortex (PFC) in dual compared to single task walking, operationalized using oxygenated hemoglobin (HbO), due to increasing attention demands inherent in the former task condition in aging and clinical populations. However, current literature utilizing fNIRS in mobility research has not been uniform in terms of fNIRS instrumentation characteristics and the accompanying signal processing methods to separate various signal sources (i.e. neural activations, extracerebral signals, systemic responses) which can raise questions about prior research findings. In our previous studies, we have used a forehead fNIR sensor (fNIR Imager 1100 by fNIR Devices, LLC) with 2.5 cm source detector separation (SDS) at 2 Hz sampling rate which allowed us to reliably evaluate changes in brain activations in the PFC during active walking. However, there exists other fNIRS devices incorporating a number of different types of light sources and detectors allowing multiple channels of long (3 cm SDS) and short (0.8 cm SDS) distance measurements in complex configurations for the monitoring of cognitive activations on various head locations at different depths with higher sampling rates of ~5 Hz (i.e. NIRx sensor, NIR Sport2 by NIRx Medizintechnik GmbH). Such involved designs further allowed the implementation of advanced signal processing algorithms to separate and evaluate neural, systemic and extracerebral signal contributions on the overall measurements. In this study, we collected brain imaging data on a sample of healthy older adults (n =15, age ) under single (STW) and dual task walking (DTW) conditions; participants were evaluated twice during one study visit, once wearing fNIR sensor and a second time while wearing NIRx sensor. This study design allowed us to address critical gaps in the extant literature concerning fNIRS-derived brain activations during active walking. Specifically, we evaluated potential effects of penetration depth as defined by the SDS of the fNIRS device, extracerebral activations (i.e. skin blood flow) and systemic signals (i.e. heart rate) on the observed HbO increases from STW to DTW. Our findings suggested that PFC activation differences between STW and DTW conditions observed in older adults were consistent across fNIRS instrumentations and the observed differences in HbO between STW and DTW were not materially influenced by scalp activations or systemic changes. Nevertheless, efforts to optimize extraction of fNIRS-derived brain signal measurements should continue taking advantage of technological advancement.
Collapse
|
8
|
Xu G, Zhou M, Wang J, Mao D, Sun W. The effect of sensory manipulation on the static balance control and prefrontal cortex activation in older adults with mild cognitive impairment: a functional near-infrared spectroscopy (fNIRS) study. BMC Geriatr 2024; 24:1020. [PMID: 39702053 DOI: 10.1186/s12877-024-05624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND This study aimed to investigate the modulatory role of prefrontal cortex (PFC) activity in older adults with mild cognitive impairment (MCI) when sensory cues were removed or presented inaccurately (i.e., increased sensory complexity) during sensory manipulation of a balance task. The research sheds light on the neural regulatory mechanisms of the brain related to balance control in individuals with MCI. METHODS 21 older adults with MCI (male/female: 9/12, age: 71.19 ± 3.36 years) were recruited as the experimental group and 19 healthy older adults (male/female: 10/9, age: 70.16 ± 4.54 years) as the control group. Participants were required to perform balance tests under four standing conditions: standing on a solid surface with eyes open, standing on a foam surface with eyes open, standing on a solid surface with eyes closed, and standing on a foam surface with eyes closed. Functional Near-Infrared Spectroscopy (fNIRS) and force measuring platform are used to collect hemodynamic signals of the PFC and center of pressure (COP) data during the balance task, respectively. RESULTS Under the eyes open condition, significant Group*Surface interaction effects were found in the mean velocity of the COP (MVELO), the mean velocity in the medial-lateral (ML) direction (MVELOml) and the 95% confidence ellipse area of the COP (95%AREA-CE). Additionally, significant Group*Surface interaction effect was found in the left orbitofrontal cortex (L-OFC). The significant group effects were detected for three ROI regions, namely the left ventrolateral prefrontal cortex (L-VLPFC), the left dorsolateral prefrontal cortex (L-DLPFC), the right dorsolateral prefrontal cortex (R-DLPFC). Under the eyes closed condition, the significant Group*Surface interaction effects were found in root mean square (RMS), the RMS in the ML direction (RMSml) and the 95%AREA-CE. Additionally, significant group effects were detected for five ROI regions, namely R-VLPFC, the left frontopolar cortex (L-FPC), L-DLPFC, R-DLPFC and R-OFC. CONCLUSION Our study emphasizes the role of the PFC in maintaining standing balance control among older adults with MCI, particularly during complex sensory conditions, and provides direct evidence for the role of the PFC during balance control of a clinically relevant measure of balance. TRIAL REGISTRATION ChiCTR2100044221, 12/03/2021.
Collapse
Affiliation(s)
- Guocai Xu
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Mian Zhou
- Rehabilitation Medicine Department, Weishan People's Hospital, Jining, Shandong, China
| | - Jiangna Wang
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Dewei Mao
- Division of Physical Education, The Chinese University of Hong Kong, Shenzhen, China
| | - Wei Sun
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Hernandez ME, Motl RW, Foley FW, Picone MA, Izzetoglu M, Lipton ML, Wagshul M, Holtzer R. Disability Moderates Dual Task Walking Performance and Neural Efficiency in Older Adults With Multiple Sclerosis. Neurorehabil Neural Repair 2024; 38:795-807. [PMID: 39177188 PMCID: PMC11970354 DOI: 10.1177/15459683241273411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND Mobility and cognitive impairment are prevalent and co-occurring in older adults with multiple sclerosis (OAMS), yet there is limited research concerning the role of disability status in the cognitive control of gait among OAMS. OBJECTIVE We investigated the levels of prefrontal cortex (PFC) activation, using oxygenated hemoglobin (HbO2), during cognitively-demanding tasks in OAMS with lower and higher disability using functional near-infrared spectroscopy (fNIRS) to: (1) identify PFC activation differences in single task walk and cognitively-demanding tasks in OAMS with different levels of disability; and (2) evaluate if disability may moderate practice-related changes in neural efficiency in OAMS. METHODS We gathered data from OAMS with lower (n = 51, age = 65 ± 4 years) or higher disability (n = 48, age = 65 ± 5 years), using a cutoff of 3 or more, in the Patient Determined Disease Steps, for higher disability, under 3 different conditions (single-task walk, Single-Task-Alpha, and Dual-Task-Walk [DTW]) administered over 3 counterbalanced, repeated trials. RESULTS OAMS who had a lower disability level exhibited decreased PFC activation levels during Single-Task-Walk (STW) and larger increases in PFC activation levels, when going from STW to a cognitively-demanding task, such as a DTW, than those with higher disability. OAMS with a lower disability level exhibited greater declines in PFC activation levels with additional within session practice than those with a higher disability level. CONCLUSIONS These findings suggest that disability moderates brain adaptability to cognitively-demanding tasks and demonstrate the potential for fNIRS-derived outcome measures to complement neurorehabilitation outcomes.
Collapse
Affiliation(s)
- Manuel E Hernandez
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, United States
| | - Mary Ann Picone
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, United States
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, PA, United States
| | - Michael L Lipton
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mark Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
10
|
Holtzer R, Foley FW, Motl RW, Wagshul ME, Hernandez ME, Lipton ML, Picone MA, Izzetoglu M. Brain hemodynamic responses and fall prediction in older adults with multiple sclerosis. Mult Scler 2024; 30:1664-1673. [PMID: 39258434 DOI: 10.1177/13524585241277400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
OBJECTIVE We examined whether brain hemodynamic responses, gait, and cognitive performances under single- and dual-task conditions predict falls during longitudinal follow-up in older adults with multiple sclerosis (OAMS) with relapsing-remitting and progressive subtypes. METHODS Participants with relapsing-remitting (n = 53, mean age = 65.02 ± 4.17 years, %female = 75.5) and progressive (n = 28, mean age = 64.64 ± 4.31 years, %female = 50) multiple sclerosis (MS) subtypes completed a dual-task-walking paradigm and reported falls during longitudinal follow-up using a monthly structured telephone interview. We used functional near-infrared spectroscopy (fNIRS) to assess oxygenated hemoglobin (HbO) in the prefrontal cortex during active walking and while performing a cognitive test under single- and dual-task conditions. RESULTS Adjusted general estimating equations models indicated that higher HbO under dual-task walking was significantly associated with a reduction in the odds of reporting falls among participants with relapsing-remitting (odds ratio (OR) = 0.472, p = 0.004, 95% confidence interval (CI) = 0.284-0.785), but not progressive (OR = 1.056, p = 0.792, 95% CI = 0.703-1.588) MS. In contrast, faster stride velocity under dual-task walking was significantly associated with a reduction in the odds of reporting falls among progressive (OR = 0.658, p = 0.004, 95% CI = 0.495-0.874), but not relapsing-remitting (OR = 0.998, p = 0.995, 95% CI = 0.523-1.905) MS. CONCLUSION Findings suggest that higher prefrontal cortex activation levels during dual-task walking, which may represent compensatory reallocation of brain resources, provide protection against falls for OAMS with relapsing-remitting subtype.
Collapse
Affiliation(s)
- Roee Holtzer
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Mark E Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Manuel E Hernandez
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Mary Ann Picone
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| |
Collapse
|
11
|
Holtzer R, Choi J, Motl RW, Foley FW, Wagshul ME, Hernandez ME, Izzetoglu M. Brain control of dual-task walking can be improved in aging and neurological disease. GeroScience 2024; 46:3169-3184. [PMID: 38221528 PMCID: PMC11009168 DOI: 10.1007/s11357-023-01054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
The peak prevalence of multiple sclerosis has shifted into older age groups, but co-occurring and possibly synergistic motoric and cognitive declines in this patient population are poorly understood. Dual-task-walking performance, subserved by the prefrontal cortex, and compromised in multiple sclerosis and aging, predicts health outcomes. Whether acute practice can improve dual-task walking performance and prefrontal cortex hemodynamic response efficiency in multiple sclerosis has not been reported. To address this gap in the literature, the current study examined task- and practice-related effects on dual-task-walking and associated brain activation in older adults with multiple sclerosis and controls. Multiple sclerosis (n = 94, mean age = 64.76 ± 4.19 years) and control (n = 104, mean age = 68.18 ± 7.01 years) participants were tested under three experimental conditions (dual-task-walk, single-task-walk, and single-task-alpha) administered over three repeated counterbalanced trials. Functional near-infrared-spectroscopy was used to evaluate task- and practice-related changes in prefrontal cortex oxygenated hemoglobin. Gait and cognitive performances declined, and prefrontal cortex oxygenated hemoglobin was higher in dual compared to both single task conditions in both groups. Gait and cognitive performances improved over trials in both groups. There were greater declines over trials in oxygenated hemoglobin in dual-task-walk compared to single-task-walk in both groups. Among controls, but not multiple sclerosis participants, declines over trials in oxygenated hemoglobin were greater in dual-task-walk compared to single-task-alpha. Dual-task walking and associated prefrontal cortex activation efficiency improved during a single session, but improvement in neural resource utilization, although significant, was attenuated in multiple sclerosis participants. These findings suggest encouraging brain adaptability in aging and neurological disease.
