1
|
Duran AN, Yang R, Gredvig M, Wiggins JL. Trauma and anxiety interactions relate to reward processing in adolescents. J Affect Disord 2025; 379:662-672. [PMID: 40088987 DOI: 10.1016/j.jad.2025.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Anxiety is highly prevalent among adolescents, often linked to trauma exposure. However, not all youth with trauma develop anxiety, suggesting variability in risk pathways. This study investigates how neural reward system alterations may signal vulnerability to anxiety following trauma. We hypothesized that differences in reward-related connectivity in the ventral striatum and amygdala would distinguish adolescents with higher trauma and higher anxiety (anxiety risk group) from those with higher trauma but lower anxiety (non-anxiety development), as well as from youth with lower trauma and lower anxiety (typical development) and with lower trauma and higher anxiety (non-trauma-related anxiety). We utilized a sample of 44 adolescents (ages 11-19) with varying levels of trauma exposure and anxiety who completed a child-friendly monetary incentive delay task and analyzed their amygdala and ventral striatum functional connectivity during the task to assess the interaction between trauma exposure and anxiety levels. Our findings reveal distinct Trauma x Anxiety neural connectivity patterns in widespread prefrontal, temporal, and occipital clusters, potentially serving as biomarkers for anxiety risk. These results provide insight into potential neurobiological markers associated with anxiety vulnerability, bringing us a step closer to identifying targets for future intervention development. By highlighting unique patterns of reward processing associated with different trauma and anxiety profiles, this study advances our knowledge of the neural mechanisms underlying anxiety risk, laying the groundwork for future research on neurobiologically informed approaches to prevention and treatment.
Collapse
Affiliation(s)
- Alexa N Duran
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA.
| | - Ruiyu Yang
- San Diego State University, University of California San Diego Joint Doctoral Program in Clinical Psychology, USA.
| | - Madelin Gredvig
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA.
| | - Jillian Lee Wiggins
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA; San Diego State University, University of California San Diego Joint Doctoral Program in Clinical Psychology, USA.
| |
Collapse
|
2
|
Klein SD, Collins PF, Lozano-Wun V, Grund P, Luciana M. Frontostriatal Networks Undergo Functional Specialization During Adolescence that Follows a Ventral-Dorsal Gradient: Developmental Trajectories and Longitudinal Associations. J Neurosci 2025; 45:e1233232025. [PMID: 40064508 PMCID: PMC11984081 DOI: 10.1523/jneurosci.1233-23.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 04/12/2025] Open
Abstract
Seminal studies in animal neuroscience demonstrate that frontostriatal circuits exhibit a ventral-dorsal functional gradient to integrate neural functions related to reward processing and cognitive control. Prominent neurodevelopmental models posit that heightened reward-seeking and risk-taking during adolescence result from maturational imbalances between frontostriatal neural systems underlying reward processing and cognitive control. The present study investigated whether the development of ventral (VS) and dorsal (DS) striatal resting-state connectivity (rsFC) networks along this proposed functional gradient relates to putative imbalances between reward and executive systems posited by a dual neural systems theory of adolescent development. 163 participants aged 11-25 years (54% female, 90% white) underwent resting scans at baseline and biennially thereafter, yielding 339 scans across four assessment waves. We observed developmental increases in VS rsFC with brain areas implicated in reward processing (e.g., subgenual cingulate gyrus and medial orbitofrontal cortex) and concurrent decreases with areas implicated in executive function (e.g., ventrolateral and dorsolateral prefrontal cortices). DS rsFC exhibited the opposite pattern. More rapid developmental increases in VS rsFC with reward areas were associated with developmental improvements in reward-based decision making, whereas increases in DS rsFC with executive function areas were associated with improved executive function, though each network exhibited some crossover in function. Collectively, these findings suggest that typical adolescent neurodevelopment is characterized by a divergence in ventral and dorsal frontostriatal connectivity that may relate to developmental improvements in affective decision-making and executive function.Significance Statement Anatomical studies in nonhuman primates demonstrate that frontostriatal circuits are essential for integration of neural functions underlying reward processing and cognition, with human neuroimaging studies linking alterations in these circuits to psychopathology. The present study characterized the developmental trajectories of frontostriatal resting state networks from childhood to young adulthood. We demonstrate that ventral and dorsal aspects of the striatum exhibit distinct age-related changes that predicted developmental improvements in reward-related decision making and executive function. These results highlight that adolescence is characterized by distinct changes in frontostriatal networks that may relate to normative increases in risk-taking. Atypical developmental trajectories of frontostriatal networks may contribute to adolescent-onset psychopathology.
Collapse
Affiliation(s)
- Samuel D Klein
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Paul F Collins
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Vanessa Lozano-Wun
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Peter Grund
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Monica Luciana
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
- Masonic Institute for the Developing Brain, 2025 E River Pkwy, Minneapolis, MN, USA
| |
Collapse
|
3
|
Parker AJ, Walker JC, Takarae Y, Dougherty LR, Wiggins JL. Neural mechanisms of reward processing in preadolescent irritability: Insights from the ABCD study. J Affect Disord 2025; 370:286-298. [PMID: 39488236 DOI: 10.1016/j.jad.2024.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Elevated youth irritability is characterized by increased proneness to frustration relative to peers when rewards are blocked, and is a transdiagnostic symptom that predicts multiple forms of psychopathology and poorer socioeconomic outcomes in adulthood. Although mechanistic models propose that irritability is the result of aberrant reward-related brain function, youth irritability as it relates to multiple components of reward processes, including reward anticipation, gain, and loss, has yet to be examined in large, population-based samples. Data from the Adolescent Brain and Cognitive Development (ABCD) baseline sample (N = 5923) was used to examine associations between youth irritability (measured by parent-report) and reward-related brain activation and connectivity in a large, preadolescent sample. Preadolescents (M age = 9.96 years, SD = 0.63) performed the Monetary Incentive Delay task during functional MRI acquisition. In the task, during the anticipation period, participants were informed of the upcoming trial type (win money, lose money, no money at stake) and waited to hit a target; during the feedback period, participants were informed of their success. Whole brain and region of interest (ROI) analyses evaluated task conditions in relation to irritability level. Preadolescents with higher compared to lower levels of irritability demonstrated blunted prefrontal cortex activation in the anticipation period and exaggerated striatum-prefrontal connectivity differences among reward conditions during the feedback period. These effects persisted after adjusting for co-occurring anxiety, depression, and attention-deficit/hyperactivity disorder symptoms. These findings provide evidence for the role of reward salience in pathophysiological models of youth irritability, suggesting a mechanism that may contribute to exaggerated behavioral responses.
Collapse
Affiliation(s)
- Alyssa J Parker
- University of Maryland, College Park, United States of America.
| | - Johanna C Walker
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, United States of America
| | - Yukari Takarae
- Department of Psychology, San Diego State University, United States of America
| | - Lea R Dougherty
- University of Maryland, College Park, United States of America
| | - Jillian Lee Wiggins
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, United States of America; Department of Psychology, San Diego State University, United States of America
| |
Collapse
|
4
|
Ravindranath O, Perica MI, Parr AC, Ojha A, McKeon SD, Montano G, Ullendorff N, Luna B, Edmiston EK. Adolescent neurocognitive development and decision-making abilities regarding gender-affirming care. Dev Cogn Neurosci 2024; 67:101351. [PMID: 38383174 PMCID: PMC11247355 DOI: 10.1016/j.dcn.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Recently, politicians and legislative bodies have cited neurodevelopmental literature to argue that brain immaturity undermines decision-making regarding gender-affirming care (GAC) in youth. Here, we review this literature as it applies to adolescents' ability to make decisions regarding GAC. The research shows that while adolescence is a time of peak risk-taking behavior that may lead to impulsive decisions, neurocognitive systems supporting adult-level decisions are available given deliberative processes that minimize influence of short-term rewards and peers. Since GAC decisions occur over an extended period and with support from adult caregivers and clinicians, adolescents can engage adult-level decision-making in this context. We also weigh the benefits of providing GAC access during adolescence and consider the significant costs of blocking or delaying GAC. Transgender and non-binary (TNB) adolescents face significant mental health challenges, many of which are mitigated by GAC access. Further, initiating the GAC process during adolescence, which we define as beginning at pubertal onset, leads to better long-term mental health outcomes than waiting until adulthood. Taken together, existing research indicates that many adolescents can make informed decisions regarding gender-affirming care, and that this care is critical for the well-being of TNB youth. We highlight relevant considerations for policy makers, researchers, and clinicians.
Collapse
Affiliation(s)
- Orma Ravindranath
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Maria I Perica
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashley C Parr
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amar Ojha
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shane D McKeon
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gerald Montano
- Division of Adolescent and Young Adult Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Naomi Ullendorff
- Division of Adolescent and Young Adult Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Kale Edmiston
- Department of Psychiatry, University of Massachusetts Chan School of Medicine, USA
| |
Collapse
|
5
|
Jiang M, Ding R, Zhao Y, Xu J, Hao L, Chen M, Tian T, Tan S, Gao JH, He Y, Tao S, Dong Q, Qin S. Development of the triadic neural systems involved in risky decision-making during childhood. Dev Cogn Neurosci 2024; 66:101346. [PMID: 38290421 PMCID: PMC10844040 DOI: 10.1016/j.dcn.2024.101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Risk-taking often occurs in childhood as a compex outcome influenced by individual, family, and social factors. The ability to govern risky decision-making in a balanced manner is a hallmark of the integrity of cognitive and affective development from childhood to adulthood. The Triadic Neural Systems Model posits that the nuanced coordination of motivational approach, avoidance and prefrontal control systems is crucial to regulate adaptive risk-taking and related behaviors. Although widely studied in adolescence and adulthood, how these systems develop in childhood remains elusive. Here, we show heterogenous age-related differences in the triadic neural systems involved in risky decision-making in 218 school-age children relative to 80 young adults. Children were generally less reward-seeking and less risk-taking than adults, and exhibited gradual increases in risk-taking behaviors from 6 to 12 years-old, which are associated with age-related differences in brain activation patterns underlying reward and risk processing. In comparison to adults, children exhibited weaker activation in control-related prefrontal systems, but stronger activation in reward-related striatal systems. Network analyses revealed that children showed greater reward-related functional connectivity within and between the triadic systems. Our findings support an immature and unbalanced developmental view of the core neurocognitive systems involved in risky decision-making and related behaviors in middle to late childhood.
