1
|
James S, Sanggaard S, Akif A, Mishra SK, Sanganahalli BG, Blumenfeld H, Verhagen JV, Hyder F, Herman P. Spatiotemporal features of neurovascular (un)coupling with stimulus-induced activity and hypercapnia challenge in cerebral cortex and olfactory bulb. J Cereb Blood Flow Metab 2023; 43:1891-1904. [PMID: 37340791 PMCID: PMC10676132 DOI: 10.1177/0271678x231183887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023]
Abstract
Carbon dioxide (CO2) is traditionally considered as metabolic waste, yet its regulation is critical for brain function. It is well accepted that hypercapnia initiates vasodilation, but its effect on neuronal activity is less clear. Distinguishing how stimulus- and CO2-induced vasodilatory responses are (dis)associated with neuronal activity has profound clinical and experimental relevance. We used an optical method in mice to simultaneously image fluorescent calcium (Ca2+) transients from neurons and reflectometric hemodynamic signals during brief sensory stimuli (i.e., hindpaw, odor) and CO2 exposure (i.e., 5%). Stimuli-induced neuronal and hemodynamic responses swiftly increased within locally activated regions exhibiting robust neurovascular coupling. However, hypercapnia produced slower global vasodilation which was temporally uncoupled to neuronal deactivation. With trends consistent across cerebral cortex and olfactory bulb as well as data from GCaMP6f/jRGECO1a mice (i.e., green/red Ca2+ fluorescence), these results unequivocally reveal that stimuli and CO2 generate comparable vasodilatory responses but contrasting neuronal responses. In summary, observations of stimuli-induced regional neurovascular coupling and CO2-induced global neurovascular uncoupling call for careful appraisal when using CO2 in gas mixtures to affect vascular tone and/or neuronal excitability, because CO2 is both a potent vasomodulator and a neuromodulator.
Collapse
Affiliation(s)
- Shaun James
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Simon Sanggaard
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Adil Akif
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Hal Blumenfeld
- Department of Neurology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA
- John B. Pierce Laboratory, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Huang J, Zhang Y, Zhang Q, Wei L, Zhang X, Jin C, Yang J, Li Z, Liang S. The current status and trend of the functional magnetic resonance combined with stimulation in animals. Front Neurosci 2022; 16:963175. [PMID: 36213733 PMCID: PMC9540855 DOI: 10.3389/fnins.2022.963175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
As a non-radiative, non-invasive imaging technique, functional magnetic resonance imaging (fMRI) has excellent effects on studying the activation of blood oxygen levels and functional connectivity of the brain in human and animal models. Compared with resting-state fMRI, fMRI combined with stimulation could be used to assess the activation of specific brain regions and the connectivity of specific pathways and achieve better signal capture with a clear purpose and more significant results. Various fMRI methods and specific stimulation paradigms have been proposed to investigate brain activation in a specific state, such as electrical, mechanical, visual, olfactory, and direct brain stimulation. In this review, the studies on animal brain activation using fMRI combined with different stimulation methods were retrieved. The instruments, experimental parameters, anesthesia, and animal models in different stimulation conditions were summarized. The findings would provide a reference for studies on estimating specific brain activation using fMRI combined with stimulation.