Collapse
Affiliation(s)
- Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA.
| | - Jaeun Choi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois, Chicago, IL, USA
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Mark E Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Manuel E Hernandez
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Meltem Izzetoglu
- Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| |
Collapse
|
12
|
Jacobs S, Izzetoglu M, Holtzer R. The impact of music making on neural efficiency & dual-task walking performance in healthy older adults. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:438-456. [PMID: 36999570 PMCID: PMC10544664 DOI: 10.1080/13825585.2023.2195615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
Music making is linked to improved cognition and related neuroanatomical changes in children and adults; however, this has been relatively under-studied in aging. The purpose of this study was to assess neural, cognitive, and physical correlates of music making in aging using a dual-task walking (DTW) paradigm. Study participants (N = 415) were healthy adults aged 65 years or older, including musicians (n = 70) who were identified by current weekly engagement in musical activity. A DTW paradigm consisting of single- and dual-task conditions, as well as portable neuroimaging (functional near-infrared spectroscopy), was administered. Outcome measures included neural activation in the prefrontal cortex assessed across task conditions by recording changes in oxygenated hemoglobin, cognitive performance, and gait velocity. Linear mixed effects models examined the impact of music making on outcome measures in addition to moderating their change between task conditions. Across participants (53.3% women; 76 ± 6.55 years), neural activation increased from single- to dual-task conditions (p < 0.001); however, musicians demonstrated attenuated activation between a single cognitive interference task and dual-task walking (p = 0.014). Musicians also displayed significantly smaller decline in behavioral performance (p < 0.001) from single- to dual-task conditions and faster gait overall (p = 0.014). Given evidence of lower prefrontal cortex activation in the context of similar or improved behavioral performance, results indicate the presence of enhanced neural efficiency in older adult musicians. Furthermore, improved dual-task performance in older adult musicians was observed. Results have important clinical implications for healthy aging, as executive functioning plays an essential role in maintaining functional ability in older adulthood.
Collapse
Affiliation(s)
- Sydney Jacobs
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
13
|
Moraca GAG, Orcioli-Silva D, Legutke BR, Gutierrez PP, Sirico TM, Zampier VC, Beretta VS, Gobbi LTB, Barbieri FA. Aerobic exercise on the treadmill combined with transcranial direct current stimulation on the gait of people with Parkinson's disease: A protocol for a randomized clinical trial. PLoS One 2024; 19:e0300243. [PMID: 38662740 PMCID: PMC11045059 DOI: 10.1371/journal.pone.0300243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 04/28/2024] Open
Abstract
Gait impairments negatively affect the quality of life of people with Parkinson's disease (PwPD). Aerobic exercise (AE) is an alternative to alleviate these impairments and its combination with transcranial direct current stimulation (tDCS) has demonstrated synergistic effects. However, the effect of multitarget tDCS application (i.e., motor, and prefrontal cortices simultaneously) combined with physical exercise on gait impairments is still little known. Thus, the proposed randomized clinical trial will verify the acute effects of AE combined with tDCS applied on motor and prefrontal cortices separately and simultaneously on gait (spatial-temporal and cortical activity parameters) in PwPD. Twenty-four PwPD in Hoehn & Yahr stages I-III will be recruited for this crossover study. PwPD will practice AE on treadmill simultaneously with the application of anodal tDCS during four intervention sessions on different days (∼ one week of interval). Active tDCS will be applied to the primary motor cortex, prefrontal cortex, and both areas simultaneously (multitarget), with an intensity of 2 mA for 20 min. For sham, the stimulation will remain at 2 mA for 10 s. The AE will last a total of 30 min, consisting of warm-up, main part (20 min with application of tDCS), and recovery. Exercise intensity will be controlled by heart rate. Spatial-temporal and cortical activity parameters will be acquired before and after each session during overground walking, walking with obstacle avoidance, and walking with a cognitive dual task at self-preferred velocity. An accelerometer will be positioned on the fifth lumbar vertebra to obtain the spatial-temporal parameters (i.e., step length, duration, velocity, and swing phase duration). Prefrontal cortex activity will be recorded from a portable functional near-infrared spectroscopy system and oxygenated and deoxygenated hemoglobin concentrations will be analyzed. Two-way ANOVAs with repeated measures for stimulation and moment will be performed. The findings of the study may contribute to improving gait in PwPD. Trial registration: Brazilian Clinical Trials Registry (RBR-738zkp7).
Collapse
Affiliation(s)
- Gabriel Antonio Gazziero Moraca
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
- Human Movement Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University, Bauru, São Paulo, Brazil
| | - Diego Orcioli-Silva
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Beatriz Regina Legutke
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Pedro Paulo Gutierrez
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Thiago Martins Sirico
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Vinicius Cavassano Zampier
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
- Human Movement Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University, Bauru, São Paulo, Brazil
| | - Victor Spiandor Beretta
- School of Technology and Sciences, Department of Physical Education, São Paulo State University, Presidente Prudente, São Paulo, Brazil
| | - Lilian Teresa Bucken Gobbi
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Fabio Augusto Barbieri
- Human Movement Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University, Bauru, São Paulo, Brazil
| |
Collapse
|
14
|
Ding Q, Ou Z, Yao S, Wu C, Chen J, Shen J, Lan Y, Xu G. Cortical activation and brain network efficiency during dual tasks: An fNIRS study. Neuroimage 2024; 289:120545. [PMID: 38367652 DOI: 10.1016/j.neuroimage.2024.120545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
OBJECTIVE Dual task (DT) is a commonly used paradigm indicative of executive functions. Brain activities during DT walking is usually measured by portable functional near infrared spectroscopy (fNIRS). Previous studies focused on cortical activation in prefrontal cortex and overlooked other brain regions such as sensorimotor cortices. This study is aimed at investigating the modulations of cortical activation and brain network efficiency in multiple brain regions from single to dual tasks with different complexities and their relationships with DT performance. METHODS Forty-two healthy adults [12 males; mean age: 27.7 (SD=6.5) years] participated in this study. Participants performed behavioral tasks with portable fNIRS simultaneous recording. There were three parts of behavioral tasks: cognitive tasks while standing (serial subtraction of 3's and 7's), walking alone and DT (walk while subtraction, including serial subtraction of 3's and 7's). Cognitive cost, walking cost and cost sum (i.e., sum of cognitive and walking costs) were calculated for DT. Cortical activation, local and global network efficiency were calculated for each task. RESULTS The cognitive cost was greater and the walking cost was less during DT with subtraction 3's compared with 7's (P's = 0.032 and 0.019, respectively). Cortical activation and network efficiency were differentially modulated among single and dual tasks (P's < 0.05). Prefrontal activation during DT was positively correlated with DT costs, while network efficiency was negatively correlated with DT costs (P's < 0.05). CONCLUSIONS Our results revealed prefrontal over-activation and reduced network efficiency in individuals with poor DT performance. Our findings suggest that reduced network efficiency could be a possible mechanism contributing to poor DT performance, which is accompanied by compensatory prefrontal over-activation.
Collapse
Affiliation(s)
- Qian Ding
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zitong Ou
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Rehabilitation Medicine, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shantong Yao
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cheng Wu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Rehabilitation Medicine, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Chen
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junhui Shen
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Ceïde ME, Wang S, Lootens MR, Cantor A, Verghese J, Lounsbury DW. Stratifying Risk for Cognitive Decline in Older Adult Populations using the Geriatric Depression Scale. JOURNAL OF PSYCHIATRY AND COGNITIVE BEHAVIOUR 2024; 8:172. [PMID: 39781213 PMCID: PMC11709455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Objectives Late-life psychological symptoms in older adults such as depression and apathy have been increasingly associated with increased risk of cognitive and functional decline. The goal of this study was to conduct a confirmatory factor analysis of the Geriatric Depression Scale (GDS), pooling 3 unique cohorts of older adults to 1) develop a novel measurement model that distinguishes apathy from other domains of depression including dysphoria and cognitive concern and 2) evaluate if the measurement model distinguishes older adult populations with varied risk for cognitive decline. Methods We pooled the baseline waves of three older adult cohorts (N=1421). With the aim of partitioning apathy from other constructs that compose the GDS and with a PCA suggesting 3-component solution, we then conducted a confirmatory factor analysis (CFA) using lavaan and less R. Results CFA yielded 3 factors: dysphoria, apathy, and cognitive concern. All the dysphoria, apathy, and cognitive concern factors showed acceptable unidimensionality with α=.76, .59, and .54, respectively. The Cognitive Risk Primary Care cohort had significantly higher mean dysphoria, apathy and cognitive concern scales. Conclusions This culturally, linguistically, and educationally diverse sample population yielded factors with acceptable reliability and good face validity. This strategy has resulted in a generalizable measurement model to identify people at risk for Alzheimer's disease and related dementia. In particular, the apathy scale score can be used to identify older adults at risk for cognitive and functional decline across research and clinical settings.
Collapse
Affiliation(s)
- Mirnova E Ceïde
- Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Montefiore Einstein Bronx, NY, USA
| | - Sarah Wang
- Department of Neurology, Montefiore Einstein Bronx, NY, USA
| | - Matthew R Lootens
- CUNY Graduate School of Public Health & Health Policy, New York, NY, USA
| | - Aviva Cantor
- Department of Psychiatry and Behavioral Sciences, Montefiore Einstein Bronx, NY, USA
| | - Joe Verghese
- Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Montefiore Einstein Bronx, NY, USA
| | - David W Lounsbury
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Xu G, Zhou M, Chen Y, Song Q, Sun W, Wang J. Brain activation during standing balance control in dual-task paradigm and its correlation among older adults with mild cognitive impairment: a fNIRS study. BMC Geriatr 2024; 24:144. [PMID: 38341561 PMCID: PMC10859010 DOI: 10.1186/s12877-024-04772-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND This study aimed to compare the balance ability and functional brain oxygenation in the prefrontal cortex (PFC) among older adults with mild cognitive impairment (MCI) under single and dual tasks, and also investigate their relationship. Neural regulatory mechanisms of the brain in the MCI were shed light on in balance control conditions. METHODS 21 older adults with MCI (female = 12, age: 71.19 ± 3.36 years) were recruited as the experimental group and 19 healthy older adults (female = 9, age: 70.16 ± 4.54 years) as the control group. Participants completed balance control of single task and dual task respectively. Functional near-infrared spectroscopy (fNIRS) and force measuring platform are used to collect hemodynamic signals of the PFC and center of pressure (COP) data during the balance task, respectively. RESULTS The significant Group*Task interaction effect was found in maximal displacement of the COP in the medial-lateral (ML) direction (D-ml), 95% confidence ellipse area (95%AREA), root mean square (RMS), the RMS in the ML direction (RMS-ml), the RMS in the anterior-posterior (AP) direction (RMS-ap), sway path (SP), the sway path in the ML direction (SP-ml), and the sway path in the AP direction (SP-ap). The significant group effect was detected for five regions of interest (ROI), namely the left Brodmann area (BA) 45 (L45), the right BA45 (R45), the right BA10 (R10), the left BA46 (L46), and the right BA11 (R11). Under single task, maximal displacement of the COP in the AP direction (D-ap), RMS, and RMS-ap were significantly negatively correlated with R45, L45, and R11 respectively. Under dual task, both RMS and 95%AREA were correlated positively with L45, and both L10 and R10 were positively correlated with RMS-ap. CONCLUSION The MCI demonstrated worse balance control ability as compared to healthy older adults. The greater activation of PFC under dual tasks in MCI may be considered a compensatory strategy for maintaining the standing balance. The brain activation was negatively correlated with balance ability under single task, and positively under dual task. TRIAL REGISTRATION ChiCTR2100044221 , 12/03/2021.