Collapse
Affiliation(s)
- Min Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Rui Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yanli Zhao
- Beijing HuiLongGuan Hospital, Peking University, Beijing 100096, China
| | - Jiahua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lei Hao
- College of Teacher Education, Southwest University, Chongqing 400715, China; Qiongtai Normal University Key Laboratory of Child Cognition & Behavior Development of Hainan Province, Haikou 571127, China
| | - Menglu Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ting Tian
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 100069, China.
| |
Collapse
|
6
|
Dugré JR, Potvin S. Functional Connectivity of the Nucleus Accumbens across Variants of Callous-Unemotional Traits: A Resting-State fMRI Study in Children and Adolescents. Res Child Adolesc Psychopathol 2024; 52:353-368. [PMID: 37878131 PMCID: PMC10896801 DOI: 10.1007/s10802-023-01143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
A large body of literature suggests that the primary (high callousness-unemotional traits [CU] and low anxiety) and secondary (high CU traits and anxiety) variants of psychopathy significantly differ in terms of their clinical profiles. However, little is known about their neurobiological differences. While few studies showed that variants differ in brain activity during fear processing, it remains unknown whether they also show atypical functioning in motivational and reward system. Latent Profile Analysis (LPA) was conducted on a large sample of adolescents (n = 1416) to identify variants based on their levels of callousness and anxiety. Seed-to-voxel connectivity analysis was subsequently performed on resting-state fMRI data to compare connectivity patterns of the nucleus accumbens across subgroups. LPA failed to identify the primary variant when using total score of CU traits. Using a family-wise cluster correction, groups did not differ on functional connectivity. However, at an uncorrected threshold the secondary variant showed distinct functional connectivity between the nucleus accumbens and posterior insula, lateral orbitofrontal cortex, supplementary motor area, and parietal regions. Secondary LPA analysis using only the callousness subscale successfully distinguish both variants. Group differences replicated results of deficits in functional connectivity between the nucleus accumbens and posterior insula and supplementary motor area, but additionally showed effect in the superior temporal gyrus which was specific to the primary variant. The current study supports the importance of examining the neurobiological markers across subgroups of adolescents at risk for conduct problems to precise our understanding of this heterogeneous population.
Collapse
Affiliation(s)
- Jules Roger Dugré
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2TT, England.
| | - Stéphane Potvin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Hochelaga, Montreal, 7331, H1N 3V2, Canada.
- Department of Psychiatry and Addictology, Faculty of medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
7
|
Michael C, Tillem S, Sripada CS, Burt SA, Klump KL, Hyde LW. Neighborhood poverty during childhood prospectively predicts adolescent functional brain network architecture. Dev Cogn Neurosci 2023; 64:101316. [PMID: 37857040 PMCID: PMC10587714 DOI: 10.1016/j.dcn.2023.101316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Family poverty has been associated with altered brain structure, function, and connectivity in youth. However, few studies have examined how disadvantage within the broader neighborhood may influence functional brain network organization. The present study leveraged a longitudinal community sample of 538 twins living in low-income neighborhoods to evaluate the prospective association between exposure to neighborhood poverty during childhood (6-10 y) with functional network architecture during adolescence (8-19 y). Using resting-state and task-based fMRI, we generated two latent measures that captured intrinsic brain organization across the whole-brain and network levels - network segregation and network segregation-integration balance. While age was positively associated with network segregation and network balance overall across the sample, these associations were moderated by exposure to neighborhood poverty. Specifically, these positive associations were observed only in youth from more, but not less, disadvantaged neighborhoods. Moreover, greater exposure to neighborhood poverty predicted reduced network segregation and network balance in early, but not middle or late, adolescence. These effects were detected both across the whole-brain system as well as specific functional networks, including fronto-parietal, default mode, salience, and subcortical systems. These findings indicate that where children live may exert long-reaching effects on the organization and development of the adolescent brain.
Collapse
Affiliation(s)
- Cleanthis Michael
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Scott Tillem
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Chandra S Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Picci G, Ott LR, Penhale SH, Taylor BK, Johnson HJ, Willett MP, Okelberry HJ, Wang Y, Calhoun VD, Stephen JM, Wilson TW. Developmental changes in endogenous testosterone have sexually-dimorphic effects on spontaneous cortical dynamics. Hum Brain Mapp 2023; 44:6043-6054. [PMID: 37811842 PMCID: PMC10619376 DOI: 10.1002/hbm.26496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/18/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The transition from childhood to adolescence is associated with an influx of sex hormones, which not only facilitates physical and behavioral changes, but also dramatic changes in neural circuitry. While previous work has shown that pubertal hormones modulate structural and functional brain development, few of these studies have focused on the impact that such hormones have on spontaneous cortical activity, and whether these effects are modulated by sex during this critical developmental window. Herein, we examined the effect of endogenous testosterone on spontaneous cortical activity in 71 typically-developing youth (ages 10-17 years; 32 male). Participants completed a resting-state magnetoencephalographic (MEG) recording, structural MRI, and provided a saliva sample for hormone analysis. MEG data were source-reconstructed and the power within five canonical frequency bands (delta, theta, alpha, beta, and gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially specific effects of testosterone and sex by testosterone interactions, while covarying out age. We found robust sex differences in the modulatory effects of testosterone on spontaneous delta, beta, and gamma activity. These interactions were largely confined to frontal cortices and exhibited a stark switch in the directionality of the correlation from the low (delta) to high frequencies (beta/gamma). For example, in the delta band, greater testosterone related to lower relative power in prefrontal cortices in boys, while the reverse pattern was found for girls. These data suggest testosterone levels are uniquely related to the development of spontaneous cortical dynamics during adolescence, and such levels are associated with different developmental patterns in males and females within regions implicated in executive functioning.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Lauren R. Ott
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Samantha H. Penhale
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Yu‐Ping Wang
- Department of Biomedical EngineeringTulane UniversityNew OrleansLouisianaUSA
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of TechnologyEmory UniversityAtlantaGeorgiaUSA
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
9
|
Kogler L, Müller VI, Moser E, Windischberger C, Gur RC, Habel U, Eickhoff SB, Derntl B. Testosterone and the Amygdala's Functional Connectivity in Women and Men. J Clin Med 2023; 12:6501. [PMID: 37892639 PMCID: PMC10607739 DOI: 10.3390/jcm12206501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The amygdala contains androgen receptors and is involved in various affective and social functions. An interaction between testosterone and the amygdala's functioning is likely. We investigated the amygdala's resting-state functional connectivity (rsFC) network in association with testosterone in 94 healthy young adult women and men (final data available for analysis from 42 women and 39 men). Across the whole sample, testosterone was positively associated with the rsFC between the right amygdala and the right middle occipital gyrus, and it further predicted lower agreeableness scores. Significant sex differences appeared for testosterone and the functional connectivity between the right amygdala and the right superior frontal gyrus (SFG), showing higher testosterone levels with lower connectivity in women. Sex further predicted the openness and agreeableness scores. Our results show that testosterone modulates the rsFC between brain areas involved in affective processing and executive functions. The data indicate that the cognitive control of the amygdala via the frontal cortex is dependent on the testosterone levels in a sex-specific manner. Testosterone seems to express sex-specific patterns (1) in networks processing affect and cognition, and (2) in the frontal down-regulation of the amygdala. The sex-specific coupling between the amygdala and the frontal cortex in interaction with the hormone levels may drive sex-specific differences in a variety of behavioral phenomena that are further associated with psychiatric illnesses that show sex-specific prevalence rates.
Collapse
Affiliation(s)
- Lydia Kogler
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health (TüCMH), Medical Faculty, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany;
- German Center for Mental Health (DZPG) Partner Site, 72076 Tübingen, Germany
| | - Veronika I. Müller
- Institute of Neuroscience and Medicine: Brain and Behavior (INM-7), Research Centre Jülich, 52425 Jülich, Germany; (V.I.M.); (S.B.E.)
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Ewald Moser
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.M.); (C.W.)
| | - Christian Windischberger
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.M.); (C.W.)
| | - Ruben C. Gur
- Brain Behavior Laboratory and Neurodevelopment and Psychosis Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany;
- JARA BRAIN Institute I, Translational Brain Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine: Brain and Behavior (INM-7), Research Centre Jülich, 52425 Jülich, Germany; (V.I.M.); (S.B.E.)
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health (TüCMH), Medical Faculty, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany;
- German Center for Mental Health (DZPG) Partner Site, 72076 Tübingen, Germany
- LEAD Graduate School and Network, University of Tübingen, Walter-Simon-Straße 12, 72074 Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction (IMPRS-MMFD), Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Molloy MF, Yu EJ, Mattson WI, Hoskinson KR, Taylor HG, Osher DE, Nelson EE, Saygin ZM. Effect of Extremely Preterm Birth on Adolescent Brain Network Organization. Brain Connect 2023; 13:394-409. [PMID: 37312515 DOI: 10.1089/brain.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Introduction: Extremely preterm (EPT) birth, defined as birth at a gestational age (GA) <28 weeks, can have a lasting impact on cognition throughout the life span. Previous investigations reveal differences in brain structure and connectivity between infants born preterm and full-term (FT), but how does preterm birth impact the adolescent connectome? Methods: In this study, we investigate how EPT birth can alter broadscale network organization later in life by comparing resting-state functional magnetic resonance imaging connectome-based parcellations of the entire cortex in adolescents born EPT (N = 22) to age-matched adolescents born FT (GA ≥37 weeks, N = 28). We compare these parcellations to adult parcellations from previous studies and explore the relationship between an individual's network organization and behavior. Results: Primary (occipital and sensorimotor) and frontoparietal networks were observed in both groups. However, there existed notable differences in the limbic and insular networks. Surprisingly, the connectivity profile of the limbic network of EPT adolescents was more adultlike than the same network in FT adolescents. Finally, we found a relationship between adolescents' overall cognition score and their limbic network maturity. Discussion: Overall, preterm birth may contribute to the atypical development of broadscale network organization in adolescence and may partially explain the observed cognitive deficits.
Collapse
Affiliation(s)
- M Fiona Molloy
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Emily J Yu
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Whitney I Mattson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - H Gerry Taylor
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - David E Osher
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Eric E Nelson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Zeynep M Saygin
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
McKeon SD, Calabro F, Thorpe RV, de la Fuente A, Foran W, Parr AC, Jones SR, Luna B. Age-related differences in transient gamma band activity during working memory maintenance through adolescence. Neuroimage 2023; 274:120112. [PMID: 37105338 PMCID: PMC10214866 DOI: 10.1016/j.neuroimage.2023.120112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Adolescence is a stage of development characterized by neurodevelopmental specialization of cognitive processes. In particular, working memory continues to improve through adolescence, with increases in response accuracy and decreases in response latency continuing well into the twenties. Human electroencephalogram (EEG) studies indicate that gamma oscillations (35-65 Hz) during the working memory delay period support the maintenance of mnemonic information guiding subsequent goal-driven behavior, which decrease in power with development. Importantly, recent electrophysiological studies have shown that gamma events, more so than sustained activity, may underlie working memory maintenance during the delay period. However, developmental differences in gamma events during working memory have not been studied. Here, we used EEG in conjunction with a novel spectral event processing approach to investigate age-related differences in transient gamma band activity during a memory guided saccade (MGS) task in 164 10- to 30-year-olds. Total gamma power was found to significantly decrease through adolescence, replicating prior findings. Results from the spectral event pipeline showed age-related decreases in the mean power of gamma events and trial-by-trial power variability across both the delay period and fixation epochs of the MGS task. In addition, we found that while event number decreased with age during the fixation period, the developmental decrease during the delay period was more dramatic, resulting in an increase in event spiking from fixation to delay in adolescence but not adulthood. While average power of the transient gamma events was found to mediate age-related differences in total gamma power in the fixation and delay periods, the number of gamma events was related to total power in only the delay period, suggesting that the power of gamma events may underlie the sustained gamma activity seen in EEG literature while the number of events may directly support age-related improvements in working memory maintenance. Our findings provide compelling new evidence for mechanistic changes in neural processing characterized by refinements in neural function as behavior becomes optimized in adulthood.