Collapse
|
3
|
Sanganahalli BG, Thompson GJ, Parent M, Verhagen JV, Blumenfeld H, Herman P, Hyder F. Thalamic activations in rat brain by fMRI during tactile (forepaw, whisker) and non-tactile (visual, olfactory) sensory stimulations. PLoS One 2022; 17:e0267916. [PMID: 35522646 PMCID: PMC9075615 DOI: 10.1371/journal.pone.0267916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
The thalamus is a crucial subcortical hub that impacts cortical activity. Tracing experiments in animals and post-mortem humans suggest rich morphological specificity of the thalamus. Very few studies reported rodent thalamic activations by functional MRI (fMRI) as compared to cortical activations for different sensory stimuli. Here, we show different portions of the rat thalamus in response to tactile (forepaw, whisker) and non-tactile (visual, olfactory) sensory stimuli with high field fMRI (11.7T) using a custom-build quadrature surface coil to capture high sensitivity signals from superficial and deep brain regions simultaneously. Results demonstrate reproducible thalamic activations during both tactile and non-tactile stimuli. Forepaw and whisker stimuli activated broader regions within the thalamus: ventral posterior lateral (VPL), ventral posterior medial (VPM), lateral posterior mediorostral (LPMR) and posterior medial (POm) thalamic nuclei. Visual stimuli activated dorsal lateral geniculate nucleus (DLG) of the thalamus but also parts of the superior/inferior colliculus, whereas olfactory stimuli activated specifically the mediodorsal nucleus of the thalamus (MDT). BOLD activations in LGN and MDT were much stronger than in VPL, VPM, LPMR and POm. These fMRI-based thalamic activations suggest that forepaw and whisker (i.e., tactile) stimuli engage VPL, VPM, LPMR and POm whereas visual and olfactory (i.e., non-tactile) stimuli, respectively, recruit DLG and MDT exclusively.
Collapse
Affiliation(s)
- Basavaraju G. Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Garth J. Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Maxime Parent
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Justus V. Verhagen
- The John B. Pierce Laboratory, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Hal Blumenfeld
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States of America
- Department of Neurology, Yale University, New Haven, Connecticut, United States of America
- Department of Neurosurgery, Yale University, New Haven, Connecticut, United States of America
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
4
|
Zhao F, Meng X, Lu S, Hyde LA, Kennedy ME, Houghton AK, Evelhoch JL, Hines CDG. fMRI study of olfactory processing in mice under three anesthesia protocols: Insight into the effect of ketamine on olfactory processing. Neuroimage 2020; 213:116725. [PMID: 32173412 DOI: 10.1016/j.neuroimage.2020.116725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a valuable tool for studying neural activations in the central nervous system of animals due to its wide spatial coverage and non-invasive nature. However, the advantages of fMRI have not been fully realized in functional studies in mice, especially in the olfactory system, possibly due to the lack of suitable anesthesia protocols with spontaneous breathing. Since mice are widely used in biomedical research, it is desirable to evaluate different anesthesia protocols for olfactory fMRI studies in mice. Dexmedetomidine (DEX) as a sedative/anesthetic has been introduced to fMRI studies in mice, but it has a limited anesthesia duration. To extend the anesthesia duration, DEX has been combined with a low dose of isoflurane (ISO) or ketamine (KET) in previous functional studies in mice. In this report, olfactory fMRI studies were performed under three anesthesia protocols (DEX alone, DEX/ISO, and DEX/KET) in three different groups of mice. Isoamyl-acetate was used as an odorant, and the odorant-induced neural activations were measured by blood oxygenation-level dependent (BOLD) fMRI. BOLD fMRI responses were observed in the olfactory bulb (OB), anterior olfactory nuclei (AON), and piriform cortex (Pir). Interestingly, BOLD fMRI activations were also observed in the prefrontal cortical region (PFC), which are most likely caused by the draining vein effect. The response in the OB showed no adaptation to either repeated odor stimulations or continuous odor exposure, but the response in the Pir showed adaptation during the continuous odor exposure. The data also shows that ISO suppresses the olfactory response in the OB and AON, while KET enhances the olfactory response in the Pir. Thus, DEX/KET should be an attractive anesthesia for olfactory fMRI in mice.