Collapse
Affiliation(s)
- Guocai Xu
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Mian Zhou
- Rehabilitation Medicine Department, Weishan People's Hospital, Jining, Shandong, China
| | - Yan Chen
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Qipeng Song
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Wei Sun
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Jiangna Wang
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China.
| |
Collapse
|
17
|
Ross D, Wagshul ME, Izzetoglu M, Holtzer R. Cortical thickness moderates intraindividual variability in prefrontal cortex activation patterns of older adults during walking. J Int Neuropsychol Soc 2024; 30:117-127. [PMID: 37366047 PMCID: PMC10751394 DOI: 10.1017/s1355617723000371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
OBJECTIVE Increased intraindividual variability (IIV) in behavioral and cognitive performance is a risk factor for adverse outcomes but research concerning hemodynamic signal IIV is limited. Cortical thinning occurs during aging and is associated with cognitive decline. Dual-task walking (DTW) performance in older adults has been related to cognition and neural integrity. We examined the hypothesis that reduced cortical thickness would be associated with greater increases in IIV in prefrontal cortex oxygenated hemoglobin (HbO2) from single tasks to DTW in healthy older adults while adjusting for behavioral performance. METHOD Participants were 55 healthy community-dwelling older adults (mean age = 74.84, standard deviation (SD) = 4.97). Structural MRI was used to quantify cortical thickness. Functional near-infrared spectroscopy (fNIRS) was used to assess changes in prefrontal cortex HbO2 during walking. HbO2 IIV was operationalized as the SD of HbO2 observations assessed during the first 30 seconds of each task. Linear mixed models were used to examine the moderation effect of cortical thickness throughout the cortex on HbO2 IIV across task conditions. RESULTS Analyses revealed that thinner cortex in several regions was associated with greater increases in HbO2 IIV from the single tasks to DTW (ps < .02). CONCLUSIONS Consistent with neural inefficiency, reduced cortical thickness in the PFC and throughout the cerebral cortex was associated with increases in HbO2 IIV from the single tasks to DTW without behavioral benefit. Reduced cortical thickness and greater IIV of prefrontal cortex HbO2 during DTW may be further investigated as risk factors for developing mobility impairments in aging.
Collapse
Affiliation(s)
- Daliah Ross
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Mark E. Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
18
|
Liu S, Rosso AL, Baillargeon EM, Weinstein AM, Rosano C, Torres-Oviedo G. Novel attentional gait index reveals a cognitive ability-related decline in gait automaticity during dual-task walking. Front Aging Neurosci 2024; 15:1283376. [PMID: 38274986 PMCID: PMC10808635 DOI: 10.3389/fnagi.2023.1283376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Gait automaticity refers to the ability to walk with minimal recruitment of attentional networks typically mediated through the prefrontal cortex (PFC). Reduced gait automaticity (i.e., greater use of attentional resources during walking) is common with aging, contributing to an increased risk of falls and reduced quality of life. A common assessment of gait automaticity involves examining PFC activation using near-infrared spectroscopy (fNIRS) during dual-task (DT) paradigms, such as walking while performing a cognitive task. However, neither PFC activity nor task performance in isolation measures automaticity accurately. For example, greater PFC activation could be interpreted as worse gait automaticity when accompanied by poorer DT performance, but when accompanied by better DT performance, it could be seen as successful compensation. Thus, there is a need to incorporate behavioral performance and PFC measurements for a more comprehensive evaluation of gait automaticity. To address this need, we propose a novel attentional gait index as an analytical approach that combines changes in PFC activity with changes in DT performance to quantify automaticity, where a reduction in automaticity will be reflected as an increased need for attentional gait control (i.e., larger index). Methods The index was validated in 173 participants (≥65 y/o) who completed DTs with two levels of difficulty while PFC activation was recorded with fNIRS. The two DTs consisted of reciting every other letter of the alphabet while walking over either an even or uneven surface. Results As DT difficulty increases, more participants showed the anticipated increase in the attentional control of gait (i.e., less automaticity) as measured by the novel index compared to PFC activation. Furthermore, when comparing across individuals, lower cognitive function was related to higher attentional gait index, but not PFC activation or DT performance. Conclusion The proposed index better quantified the differences in attentional control of gait between tasks and individuals by providing a unified measure that includes both brain activation and performance. This new approach opens exciting possibilities to assess participant-specific deficits and compare rehabilitation outcomes from gait automaticity interventions.
Collapse
Affiliation(s)
- Shuqi Liu
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Andrea L. Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emma M. Baillargeon
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrea M. Weinstein
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Yuan X, Zhong X, Wang C, Dai Y, Yang Y, Jiang C. Temporo-Parietal cortex activation during motor imagery in older adults: A case study of Baduanjin. Brain Cogn 2023; 173:106103. [PMID: 37922628 DOI: 10.1016/j.bandc.2023.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Age-associated cognitive and motor decline is related to central nervous system injury in older adults. Motor imagery training (MIT), as an emerging rehabilitative intervention, can activate neural basis similar to that in actual exercise, so as to promote motor function in older adults. The complex motor skills rely on the functional integration of the cerebral cortex. Understanding the neural mechanisms underlying motor imagery in older adults would support its application in motor rehabilitation and slowing cognitive decline. Based on this, the present study used functional near infrared spectroscopy (fNIRS) to record the changes in oxygen saturation in older adults (20 participants; mean age, 64.8 ± 4.5 years) during Baduanjin motor execution (ME) and motor imagery (MI). ME significantly activated the left postcentral gyrus, while the oxy-hemoglobin concentration in the right middle temporal gyrus increased significantly during motor imagery. These results indicate that advanced ME activates brain regions related to sensorimotor function, and MI increases the activation of the frontal-parietal cortex related to vision. In older adults, MI overactivated the temporo-parietal region associated with vision, and tend to be activated in the right brain.
Collapse
Affiliation(s)
- Xiaoxia Yuan
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100191, China; The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China; School of Sport, Exercise and Rehabilitation Sciences, The University of Birmingham, Birmingham B25 2TT, UK.
| | - Xiaoke Zhong
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100191, China; The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China.
| | - Chen Wang
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100191, China; The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China.
| | - Yuanfu Dai
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100191, China; The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China.
| | - Yuan Yang
- Sports Department, Beihang University, Beijing 100191, China.
| | - Changhao Jiang
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100191, China; The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China.
| |
Collapse
|
20
|
Schmaderer LF, Meyer M, Reer R, Schumacher N. What happens in the prefrontal cortex? Cognitive processing of novel and familiar stimuli in soccer: An exploratory fNIRS study. Eur J Sport Sci 2023; 23:2389-2399. [PMID: 37535067 DOI: 10.1080/17461391.2023.2238699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The importance of both general and sport-specific perceptual-cognitive abilities in soccer players has been investigated in several studies. Although these perceptual-cognitive skills could contribute significantly to soccer players' expertise, the underlying cortical mechanisms have not been clarified yet. Examining activity changes in the prefrontal cortex under different cognitive demands may help to better understand the underlying mechanisms of sports expertise. The aim of this study was to analyse the prefrontal activity of soccer experts during general and sport-specific cognitive tasks. For this purpose, 39 semi-professional soccer players performed four perceptual-cognitive tests, two of which assessed general cognition, the other two assessed sport-specific cognition. Since soccer is a movement-intensive sport, two tests were performed in motion. While performing cognitive tests, prefrontal activity was recorded using functional near-infrared spectroscopy (fNIRS) (NIRSport, NIRx Medical Technologies, USA). Differences of prefrontal activity in general and sport-specific cognitive tasks were analysed using paired t-tests. The results showed significant increases in prefrontal activity during general cognitive tests (novel stimuli) compared to sport-specific tests (familiar stimuli). The comparatively lower prefrontal activity change during sport-specific cognition might be due to learned automatisms of experts in this field. These results seem in line with previous findings on novel and automated cognition, "repetition suppression theory" and "neural efficiency theory". Furthermore, the different cortical processes could be caused by altered prefrontal structures of experts and might represent a decisive factor for expertise in team sports. However, further research is needed to clarify the prefrontal involvement on expertise in general and sport-specific cognition.
Collapse
Affiliation(s)
- Lena F Schmaderer
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| | - Mathilda Meyer
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| | - Rüdiger Reer
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| | - Nils Schumacher
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
21
|
Shkury E, Danziger-Schragenheim S, Katzir Z, Ezra Y, Giladi N, Mirelman A, Maidan I. Differences in EEG Event-Related Potentials during Dual Task in Parkinson's Disease Carriers and Non-Carriers of the G2019S-LRRK2 Mutation. SENSORS (BASEL, SWITZERLAND) 2023; 23:8266. [PMID: 37837096 PMCID: PMC10575245 DOI: 10.3390/s23198266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND The G2019S-LRRK2 gene mutation is a common cause of hereditary Parkinson's disease (PD), associated with a higher frequency of the postural instability gait difficulty (PIGD) motor phenotype yet with preserved cognition. This study investigated neurophysiological changes during motor and cognitive tasks in PD patients with and without the G2019S-LRRK2 mutation. METHODS 33 iPD patients and 22 LRRK2-PD patients performed the visual Go/NoGo task (VGNG) during sitting (single-task) and walking (dual-task) while wearing a 64-channel EEG cap. Event-related potentials (ERP) from Fz and Pz, specifically N200 and P300, were extracted and analyzed to quantify brain activity patterns. RESULTS The LRRK2-PD group performed better in the VGNG than the iPD group (group*task; p = 0.05). During Go, the iPD group showed reduced N2 amplitude and prolonged N2 latency during walking, whereas the LRRK2-PD group showed only shorter latency (group*task p = 0.027). During NoGo, opposite patterns emerged; the iPD group showed reduced N2 and increased P3 amplitudes during walking while the LRRK2-PD group demonstrated increased N2 and reduced P3 (N2: group*task, p = 0.010, P3: group*task, p = 0.012). CONCLUSIONS The LRRK2-PD group showed efficient early cognitive processes, reflected by N2, resulting in greater neural synchronization and prominent ERPs. These processes are possibly the underlying mechanisms for the observed better cognitive performance as compared to the iPD group. As such, future applications of intelligent medical sensing should be capable of capturing these electrophysiological patterns in order to enhance motor-cognitive functions.
Collapse
Affiliation(s)
- Eden Shkury
- Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (E.S.); (S.D.-S.); (Z.K.); (Y.E.); (N.G.); (A.M.)
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shani Danziger-Schragenheim
- Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (E.S.); (S.D.-S.); (Z.K.); (Y.E.); (N.G.); (A.M.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zoya Katzir
- Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (E.S.); (S.D.-S.); (Z.K.); (Y.E.); (N.G.); (A.M.)