Collapse
Affiliation(s)
- Shane D McKeon
- Department of Bioengineering, University of Pittsburgh, PA, 15213, United States; The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, 15213, United States.
| | - Finnegan Calabro
- Department of Bioengineering, University of Pittsburgh, PA, 15213, United States; The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, 15213, United States; Department of Psychiatry, University of Pittsburgh, PA, 15213, United States
| | - Ryan V Thorpe
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Alethia de la Fuente
- Department of Physics, University of Buenos Aires, Argentina; Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, PA, 15213, United States
| | - Ashley C Parr
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, 15213, United States; Department of Psychiatry, University of Pittsburgh, PA, 15213, United States
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Beatriz Luna
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, 15213, United States; Department of Psychiatry, University of Pittsburgh, PA, 15213, United States.
| |
Collapse
|
12
|
Hall NT, Hallquist MN. Dissociation of basolateral and central amygdala effective connectivity predicts the stability of emotion-related impulsivity in adolescents and emerging adults with borderline personality symptoms: a resting-state fMRI study. Psychol Med 2023; 53:3533-3547. [PMID: 35225192 DOI: 10.1017/s0033291722000101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Borderline personality disorder (BPD) is associated with altered activity in the prefrontal cortex (PFC) and amygdala, yet no studies have examined fronto-limbic circuitry in borderline adolescents and emerging adults. Here, we examined the contribution of fronto-limbic effective connectivity (EC) to the longitudinal stability of emotion-related impulsivity, a key feature of BPD, in symptomatic adolescents and young adults. METHODS We compared resting-state EC in 82 adolescents and emerging adults with and without clinically significant borderline symptoms (n BPD = 40, ages 13-30). Group-specific directed networks were estimated amongst fronto-limbic nodes including PFC, ventral striatum (VS), central amygdala (CeN), and basolateral amygdala (BLA). We examined the association of directed centrality metrics with initial levels and rates of change in emotion-related impulsivity symptoms over a one-year follow-up using latent growth curve models (LGCMs). RESULTS In controls, ventromedial prefrontal cortex (vmPFC) and dorsal ACC had a directed influence on CeN and VS, respectively. In the BPD group, bilateral BLA had a directed influence on CeN, whereas in the healthy group CeN influenced BLA. LGCMs indicated that emotion-related impulsivity was stable across a one-year follow-up in the BPD group. Further, higher EC of R CeN to other regions in controls was associated with stronger within-person decreases in emotion-related impulsivity. CONCLUSIONS Functional inputs from BLA and vmPFC appear to play competing roles in influencing CeN activity. In borderline adolescents and young adults, BLA may predominate over CeN activity, while in controls the ability of CeN to influence BLA activity predicted more rapid reductions in emotion-related impulsivity.
Collapse
Affiliation(s)
- Nathan T Hall
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael N Hallquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Liuzzi MT, Kryza-Lacombe M, Christian IR, Owen C, Redcay E, Riggins T, Dougherty LR, Wiggins JL. Irritability in early to middle childhood: Cross-sectional and longitudinal associations with resting state amygdala and ventral striatum connectivity. Dev Cogn Neurosci 2023; 60:101206. [PMID: 36736018 PMCID: PMC9918422 DOI: 10.1016/j.dcn.2023.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Irritability is a common symptom that may affect children's brain development. This study aims to (1) characterize age-dependent and age-independent neural correlates of irritability in a sample of 4-8 year old children, and (2) examine early irritability as a predictor of change in brain connectivity over time. METHODS Typically developing children, ages 4-8 years, with varying levels of irritability were included. Resting state fMRI and parent-rated irritability (via Child Behavior Checklist; CBCL) were collected at up to three time points, resulting in a cross-sectional sample at baseline (N = 176, M = 6.27, SD = 1.49), and two subsamples consisting of children who were either 4 or 6 years old at baseline that were followed longitudinally for two additional timepoints, one- and two-years post-baseline. That is, a "younger" cohort (age 4 at baseline, n = 34, M age = 4.44, SD = 0.25) and an "older" cohort (age 6 at baseline, n = 29, M age = 6.50, SD = 0.30). Across our exploratory analyses, we examined how irritability related to seed-based intrinsic connectivity via whole-brain connectivity ANCOVAs using the left and right amygdala, and left and right ventral striatum as seed regions. RESULTS Cross-sectionally, higher levels of irritability were associated with greater amygdala connectivity with the posterior cingulate, controlling for child age. No age-dependent effects were observed in the cross-sectional analyses. Longitudinal analyses in the younger cohort revealed that early higher vs. lower levels of irritability, controlling for later irritability, were associated with decreases in amygdala and ventral striatum connectivity with multiple frontal and parietal regions over time. There were no significant findings in the older cohort. CONCLUSIONS Findings suggest that irritability is related to altered neural connectivity during rest regardless of age in early to middle childhood and that early childhood irritability may be linked to altered changes in neural connectivity over time. Understanding how childhood irritability interacts with neural processes can inform pathophysiological models of pediatric irritability and the development of targeted mechanistic interventions.
Collapse
Affiliation(s)
- Michael T Liuzzi
- San Diego State University, Department of Psychology, San Diego, CA, USA.
| | - Maria Kryza-Lacombe
- San Diego State University/University of California, San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | | | - Cassidy Owen
- San Diego State University, Department of Psychology, San Diego, CA, USA
| | - Elizabeth Redcay
- University of Maryland, Department of Psychology, College Park, MD, USA
| | - Tracy Riggins
- University of Maryland, Department of Psychology, College Park, MD, USA
| | - Lea R Dougherty
- University of Maryland, Department of Psychology, College Park, MD, USA
| | - Jillian Lee Wiggins
- San Diego State University, Department of Psychology, San Diego, CA, USA; San Diego State University/University of California, San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| |
Collapse
|
14
|
Caballero C, Nook EC, Gee DG. Managing fear and anxiety in development: A framework for understanding the neurodevelopment of emotion regulation capacity and tendency. Neurosci Biobehav Rev 2023; 145:105002. [PMID: 36529313 DOI: 10.1016/j.neubiorev.2022.105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
How we manage emotional responses to environmental threats is central to mental health, as difficulties regulating threat-related distress can blossom into symptoms of anxiety disorders. Given that anxiety disorders emerge early in the lifespan, it is crucial we understand the multi-level processes that support effective regulation of distress. Scholars have given increased attention to behavioral and neural development of emotion regulation abilities, particularly cognitive reappraisal capacity (i.e., how strongly one can down-regulate negative affect by reinterpreting a situation to change one's emotions). However, this work has not been well integrated with research on regulatory tendency (i.e., how often one spontaneously regulates emotion in daily life). Here, we review research on the development of both emotion regulation capacity and tendency. We then propose a framework for testing hypotheses and eventually constructing a neurodevelopmental model of both dimensions of emotion regulation. Clarifying how the brain supports both effective and frequent regulation of threat-related distress across development is crucial to identifying multi-level signs of dysregulation and developing interventions that support youth mental health.
Collapse
Affiliation(s)
- Camila Caballero
- Department of Psychology, Yale University, Kirtland Hall, 2 Hillhouse Ave, New Haven, CT 06520, USA
| | - Erik C Nook
- Department of Psychology, Yale University, Kirtland Hall, 2 Hillhouse Ave, New Haven, CT 06520, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, Kirtland Hall, 2 Hillhouse Ave, New Haven, CT 06520, USA.
| |
Collapse
|
15
|
Ojha A, Parr AC, Foran W, Calabro FJ, Luna B. Puberty contributes to adolescent development of fronto-striatal functional connectivity supporting inhibitory control. Dev Cogn Neurosci 2022; 58:101183. [PMID: 36495791 PMCID: PMC9730138 DOI: 10.1016/j.dcn.2022.101183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Adolescence is defined by puberty and represents a period characterized by neural circuitry maturation (e.g., fronto-striatal systems) facilitating cognitive improvements. Though studies have characterized age-related changes, the extent to which puberty influences maturation of fronto-striatal networks is less known. Here, we combine two longitudinal datasets to characterize the role of puberty in the development of fronto-striatal resting-state functional connectivity (rsFC) and its relationship to inhibitory control in 106 10-18-year-olds. Beyond age effects, we found that puberty was related to decreases in rsFC between the caudate and the anterior vmPFC, rostral and ventral ACC, and v/dlPFC, as well as with rsFC increases between the dlPFC and nucleus accumbens (NAcc) across males and females. Stronger caudate rsFC with the dlPFC and vlPFC during early puberty was associated with worse inhibitory control and slower correct responses, respectively, whereas by late puberty, stronger vlPFC rsFC with the dorsal striatum was associated with faster correct responses. Taken together, our findings suggest that certain fronto-striatal connections are associated with pubertal maturation beyond age effects, which, in turn are related to inhibitory control. We discuss implications of puberty-related fronto-striatal maturation to further our understanding of pubertal effects related to adolescent cognitive and affective neurodevelopment.
Collapse
Affiliation(s)
- Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Correspondence to: Laboratory of Neurocognitive Development, University of Pittsburgh, 121 Meyran Ave, Pittsburgh, PA 15213, USA.
| | - Ashley C. Parr
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Do KT, McCormick EM, Prinstein MJ, Lindquist KA, Telzer EH. Intrinsic connectivity within the affective salience network moderates adolescent susceptibility to negative and positive peer norms. Sci Rep 2022; 12:17463. [PMID: 36261429 PMCID: PMC9582022 DOI: 10.1038/s41598-022-17780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/31/2022] [Indexed: 01/12/2023] Open
Abstract
Not all adolescents are equally susceptible to peer influence, and for some, peer influence exerts positive rather than negative effects. Using resting-state functional magnetic resonance imaging, the current study examined how intrinsic functional connectivity networks associated with processing social cognitive and affective stimuli predict adolescents' (n = 87, ages 11-14 years) prosocial tendencies and risky behaviors in the context of positive and negative peer norms. We tested the moderating role of four candidate intrinsic brain networks-associated with mentalizing, cognitive control, motivational relevance, and affective salience-in peer influence susceptibility. Only intrinsic connectivity within the affective salience network significantly moderated the association between peer norms and adolescent behavior above and beyond the other networks. Adolescents with high intrinsic connectivity within the affective salience network reported greater prosocial tendencies in contexts with more positive peer norms but greater risk-taking behavior in contexts with more negative peer norms. In contrast, peer norms were not associated with adolescent behavior for individuals with low affective salience within-network intrinsic connectivity. The mentalizing network, cognitive control network, and motivational relevance network were not associated with individual differences in peer influence susceptibility. This study identifies key neural mechanisms underlying differential susceptibility to positive and negative peer influence in early adolescence, with a particular emphasis on the role of affective salience over traditional mentalizing, regulatory, and motivational processes.