Collapse
Affiliation(s)
| | | | - Sherry Lu
- Merck & Co. Inc, West Point, PA, 19486, USA
| | | | | | | | | | | |
Collapse
|
5
|
Sanganahalli BG, Baker KL, Thompson GJ, Herman P, Shepherd GM, Verhagen JV, Hyder F. Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI. Neuroimage 2020; 212:116664. [PMID: 32087375 DOI: 10.1016/j.neuroimage.2020.116664] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 02/05/2023] Open
Abstract
Odorants can reach olfactory receptor neurons (ORNs) by two routes: orthonasally, when volatiles enter the nasal cavity during inhalation/sniffing, and retronasally, when food volatiles released in the mouth pass into the nasal cavity during exhalation/eating. Previous work in humans has shown that both delivery routes of the same odorant can evoke distinct perceptions and patterns of neural responses in the brain. Each delivery route is known to influence specific responses across the dorsal region of the glomerular sheet in the olfactory bulb (OB), but spatial distributions across the entire glomerular sheet throughout the whole OB remain largely unexplored. We used functional MRI (fMRI) to measure and compare activations across the entire glomerular sheet in rat OB resulting from both orthonasal and retronasal stimulations of the same odors. We observed reproducible fMRI activation maps of the whole OB during both orthonasal and retronasal stimuli. However, retronasal stimuli required double the orthonasal odor concentration for similar response amplitudes. Regardless, both the magnitude and spatial extent of activity were larger during orthonasal versus retronasal stimuli for the same odor. Orthonasal and retronasal response patterns show overlap as well as some route-specific dominance. Orthonasal maps were dominant in dorsal-medial regions, whereas retronasal maps were dominant in caudal and lateral regions. These different whole OB encodings likely underlie differences in odor perception between these biologically important routes for odorants among mammals. These results establish the relationships between orthonasal and retronasal odor representations in the rat OB.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Keeley L Baker
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Garth J Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
A methodological investigation of a flexible surface MRI coil to obtain functional signals from the human olfactory bulb. J Neurosci Methods 2020; 335:108624. [PMID: 32032715 DOI: 10.1016/j.jneumeth.2020.108624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Mammalian olfaction begins with transduction in olfactory receptors, continues with extensive processing in the olfactory bulb, and culminates in cortical representation. Most rodent studies on the functional neuroanatomy of olfaction have concentrated on the olfactory bulb, yet whether this structure is tuned only to basic chemical features of odorants or also to higher-order perceptual features is unclear. NEW METHOD Whereas studies of the human brain can typically uncover involvement of higher-order feature extraction, this has not been possible in the case of the olfactory bulb, inaccessible to fMRI. The present study examined whether a novel method of acquisition using a facial coil could overcome this limitation. RESULTS A series of experiments provided preliminary evidence of odor-driven responses in the human olfactory bulb, and found that these responses differed between individuals. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS The present preliminary technical achievement renders possible to design novel human odor fMRI studies by considering the olfactory system from the olfactory bulb to associative areas.
Collapse
|
7
|
Baker KL, Vasan G, Gumaste A, Pieribone VA, Verhagen JV. Spatiotemporal dynamics of odor responses in the lateral and dorsal olfactory bulb. PLoS Biol 2019; 17:e3000409. [PMID: 31532763 PMCID: PMC6768483 DOI: 10.1371/journal.pbio.3000409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/30/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023] Open
Abstract
The mammalian olfactory bulb (OB) plays an essential role in odor processing during the perception of smell. Optical imaging of the OB has proven to be a key tool in elucidating the spatial odor mapping and temporal dynamics that underlie higher-order odor processing. Much is known about the activation of olfactory sensory neuron (OSN) glomerular responses in the dorsal olfactory bulb (dOB) during odor presentation. However, the dorsal bulb provides access to only approximately 25% of all glomeruli, and little is known about how the lateral bulb functions during this critical process. Here, we report, for the first time, simultaneous measurements of OSN glomerular activity from both the dOB and the lateral olfactory bulb (lOB), thus describing odor-specific spatial mapping and the temporal dynamics of olfactory input to both the dorsal and lateral bulb. Odor responses in the lateral bulb tended to be most prominent in the dorso-lateral (D-L) region. Lateral glomeruli became active in a dorso-ventral (D-V) sequence upon odor inhalation, unlike the anterio-posterior (A-P) activity wave typical of the dorsal glomeruli. Across the entire D-L bulb, the spatial organization of these dynamics can be explained neither by the purely mechanosensitive dynamics (to breathing clean air) nor by the response amplitudes across glomeruli. Instead, these dynamics can be explained by a combination of zonal receptor distributions, associated OB projections, and air flow paths across the epithelium upon inhalation. Remarkably, we also found that a subset of OSN glomeruli in the lOB was highly sensitive to extranasal air pressure changes, a response type that has not been reported in dorsal glomeruli. The mammalian olfactory bulb plays an essential role in odor processing during the perception of smell, but most studies have focused on the dorsal olfactory bulb, which contains only a quarter of all glomeruli. In this study, imaging of the lateral olfactory bulb reveals new properties in smell processing.