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Ezra
- Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (E.S.); (S.D.-S.); (Z.K.); (Y.E.); (N.G.); (A.M.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nir Giladi
- Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (E.S.); (S.D.-S.); (Z.K.); (Y.E.); (N.G.); (A.M.)
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (E.S.); (S.D.-S.); (Z.K.); (Y.E.); (N.G.); (A.M.)
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (E.S.); (S.D.-S.); (Z.K.); (Y.E.); (N.G.); (A.M.)
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
22
|
Ma D, Izzetoglu M, Holtzer R, Jiao X. Deep Learning Based Walking Tasks Classification in Older Adults Using fNIRS. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3437-3447. [PMID: 37594868 PMCID: PMC11044905 DOI: 10.1109/tnsre.2023.3306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Decline in gait features is common in older adults and an indicator of increased risk of disability, morbidity, and mortality. Under dual task walking (DTW) conditions, further degradation in the performance of both the gait and the secondary cognitive task were found in older adults which were significantly correlated to falls history. Cortical control of gait, specifically in the pre-frontal cortex (PFC) as measured by functional near infrared spectroscopy (fNIRS), during DTW in older adults has recently been studied. However, the automatic classification of differences in cognitive activations under single and dual task gait conditions has not been extensively studied yet. In this paper, by considering single task walking (STW) as a lower attentional walking state and DTW as a higher attentional walking state, we aimed to formulate this as an automatic detection of low and high attentional walking states and leverage deep learning methods to perform their classification. We conduct analysis on the data samples which reveals the characteristics on the difference between HbO2 and Hb values that are subsequently used as additional features. We perform feature engineering to formulate the fNIRS features as a 3-channel image and apply various image processing techniques for data augmentation to enhance the performance of deep learning models. Experimental results show that pre-trained deep learning models that are fine-tuned using the collected fNIRS dataset together with gender and cognitive status information can achieve around 81% classification accuracy which is about 10% higher than the traditional machine learning algorithms. We present additional sensitivity metrics such as confusion matrix, precision and F1 score, as well as accuracy on two-way classification between condition pairings. We further performed an extensive ablation study to evaluate factors such as the voxel locations, channels of input images, zero-paddings and pre-training of deep learning model on their contribution or impact to the classification task. Results showed that using pre-trained model, all the voxel locations, and HbO2 - Hb as the third channel of the input image can achieve the best classification accuracy.
Collapse
|
23
|
Bonanno L, Cannuli A, Pignolo L, Marino S, Quartarone A, Calabrò RS, Cerasa A. Neural Plasticity Changes Induced by Motor Robotic Rehabilitation in Stroke Patients: The Contribution of Functional Neuroimaging. Bioengineering (Basel) 2023; 10:990. [PMID: 37627875 PMCID: PMC10451271 DOI: 10.3390/bioengineering10080990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Robotic rehabilitation is one of the most advanced treatments helping people with stroke to faster recovery from motor deficits. The clinical impact of this type of treatment has been widely defined and established using clinical scales. The neurofunctional indicators of motor recovery following conventional rehabilitation treatments have already been identified by previous meta-analytic investigations. However, a clear definition of the neural correlates associated with robotic neurorehabilitation treatment has never been performed. This systematic review assesses the neurofunctional correlates (fMRI, fNIRS) of cutting-edge robotic therapies in enhancing motor recovery of stroke populations in accordance with PRISMA standards. A total of 7, of the initial yield of 150 articles, have been included in this review. Lessons from these studies suggest that neural plasticity within the ipsilateral primary motor cortex, the contralateral sensorimotor cortex, and the premotor cortices are more sensitive to compensation strategies reflecting upper and lower limbs' motor recovery despite the high heterogeneity in robotic devices, clinical status, and neuroimaging procedures. Unfortunately, the paucity of RCT studies prevents us from understanding the neurobiological differences induced by robotic devices with respect to traditional rehabilitation approaches. Despite this technology dating to the early 1990s, there is a need to translate more functional neuroimaging markers in clinical settings since they provide a unique opportunity to examine, in-depth, the brain plasticity changes induced by robotic rehabilitation.
Collapse
Affiliation(s)
- Lilla Bonanno
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (L.B.); (A.C.); (S.M.); (A.Q.)
| | - Antonio Cannuli
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (L.B.); (A.C.); (S.M.); (A.Q.)
| | | | - Silvia Marino
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (L.B.); (A.C.); (S.M.); (A.Q.)
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (L.B.); (A.C.); (S.M.); (A.Q.)
| | | | - Antonio Cerasa
- S’Anna Institute, 88900 Crotone, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
- Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
24
|
Ma H, Li C, Zhu Y, Peng Y, Sun L. Gait parameter fitting and adaptive enhancement based on cerebral blood oxygen information. Front Hum Neurosci 2023; 17:1205858. [PMID: 37554408 PMCID: PMC10405458 DOI: 10.3389/fnhum.2023.1205858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Accurate recognition of patients' movement intentions and real-time adjustments are crucial in rehabilitation exoskeleton robots. However, some patients are unable to utilize electromyography (EMG) signals for this purpose due to poor or missing signals in their lower limbs. In order to address this issue, we propose a novel method that fits gait parameters using cerebral blood oxygen signals. Two types of walking experiments were conducted to collect brain blood oxygen signals and gait parameters from volunteers. Time domain, frequency domain, and spatial domain features were extracted from brain hemoglobin. The AutoEncoder-Decoder method is used for feature dimension reduction. A regression model based on the long short-term memory (LSTM) model was established to fit the gait parameters and perform incremental learning for new individual data. Cross-validation was performed on the model to enhance individual adaptivity and reduce the need for individual pre-training. The coefficient of determination (R2) for the gait parameter fit was 71.544%, with a mean square error (RMSE) of less than 3.321%. Following adaptive enhancement, the coefficient of R2 increased by 6.985%, while the RMSE decreased by 0.303%. These preliminary results indicate the feasibility of fitting gait parameters using cerebral blood oxygen information. Our research offers a new perspective on assisted locomotion control for patients who lack effective myoelectricity, thereby expanding the clinical application of rehabilitation exoskeleton robots. This work establishes a foundation for promoting the application of Brain-Computer Interface (BCI) technology in the field of sports rehabilitation.
Collapse
Affiliation(s)
| | - Chunguang Li
- Key Laboratory of Robotics and System of Jiangsu, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | | | | | | |
Collapse
|
25
|
Baek CY, Kim HD, Yoo DY, Kang KY, Lee JW. Change in activity patterns in the prefrontal cortex in different phases during the dual-task walking in older adults. J Neuroeng Rehabil 2023; 20:86. [PMID: 37420235 PMCID: PMC10327141 DOI: 10.1186/s12984-023-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Studies using functional near-infrared spectroscopy (fNIRS) have shown that dual-task walking leads to greater prefrontal cortex (PFC) activation compared to the single-task walking task. However, evidence on age-related changes in PFC activity patterns is inconsistent. Therefore, this study aimed to explore the changes in the activation patterns of PFC subregions in different activation phases (early and late phases) during both single-task and dual-task walking in both older and younger adults. METHODS Overall, 20 older and 15 younger adults performed a walking task with and without a cognitive task. The activity of the PFC subregions in different phases (early and late phases) and task performance (gait and cognitive task) were evaluated using fNIRS and a gait analyzer. RESULTS The gait (slower speed and lower cadence) and cognitive performance (lower total response, correct response and accuracy rate, and higher error rate) of older adults was poorer during the dual task than that of younger adults. Right dorsolateral PFC activity in the early period in older adults was higher than that in younger adults, which declined precipitously during the late period. Conversely, the activity level of the right orbitofrontal cortex in the dual-task for older adults was lower than for younger adults. CONCLUSIONS These altered PFC subregion-specific activation patterns in older adults would indicate a decline in dual-task performance with aging.
Collapse
Affiliation(s)
- Chang Yoon Baek
- Department of Physical Therapy and School of Health and Environmental Science, College of Health Science, Korea University, Seoul, South Korea
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| | - Hyeong Dong Kim
- Department of Physical Therapy and School of Health and Environmental Science, College of Health Science, Korea University, Seoul, South Korea
| | - Dong Yup Yoo
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| | - Kyoung Yee Kang
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| | - Jang Woo Lee
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| |
Collapse
|
26
|
Nguyen T, Behrens M, Broscheid KC, Bielitzki R, Weber S, Libnow S, Malczewski V, Baldauf L, Milberger X, Jassmann L, Wustmann A, Meiler K, Drange S, Franke J, Schega L. Associations between gait performance and pain intensity, psychosocial factors, executive functions as well as prefrontal cortex activity in chronic low back pain patients: A cross-sectional fNIRS study. Front Med (Lausanne) 2023; 10:1147907. [PMID: 37215712 PMCID: PMC10196398 DOI: 10.3389/fmed.2023.1147907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Activities of daily living, such as walking, are impaired in chronic low back pain (CLBP) patients compared to healthy individuals. Thereby, pain intensity, psychosocial factors, cognitive functioning and prefrontal cortex (PFC) activity during walking might be related to gait performance during single and dual task walking (STW, DTW). However, to the best of our knowledge, these associations have not yet been explored in a large sample of CLBP patients. Method Gait kinematics (inertial measurement units) and PFC activity (functional near-infrared spectroscopy) during STW and DTW were measured in 108 CLBP patients (79 females, 29 males). Additionally, pain intensity, kinesiophobia, pain coping strategies, depression and executive functioning were quantified and correlation coefficients were calculated to determine the associations between parameters. Results The gait parameters showed small correlations with acute pain intensity, pain coping strategies and depression. Stride length and velocity during STW and DTW were (slightly to moderately) positively correlated with executive function test performance. Specific small to moderate correlations were found between the gait parameters and dorsolateral PFC activity during STW and DTW. Conclusion Patients with higher acute pain intensity and better coping skills demonstrated slower and less variable gait, which might reflect a pain minimization strategy. Psychosocial factors seem to play no or only a minor role, while good executive functions might be a prerequisite for a better gait performance in CLBP patients. The specific associations between gait parameters and PFC activity during walking indicate that the availability and utilization of brain resources are crucial for a good gait performance.