Collapse
Affiliation(s)
- Kathy T. Do
- grid.10698.360000000122483208Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270 USA
| | - Ethan M. McCormick
- grid.10417.330000 0004 0444 9382Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mitchell J. Prinstein
- grid.10698.360000000122483208Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270 USA
| | - Kristen A. Lindquist
- grid.10698.360000000122483208Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270 USA
| | - Eva H. Telzer
- grid.10698.360000000122483208Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270 USA
| |
Collapse
|
17
|
Penhale SH, Picci G, Ott LR, Taylor BK, Frenzel MR, Eastman JA, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Impacts of adrenarcheal DHEA levels on spontaneous cortical activity during development. Dev Cogn Neurosci 2022; 57:101153. [PMID: 36174268 PMCID: PMC9519481 DOI: 10.1016/j.dcn.2022.101153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) production is closely associated with the first pubertal hormonal event, adrenarche. Few studies have documented the relationships between DHEA and functional brain development, with even fewer examining the associations between DHEA and spontaneous cortical activity during the resting-state. Thus, whether DHEA levels are associated with the known developmental shifts in the brain's idling cortical rhythms remains poorly understood. Herein, we examined spontaneous cortical activity in 71 typically-developing youth (9-16 years; 32 male) using magnetoencephalography (MEG). MEG data were source imaged and the power within five canonical frequency bands (delta, theta, alpha, beta, gamma) was computed to identify spatially- and spectrally-specific effects of salivary DHEA and DHEA-by-sex interactions using vertex-wise ANCOVAs. Our results indicated robust increases in power with increasing DHEA within parieto-occipital cortices in all frequency bands except alpha, which decreased with increasing DHEA. In the delta band, DHEA and sex interacted within frontal and temporal cortices such that with increasing DHEA, males exhibited increasing power while females showed decreasing power. These data suggest that spontaneous cortical activity changes with endogenous DHEA levels during the transition from childhood to adolescence, particularly in sensory and attentional processing regions. Sexually-divergent trajectories were only observed in later-developing frontal cortical areas.
Collapse
Affiliation(s)
- Samantha H Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
18
|
Risk-Taking Behavior Among Male Adolescents: The Role of Observer Presence and Individual Self-Control. J Youth Adolesc 2022; 51:2161-2172. [PMID: 35861907 DOI: 10.1007/s10964-022-01659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
A number of studies have focused on the same-sex peer effect on and the developmental difference in adolescent risk-taking in terms of the dual systems model. Little research, however, addresses the effects of different observers, the role of different levels of individual self-control, and their interactions. To fill this gap, the present study examined the main and interactive effects of observer presence and individual self-control on male adolescents' risk-taking behavior with an experimental design. A total of 261 male adolescents (Mage = 15.79 ± 0.79, range = 14-18) completed an adapted Stoplight Task, which measures risk-taking behavior, in the presence of an observer, either peer or adult, either male or female. The results indicated that a same-sex peer's presence and low self-control were both risk factors of male adolescents' risk-taking, but did only low self-control male adolescents take serious risks when in the presence of a same-sex peer whereas those with high self-control consistently had low levels of risk-taking under any condition. An opposite-sex observer, particularly an opposite-sex adult's presence, played a similar protective role for male adolescents with low self-control. The findings suggest that a high level of self-control closely related to the cognitive control system may significantly buffer the negative effect of an adverse social stimulus which activates the social-emotional system on male adolescents' risk-taking; the findings also reveal that an opposite-sex adult's presence may contribute to a decrease in male adolescents' risk-taking by improving their cognitive control system.
Collapse
|
19
|
Kryza-Lacombe M, Palumbo D, Wakschlag LS, Dougherty LR, Wiggins JL. Executive functioning moderates neural mechanisms of irritability during reward processing in youth. Psychiatry Res Neuroimaging 2022; 323:111483. [PMID: 35561577 PMCID: PMC9829104 DOI: 10.1016/j.pscychresns.2022.111483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/13/2022] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
Pediatric irritability is the most robust indicator of transdiagnostic psychopathology risk. It is associated with altered neural reward processing, including neural networks related to cognitive control, and better cognitive control has been hypothesized to mitigate irritability. We evaluated the relationship of executive functioning (EF) with irritability-related neural correlates of reward processing in youths with varying levels of irritability. Participants (N = 51, mean age=13.80 years, SD=1.94) completed a monetary incentive delay task during multiband fMRI acquisition. Irritability and EF were measured via the Affective Reactivity Index and the NIH Toolbox cognition battery, respectively. Whole-brain analyses, controlling for age, examined the moderating role of EF on irritability-related brain activation and connectivity (seeds: striatum, amygdala) during reward anticipation and performance feedback. Irritability-related neural patterns during reward processing depended on EF, in occipital areas during reward anticipation and limbic, frontal, and temporal networks during performance feedback. Higher irritability combined with higher EF was associated with neural patterns opposite to those observed for higher irritability with lower co-occurring EF. Although preliminary, findings suggest that EF may buffer irritability-related reward processing deficits. Additionally, individual differences in EF and their relation to irritability may be related to varied etiologic mechanisms of irritability with important implications for personalized prevention and intervention.
Collapse
Affiliation(s)
- Maria Kryza-Lacombe
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, United States.
| | - Danielle Palumbo
- Department of Psychology, San Diego State University, United States
| | - Lauren S Wakschlag
- Department of Medical Social Sciences, Feinberg School of Medicine, & Institute for Innovations in Developmental Sciences, Northwestern University, United States
| | - Lea R Dougherty
- University of Maryland, Department of Psychology, United States
| | - Jillian Lee Wiggins
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, United States; Department of Psychology, San Diego State University, United States
| |
Collapse
|
20
|
Parr AC, Calabro F, Tervo-Clemmens B, Larsen B, Foran W, Luna B. Contributions of dopamine-related basal ganglia neurophysiology to the developmental effects of incentives on inhibitory control. Dev Cogn Neurosci 2022; 54:101100. [PMID: 35344773 PMCID: PMC8961188 DOI: 10.1016/j.dcn.2022.101100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 01/19/2023] Open
Abstract
Inhibitory control can be less reliable in adolescence, however, in the presence of rewards, adolescents' performance often improves to adult levels. Dopamine is known to play a role in signaling rewards and supporting cognition, but its role in the enhancing effects of reward on adolescent cognition and inhibitory control remains unknown. Here, we assessed the contribution of basal ganglia dopamine-related neurophysiology using longitudinal MR-based assessments of tissue iron in rewarded inhibitory control, using an antisaccade task. In line with prior work, we show that neutral performance improves with age, and incentives enhance performance in adolescents to that of adults. We find that basal ganglia tissue iron is associated with individual differences in the magnitude of this reward boost, which is strongest in those with high levels of tissue iron, predominantly in adolescence. Our results provide novel evidence that basal ganglia neurophysiology supports developmental effects of rewards on cognition, which can inform neurodevelopmental models of the role of dopamine in reward processing during adolescence.
Collapse
Affiliation(s)
- Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | | | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| |
Collapse
|
21
|
Calabrese JR, Goetschius LG, Murray L, Kaplan MR, Lopez-Duran N, Mitchell C, Hyde LW, Monk CS. Mapping frontostriatal white matter tracts and their association with reward-related ventral striatum activation in adolescence. Brain Res 2022; 1780:147803. [PMID: 35090884 DOI: 10.1016/j.brainres.2022.147803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
Abstract
The ventral striatum (VS) is implicated in reward processing and motivation. Human and non-human primate studies demonstrate that the VS and prefrontal cortex (PFC), which comprise the frontostriatal circuit, interact to influence motivated behavior. However, there is a lack of research that precisely maps and quantifies VS-PFC white matter tracts. Moreover, no studies have linked frontostriatal white matter to VS activation. Using a multimodal neuroimaging approach with diffusion MRI (dMRI) and functional MRI (fMRI), the present study had two objectives: 1) to chart white matter tracts between the VS and specific PFC structures and 2) assess the association between the degree of VS-PFC white matter tract connectivity and VS activation in 187 adolescents. White matter connectivity was assessed with probabilistic tractography and functional activation was examined with two fMRI tasks (one task with social reward and another task using monetary reward). We found widespread but variable white matter connectivity between the VS and areas of the PFC, with the anterior insula and subgenual cingulate cortex demonstrating the greatest degree of connectivity with the VS. VS-PFC structural connectivity was related to functional activation in the VS though activation depended on the specific PFC region and reward task.
Collapse
Affiliation(s)
| | | | - Laura Murray
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Megan R Kaplan
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | | | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Population Studies Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Cao X, Li Q, Liu S, Li Z, Wang Y, Cheng L, Yang C, Xu Y. Enhanced Resting-State Functional Connectivity of the Nucleus Accumbens in First-Episode, Medication-Naïve Patients With Early Onset Schizophrenia. Front Neurosci 2022; 16:844519. [PMID: 35401094 PMCID: PMC8990232 DOI: 10.3389/fnins.2022.844519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 01/10/2023] Open
Abstract
There is abundant evidence that early onset schizophrenia (EOS) is associated with abnormalities in widespread regions, including the cortical, striatal, and limbic areas. As a main component of the ventral striatum, the nucleus accumbens (NAc) is implicated in the pathology of schizophrenia. However, functional connection patterns of NAc in patients with schizophrenia, especially EOS, are seldom explored. A total of 78 first-episode, medication-naïve patients with EOS and 90 healthy controls were recruited in the present study, and resting-state, seed-based functional connectivity (FC) analyses were performed to investigate temporal correlations between NAc and the rest of the brain in the two groups. Additionally, correlation analyses were done between regions showing group differences in NAc functional integration and clinical features of EOS. Group comparison found enhanced FC of the NAc in the EOS group relative to the HCs with increased FC in the right superior temporal gyrus and left superior parietal gyrus with the left NAc region of interest (ROI) and elevated FC in left middle occipital gyrus with the right NAc ROI. No significant associations were found between FC strength and symptom severity as well as the age of the patients. Our findings reveal abnormally enhanced FC of the NAc with regions located in the temporal, parietal, and occipital areas, which were implicated in auditory/visual processing, sensorimotor integration, and cognitive functions. The results suggest disturbed relationships between regions subserving reward, salience processing, and regions subserving sensory processing as well as cognitive functions, which may deepen our understanding of the role of NAc in the pathology of EOS.
Collapse
Affiliation(s)
- Xiaohua Cao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Qiang Li
- Shanxi Provincial Corps Hospital of Chinese People’s Armed Police Force, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zexuan Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanfang Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Long Cheng
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chengxiang Yang
- Department of Psychiatry, Shanxi Bethune Hospital, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, Taiyuan, China
- *Correspondence: Yong Xu, ;
| |
Collapse
|
23
|
Chan SY, Ong ZY, Ngoh ZM, Chong YS, Zhou JH, Fortier MV, Daniel LM, Qiu A, Meaney MJ, Tan AP. Structure-function coupling within the reward network in preschool children predicts executive functioning in later childhood. Dev Cogn Neurosci 2022; 55:101107. [PMID: 35413663 PMCID: PMC9010704 DOI: 10.1016/j.dcn.2022.101107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
Early differences in reward behavior have been linked to executive functioning development. The nucleus accumbens (NAc) and orbitofrontal cortex (OFC) are activated by reward-related tasks and identified as key nodes of the brain circuit that underlie reward processing. We aimed to investigate the relation between NAc-OFC structural and functional connectivity in preschool children, as well as associations with future reward sensitivity and executive function. We showed that NAc-OFC structural and functional connectivity were not significantly associated in preschool children, but both independently predicted sensitivity to reward in males in a left-lateralized manner. Moreover, significant NAc-OFC structure-function coupling was only found in individuals who performed poorly on executive function tasks in later childhood, but not in the middle- and high-performing groups. As structure-function coupling is proposed to measure functional specialization, this finding suggests premature functional specialization within the reward network, which may impede dynamic communication with other regions, affects executive function development. Our study also highlights the utility of multimodal imaging data integration when studying the effects of reward network functional flexibility in the preschool age, a critical period in brain and executive function development. Functional connectivity is not tethered to structural connectivity in preschool age. Higher degree of SC-FC coupling reflects lower plasticity in early childhood. Gender differences in reward sensitivity were present as early as in preschool age. Early reward network SC-FC coupling affects later executive function.