Collapse
Affiliation(s)
- Keeley L. Baker
- The John B. Pierce Laboratory, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ganesh Vasan
- The John B. Pierce Laboratory, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ankita Gumaste
- The John B. Pierce Laboratory, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Vincent A. Pieribone
- The John B. Pierce Laboratory, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Justus V. Verhagen
- The John B. Pierce Laboratory, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
8
|
Lee HL, Li Z, Coulson EJ, Chuang KH. Ultrafast fMRI of the rodent brain using simultaneous multi-slice EPI. Neuroimage 2019; 195:48-58. [PMID: 30910726 DOI: 10.1016/j.neuroimage.2019.03.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/05/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022] Open
Abstract
Increasing spatial and temporal resolutions of functional MRI (fMRI) measurement has been shown to benefit the study of neural dynamics and functional interaction. However, acceleration of rodent brain fMRI using parallel and simultaneous multi-slice imaging techniques is hampered by the lack of high-density phased-array coils for the small brain. To overcome this limitation, we adapted phase-offset multiplanar and blipped-controlled aliasing echo planar imaging (EPI) to enable simultaneous multi-slice fMRI of the mouse brain using a single loop coil on a 9.4T scanner. Four slice bands of 0.3 × 0.3 × 0.5 mm3 resolution can be simultaneously acquired to cover the whole brain at a temporal resolution of 300 ms or the whole cerebrum in 150 ms. Instead of losing signal-to-noise ratio (SNR), both spatial and temporal SNR can be increased due to the increased k-space sampling compared to a standard single-band EPI. Task fMRI using a visual stimulation shows close to 80% increase of z-score and 4 times increase of activated area in the visual cortex using the multiband EPI due to the highly increased temporal samples. Resting-state fMRI shows reliable detection of bilateral connectivity by both single-band and multiband EPI, but no significant difference was found. Without the need of a dedicated hardware, we have demonstrated a practical method that can enable unparallelly fast whole-brain fMRI for preclinical studies. This technique can be used to increase sensitivity, distinguish transient response or acquire high spatiotemporal resolution fMRI.
Collapse
Affiliation(s)
- Hsu-Lei Lee
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Centre of Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Zengmin Li
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Kai-Hsiang Chuang
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Centre of Advanced Imaging, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
9
|
Mesoscopic and microscopic imaging of sensory responses in the same animal. Nat Commun 2019; 10:1110. [PMID: 30846689 PMCID: PMC6405955 DOI: 10.1038/s41467-019-09082-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/20/2019] [Indexed: 01/09/2023] Open
Abstract
Imaging based on blood flow dynamics is widely used to study sensory processing. Here we investigated the extent to which local neuronal and capillary responses (two-photon microscopy) are correlated to mesoscopic responses detected with fast ultrasound (fUS) and BOLD-fMRI. Using a specialized chronic olfactory bulb preparation, we report that sequential imaging of the same mouse allows quantitative comparison of odour responses, imaged at both microscopic and mesoscopic scales. Under these conditions, functional hyperaemia occurred at the threshold of neuronal activation and fUS-CBV signals could be detected at the level of single voxels with activation maps varying according to blood velocity. Both neuronal and vascular responses increase non-linearly as a function of odour concentration, whereas both microscopic and mesoscopic vascular responses are linearly correlated to local neuronal calcium. These data establish strengths and limits of mesoscopic imaging techniques to report neural activity. Neuronal activity leads to a local increase in blood flow and volume, a process termed hyperaemia. Here, the authors employ multiple imaging approaches of neuronal and vascular activity at varying resolution to delineate the spatiotemporal dynamics of neurovascular coupling evoked by odours in the olfactory bulb.