Collapse
Affiliation(s)
- Toan Nguyen
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Kim-Charline Broscheid
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Saskia Weber
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Saskia Libnow
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Victoria Malczewski
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lukas Baldauf
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Xenia Milberger
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lena Jassmann
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anne Wustmann
- Department of Orthopaedic Surgery, Klinikum Magdeburg gGmbH, Magdeburg, Germany
| | - Katharina Meiler
- Department of Orthopaedic Surgery, Klinikum Magdeburg gGmbH, Magdeburg, Germany
| | - Steffen Drange
- Department of Orthopaedic Surgery, Klinikum Magdeburg gGmbH, Magdeburg, Germany
| | - Jörg Franke
- Department of Orthopaedic Surgery, Klinikum Magdeburg gGmbH, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
27
|
Wang D, Wang J, Zhao H, Liang Y, Zhang W, Li M, Liu H, Hu D, Zhang S, Xing E, Su Y, Yu W, Sun J, Yang A. The relationship between the prefrontal cortex and limb motor function in stroke: A study based on resting-state functional near-infrared spectroscopy. Brain Res 2023; 1805:148269. [PMID: 36736871 DOI: 10.1016/j.brainres.2023.148269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND With the ageing of the world population, the incidence of stroke has been increasing annually, becoming a public health problem affecting adult health. Limb motor dysfunction is one of the common complications of stroke and an important factor in disability. Therefore, restoring limb function is an important task in current rehabilitation. Accurate assessment of motor function in stroke patients is the basis for formulating effective rehabilitation strategies. With the development of neuroimaging technology, scholars have begun to study objective evaluation methods for limb motor dysfunction in stroke to determine reliable neural biomarkers to accurately identify brain functional activity and its relationship with limb motor function. The prefrontal cortex (PFC) plays an important role in motor control and in response to motor state changes. Our previous study found that the PFC network characteristics of stroke patients are related to their motor function status and the topological properties of the PFC network under resting state can predict the motor function of stroke patients to some extent. Therefore, this study used functional near-infrared spectroscopy (fNIRS) to evaluate prefrontal neuroplasticity markers and the relationships between such neural markers and limb motor function in stroke patients with limb motor dysfunction, which could be helpful to further clarify the relationship between brain neuroplasticity and cerebral haemodynamics. At the same time, through accurate and objective means of evaluation, it could be helpful for clinicians to formulate and optimize individualized rehabilitation treatment plans and accurately determine the rehabilitation efficacy and prognosis. METHODS This study recruited 17 S patients with limb motor dysfunction and 9 healthy subjects. fNIRS was used to collect 22 channels of cerebral blood oxygen signals in the PFC in the resting state. The differences in prefrontal oxygenated haemoglobin (HbO) and deoxygenated haemoglobin (HbR) concentrations were analysed between stroke patients and healthy subjects, and the lateralization index (LI) of HbO in stroke patients was also calculated. Pearson's correlation analysis was performed between the LI and the scores of the Fugl-Meyer Assessment Scale (FMA) of motor function in stroke patients. RESULTS The results found that the prefrontal HbO concentration was significantly decreased in stroke patients with limb motor dysfunction compared with healthy subjects, and there was a significant, positive correlation between the LI of the PFC and FMA scores in stroke patients. CONCLUSION These study results showed that stroke can cause cerebral haemodynamic changes in the PFC, and the functional imbalance of the left and right PFC in the resting state is correlated with the severity of limb motor dysfunction. Furthermore, we emphasize that the cerebral haemodynamic activity reflected by fNIRS could be used as a reliable neural biomarker for assessing limb motor dysfunction in stroke.
Collapse
Affiliation(s)
- Dan Wang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Jie Wang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Hongbo Zhao
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Yahui Liang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Wenyue Zhang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Mingxi Li
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Hua Liu
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Di Hu
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Sibin Zhang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Enlong Xing
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Ying Su
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Wanchen Yu
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Jinyan Sun
- School of Medicine, Foshan University, Foshan, China.
| | - Aoran Yang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Hunt R, Mills C, Frost G, Blackmore T, Miller-Dicks M. The visual control of locomotion when stepping onto moving surfaces: A comparison of younger and older adults. Exp Gerontol 2023; 174:112117. [PMID: 36758648 DOI: 10.1016/j.exger.2023.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Stepping between static and moving surfaces presents a locomotor challenge associated with increased injury frequency and severity in older adults. The current study evaluates younger and older adults' behaviours when overcoming challenges sampling moving walkway and escalator environments. Twelve younger adults (18-40 years, Male = 8) and 15 older adults (60-81 years, Male = 5) were examined using an integration of optoelectronic motion capture and mobile eye-tracking. Participants were investigated approaching and stepping onto a flat conveyor belt (static or moving; with or without surface (demarcation) lines). Specifically, the four conditions were: (i) static surface without demarcation lines; (ii) static surface with demarcation lines; (iii) moving surface without demarcation lines; and (iv) moving surface with demarcation lines. A two (age group) x two (surface-condition) x two (demarcation-condition) linear mixed-model revealed no main or interaction effects (p > .05) for perturbation magnitude, indicating participants maintained successful locomotion. However, different adaptive behaviours were identified between conditions with moving and accuracy demands (e.g., moving surfaces increased step length, demarcations reduced step length). Between subject effects identified differences between age groups. Older adults utilised different behaviours, such as earlier gaze transfer from the final approach walkway step location. Overall, the current study suggests that adaptive behaviours emerge relative to the environment's specific demands and the individual's action capabilities.
Collapse
Affiliation(s)
- Rhys Hunt
- School of Sport, Health and Exercise Science, University of Portsmouth, United Kingdom.
| | - Chris Mills
- School of Sport, Health and Exercise Science, University of Portsmouth, United Kingdom
| | - Gillian Frost
- Health and Safety Executive, Science Division, United Kingdom
| | - Tim Blackmore
- School of Sport, Health and Exercise Science, University of Portsmouth, United Kingdom
| | - Matt Miller-Dicks
- School of Sport, Health and Exercise Science, University of Portsmouth, United Kingdom.
| |
Collapse
|
29
|
Stojan R, Mack M, Bock O, Voelcker-Rehage C. Inefficient frontal and parietal brain activation during dual-task walking in a virtual environment in older adults. Neuroimage 2023; 273:120070. [PMID: 37004827 DOI: 10.1016/j.neuroimage.2023.120070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Walking while performing an additional cognitive task (dual-task walking; DT walking) is a common yet highly demanding behavior in daily life. Previous neuroimaging studies have shown that performance declines from single- (ST) to DT conditions are accompanied by increased prefrontal cortex (PFC) activity. This increment is particularly pronounced in older adults and has been explained either by compensation, dedifferentiation, or ineffective task processing in fronto-parietal circuits. However, there is only limited evidence for the hypothesized fronto-parietal activity changes measured under real life conditions such as walking. In this study, we therefore assessed brain activity in PFC and parietal lobe (PL), to investigate whether higher PFC activation during DT walking in older adults is related to compensation, dedifferentiation, or neural inefficiency. Fifty-six healthy older adults (69.11 ± 4.19 years, 30 female) completed three tasks (treadmill walking at 1 m/s, Stroop task, Serial 3's task) under ST and DT conditions (Walking + Stroop, Walking + Serial 3's), and a baseline Standing task. Behavioral outcomes were step time variability (Walking), Balance Integration Score BIS (Stroop), and number of correct calculations S3corr (Serial 3's). Brain activity was measured using functional near-infrared spectroscopy (fNIRS) over ventrolateral and dorsolateral PFC (vlPFC, dlPFC) and inferior and superior PL (iPL, sPL). Neurophysiological outcome measures were oxygenated (HbO2) and deoxygenated hemoglobin (HbR). Linear mixed models with follow-up estimated marginal means contrasts were applied to investigate region-specific upregulations of brain activation from ST to DT conditions. Furthermore, the relationships of DT-specific activations across all brain regions was analyzed as well as the relationship between changes in brain activation and changes in behavioral performance from ST to DT. Data indicated the expected upregulation from ST to DT and that DT-related upregulation was more pronounced in PFC (particularly in vlPFC) than in PL regions. Activation increases from ST to DT were positively correlated between all brain regions, and higher brain activation changes predicted higher declines in behavioral performance from ST to DT. Results were largely consistent for both DTs (Stroop and Serial 3's). These findings more likely suggest neural inefficiency and dedifferentiation in PFC and PL rather than fronto-parietal compensation during DT walking in older adults. Findings have implications for interpreting and promoting efficacy of long-term interventions to improve DT walking in older persons.
Collapse
|
30
|
O'Brien C, Holtzer R. Physical reserve: construct development and predictive utility. Aging Clin Exp Res 2023; 35:1055-1062. [PMID: 36848030 DOI: 10.1007/s40520-023-02371-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Physical reserve (PR) refers to one's ability to maintain physical functioning despite age, illness, or injury. The measurement and predictive utility of PR, however, are not well established. AIMS We quantified PR using a residual measurement approach by extracting standardized residuals from gait speed, while accounting for demographic and clinical/disease variables, and used it to predict fall-risk. METHODS Participants (n = 510; age ≥ 70ys) were enrolled in a longitudinal study. Falls were assessed annually (in-person) and bimonthly (via structured telephone interview). RESULTS General Estimating Equations (GEE) revealed that higher baseline PR was associated with reduced odds of reporting falls over repeated assessments in the total sample, and incident falls among those without fall's history. The protective effect of PR against fall risk remained significant when adjusting for multiple demographic and medical confounders. DISCUSSION/CONCLUSION We propose a novel framework to assessing PR and demonstrate that higher PR is protective against fall-risk in older adults.
Collapse
Affiliation(s)
- Catherine O'Brien
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA.
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
31
|
Effect of the Level of Physical Activity on Prefrontal Cortex Hemodynamics in Older Adults During Single- and Dual-Task Walking. J Aging Phys Act 2023; 31:96-104. [PMID: 35894956 DOI: 10.1123/japa.2021-0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 02/03/2023]
Abstract
The present study aimed to examine the impact of the level of physical activity on prefrontal cortex activation in older adults during single- and dual-task walking. Thirty physically inactive and 36 active older adults (60-85 years old) performed six 2-min tasks on a treadmill: two static cognitive tasks, two single-task walking tests, and two dual-task walking tests. Hemodynamics at the level of the prefrontal cortex were measured continuously using functional near-infrared spectroscopy to evaluate cortical activation. The perceived difficulty of the task, cognitive performance, and gait parameters were also measured. During the walking tasks, the level of prefrontal cortex activation, the perceived difficulty of the task, cognitive performance, and motor parameters were not significantly different between active and inactive older adults. This unchanged activation with physical activity was likely the consequence of a similar motor and cognitive load and cardiorespiratory fitness in both active and inactive older adults.
Collapse
|
32
|
De Sanctis P, Wagner J, Molholm S, Foxe JJ, Blumen HM, Horsthuis DJ. Neural signature of mobility-related everyday function in older adults at-risk of cognitive impairment. Neurobiol Aging 2023; 122:1-11. [PMID: 36463848 PMCID: PMC10281759 DOI: 10.1016/j.neurobiolaging.2022.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Assessment of everyday activities is central to the diagnosis of dementia. Yet, little is known about brain processes associated with everyday functional limitations, particularly during early stages of cognitive decline. Twenty-six older adults (mean = 74.9 y) were stratified by risk using the Montreal Cognitive Assessment battery (MoCA, range: 0- 30) to classify individuals as higher (22-26) and lower risk (27+) of cognitive impairment. We investigated everyday function using a gait task designed to destabilize posture and applied Mobile Brain/Body Imaging. We predicted that participants would increase step width to gain stability, yet the underlying neural signatures would be different for lower versus higher risk individuals. Step width and fronto-parietal activation increased during visually perturbed input. Frontomedial theta increased in higher risk individuals during perturbed and unperturbed inputs. Left sensorimotor beta decreased in lower risk individuals during visually perturbed input. Modulations in theta and beta power were associated with MoCA scores. Our findings suggest that older adults at-risk of cognitive impairment can be characterized by a unique neural signature of everyday function.