Collapse
|
24
|
Ventral striatal resting-state functional connectivity in adolescents is associated with earlier onset of binge drinking. Drug Alcohol Depend 2021; 227:109010. [PMID: 34488072 PMCID: PMC8464521 DOI: 10.1016/j.drugalcdep.2021.109010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Earlier engagement in heavy drinking during adolescence is a risk factor for the development of alcohol use disorders later in life. Longitudinal studies in adolescents have linked brain structure and task-evoked function to future alcohol use; however, less is known about how intrinsic network-level interactions relate to future substance use during this developmental period. METHODS In this prospective longitudinal study, resting-state functional connectivity of the ventral striatum, risky decision making, and sensation seeking were measured in 73 adolescents at baseline. Participants were between the ages of 14 and 15 and had no substantial history of substance use upon study entry. Follow-up interviews were conducted approximately every 3 months to assess the initiation of binge drinking (≥ 5 or ≥ 4 drinks per occasion for males or females, respectively). RESULTS Adolescents who began binge drinking sooner exhibited greater connectivity of the ventral striatum to the left precuneus, left angular gyrus, and the left superior frontal gyrus. Greater connectivity of the ventral striatum to the right insula/putamen was associated with longer duration to the onset of binge drinking. Resting-state functional connectivity in these regions was not associated with baseline assessments of risky decision making or sensation seeking. CONCLUSIONS Findings provide novel information about potential risk factors for early initiation of heavy alcohol use. Interventions that target relevant resting-state networks may enhance prevention efforts to decrease adolescent substance use by prolonging onset to heavier levels of alcohol consumption.
Collapse
|
25
|
Swartz JR, Carranza AF, Tully LM, Knodt AR, Jiang J, Irwin MR, Hostinar CE. Associations between peripheral inflammation and resting state functional connectivity in adolescents. Brain Behav Immun 2021; 95:96-105. [PMID: 33631285 PMCID: PMC8241234 DOI: 10.1016/j.bbi.2021.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Relatively little is known about associations between peripheral inflammation and neural function in humans. Neuroimaging studies in adults have suggested that elevated peripheral inflammatory markers are associated with altered resting state functional connectivity (rsFC) in several brain networks associated with mood and cognition. Few studies have examined these associations in adolescents, yet scarce data from adolescents point to different networks than adult studies. The current study examined the associations between peripheral inflammation and rsFC in a community sample of adolescents (n = 70; age, 12-15 years; 32 female, 36 male, 2 nonbinary). After blood sampling, an fMRI scan was performed to assess rsFC. Assay for serum inflammatory markers, including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP), was performed. Results indicated that higher TNF-α was associated with altered rsFC between the right amygdala and left striatum and between the right inferior frontal gyrus and left parietal cortex (p < 0.05 whole-brain corrected). Associations with IL-6 and CRP were not significant. In contrast with findings in adults, inflammation may have unique links with the connectivity of the developing adolescent brain. Results have implications for understanding how peripheral inflammation may influence connectivity during adolescence, when neural networks are undergoing major developmental changes.
Collapse
Affiliation(s)
- Johnna R Swartz
- Department of Human Ecology, University of California, Davis, CA, United States.
| | - Angelica F Carranza
- Department of Human Ecology, University of California, Davis, CA, United States
| | - Laura M Tully
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, United States
| | - Annchen R Knodt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Janina Jiang
- Norman Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA, United States
| | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA, United States; Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Camelia E Hostinar
- Department of Psychology, University of California, Davis, CA, United States
| |
Collapse
|
26
|
van Vugt FT, Hartmann K, Altenmüller E, Mohammadi B, Margulies DS. The impact of early musical training on striatal functional connectivity. Neuroimage 2021; 238:118251. [PMID: 34116147 DOI: 10.1016/j.neuroimage.2021.118251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Evidence from language, visual and sensorimotor learning suggests that training early in life is more effective. The present work explores the hypothesis that learning during sensitive periods involves distinct brain networks in addition to those involved when learning later in life. Expert pianists were tested who started their musical training early (<7 years of age; n = 21) or late (n = 15), but were matched for total lifetime practice. Motor timing expertise was assessed using a musical scale playing task. Brain activity at rest was measured using fMRI and compared with a control group of nonmusicians (n = 17). Functional connectivity from seeds in the striatum revealed a striatal-cortical-sensorimotor network that was observed only in the early-onset group. In this network, higher connectivity correlated with greater motor timing expertise, which resulted from early/late group differences in motor timing expertise. By contrast, networks that differentiated musicians and nonmusicians, namely a striatal-occipital-frontal-cerebellar network in which connectivity was higher in musicians, tended to not show differences between early and late musicians and not be correlated with motor timing expertise. These results parcel musical sensorimotor neuroplasticity into a set of musicianship-related networks and a distinct set of predominantly early-onset networks. The findings lend support to the possibility that we can learn skills more easily early in development because during sensitive periods we recruit distinct brain networks that are no longer implicated in learning later in life.
Collapse
Affiliation(s)
- F T van Vugt
- Institute of Music Physiology and Musicians' Medicine, Emmichplatz 1, 30175 Hannover, Germany; Psychology Department, International Laboratory for Brain, Music, and Sound Research, University of Montreal, Canada; Psychology Department, McGill University, Montreal, Canada.
| | - K Hartmann
- Institute of Music Physiology and Musicians' Medicine, Emmichplatz 1, 30175 Hannover, Germany; Universitätsklinik für Neurochirurgie, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - E Altenmüller
- Institute of Music Physiology and Musicians' Medicine, Emmichplatz 1, 30175 Hannover, Germany
| | - B Mohammadi
- CNS-LAB, International Neuroscience Institute (INI), Rudolf-Pichlmayr-Str., 4, 30625 Hannover, Germany
| | - D S Margulies
- CNRS UMR 8002, Integrative Neuroscience and Cognition Center, University of Paris, Paris, France
| |
Collapse
|
27
|
Parr AC, Calabro F, Larsen B, Tervo-Clemmens B, Elliot S, Foran W, Olafsson V, Luna B. Dopamine-related striatal neurophysiology is associated with specialization of frontostriatal reward circuitry through adolescence. Prog Neurobiol 2021; 201:101997. [PMID: 33667595 PMCID: PMC8096717 DOI: 10.1016/j.pneurobio.2021.101997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
Characterizing developmental changes in frontostriatal circuitry is critical to understanding adolescent development and can clarify neurobiological mechanisms underlying increased reward sensitivity and risk-taking and the emergence of psychopathology during this period. However, the role of striatal neurobiology in the development of frontostriatal circuitry through human adolescence remains largely unknown. We examined background connectivity during a reward-guided decision-making task ("reward-state"), in addition to resting-state, and assessed the association between age-related changes in frontostriatal connectivity and age-related changes in reward learning and risk-taking through adolescence. Further, we examined the contribution of dopaminergic processes to changes in frontostriatal circuitry and decision-making using MR-based assessments of striatal tissue-iron as a correlate of dopamine-related neurobiology. Connectivity between the nucleus accumbens (NAcc) and ventral anterior cingulate, subgenual cingulate, and orbitofrontal cortices decreased through adolescence into adulthood, and decreases in reward-state connectivity were associated with improvements reward-guided decision-making as well as with decreases in risk-taking. Finally, NAcc tissue-iron mediated age-related changes and was associated with variability in connectivity, and developmental increases in NAcc R2' corresponded with developmental decreases in connectivity. Our results provide evidence that dopamine-related striatal properties contribute to the specialization of frontostriatal circuitry, potentially underlying changes in risk-taking and reward sensitivity into adulthood.
Collapse
Affiliation(s)
- Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Bart Larsen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Brenden Tervo-Clemmens
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Samuel Elliot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Valur Olafsson
- NUBIC, Northeastern University, Boston, MA, 02115, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| |
Collapse
|
28
|
Abstract
Childhood socio-economic status (SES), a measure of the availability of material and social resources, is one of the strongest predictors of lifelong well-being. Here we review evidence that experiences associated with childhood SES affect not only the outcome but also the pace of brain development. We argue that higher childhood SES is associated with protracted structural brain development and a prolonged trajectory of functional network segregation, ultimately leading to more efficient cortical networks in adulthood. We hypothesize that greater exposure to chronic stress accelerates brain maturation, whereas greater access to novel positive experiences decelerates maturation. We discuss the impact of variation in the pace of brain development on plasticity and learning. We provide a generative theoretical framework to catalyse future basic science and translational research on environmental influences on brain development.
Collapse
Affiliation(s)
- Ursula A Tooley
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Allyson P Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Bretzke M, Wahl H, Plichta MM, Wolff N, Roessner V, Vetter NC, Buse J. Ventral Striatal Activation During Reward Anticipation of Different Reward Probabilities in Adolescents and Adults. Front Hum Neurosci 2021; 15:649724. [PMID: 33958995 PMCID: PMC8093817 DOI: 10.3389/fnhum.2021.649724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Adolescence has been linked to an enhanced tolerance of uncertainty and risky behavior and is possibly connected to an increased response toward rewards. However, previous research has produced inconsistent findings. To investigate whether these findings are due to different reward probabilities used in the experimental design, we extended a monetary incentive delay (MID) task by including three different reward probabilities. Using functional magnetic resonance imaging, 25 healthy adolescents and 22 adults were studied during anticipation of rewards in the VS. Differently colored cue stimuli indicated either a monetary or verbal trial and symbolized different reward probabilities, to which the participants were blinded. Results demonstrated faster reaction times for lower reward probabilities (33%) in both age groups. Adolescents were slower through all conditions and had less activation on a neural level. Imaging results showed a three-way interaction between age group x condition x reward probability with differences in percent signal change between adolescents and adults for the high reward probabilities (66%, 88%) while adolescents demonstrated differences for the lowest (33%). Therefore, previous inconsistent findings could be due to different reward probabilities, which makes examining these crucial for a better understanding of adolescent and adult behavior.
Collapse
Affiliation(s)
- Maria Bretzke
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Hannes Wahl
- Institute of Neuroradiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael M. Plichta
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Nicole Wolff
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Nora C. Vetter
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Judith Buse
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
30
|
Early childhood stress is associated with blunted development of ventral tegmental area functional connectivity. Dev Cogn Neurosci 2020; 47:100909. [PMID: 33395612 PMCID: PMC7785957 DOI: 10.1016/j.dcn.2020.100909] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/10/2020] [Accepted: 12/22/2020] [Indexed: 01/27/2023] Open
Abstract
Early life stress increases risk for later psychopathology, due in part to changes in dopaminergic brain systems that support reward processing and motivation. Work in animals has shown that early life stress has a profound impact on the ventral tegmental area (VTA), which provides dopamine to regions including nucleus accumbens (NAcc), anterior hippocampus, and medial prefrontal cortex (mPFC), with cascading effects over the course of development. However, little is known about how early stress exposure shifts the developmental trajectory of mesocorticolimbic circuitry in humans. In the current study, 88 four- to nine-year-old children participated in resting-state fMRI. Parents completed questionnaires on their children's chronic stress exposure, including socioeconomic status (SES) and adverse childhood experiences (ACEs). We found an age x SES interaction on VTA connectivity, such that children from higher SES backgrounds showed a positive relationship between age and VTA-mPFC connectivity. Similarly, we found an age x ACEs exposure interaction on VTA connectivity, such that children with no ACEs exposure showed a positive relationship between age and VTA-mPFC connectivity. Our findings suggest that early stress exposure relates to the blunted maturation of VTA connectivity in young children, which may lead to disrupted reward processing later in childhood and beyond.