Collapse
|
10
|
Shang M, Xing J. Blocking of Dendrodendritic Inhibition Unleashes Widely Spread Lateral Propagation of Odor-evoked Activity in the Mouse Olfactory Bulb. Neuroscience 2018; 391:50-59. [PMID: 30208337 DOI: 10.1016/j.neuroscience.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 01/27/2023]
Abstract
The olfactory circuitry in mice involves a well-characterized, vertical receptor type-specific organization, but the localized inhibitory effect from granule cells on action potentials that propagate laterally in secondary dendrites of mitral cell remains open to debate. To understand the functional dynamics of the lateral (horizontal) circuits, we analyzed odor-induced signaling using transgenic mice expressing a genetically encoded Ca2+ indicator specifically in mitral/tufted and some juxtaglomerular cells. Optical imaging of the dorsal olfactory bulb (dOB) revealed specific patterns of glomerular activation in response to odor presentation or direct electric stimulation of the olfactory nerve (ON). Application of a mixture of ionotropic and metabotropic glutamate receptor antagonists onto the exposed dOB completely abolished the responses to direct stimulation of the ON as well as discrete odor-evoked glomerular responses patterns, while a spatially more widespread response component increased and expanded into previously nonresponsive regions. To test whether the widespread odor response component represented signal propagation along mitral cell secondary dendrites, an NMDA receptor antagonist alone was applied to the dOB and was found to also increase and expand odor-evoked response patterns. Finally, with dOB excitatory synaptic transmission completely blocked, application of 1 mM muscimol (a GABAA receptor agonist) to a circumscribed volume in the deep external plexiform layer (EPL) induced an odor non-responsive area. These results indicate that odor stimulation can activate olfactory reciprocal synapses and control lateral interactions among olfactory glomerular modules along a wide range of mitral cell secondary dendrites by modulating the inhibitory effect from granule cells.
Collapse
Affiliation(s)
- Mengjuan Shang
- Department of Radiation Medicine, Faculty of Preventive Medicine, Airforce Medical University, 169(#) ChangLe West Road, Xi'an 710032, China
| | - Junling Xing
- Department of Radiation Biology, Faculty of Preventive Medicine, Airforce Medical University, 169(#) ChangLe West Road, Xi'an 710032, China; Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520-8001, USA.
| |
Collapse
|
11
|
Vos de Wael R, Hyder F, Thompson GJ. Effects of Tissue-Specific Functional Magnetic Resonance Imaging Signal Regression on Resting-State Functional Connectivity. Brain Connect 2018; 7:482-490. [PMID: 28825320 DOI: 10.1089/brain.2016.0465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Neuroimaging studies typically consider white matter as unchanging in different neural and metabolic states. However, a recent study demonstrated that white matter signal regression (WMSR) produced a similar loss of neurometabolic information to global (whole-brain) signal regression (GSR) in resting-state functional magnetic resonance imaging (R-fMRI) data. This was unexpected as the loss of information would normally be attributed to neural activity within gray matter correlating with the global R-fMRI signal. Indeed, WMSR has been suggested as an alternative to avoid such pitfalls in GSR. To address these concerns about tissue-specific regression in R-fMRI data analysis, we performed GSR, WMSR, and gray matter signal regression (GMSR) on R-fMRI data from the 1000 Functional Connectomes Project. We describe several regional and motion-related differences between different types of regressions. However, the overall effects of concern, particularly network-specific alteration of correlation coefficients, are present for all regressions. This suggests that tissue-specific regression is not an adequate strategy to counter pitfalls of GSR. Conversely, if GSR is desired, but the studied disease state excludes either gray matter or white matter from analysis (e.g., due to tissue atrophy), our results indicate that WMSR or GMSR may reproduce the gross effects of GSR.