Collapse
Affiliation(s)
- Pierfilippo De Sanctis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Johanna Wagner
- Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, La Jolla, CA, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA; The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Helena M Blumen
- Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Geriatrics), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Douwe J Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
33
|
Holtzer R, Feldman JM, Jariwala SP, Izzetoglu M. Asthma history influences gait performance and associated prefrontal cortex activation patterns in older adults. Aging Clin Exp Res 2023; 35:407-411. [PMID: 36401064 PMCID: PMC10039461 DOI: 10.1007/s40520-022-02306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/12/2022] [Indexed: 11/20/2022]
Abstract
Walking and cognition are interrelated due to dependence on shared brain regions that include the prefrontal cortex (PFC). Limited literature indicates that asthma is associated with poor mobility in older adults but the mechanisms underlying this relationship are unknown. Therefore, we tested the hypothesis that asthma history was associated with poor gait performance due to limited attention resources and neural inefficiency. Participants, older adults age ≥ 65 years reporting positive (n = 36) and negative (n = 36) history of asthma, walked under single and dual-task conditions with a functional near-infrared-spectroscopy (fNIRS) sensor placed on their forehead to assess task-related changes in PFC oxygenated hemoglobin (HbO2). Results showed that positive asthma history was associated with slower gait and higher fNIRS-derived HbO2 under dual-task walking. These findings suggest that limited attention resources and neural inefficiency underlie the association between asthma and poor walking performance in older adults.
Collapse
Affiliation(s)
- Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA.
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Jonathan M Feldman
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Pediatrics (Division of Academic General Pediatrics), Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY, USA
| | - Sunit P Jariwala
- Department of Medicine (Division of Allergy/Immunology), Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| |
Collapse
|
34
|
Udina C, Avtzi S, Mota-Foix M, Rosso AL, Ars J, Kobayashi Frisk L, Gregori-Pla C, Durduran T, Inzitari M. Dual-task related frontal cerebral blood flow changes in older adults with mild cognitive impairment: A functional diffuse correlation spectroscopy study. Front Aging Neurosci 2022; 14:958656. [PMID: 36605362 PMCID: PMC9807627 DOI: 10.3389/fnagi.2022.958656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction In a worldwide aging population with a high prevalence of motor and cognitive impairment, it is paramount to improve knowledge about underlying mechanisms of motor and cognitive function and their interplay in the aging processes. Methods We measured prefrontal cerebral blood flow (CBF) using functional diffuse correlation spectroscopy during motor and dual-task. We aimed to compare CBF changes among 49 older adults with and without mild cognitive impairment (MCI) during a dual-task paradigm (normal walk, 2- forward count walk, 3-backward count walk, obstacle negotiation, and heel tapping). Participants with MCI walked slower during the normal walk and obstacle negotiation compared to participants with normal cognition (NC), while gait speed during counting conditions was not different between the groups, therefore the dual-task cost was higher for participants with NC. We built a linear mixed effects model with CBF measures from the right and left prefrontal cortex. Results MCI (n = 34) showed a higher increase in CBF from the normal walk to the 2-forward count walk (estimate = 0.34, 95% CI [0.02, 0.66], p = 0.03) compared to participants with NC, related to a right- sided activation. Both groups showed a higher CBF during the 3-backward count walk compared to the normal walk, while only among MCI, CFB was higher during the 2-forward count walk. Discussion Our findings suggest a differential prefrontal hemodynamic pattern in older adults with MCI compared to their NC counterparts during the dual-task performance, possibly as a response to increasing attentional demand.
Collapse
Affiliation(s)
- Cristina Udina
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Cristina Udina,
| | - Stella Avtzi
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Miriam Mota-Foix
- Statistics and Bioinformatics Unit, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Andrea L. Rosso
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joan Ars
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lisa Kobayashi Frisk
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Clara Gregori-Pla
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Turgut Durduran
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marco Inzitari
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
35
|
Liu YC, Yang YR, Yeh NC, Ku PH, Lu CF, Wang RY. Multiarea Brain Activation and Gait Deterioration During a Cognitive and Motor Dual Task in Individuals With Parkinson Disease. J Neurol Phys Ther 2022; 46:260-269. [PMID: 35404916 DOI: 10.1097/npt.0000000000000402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE In people with Parkinson disease (PD), gait performance deteriorating during dual-task walking has been noted in previous studies. However, the effects of different types of dual tasks on gait performance and brain activation are still unknown. The purpose of this study was to investigate cognitive and motor dual-task walking performance on multiarea brain activity in individuals with PD. METHODS Twenty-eight participants with PD were recruited and performed single walking (SW), walking while performing a cognitive task (WCT), and walking while performing a motor task (WMT) at their self-selected speed. Gait performance including walking speed, stride length, stride time, swing cycle, temporal and spatial variability, and dual-task cost (DTC) was recorded. Brain activation of the prefrontal cortex (PFC), premotor cortex (PMC), and supplementary motor areas (SMA) were measured using functional near-infrared spectroscopy during walking. RESULTS Walking performance deteriorated upon performing a secondary task, especially the cognitive task. Also, a higher and more sustained activation in the PMC and SMA during WCT, as compared with the WMT and SW, in the late phase of walking was found. During WMT, however, the SMA and PMC did not show increased activation compared with during SW. Moreover, gait performance was negatively correlated with PMC and SMA activity during different walking tasks. DISCUSSION AND CONCLUSIONS Individuals with mild to moderate PD demonstrated gait deterioration during dual-task walking, especially during WCT. The SMA and PMC were further activated in individuals with PD when performing cognitive dual-task walking.Supplemental Digital Content is Available in the Text.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A383 ).
Collapse
Affiliation(s)
- Yan-Ci Liu
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan (Y.C.L.); and Departments of Physical Therapy and Assistive Technology (Y.R.Y., N.C.Y., P.H.K., R.Y.W.) and Biomedical Imaging and Radiological science (C.F.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Ayers E, Wang C, Verghese J. Validation of a "subjective motoric cognitive risk syndrome" screening tool for motoric cognitive risk syndrome-A prospective cohort study. Eur J Neurol 2022; 29:2925-2933. [PMID: 35748730 PMCID: PMC9875832 DOI: 10.1111/ene.15476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE Motoric cognitive risk syndrome (MCR) is a gait-based pre-dementia syndrome associated with risk of dementia. Ascertaining subjective cognitive and motoric complaints may facilitate early and remote identification of individuals with MCR as they are reported to precede and predict objective cognitive and motoric impairments in aging. METHODS The validity of five subjective motoric complaint (SMC) questions and 10 subjective cognitive complaint (SCC) questions was examined for discriminating MCR in 538 non-demented community-dwelling adults. Backward logistic regression was used to identify questions to develop a weighted score to define subjective MCR (MCR-S). Receiver operating characteristic analysis was applied to determine the discriminative ability of MCR-S for the objective MCR (MCR-O) definition based on SCCs and objectively measured gait. Cox proportional hazard models adjusted for potential confounders were used to examine the predictive validity of MCR-S for incident dementia. RESULTS Five subjective complaint questions (three SCC and two SMC) were associated with MCR-O. They were combined to define an MCR-S score (range 0-7) which yielded an area under the curve of 0.89 for discriminating MCR-O from receiver operating characteristic analysis. An optimal cut-score of 2 on the MCR-S score was determined to have good sensitivity (84%) and specificity (82%) for MCR-O. Over a median follow-up of 2.5 years, 29 participants developed dementia. Both MCR-S (adjusted hazard ratio 2.39) and MCR-O at baseline (adjusted hazard ratio 3.16) predicted risk of incident dementia. CONCLUSIONS Subjective MCR had high concordance with MCR-O and can provide a remote screening assessment for MCR-O, which can identify those at high risk for dementia.
Collapse
Affiliation(s)
- Emmeline Ayers
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Cuiling Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
37
|
de Aratanha MA, Balardin JB, Cardoso do Amaral C, Lacerda SS, Sowmy TAS, Huppert TJ, Thomaz RB, Speciali DS, Machado B, Kozasa EH. The use of functional near infrared spectroscopy and gait analysis to characterize cognitive and motor processing in early-stage patients with multiple sclerosis. Front Neurol 2022; 13:937231. [PMID: 36105774 PMCID: PMC9464830 DOI: 10.3389/fneur.2022.937231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dual-task paradigms are a known tool to evaluate possible impairments in the motor and cognitive function in patients with multiple sclerosis (MS). A technique to evaluate the cortical function during movement is functional near-infrared spectroscopy (fNIRS). The evaluation of the MS course or its treatment by associating fNIRS with gait measurements may be flexible and low-cost; however, there are no feasibility studies in the literature using these combined techniques in early-stage patients with MS. Objective To evaluate cortical hemodynamics using fNIRS and gait parameters in patients at early stages of MS and in healthy controls during a dual-task paradigm. Methods Participants performed cognitive tasks while walking to simulate daily activities. Cortical activation maps and gait variability were used to evaluate differences between 19 healthy controls and 20 patients with MS. Results and conclusion The results suggest an enhanced cortical activation in the motor planning areas already at the early stages of MS when compared to controls. We have also shown that a systematic analysis of the spatiotemporal gait variability parameters indicates differences in the patient population. The association of cortical and gait parameters may reveal possible compensatory mechanisms related to gait during dual tasking at the early stages of the disease.
Collapse
Affiliation(s)
| | | | - Carolina Cardoso do Amaral
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Biomedical Engineering, Universidade Federal do ABC, Santo André, Brazil
| | | | | | - Theodore J. Huppert
- Departments of Radiology and Bioengineering, Clinical Science Translational Institute, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | | | | |
Collapse
|
38
|
Sood P, Chatterjee SA, Skinner JW, Lysne PE, Sumonthee C, Wu SS, Cohen RA, Rose DK, Woods AJ, Clark DJ. Somatosensory impairment of the feet is associated with higher activation of prefrontal cortex during walking in older adults. Exp Gerontol 2022; 165:111845. [PMID: 35644417 PMCID: PMC9892701 DOI: 10.1016/j.exger.2022.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/18/2021] [Accepted: 05/23/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Over-activation of prefrontal cortex during walking has been reported in older adults versus young adults. Heighted activity in prefrontal cortex suggests a shift toward an executive control strategy to control walking. A potential contributing factor is degraded functioning of pattern-generating locomotor circuits in the central nervous system that are important to walking coordination. Somatosensory information is a crucial input to these circuits, so age-related impairment of somatosensation would be expected to compromise the neural control of walking. The present study tested the hypothesis that poorer somatosensation in the feet of older adults will be associated with greater recruitment of the prefrontal cortex during walking. This study also examines the extent to which somatosensory function and prefrontal activity are associated with performance on walking and balance assessments. METHODS Forty seven older adults (age 74.6 ± 6.8 years; 32 female) participated in walking assessments (typical walking and obstacle negotiation) and Berg Balance Test. During walking, prefrontal activity was measured with functional near infrared spectroscopy (fNIRS). Participants also underwent somatosensory testing with Semmes-Weinstein monofilaments. RESULTS The primary findings is that worse somatosensory monofilament level was associated with greater prefrontal cortical activity during typical walking (r = 0.38, p = 0.008) and obstacle negotiation (r = 0.40, p = 0.006). For the obstacle negotiation task, greater prefrontal activity was associated with faster walking speed (p = 0.004). Poorer somatosensation was associated with slower typical walking speed (p = 0.07) and obstacles walking speed (p < 0.001), as well as poorer balance scores (p = 0.03). CONCLUSIONS The study findings are consistent with a compensation strategy of recruiting prefrontal/executive control resources to overcome loss of somatosensory input to the central nervous system. Future research should further establish the mechanisms by which somatosensory impairments are linked to the neural control and performance of walking tasks, as well as develop intervention approaches.