Collapse
|
31
|
Wasserman AM, Mathias CW, Hill-Kapturczak N, Karns-Wright TE, Dougherty DM. The Development of Impulsivity and Sensation Seeking: Associations with Substance Use among At-Risk Adolescents. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2020; 30:1051-1066. [PMID: 32951266 PMCID: PMC7738371 DOI: 10.1111/jora.12579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
We investigated if the dual systems model could explain the increased rates of substance use among at-risk youth. This study sampled 365 adolescents, 289 of which had a family history of substance use disorder, assessed biannually between the ages 13-16 years old. Growth curve analyses revealed that higher levels of impulsivity were related to higher levels of sensation seeking and a slower rate of decline in impulsivity was related to a faster rate of increase in sensation seeking. Only family history status and sensation seeking were directly associated with substance use (marijuana, alcohol) at age 16, though family history status was also indirectly related to substance use through higher levels of impulsivity to higher levels of sensation seeking.
Collapse
|
32
|
Xu W, Ying F, Luo Y, Zhang XY, Li Z. Cross-sectional exploration of brain functional connectivity in the triadic development model of adolescents. Brain Imaging Behav 2020; 15:1855-1867. [PMID: 32914405 DOI: 10.1007/s11682-020-00379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adolescence represents a transitional stage with increased risk taking and mood dysregulation. These vulnerabilities are accountable by developmental dynamics in the triadic functional brain networks underlying reward seeking (REW), emotional avoidance (EMO), and cognitive regulation (COG). However, these triadic dynamics, though conceptually established, have yet been investigated directly. Capitalizing on public database of resting-state fMRI from 222 adolescents (8-18 years old, 89F133M), this study examined cross-sectional development profiles of functional connectivity (FC) by jointly considering bilateral seeds of the ventral striatum, amygdala, and dorsal lateral prefrontal cortex in probing the networks of REW, EMO, and COG, respectively. Positive and negative FCs were considered separately for clarification of synergetic and suppressive interactions. While the REW and EMO mostly exhibited quadratic FC changes across age, suggesting reduced reward sensitivity and risk avoidance, the COG exhibited both linear and quadratic FC changes, suggesting both protracted maturation of cognitive ability and lowered top-down regulation. Additional age × gender effects were identified in the precentral gyrus and superior medial prefrontal cortex, which may associate risky action and emotion dysregulation to boys and girls, respectively. These results provide network evidence in substantiating the "triadic model" and deepening existing insights into neurodevelopmental mechanisms associated with adolescent behavior.
Collapse
Affiliation(s)
- Wenjing Xu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, 200433, People's Republic of China
| | - Fuxian Ying
- School of Psychology, Science and Engineering Building L3-1328, Shenzhen University, 3688 Nanhai Ave., Shenzhen, 518060, Guangdong, People's Republic of China
| | - Yuejia Luo
- Center for Brain Disorders and Cognitive Neuroscience, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
- Shenzhen Institute of Neuroscience, Shenzhen, 518060, Guangdong, People's Republic of China
- Brain Science and Visual Cognition, Kunming University of Science and Technology, Kunming, 650504, Yunnan, People's Republic of China
- The State Key Lab of Cognitive and Learning, Faculty of Psychology, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, 200433, People's Republic of China.
| | - Zhihao Li
- School of Psychology, Science and Engineering Building L3-1328, Shenzhen University, 3688 Nanhai Ave., Shenzhen, 518060, Guangdong, People's Republic of China.
- Center for Brain Disorders and Cognitive Neuroscience, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
33
|
Cromwell HC, Abe N, Barrett KC, Caldwell-Harris C, Gendolla GH, Koncz R, Sachdev PS. Mapping the interconnected neural systems underlying motivation and emotion: A key step toward understanding the human affectome. Neurosci Biobehav Rev 2020; 113:204-226. [DOI: 10.1016/j.neubiorev.2020.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
|
34
|
Jin J, Van Snellenberg JX, Perlman G, DeLorenzo C, Klein DN, Kotov R, Mohanty A. Intrinsic neural circuitry of depression in adolescent females. J Child Psychol Psychiatry 2020; 61:480-491. [PMID: 31512744 PMCID: PMC7065934 DOI: 10.1111/jcpp.13123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Adolescence is characterized by affective and cognitive changes that increase vulnerability to depression, especially in females. Neurodevelopmental models attribute adolescent depression to abnormal responses in amygdala, striatum, and prefrontal cortex (PFC). We examined whether the strength of functional brain networks involving these regions predicts depression symptoms in adolescent females. METHODS In this longitudinal study, we recorded resting-state functional connectivity (RSFC) in 174 adolescent females. Using a cross-validation strategy, we related RSFC profiles that included (a) a network consisting of amygdala, striatum, and PFC (within-circuit model), (b) connectivity of this network to the whole brain (extended-circuit model), and (c) a network consisting of the entire brain (whole-brain model) to depression symptoms assessed concurrently and 18 months later. RESULTS In testing subsets, the within-circuit RSFC profiles were associated with depression symptoms concurrently and 18 months later, while the extended-circuit and whole-brain model did not explain any additional variance in depression symptoms. Connectivity related to anterior cingulate and ventromedial prefrontal cortex contributed most to the association. CONCLUSIONS Our results demonstrate that RSFC-based brain networks that include amygdala, striatum, and PFC are stable neural signatures of concurrent and future depression symptoms, representing a significant step toward identifying the neural mechanism of depression in adolescence.
Collapse
Affiliation(s)
- Jingwen Jin
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | - Jared X. Van Snellenberg
- Department of Psychology, Stony Brook University, Stony Brook, NY,Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Greg Perlman
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY
| | - Christine DeLorenzo
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, Stony Brook, NY,Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY
| | - Roman Kotov
- Department of Psychology, Stony Brook University, Stony Brook, NY,Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY
| | - Aprajita Mohanty
- Department of Psychology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
35
|
Cohodes EM, Kitt ER, Baskin-Sommers A, Gee DG. Influences of early-life stress on frontolimbic circuitry: Harnessing a dimensional approach to elucidate the effects of heterogeneity in stress exposure. Dev Psychobiol 2020; 63:153-172. [PMID: 32227350 DOI: 10.1002/dev.21969] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/17/2020] [Accepted: 02/26/2020] [Indexed: 12/24/2022]
Abstract
Early-life stress confers profound and lasting risk for developing cognitive, social, emotional, and physical health problems. The effects of stress on the developing brain contribute to this risk, with frontolimbic circuitry particularly susceptible to early experiences, possibly due to its innervation with glucocorticoid receptors and the timing of frontolimbic circuit maturation. To date, the majority of studies on stress and frontolimbic circuitry have employed a categorical approach, comparing stress-exposed versus non-stress-exposed youth. However, there is vast heterogeneity in the nature of stress exposure and in outcomes. Recent forays into understanding the psychobiological effects of stress have employed a dimensional approach focused on experiential, environmental, and temporal factors that influence the association between stress and subsequent vulnerability. This review highlights empirical findings that inform a dimensional approach to understanding the effects of stress on frontolimbic circuitry. We identify the timing, type, severity, controllability, and predictability of stress, and the degree to which a caregiver is involved, as specific features of stress that may play a substantial role in differential outcomes. We propose a framework for the effects of these features of stress on frontolimbic development that may partially determine how heterogeneity in stress exposure influences this circuitry and, ultimately, mental health.
Collapse
Affiliation(s)
- Emily M Cohodes
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | | | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
36
|
Jung WH, Kim H. Intrinsic Functional and Structural Brain Connectivity in Humans Predicts Individual Social Comparison Orientation. Front Psychiatry 2020; 11:809. [PMID: 32903599 PMCID: PMC7438712 DOI: 10.3389/fpsyt.2020.00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Social comparison orientation (SCO), the tendency to compare oneself with others, is universal, varies widely across individuals, and predicts important life and health outcomes. However, the neural mechanism underlying individual differences in SCO is still not well-understood. In the present study, we identified intrinsic neural markers of SCO in healthy young adults (n = 42) using a multimodal neuroimaging approach that included diffusion tensor imaging and resting-state functional MRI data. We found that higher SCO was associated with weaker structural and functional connectivity (SC, FC) strengths between the ventral striatum and the medial prefrontal cortex, which are core regions of the brain reward network. Additionally, individual SCO was negatively associated with neural fluctuations in the intraparietal sulcus (IPS), part of the frontoparietal network, and positively with FC between the IPS and anterior insula/amygdala cluster. This finding was further confirmed by the observation of independently-defined, large-scale, inter-network FC between the frontoparietal network and cingulo-opercular network. Taken together, these results provide novel evidence for intrinsic functional and structural connectivity of the human brain associated with individual differences in SCO.
Collapse
Affiliation(s)
- Wi Hoon Jung
- Department of Psychology, Daegu University, Gyeongsan, South Korea
| | - Hackjin Kim
- Department of Psychology, Korea University, Seoul, South Korea
| |
Collapse
|
37
|
Martin RE, Silvers JA, Hardi F, Stephano T, Helion C, Insel C, Franz PJ, Ninova E, Lander JP, Mischel W, Casey BJ, Ochsner KN. Longitudinal changes in brain structures related to appetitive reactivity and regulation across development. Dev Cogn Neurosci 2019; 38:100675. [PMID: 31279245 PMCID: PMC6969339 DOI: 10.1016/j.dcn.2019.100675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 01/15/2023] Open
Abstract
In the United States over one-third of the population, including children and adolescents, are overweight or obese. Despite the prevalence of obesity, few studies have examined how food cravings and the ability to regulate them change throughout development. Here, we addressed this gap in knowledge by examining structural brain and behavioral changes associated with regulation of craving across development. In a longitudinal design, individuals ages 6-26 completed two structural scans as well as a behavioral task where they used a cognitive regulatory strategy to decrease the appetitive value of foods. Behaviorally, we found that the ability to regulate craving improved with age. Neurally, improvements in regulatory ability were associated with cortical thinning in medial and lateral prefrontal cortex. We also found that models with cortical thickness measurements and age chosen by a lasso-based variable selection method could predict an individual's regulation behavior better than age and other behavioral factors alone. Additionally, when controlling for age, smaller ventral striatal volumes were associated with higher body mass index and predicted greater increases in weight two years later. Taken together, these results demonstrate a role for structural brain changes in supporting the ability to resist cravings for appetitive foods across development.