Collapse
Affiliation(s)
- Reinder Vos de Wael
- 1 McConnell Brain Imaging Centre, McGill University , Montreal, Canada .,2 Neuroimaging Center, University of Groningen , Groningen, The Netherlands .,3 Magnetic Resonance Research Center (MRRC), Yale University , New Haven, Connecticut
| | - Fahmeed Hyder
- 3 Magnetic Resonance Research Center (MRRC), Yale University , New Haven, Connecticut.,4 Department of Radiology and Biomedical Imaging, Yale University , New Haven, Connecticut.,5 Department of Biomedical Engineering, Yale University , New Haven, Connecticut.,6 Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University , New Haven, Connecticut
| | | |
Collapse
|
12
|
Thompson GJ, Sanganahalli BG, Baker KL, Herman P, Shepherd GM, Verhagen JV, Hyder F. Spontaneous activity forms a foundation for odor-evoked activation maps in the rat olfactory bulb. Neuroimage 2018; 172:586-596. [PMID: 29374582 DOI: 10.1016/j.neuroimage.2018.01.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 12/12/2022] Open
Abstract
Fluctuations in spontaneous activity have been observed by many neuroimaging techniques, but because these resting-state changes are not evoked by stimuli, it is difficult to determine how they relate to task-evoked activations. We conducted multi-modal neuroimaging scans of the rat olfactory bulb, both with and without odor, to examine interaction between spontaneous and evoked activities. Independent component analysis of spontaneous fluctuations revealed resting-state networks, and odor-evoked changes revealed activation maps. We constructed simulated activation maps using resting-state networks that were highly correlated to evoked activation maps. Simulated activation maps derived by intrinsic optical signal (IOS), which covers the dorsal portion of the glomerular sheet, significantly differentiated one odor's evoked activation map from the other two. To test the hypothesis that spontaneous activity of the entire glomerular sheet is relevant for representing odor-evoked activations, we used functional magnetic resonance imaging (fMRI) to map the entire glomerular sheet. In contrast to the IOS results, the fMRI-derived simulated activation maps significantly differentiated all three odors' evoked activation maps. Importantly, no evoked activation maps could be significantly differentiated using simulated activation maps produced using phase-randomized resting-state networks. Given that some highly organized resting-state networks did not correlate with any odors' evoked activation maps, we posit that these resting-state networks may characterize evoked activation maps associated with odors not studied. These results emphasize that fluctuations in spontaneous activity form a foundation for active processing, signifying the relevance of resting-state mapping to functional neuroimaging.
Collapse
Affiliation(s)
- Garth J Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA
| | - Keeley L Baker
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Brain-state dependent astrocytic Ca 2+ signals are coupled to both positive and negative BOLD-fMRI signals. Proc Natl Acad Sci U S A 2018; 115:E1647-E1656. [PMID: 29382752 DOI: 10.1073/pnas.1711692115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Astrocytic Ca2+-mediated gliovascular interactions regulate the neurovascular network in situ and in vivo. However, it is difficult to measure directly both the astrocytic activity and fMRI to relate the various forms of blood-oxygen-level-dependent (BOLD) signaling to brain states under normal and pathological conditions. In this study, fMRI and GCaMP-mediated Ca2+ optical fiber recordings revealed distinct evoked astrocytic Ca2+ signals that were coupled with positive BOLD signals and intrinsic astrocytic Ca2+ signals that were coupled with negative BOLD signals. Both evoked and intrinsic astrocytic calcium signal could occur concurrently or respectively during stimulation. The intrinsic astrocytic calcium signal can be detected globally in multiple cortical sites in contrast to the evoked astrocytic calcium signal only detected at the activated cortical region. Unlike propagating Ca2+ waves in spreading depolarization/depression, the intrinsic Ca2+ spikes occurred simultaneously in both hemispheres and were initiated upon the activation of the central thalamus and midbrain reticular formation. The occurrence of the intrinsic astrocytic calcium signal is strongly coincident with an increased EEG power level of the brain resting-state fluctuation. These results demonstrate highly correlated astrocytic Ca2+ spikes with bidirectional fMRI signals based on the thalamic regulation of cortical states, depicting a brain-state dependency of both astrocytic Ca2+ and BOLD fMRI signals.