Collapse
Affiliation(s)
- Pallavi Sood
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Sudeshna A. Chatterjee
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Jared W. Skinner
- Geriatric Research, Education, and Clinical Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Paige E. Lysne
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chanoan Sumonthee
- College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Samuel S. Wu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Ronald A. Cohen
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Dorian K. Rose
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Adam J. Woods
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - David J. Clark
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| |
Collapse
|
39
|
Assad M, Galperin I, Giladi N, Mirelman A, Hausdorff JM, Maidan I. Disease severity and prefrontal cortex activation during obstacle negotiation among patients with Parkinson's disease: Is it all as expected? Parkinsonism Relat Disord 2022; 101:20-26. [PMID: 35759913 DOI: 10.1016/j.parkreldis.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous reports indicate that patients with Parkinson's disease (PD) activate the prefrontal cortex (PFC) during complex activities such as obstacle negotiation to compensate for impaired motor function. However, the influence of disease severity on PFC activation has not been systematically evaluated. Here, we examined the effects of disease severity on PFC activation during obstacle negotiation. METHODS 74 patients with PD (age 68.26 ± 7.54 yrs; 62.2% men) were divided into three groups based on Hoehn and Yahr stages. All patients walked along an obstacle course while negotiating anticipated and unanticipated obstacles (long/low available response time) at heights of 50 mm and 100 mm. PFC activation was measured using functional near-infrared spectroscopy (fNIRS) and was compared between groups and tasks using mixed model analyses. RESULTS Participants with more advanced PD (i.e., Hoehn & Yahr 3) had higher PFC activation levels when negotiating anticipated obstacles, compared to participants with milder PD (i.e., Hoehn & Yahr 1, 2) (p < 0.001). Moreover, higher LEDD correlated with higher prefrontal activation during the higher anticipated obstacle. In contrast, during the negotiation of unanticipated obstacles, the differences in PFC activation were not associated with disease severity in a linear manner. CONCLUSIONS The present study suggests that with increased disease severity, patients with PD rely more on the PFC when negotiating anticipated obstacles, perhaps to compensate for attention and motor deficits. These findings support the role of cognition in fall risk and the need to improve attention and cognition in fall prevention programs, especially among patients with more advanced disease.
Collapse
Affiliation(s)
- M Assad
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - I Galperin
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - N Giladi
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - A Mirelman
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - J M Hausdorff
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Israel; Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - I Maidan
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
40
|
Ceïde ME, Eguchi D, Ayers EI, Lounsbury DW, Verghese J. Mediation Analyses of the Role of Apathy on Motoric Cognitive Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127376. [PMID: 35742625 PMCID: PMC9224534 DOI: 10.3390/ijerph19127376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023]
Abstract
Recent literature indicates that apathy is associated with poor cognitive and functional outcomes in older adults, including motoric cognitive risk syndrome (MCR), a predementia syndrome. However, the underlying biological pathway is unknown. The objectives of this study were to (1) examine the cross-sectional associations between inflammatory cytokines (Interleukin 6 (IL-6) and C-Reactive Protein (CRP)) and apathy and (2) explore the direct and indirect relationships of apathy and motoric cognitive outcomes as it relates to important cognitive risk factors. N = 347 older adults (≥65 years old) enrolled in the Central Control of Mobility in Aging Study (CCMA). Linear and logic regression models showed that IL-6, but not CRP was significantly associated with apathy adjusted for age, gender, and years of education (β = 0.037, 95% CI: 0.002-0.072, p = 0.04). Apathy was associated with a slower gait velocity (β = -14.45, 95% CI: -24.89-4.01, p = 0.01). Mediation analyses demonstrated that IL-6 modestly mediates the relationship between apathy and gait velocity, while apathy mediated the relationships between dysphoria and multimorbidity and gait velocity. Overall, our findings indicate that apathy may be an early predictor of motoric cognitive decline. Inflammation plays a modest role, but the underlying biology of apathy warrants further investigation.
Collapse
Affiliation(s)
- Mirnova E. Ceïde
- Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.I.A.); (J.V.)
- Department of Psychiatry and Behavioral Sciences and Medicine, Montefiore Medical Center, Bronx, NY 10467, USA
- Correspondence: ; Tel.: +1-347-920-0112; Fax: +1-718-430-3829
| | - Daniel Eguchi
- Medical Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Emmeline I. Ayers
- Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.I.A.); (J.V.)
| | - David W. Lounsbury
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Joe Verghese
- Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.I.A.); (J.V.)
| |
Collapse
|
41
|
St George RJ, Jayakody O, Healey R, Breslin M, Hinder MR, Callisaya ML. Cognitive inhibition tasks interfere with dual-task walking and increase prefrontal cortical activity more than working memory tasks in young and older adults. Gait Posture 2022; 95:186-191. [PMID: 35525151 DOI: 10.1016/j.gaitpost.2022.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prior work suggests there may be greater reliance on executive function for walking in older people. The pre-frontal cortex (PFC), which controls aspects of executive function, is known to be active during dual-task walking (DTW). However, there is debate on how PFC activity during DTW is impacted by ageing and the requirements of the cognitive task. RESEARCH QUESTION Functional near infrared spectroscopy, was used to investigate how PFC activity during walking was affected by (i) healthy ageing; and (ii) dual-tasks that utilise inhibition or working memory aspects of executive function. METHODS Young (n = 26, 16 females, mean 20.9 years) and older (n = 26, 16 females, mean 70.3 years) adults performed five conditions: normal walking; Reciting Alternate Letters of the alphabet (RAL, requiring cognitive inhibition and working memory) during standing and walking; and serial subtraction by threes (SS3, requiring working memory alone) during standing and walking. Walking speed, cognitive performance, the PFC haemodynamic response, and fear of falling ratings were analysed using linear mixed-effects modelling. RESULTS Compared to quiet standing, PFC activity increased during normal walking for older adults but decreased for young adults (p < 0.01). Across both groups, fear of falling contributed to higher PFC activity levels when walking (p < 0.01). PFC activity increased during DTW, and this increase was greater when performing RAL compared to the SS3 task (p < 0.01). Although the rate of correct responses was higher for RAL, walking speed reduced more with RAL than SS3 in the young group (p = 0.01), and the rate of correct responses reduced more when walking with RAL than SS3 in the older group (p < 0.01). SIGNIFICANCE Older adults have increased levels of PFC activation during walking compared to younger adults and fear of falling is a cofounding factor. The interference between gait and a concurrent cognitive task is higher when the cognitive task requires inhibition.
Collapse
Affiliation(s)
- Rebecca J St George
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Sandy Bay, Australia; Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia.
| | - Oshadi Jayakody
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Rebecca Healey
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Sandy Bay, Australia
| | - Monique Breslin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Mark R Hinder
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Sandy Bay, Australia
| | - Michele L Callisaya
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Guharajan D, Holtzer R. Association of Affect and Performance in Dual-Task Walking in Non-demented Older Adults. J Aging Health 2022; 34:1062-1070. [PMID: 35477303 DOI: 10.1177/08982643221087836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: We examined whether individual differences in positive and negative affective states predicted dual-task costs using an established Dual-Task Walking protocol in non-demented older adults. We hypothesized that positive and negative affect would be associated with smaller and larger dual-task costs, respectively. Methods: Participants (N = 403; mean age = 76.22 ± 6.55; females = 56%) completed the Positive and Negative Affect Schedule and the walking protocol involving three conditions: Single-Task-Alpha, Single-Task-Walk (STW), and Dual-Task-Walk (DTW). Gait velocity was assessed via an instrumented walkway. Results: Negative affect was associated with greater decline in gait velocity from STW to DTW (95% confidence interval [-0.73 to -0.03]) but not the decline of the rate of correct letter generation. There was no significant relationship between positive affect and DTW performance. Discussion: Findings suggest negative affect is adversely associated with allocation of attentional resources, leading to worse mobility outcomes in older adults.
Collapse
Affiliation(s)
- Deepan Guharajan
- Ferkauf Graduate School of Psychology, 184694Yeshiva University, Bronx, NY, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, 184694Yeshiva University, Bronx, NY, USA.,Department of Neurology, Albert Einstein College of Medicine184694, Bronx, NY, USA
| |
Collapse
|
43
|
Holtzer R. Volitional control of walking in aging. Aging (Albany NY) 2022; 14:2440-2441. [PMID: 35344509 PMCID: PMC9004554 DOI: 10.18632/aging.203986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
44
|
Hupfeld KE, Geraghty JM, McGregor HR, Hass CJ, Pasternak O, Seidler RD. Differential Relationships Between Brain Structure and Dual Task Walking in Young and Older Adults. Front Aging Neurosci 2022; 14:809281. [PMID: 35360214 PMCID: PMC8963788 DOI: 10.3389/fnagi.2022.809281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Almost 25% of all older adults experience difficulty walking. Mobility difficulties for older adults are more pronounced when they perform a simultaneous cognitive task while walking (i.e., dual task walking). Although it is known that aging results in widespread brain atrophy, few studies have integrated across more than one neuroimaging modality to comprehensively examine the structural neural correlates that may underlie dual task walking in older age. We collected spatiotemporal gait data during single and dual task walking for 37 young (18-34 years) and 23 older adults (66-86 years). We also collected T 1-weighted and diffusion-weighted MRI scans to determine how brain structure differs in older age and relates to dual task walking. We addressed two aims: (1) to characterize age differences in brain structure across a range of metrics including volumetric, surface, and white matter microstructure; and (2) to test for age group differences in the relationship between brain structure and the dual task cost (DTcost) of gait speed and variability. Key findings included widespread brain atrophy for the older adults, with the most pronounced age differences in brain regions related to sensorimotor processing. We also found multiple associations between regional brain atrophy and greater DTcost of gait speed and variability for the older adults. The older adults showed a relationship of both thinner temporal cortex and shallower sulcal depth in the frontal, sensorimotor, and parietal cortices with greater DTcost of gait. Additionally, the older adults showed a relationship of ventricular volume and superior longitudinal fasciculus free-water corrected axial and radial diffusivity with greater DTcost of gait. These relationships were not present for the young adults. Stepwise multiple regression found sulcal depth in the left precentral gyrus, axial diffusivity in the superior longitudinal fasciculus, and sex to best predict DTcost of gait speed, and cortical thickness in the superior temporal gyrus to best predict DTcost of gait variability for older adults. These results contribute to scientific understanding of how individual variations in brain structure are associated with mobility function in aging. This has implications for uncovering mechanisms of brain aging and for identifying target regions for mobility interventions for aging populations.