Collapse
Affiliation(s)
- Rebecca E Martin
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States.
| | - Jennifer A Silvers
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States
| | - Felicia Hardi
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States
| | - Theodore Stephano
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States
| | - Chelsea Helion
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States
| | - Catherine Insel
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States
| | - Peter J Franz
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States
| | - Emilia Ninova
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States
| | - Jared P Lander
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States
| | - Walter Mischel
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States
| | - B J Casey
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States
| | - Kevin N Ochsner
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY, 10027, United States.
| |
Collapse
|
38
|
Effects of Neonatal Administration of Memantine on Hippocampal Asymmetry and Working Memory Impairment Induced by Early Maternal Deprivation in Rats. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Kwon SJ, Ivory SL, McCormick EM, Telzer EH. Behavioral and Neural Dysregulation to Social Rewards and Links to Internalizing Symptoms in Adolescents. Front Behav Neurosci 2019; 13:158. [PMID: 31396060 PMCID: PMC6664004 DOI: 10.3389/fnbeh.2019.00158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/28/2019] [Indexed: 12/28/2022] Open
Abstract
Adolescence is a time of unique sensitivity to socially salient stimuli such as social rewards. This period overlaps with the onset of psychopathology such as internalizing and externalizing symptoms. In the current studies, we examined behavioral and neural patterns of dysregulation to social rewards and threats, and links to internalizing and externalizing symptoms in youths. In study 1, we used a social Go/NoGo cognitive control task using peer faces to test for age-related behavioral differences in inhibitory failures in adolescents (N = 53, Mage = 13.37 years), and adults (N = 51, Mage = 43.71 years). In study 2, an independent adolescent sample (N = 51, Mage = 13.98 years) completed a similar social Go/NoGo cognitive control task during fMRI. Results show that adolescents had greater inhibitory failures - as measured by false alarm rate - to both social reward and threat cues than adults, and more so to social reward than threat cues. Greater inhibitory failures to social reward than threat cues were associated with greater internalizing symptoms, but were not significantly related to externalizing symptoms. At the neural level, greater inhibitory failures to social reward than threat cues as well as greater internalizing symptoms were both associated with heightened amygdala-ventral striatum connectivity. Our findings indicate that subcortico-subcortical connectivity, which is deemed to occur chronologically earlier and thus necessary for subcortico-cortical circuits, may serve as an early biomarker for emotion dysregulation and a risk factor for internalizing symptoms.
Collapse
Affiliation(s)
- Seh-Joo Kwon
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susannah L. Ivory
- Department of Psychology, Pennsylvania State University, State College, PA, United States
| | - Ethan M. McCormick
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eva H. Telzer
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
40
|
Age-Normative Pathways of Striatal Connectivity Related to Clinical Symptoms in the General Population. Biol Psychiatry 2019; 85:966-976. [PMID: 30898336 PMCID: PMC6534442 DOI: 10.1016/j.biopsych.2019.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Altered striatal development contributes to core deficits in motor and inhibitory control, impulsivity, and inattention associated with attention-deficit/hyperactivity disorder and may likewise play a role in deficient reward processing and emotion regulation in psychosis and depression. The maturation of striatal connectivity has not been well characterized, particularly as it relates to clinical symptomatology. METHODS Resting-state functional connectivity with striatal subdivisions was examined for 926 participants (8-22 years of age, 44% male) from the general population who had participated in two large cross-sectional studies. Developing circuits were identified and growth charting of age-related connections was performed to obtain individual scores reflecting relative neurodevelopmental attainment. Associations of clinical symptom scales (attention-deficit/hyperactivity disorder, psychosis, depression, and general psychopathology) with the resulting striatal connectivity age-deviation scores were then tested using elastic net regression. RESULTS Linear and nonlinear developmental patterns occurred across 231 striatal age-related connections. Both unique and overlapping striatal age-related connections were associated with the four symptom domains. Attention-deficit/hyperactivity disorder severity was related to age-advanced connectivity across several insula subregions, but to age-delayed connectivity with the nearby inferior frontal gyrus. Psychosis was associated with advanced connectivity with the medial prefrontal cortex and superior temporal gyrus, while aberrant limbic connectivity predicted depression. The dorsal posterior insula, a region involved in pain processing, emerged as a strong contributor to general psychopathology as well as to each individual symptom domain. CONCLUSIONS Developmental striatal pathophysiology in the general population is consistent with dysfunctional circuitry commonly found in clinical populations. Atypical age-normative connectivity may thereby reflect aberrant neurodevelopmental processes that contribute to clinical risk.
Collapse
|
41
|
van Hoorn J, Shablack H, Lindquist KA, Telzer EH. Incorporating the social context into neurocognitive models of adolescent decision-making: A neuroimaging meta-analysis. Neurosci Biobehav Rev 2019; 101:129-142. [PMID: 31006540 PMCID: PMC6659412 DOI: 10.1016/j.neubiorev.2018.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/11/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023]
Abstract
Neurobiological models of adolescent decision-making emphasize developmental changes in brain regions involved in affect (e.g., ventral striatum) and cognitive control (e.g., lateral prefrontal cortex). Although social context plays an important role in adolescent decision-making, current models do not discuss brain regions implicated in processing social information (e.g., dorsomedial prefrontal cortex). We conducted a coordinate-based meta-analysis using the Multilevel peak Kernel Density Analysis (MKDA) method to test the hypothesis that brain regions involved in affect, cognitive control, and social information processing support adolescent decision-making in social contexts (N = 21 functional neuroimaging studies; N = 1292 participants). Results indicated that dorsomedial prefrontal cortex, inferior frontal gyrus/insula and ventral striatum are consistently associated with adolescent decision-making in social contexts. Activity within these regions was modulated by the type of social context and social actors involved. Findings suggest including brain regions involved in social information processing into models of adolescent decision-making. We propose a 'constructionist' model, which describes psychological processes and corresponding neural networks related to affect, cognitive control, and social information processing.
Collapse
Affiliation(s)
- Jorien van Hoorn
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599, USA.
| | - Holly Shablack
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599, USA
| | - Kristen A Lindquist
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599, USA
| | - Eva H Telzer
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599, USA
| |
Collapse
|
42
|
van Duijvenvoorde ACK, Westhoff B, de Vos F, Wierenga LM, Crone EA. A three-wave longitudinal study of subcortical-cortical resting-state connectivity in adolescence: Testing age- and puberty-related changes. Hum Brain Mapp 2019; 40:3769-3783. [PMID: 31099959 PMCID: PMC6767490 DOI: 10.1002/hbm.24630] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Adolescence is the transitional period between childhood and adulthood, characterized by substantial changes in reward‐driven behavior. Although reward‐driven behavior is supported by subcortical‐medial prefrontal cortex (PFC) connectivity, the development of these circuits is not well understood. Particularly, while puberty has been hypothesized to accelerate organization and activation of functional neural circuits, the relationship between age, sex, pubertal change, and functional connectivity has hardly been studied. Here, we present an analysis of resting‐state functional connectivity between subcortical structures and the medial PFC, in 661 scans of 273 participants between 8 and 29 years, using a three‐wave longitudinal design. Generalized additive mixed model procedures were used to assess the effects of age, sex, and self‐reported pubertal status on connectivity between subcortical structures (nucleus accumbens, caudate, putamen, hippocampus, and amygdala) and cortical medial structures (dorsal anterior cingulate, ventral anterior cingulate, subcallosal cortex, frontal medial cortex). We observed an age‐related strengthening of subcortico‐subcortical and cortico‐cortical connectivity. Subcortical–cortical connectivity, such as, between the nucleus accumbens—frontal medial cortex, and the caudate—dorsal anterior cingulate cortex, however, weakened across age. Model‐based comparisons revealed that for specific connections pubertal development described developmental change better than chronological age. This was particularly the case for changes in subcortical–cortical connectivity and distinctively for boys and girls. Together, these findings indicate changes in functional network strengthening with pubertal development. These changes in functional connectivity may maximize the neural efficiency of interregional communication and set the stage for further inquiry of biological factors driving adolescent functional connectivity changes.
Collapse
Affiliation(s)
- Anna C K van Duijvenvoorde
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Bianca Westhoff
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Frank de Vos
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Lara M Wierenga
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Eveline A Crone
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
43
|
Vanderwal T, Eilbott J, Castellanos FX. Movies in the magnet: Naturalistic paradigms in developmental functional neuroimaging. Dev Cogn Neurosci 2019; 36:100600. [PMID: 30551970 PMCID: PMC6969259 DOI: 10.1016/j.dcn.2018.10.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022] Open
Abstract
The use of movie-watching as an acquisition state for functional connectivity (FC) MRI has recently enabled multiple groups to obtain rich data sets in younger children with both substantial sample sizes and scan durations. Using naturalistic paradigms such as movies has also provided analytic flexibility for these developmental studies that extends beyond conventional resting state approaches. This review highlights the advantages and challenges of using movies for developmental neuroimaging and explores some of the methodological issues involved in designing pediatric studies with movies. Emerging themes from movie-watching studies are discussed, including an emphasis on intersubject correlations, developmental changes in network interactions under complex naturalistic conditions, and dynamic age-related changes in both sensory and higher-order network FC even in narrow age ranges. Converging evidence suggests an enhanced ability to identify brain-behavior correlations in children when using movie-watching data relative to both resting state and conventional tasks. Future directions and cautionary notes highlight the potential and the limitations of using movies to study FC in pediatric populations.
Collapse
Affiliation(s)
- Tamara Vanderwal
- University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 2A1, Canada; Yale Child Study Center, 230 South Frontage Road, New Haven CT, 06519, United States.
| | - Jeffrey Eilbott
- Yale Child Study Center, 230 South Frontage Road, New Haven CT, 06519, United States
| | - F Xavier Castellanos
- The Child Study Center at New York University Langone Medical Center, 1 Park Avenue, New York, NY, 10016, United States; Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, United States
| |
Collapse
|
44
|
Neural Variability Limits Adolescent Skill Learning. J Neurosci 2019; 39:2889-2902. [PMID: 30755494 DOI: 10.1523/jneurosci.2878-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 12/31/2022] Open
Abstract
Skill learning is fundamental to the acquisition of many complex behaviors that emerge during development. For example, years of practice give rise to perceptual improvements that contribute to mature speech and language skills. While fully honed learning skills might be thought to offer an advantage during the juvenile period, the ability to learn actually continues to develop through childhood and adolescence, suggesting that the neural mechanisms that support skill learning are slow to mature. To address this issue, we asked whether the rate and magnitude of perceptual learning varies as a function of age as male and female gerbils trained on an auditory task. Adolescents displayed a slower rate of perceptual learning compared with their young and mature counterparts. We recorded auditory cortical neuron activity from a subset of adolescent and adult gerbils as they underwent perceptual training. While training enhanced the sensitivity of most adult units, the sensitivity of many adolescent units remained unchanged, or even declined across training days. Therefore, the average rate of cortical improvement was significantly slower in adolescents compared with adults. Both smaller differences between sound-evoked response magnitudes and greater trial-to-trial response fluctuations contributed to the poorer sensitivity of individual adolescent neurons. Together, these findings suggest that elevated sensory neural variability limits adolescent skill learning.SIGNIFICANCE STATEMENT The ability to learn new skills emerges gradually as children age. This prolonged development, often lasting well into adolescence, suggests that children, teens, and adults may rely on distinct neural strategies to improve their sensory and motor capabilities. Here, we found that practice-based improvement on a sound detection task is slower in adolescent gerbils than in younger or older animals. Neural recordings made during training revealed that practice enhanced the sound sensitivity of adult cortical neurons, but had a weaker effect in adolescents. This latter finding was partially explained by the fact that adolescent neural responses were more variable than in adults. Our results suggest that one mechanistic basis of adult-like skill learning is a reduction in neural response variability.