Collapse
|
14
|
Activity Patterns Elicited by Airflow in the Olfactory Bulb and Their Possible Functions. J Neurosci 2017; 37:10700-10711. [PMID: 28972124 DOI: 10.1523/jneurosci.2210-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/23/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022] Open
Abstract
Olfactory sensory neurons (OSNs) can sense both odorants and airflows. In the olfactory bulb (OB), the coding of odor information has been well studied, but the coding of mechanical stimulation is rarely investigated. Unlike odor-sensing functions of OSNs, the airflow-sensing functions of OSNs are also largely unknown. Here, the activity patterns elicited by mechanical airflow in male rat OBs were mapped using fMRI and correlated with local field potential recordings. In an attempt to reveal possible functions of airflow sensing, the relationship between airflow patterns and physiological parameters was also examined. We found the following: (1) the activity pattern in the OB evoked by airflow in the nasal cavity was more broadly distributed than patterns evoked by odors; (2) the pattern intensity increases with total airflow, while the pattern topography with total airflow remains almost unchanged; and (3) the heart rate, spontaneous respiratory rate, and electroencephalograph power in the β band decreased with regular mechanical airflow in the nasal cavity. The mapping results provide evidence that the signals elicited by mechanical airflow in OSNs are transmitted to the OB, and that the OB has the potential to code and process mechanical information. Our functional data indicate that airflow rhythm in the olfactory system can regulate the physiological and brain states, providing an explanation for the effects of breath control in meditation, yoga, and Taoism practices.SIGNIFICANCE STATEMENT Presentation of odor information in the olfactory bulb has been well studied, but studies about breathing features are rare. Here, using blood oxygen level-dependent functional MRI for the first time in such an investigation, we explored the global activity patterns in the rat olfactory bulb elicited by airflow in the nasal cavity. We found that the activity pattern elicited by airflow is broadly distributed, with increasing pattern intensity and similar topography under increasing total airflow. Further, heart rate, spontaneous respiratory rate in the lung, and electroencephalograph power in the β band decreased with regular airflow in the nasal cavity. Our study provides further understanding of the airflow map in the olfactory bulb in vivo, and evidence for the possible mechanosensitivity functions of olfactory sensory neurons.
Collapse
|
15
|
|
16
|
Riemann S, Helbing C, Angenstein F. From unspecific to adjusted, how the BOLD response in the rat hippocampus develops during consecutive stimulations. J Cereb Blood Flow Metab 2017; 37:590-604. [PMID: 26911895 PMCID: PMC5381453 DOI: 10.1177/0271678x16634715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To determine the possibility to deconvolve measured BOLD responses to neuronal signals, the rat perforant pathway was electrically stimulated with 10 related stimulation protocols. All stimulation protocols were composed of low-frequency pulse sequences with superimposed high-frequency pulse bursts. Because high-frequency pulse bursts trigger only one synchronized spiking of granular cells, variations of the stimulation protocol were used: (a) to keep the spiking activity similar during the presentation of different numbers of pulses, (b) to apply identical numbers of pulses to induce different amounts of spiking activity, and (c) to concurrently vary the number of applied electrical pulses and resultant spiking activity. When complex pulse sequences enter the hippocampus, an unspecific default-like BOLD response is first generated, which relates neither to the number of incoming pulses nor to the induced spiking activity. Only during subsequent stimulations does the initial unspecific response adjust to a more adequate response, which in turn either strongly related to spiking activity when low-frequency pulses were applied or depended on the incoming activity when high-frequency pulse bursts were presented. Thus, only the development of BOLD responses during repetitive stimulations can predict the underlying neuronal activity and deconvolution analysis should not be performed during an initial stimulation period.