Collapse
Affiliation(s)
- Kathleen E. Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Justin M. Geraghty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Heather R. McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - C. J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rachael D. Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- University of Florida Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| |
Collapse
|
45
|
Clark DJ, Hawkins KA, Winesett SP, Cox BA, Pesquera S, Miles JW, Fuller DD, Fox EJ. Enhancing Locomotor Learning With Transcutaneous Spinal Electrical Stimulation and Somatosensory Augmentation: A Pilot Randomized Controlled Trial in Older Adults. Front Aging Neurosci 2022; 14:837467. [PMID: 35309891 PMCID: PMC8924500 DOI: 10.3389/fnagi.2022.837467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
This study investigated locomotor learning of a complex terrain walking task in older adults, when combined with two adjuvant interventions: transcutaneous spinal direct current stimulation (tsDCS) to increase lumbar spinal cord excitability, and textured shoe insoles to increase somatosensory feedback to the spinal cord. The spinal cord has a crucial contribution to control of walking, and is a novel therapeutic target for rehabilitation of older adults. The complex terrain task involved walking a 10-meter course consisting of nine obstacles and three sections of compliant (soft) walking surface. Twenty-three participants were randomly assigned to one of the following groups: sham tsDCS and smooth insoles (sham/smooth; control group), sham tsDCS and textured insoles (sham/textured), active tsDCS and smooth insoles (active/smooth), and active tsDCS and textured insoles (active/textured). The first objective was to assess the feasibility, tolerability, and safety of the interventions. The second objective was to assess preliminary efficacy for increasing locomotor learning, as defined by retention of gains in walking speed between a baseline visit of task practice, and a subsequent follow-up visit. Variability of the center of mass while walking over the course was also evaluated. The change in executive control of walking (prefrontal cortical activity) between the baseline and follow-up visits was measured with functional near infrared spectroscopy. The study results demonstrated feasibility based on enrollment and retention of participants, tolerability based on self-report, and safety based on absence of adverse events. Preliminary efficacy was supported based on trends showing larger gains in walking speed and more pronounced reductions in mediolateral center of mass variability at the follow-up visit in the groups randomized to active tsDCS or textured insoles. These data justify future larger studies to further assess dosing and efficacy of these intervention approaches. In conclusion, rehabilitation interventions that target spinal control of walking present a potential opportunity for enhancing walking function in older adults.
Collapse
Affiliation(s)
- David J. Clark
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States
- *Correspondence: David J. Clark,
| | - Kelly A. Hawkins
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Steven P. Winesett
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Brigette A. Cox
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Sarah Pesquera
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Jon W. Miles
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Emily J. Fox
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- Brooks Rehabilitation, Jacksonville, FL, United States
| |
Collapse
|
46
|
EEG-explained cortical correlates of transfemoral amputees during balancing with vibrotactile feedback: A pilot study. Med Eng Phys 2022; 101:103772. [DOI: 10.1016/j.medengphy.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/24/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022]
|
47
|
Khalil K, Asgher U, Ayaz Y. Novel fNIRS study on homogeneous symmetric feature-based transfer learning for brain-computer interface. Sci Rep 2022; 12:3198. [PMID: 35210460 PMCID: PMC8873341 DOI: 10.1038/s41598-022-06805-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
The brain-computer interface (BCI) provides an alternate means of communication between the brain and external devices by recognizing the brain activities and translating them into external commands. The functional Near-Infrared Spectroscopy (fNIRS) is becoming popular as a non-invasive modality for brain activity detection. The recent trends show that deep learning has significantly enhanced the performance of the BCI systems. But the inherent bottleneck for deep learning (in the domain of BCI) is the requirement of the vast amount of training data, lengthy recalibrating time, and expensive computational resources for training deep networks. Building a high-quality, large-scale annotated dataset for deep learning-based BCI systems is exceptionally tedious, complex, and expensive. This study investigates the novel application of transfer learning for fNIRS-based BCI to solve three objective functions (concerns), i.e., the problem of insufficient training data, reduced training time, and increased accuracy. We applied symmetric homogeneous feature-based transfer learning on convolutional neural network (CNN) designed explicitly for fNIRS data collected from twenty-six (26) participants performing the n-back task. The results suggested that the proposed method achieves the maximum saturated accuracy sooner and outperformed the traditional CNN model on averaged accuracy by 25.58% in the exact duration of training time, reducing the training time, recalibrating time, and computational resources.
Collapse
Affiliation(s)
- Khurram Khalil
- National Center of Artificial Intelligence (NCAI), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Umer Asgher
- National Center of Artificial Intelligence (NCAI), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.,Department of Mechatronics Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yasar Ayaz
- National Center of Artificial Intelligence (NCAI), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| |
Collapse
|
48
|
Hassan SA, Bonetti LV, Kasawara KT, Beal DS, Rozenberg D, Reid WD. Decreased automaticity contributes to dual task decrements in older compared to younger adults. Eur J Appl Physiol 2022; 122:965-974. [PMID: 35084541 DOI: 10.1007/s00421-022-04891-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE To contrast older and younger adults' prefrontal cortex (PFC) neural activity (through changes in oxygenated hemoglobin) during single and dual tasks, and to compare decrements in task performance. METHODS Changes in oxygenated hemoglobin of dorsolateral PFC were monitored using functional near-infrared spectroscopy during single tasks of spelling backwards (cognitive task) and 30 m preferred paced walk; and a dual task combining both. Gait velocity was measured by a pressure sensitive mat. RESULTS Twenty sex-matched younger (27.6 ± 3.5 years) and 17 older adults (71.2 ± 4.9 years) were recruited. The left PFC oxygenated hemoglobin decreased from start (1st quintile) to the end (5th quintile) of the walking task in younger adults ( - 0.03 ± 0.03 to - 0.72 ± 0.20 µM; p < .05) unlike the non-significant change in older adults (0.03 ± 0.06 to - 0.41 ± 0.32 µM, p > .05). Overall, oxygenation increased bilaterally during dual versus single walk task in older adults (Left PFC: 0.22 ± 0.16 vs. - 0.23 ± 0.21 µM, respectively; Right PFC: 0.17 ± 0.18 vs. - 0.33 ± 0.22 µM, respectively), but only in right PFC in younger adults ( - 0.02 ± 0.15 vs. - 0.47 ± 0.13 µM). Older adults exhibited lower velocity during the dual task compared to younger adults (1.03 ± 0.16 vs. 1.20 ± 0.17 m/s, respectively). Older age was associated with dual task cost on velocity during walking after adjusting for confounding variables. CONCLUSIONS Age-related cognitive decline in older adults may increase neural activity for cognitive tasks and diminish walking automaticity that may lead to decrements during dual tasking; the greater PFC increases in the oxygenated hemoglobin and lower velocity may be due to increased cognitive load and limited attentional resources.
Collapse
Affiliation(s)
- S Ahmed Hassan
- Physical Therapy, University of Toronto, Toronto, ON, Canada.
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
- Institute of Health Policy, Management and Evaluation, University of Toronto, 155 College St 4th Floor, Toronto, ON, Canada.
| | - Leandro Viçosa Bonetti
- Physical Therapy, University of Toronto, Toronto, ON, Canada
- Post-Graduation Program in Health Sciences, Universidade de Caxias Do Sul, Caxias Do Sul, Rio Grande do Sul, Brazil
- Department of Physical Therapy, Universidade de Caxias Do Sul, Caxias Do Sul, Rio Grande do Sul, Brazil
| | | | - Deryk S Beal
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
| | - Dmitry Rozenberg
- Temerty Faculty of Medicine, Division of Respirology, University Health Network, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - W Darlene Reid
- Physical Therapy, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- KITE-Toronto Rehab-University Health Network, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Ramanoël S, Durteste M, Delaux A, de Saint Aubert JB, Arleo A. Future trends in brain aging research: Visuo-cognitive functions at stake during mobility and spatial navigation. AGING BRAIN 2022; 2:100034. [PMID: 36908887 PMCID: PMC9997160 DOI: 10.1016/j.nbas.2022.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022] Open
Abstract
Aging leads to a complex pattern of structural and functional changes, gradually affecting sensorimotor, perceptual, and cognitive processes. These multiscale changes can hinder older adults' interaction with their environment, progressively reducing their autonomy in performing tasks relevant to everyday life. Autonomy loss can further be aggravated by the onset and progression of neurodegenerative disorders (e.g., age-related macular degeneration at the sensory input level; and Alzheimer's disease at the cognitive level). In this context, spatial cognition offers a representative case of high-level brain function that involves multimodal sensory processing, postural control, locomotion, spatial orientation, and wayfinding capabilities. Hence, studying spatial behavior and its neural bases can help identify early markers of pathogenic age-related processes. Until now, the neural correlates of spatial cognition have mostly been studied in static conditions thereby disregarding perceptual (other than visual) and motor aspects of natural navigation. In this review, we first demonstrate how visuo-motor integration and the allocation of cognitive resources during locomotion lie at the heart of real-world spatial navigation. Second, we present how technological advances such as immersive virtual reality and mobile neuroimaging solutions can enable researchers to explore the interplay between perception and action. Finally, we argue that the future of brain aging research in spatial navigation demands a widespread shift toward the use of naturalistic, ecologically valid experimental paradigms to address the challenges of mobility and autonomy decline across the lifespan.
Collapse
Affiliation(s)
- Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.,Université Côte d'Azur, LAMHESS, Nice, France
| | - Marion Durteste
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Alexandre Delaux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | | | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| |
Collapse
|
50
|
Bishnoi A, Chaparro GN, Hernandez ME. Effect of Heart Rate Reserve on Prefrontal Cortical Activation While Dual-Task Walking in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:47. [PMID: 35010305 PMCID: PMC8751037 DOI: 10.3390/ijerph19010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Hypertension is considered a risk factor for cardiovascular health and non-amnestic cognitive impairment in older adults. While heart rate reserve (HRR) has been shown to be a risk factor for hypertension, how impaired HRR in older adults can lead to cognitive impairment is still unclear. The objective of this study was to examine the effects of HRR on prefrontal cortical (PFC) activation under varying dual-task demands in older adults. Twenty-eight older adults (50-82 years of age) were included in this study and divided into higher (n = 14) and lower (n = 14) HRR groups. Participants engaged in the cognitive task which was the Modified Stroop Color Word Test (MSCWT) on a self-paced treadmill while walking. Participants with higher HRR demonstrated increased PFC activation in comparison to lower HRR, even after controlling for covariates in analysis. Furthermore, as cognitive task difficulty increased (from neutral to congruent to incongruent to switching), PFC activation increased. In addition, there was a significant interaction between tasks and HRR group, with older adults with higher HRR demonstrating increases in PFC activation, faster gait speed, and increased accuracy, relative to those with lower HRR, when going from neutral to switching tasks. These results provide evidence of a relationship between HRR and prefrontal cortical activation and cognitive and physical performance, suggesting that HRR may serve as a biomarker for cognitive health of an older adult with or without cardiovascular risk.
Collapse
Affiliation(s)
- Alka Bishnoi
- Department of Kinesiology and Community Health, College of Applied Health Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Gioella N. Chaparro
- Department of Kinesiology, California State University, Dominguez Hills, Carson, CA 90747, USA;
| | - Manuel E. Hernandez
- Department of Kinesiology and Community Health, College of Applied Health Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| |
Collapse
|