Collapse
|
45
|
Gee DG, Bath KG, Johnson CM, Meyer HC, Murty VP, van den Bos W, Hartley CA. Neurocognitive Development of Motivated Behavior: Dynamic Changes across Childhood and Adolescence. J Neurosci 2018; 38:9433-9445. [PMID: 30381435 PMCID: PMC6209847 DOI: 10.1523/jneurosci.1674-18.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The ability to anticipate and respond appropriately to the challenges and opportunities present in our environments is critical for adaptive behavior. Recent methodological innovations have led to substantial advances in our understanding of the neurocircuitry supporting such motivated behavior in adulthood. However, the neural circuits and cognitive processes that enable threat- and reward-motivated behavior undergo substantive changes over the course of development, and these changes are less well understood. In this article, we highlight recent research in human and animal models demonstrating how developmental changes in prefrontal-subcortical neural circuits give rise to corresponding changes in the processing of threats and rewards from infancy to adulthood. We discuss how these developmental trajectories are altered by experiential factors, such as early-life stress, and highlight the relevance of this research for understanding the developmental onset and treatment of psychiatric disorders characterized by dysregulation of motivated behavior.
Collapse
Affiliation(s)
- Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT 06520,
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Carolyn M Johnson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Heidi C Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA 19122
| | - Wouter van den Bos
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands, and
| | | |
Collapse
|
46
|
Vijayakumar N, Op de Macks Z, Shirtcliff EA, Pfeifer JH. Puberty and the human brain: Insights into adolescent development. Neurosci Biobehav Rev 2018; 92:417-436. [PMID: 29972766 PMCID: PMC6234123 DOI: 10.1016/j.neubiorev.2018.06.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 12/24/2022]
Abstract
Alongside the exponential flourish of research on age-related trajectories of human brain development during childhood and adolescence in the past two decades, there has been an increase in the body of work examining the association between pubertal development and brain maturation. This review systematically examines empirical research on puberty-related structural and functional brain development in humans, with the aim of identifying convergent patterns of associations. We emphasize longitudinal studies, and discuss pervasive but oft-overlooked methodological issues that may be contributing to inconsistent findings and hindering progress (e.g., conflating distinct pubertal indices and different measurement instruments). We also briefly evaluate support for prominent models of adolescent neurodevelopment that hypothesize puberty-related changes in brain regions involved in affective and motivational processes. For the field to progress, replication studies are needed to help resolve current inconsistencies and gain a clearer understanding of pubertal associations with brain development in humans, knowledge that is crucial to make sense of the changes in psychosocial functioning, risk behavior, and mental health during adolescence.
Collapse
|
47
|
Dougherty LR, Schwartz KTG, Kryza-Lacombe M, Weisberg J, Spechler PA, Wiggins JL. Preschool- and School-Age Irritability Predict Reward-Related Brain Function. J Am Acad Child Adolesc Psychiatry 2018; 57:407-417.e2. [PMID: 29859556 DOI: 10.1016/j.jaac.2018.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/25/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Although chronic irritability in childhood is prevalent, impairing, and predictive of later maladjustment, its pathophysiology is largely unknown. Deficits in reward processing are hypothesized to play a role in irritability. The current study aimed to identify how the developmental timing of irritability during preschool- and school-age relates to reward-related brain function during school-age. METHOD Children's irritability was assessed during the preschool period (wave 1; ages 3.0-5.9 years) and 3 years later (wave 2; ages 5.9-9.6 years) using a clinical interview. At wave 2, children (N = 46; 28 female and 18 male) performed a monetary incentive delay task in which they received rewards, if they successfully hit a target, or no reward regardless of performance, during functional magnetic resonance imaging. RESULTS Children with more versus less severe preschool irritability, controlling for concurrent irritability, exhibited altered reward-related connectivity: right amygdala with insula and inferior parietal lobe as well as left ventral striatum with lingual gyrus, postcentral gyrus, superior parietal lobe, and culmen. Children with more versus less severe concurrent irritability, controlling for preschool irritability, exhibited a similar pattern of altered connectivity between left and right amygdalae and superior frontal gyrus and between left ventral striatum and precuneus and culmen. Neural differences associated with irritability were most evident between reward and no-reward conditions when participants missed the target. CONCLUSION Preschool-age irritability and concurrent irritability were uniquely associated with aberrant patterns of reward-related connectivity, highlighting the importance of developmental timing of irritability for brain function.
Collapse
Affiliation(s)
| | - Karen T G Schwartz
- San Diego State University, CA, and University of California, San Diego Joint Doctoral Program in Clinical Psychology
| | - Maria Kryza-Lacombe
- San Diego State University, CA, and University of California, San Diego Joint Doctoral Program in Clinical Psychology
| | - Jill Weisberg
- San Diego State University, CA, and University of California, San Diego Joint Doctoral Program in Clinical Psychology
| | | | - Jillian Lee Wiggins
- San Diego State University, CA, and University of California, San Diego Joint Doctoral Program in Clinical Psychology
| |
Collapse
|
48
|
Achterberg M, Bakermans-Kranenburg MJ, van Ijzendoorn MH, van der Meulen M, Tottenham N, Crone EA. Distinctive heritability patterns of subcortical-prefrontal cortex resting state connectivity in childhood: A twin study. Neuroimage 2018; 175:138-149. [PMID: 29614348 DOI: 10.1016/j.neuroimage.2018.03.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 01/25/2023] Open
Abstract
Connectivity between limbic/subcortical and prefrontal-cortical brain regions develops considerably across childhood, but less is known about the heritability of these networks at this age. We tested the heritability of limbic/subcortical-cortical and limbic/subcortical-subcortical functional brain connectivity in 7- to 9-year-old twins (N = 220), focusing on two key limbic/subcortical structures: the ventral striatum and the amygdala, given their combined influence on changing incentivised behavior during childhood and adolescence. Whole brain analyses with ventral striatum (VS) and amygdala as seeds in genetically independent groups showed replicable functional connectivity patterns. The behavioral genetic analyses revealed that in general VS and amygdala connectivity showed distinct influences of genetics and environment. VS-prefrontal cortex connections were best described by genetic and unique environmental factors (the latter including measurement error), whereas amygdala-prefrontal cortex connectivity was mainly explained by environmental influences. Similarities were also found: connectivity between both the VS and amygdala and ventral anterior cingulate cortex (vACC) showed influences of shared environment, while connectivity with the orbitofrontal cortex (OFC) showed heritability. These findings may inform future interventions that target behavioral control and emotion regulation, by taking into account genetic dispositions as well as shared and unique environmental factors such as child rearing.
Collapse
Affiliation(s)
- Michelle Achterberg
- Leiden Consortium on Individual Development, Leiden University, The Netherlands; Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands.
| | - Marian J Bakermans-Kranenburg
- Leiden Consortium on Individual Development, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | | | - Mara van der Meulen
- Leiden Consortium on Individual Development, Leiden University, The Netherlands; Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York City, NY, USA
| | - Eveline A Crone
- Leiden Consortium on Individual Development, Leiden University, The Netherlands; Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| |
Collapse
|
49
|
Marshall NA, Marusak HA, Sala-Hamrick KJ, Crespo LM, Rabinak CA, Thomason ME. Socioeconomic disadvantage and altered corticostriatal circuitry in urban youth. Hum Brain Mapp 2018; 39:1982-1994. [PMID: 29359526 DOI: 10.1002/hbm.23978] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
Socioeconomic disadvantage (SED) experienced in early life is linked to a range of risk behaviors and diseases. Neuroimaging research indicates that this association is mediated by functional changes in corticostriatal reward systems that modulate goal-directed behavior, reward evaluation, and affective processing. Existing research has focused largely on adults and within-household measures as an index of SED, despite evidence that broader community-level SED (e.g., neighborhood poverty levels) has significant and sometimes distinct effects on development and health outcomes. Here, we test effects of both household- and community-level SED on resting-state functional connectivity (rsFC) of the ventral striatum (VS) in 100 racially and economically diverse children and adolescents (ages 6-17). We observed unique effects of household income and community SED on VS circuitry such that higher community SED was associated with reduced rsFC between the VS and an anterior region of the medial prefrontal cortex (mPFC), whereas lower household income was associated with increased rsFC between the VS and the cerebellum, inferior temporal lobe, and lateral prefrontal cortex. Lower VS-mPFC rsFC was also associated with higher self-reported anxiety symptomology, and rsFC mediated the link between community SED and anxiety. These results indicate unique effects of community-level SED on corticostriatal reward circuitry that can be detected in early life, which carries implications for future interventions and targeted therapies. In addition, our findings raise intriguing questions about the distinct pathways through which specific sources of SED can affect brain and emotional development.
Collapse
Affiliation(s)
- Narcis A Marshall
- Department of Psychology, University of Southern California, Los Angeles, California
| | - Hilary A Marusak
- Department of Pharmacy Practice, Wayne State University School of Medicine, Detroit, Michigan
| | - Kelsey J Sala-Hamrick
- Department of Psychology, University of Southern California, Los Angeles, California.,Department of Psychology, Wayne State University, Detroit, Michigan
| | - Laura M Crespo
- Department of Psychology, University of Southern California, Los Angeles, California.,Department of Psychology, Wayne State University, Detroit, Michigan
| | - Christine A Rabinak
- Department of Pharmacy Practice, Wayne State University School of Medicine, Detroit, Michigan
| | - Moriah E Thomason
- Department of Pediatrics Wayne State University School of Medicine, Detroit, Michigan.,Merrill Palmer Skillman Institute for Child and Family Development Wayne State University, Detroit, Michigan.,Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, Bethesda, Maryland
| |
Collapse
|
50
|
Gaffrey MS, Barch DM, Bogdan R, Farris K, Petersen SE, Luby JL. Amygdala Reward Reactivity Mediates the Association Between Preschool Stress Response and Depression Severity. Biol Psychiatry 2018; 83:128-136. [PMID: 29102026 PMCID: PMC5723551 DOI: 10.1016/j.biopsych.2017.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Research in adolescents and adults has suggested that altered neural processing of reward following early life adversity is a highly promising depressive intermediate phenotype. However, very little is known about how stress response, neural processing of reward, and depression are related in very young children. The present study examined the concurrent associations between cortisol response following a stressor, functional brain activity to reward, and depression severity in children 4 to 6 years old. METHODS Medication-naïve children 4 to 6 years old (N = 52) participated in a study using functional magnetic resonance imaging to assess neural reactivity to reward, including gain, loss, and neutral outcomes. Parent-reported child depression severity and child cortisol response following stress were also measured. RESULTS Greater caudate and medial prefrontal cortex reactivity to gain outcomes and increased amygdala reactivity to salient (i.e., both gain and loss) outcomes were observed. Higher total cortisol output following a stressor was associated with increased depression severity and reduced amygdala reactivity to salient outcomes. Amygdala reactivity was also inversely associated with depression severity and was found to mediate the relationship between cortisol output and depression severity. CONCLUSIONS Results suggest that altered neural processing of reward is already related to increased cortisol output and depression severity in preschoolers. These results also demonstrate an important role for amygdala function as a mediator of this relationship at a very early age. Our results further underscore early childhood as an important developmental period for understanding the neurobiological correlates of early stress and increased risk for depression.
Collapse
Affiliation(s)
- Michael S Gaffrey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri.
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri; Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Katrina Farris
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Steven E Petersen
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri; Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|