Collapse
Affiliation(s)
- Stephanie Riemann
- 1 Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Cornelia Helbing
- 1 Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Frank Angenstein
- 1 Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany.,2 Special Lab for Noninvasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
17
|
Kannurpatti SS. Mitochondrial calcium homeostasis: Implications for neurovascular and neurometabolic coupling. J Cereb Blood Flow Metab 2017; 37:381-395. [PMID: 27879386 PMCID: PMC5381466 DOI: 10.1177/0271678x16680637] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial function is critical to maintain high rates of oxidative metabolism supporting energy demands of both spontaneous and evoked neuronal activity in the brain. Mitochondria not only regulate energy metabolism, but also influence neuronal signaling. Regulation of "energy metabolism" and "neuronal signaling" (i.e. neurometabolic coupling), which are coupled rather than independent can be understood through mitochondria's integrative functions of calcium ion (Ca2+) uptake and cycling. While mitochondrial Ca2+ do not affect hemodynamics directly, neuronal activity changes are mechanistically linked to functional hyperemic responses (i.e. neurovascular coupling). Early in vitro studies lay the foundation of mitochondrial Ca2+ homeostasis and its functional roles within cells. However, recent in vivo approaches indicate mitochondrial Ca2+ homeostasis as maintained by the role of mitochondrial Ca2+ uniporter (mCU) influences system-level brain activity as measured by a variety of techniques. Based on earlier evidence of subcellular cytoplasmic Ca2+ microdomains and cellular bioenergetic states, a mechanistic model of Ca2+ mobilization is presented to understand systems-level neurovascular and neurometabolic coupling. This integrated view from molecular and cellular to the systems level, where mCU plays a major role in mitochondrial and cellular Ca2+ homeostasis, may explain the wide range of activation-induced coupling across neuronal activity, hemodynamic, and metabolic responses.
Collapse
|
18
|
Rungta RL, Osmanski BF, Boido D, Tanter M, Charpak S. Light controls cerebral blood flow in naive animals. Nat Commun 2017; 8:14191. [PMID: 28139643 PMCID: PMC5290324 DOI: 10.1038/ncomms14191] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/07/2016] [Indexed: 01/05/2023] Open
Abstract
Optogenetics is increasingly used to map brain activation using techniques that rely on functional hyperaemia, such as opto-fMRI. Here we test whether light stimulation protocols similar to those commonly used in opto-fMRI or to study neurovascular coupling modulate blood flow in mice that do not express light sensitive proteins. Combining two-photon laser scanning microscopy and ultrafast functional ultrasound imaging, we report that in the naive mouse brain, light per se causes a calcium decrease in arteriolar smooth muscle cells, leading to pronounced vasodilation, without excitation of neurons and astrocytes. This photodilation is reversible, reproducible and energy-dependent, appearing at about 0.5 mJ. These results impose careful consideration on the use of photo-activation in studies involving blood flow regulation, as well as in studies requiring prolonged and repetitive stimulations to correct cellular defects in pathological models. They also suggest that light could be used to locally increase blood flow in a controlled fashion. Combination of optogenetics and BOLD fMRI is routinely used to map neuronal activity upon photostimulation. Here the authors show that light, shone at intensities used in optogenetic studies, dilates vessels and increases blood flow independently of exogenous light-sensitive proteins in the mouse brain.
Collapse
Affiliation(s)
- Ravi L Rungta
- INSERM U1128, Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris 75006, France
| | - Bruno-Félix Osmanski
- INSERM U1128, Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris 75006, France
| | - Davide Boido
- INSERM U1128, Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris 75006, France
| | - Mickael Tanter
- Institut Langevin, Espci Paris, CNRS UMR 7587, INSERM U979, PSL Research University, 17 rue Moreau, Paris 75012, France
| | - Serge Charpak
- INSERM U1128, Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris 75006, France
| |
Collapse
|