1
|
Shamay-Tsoory SG, Markovich A, Markus A, Bitan T. Interbrain coupling during language learning contributes to learning outcomes. Soc Cogn Affect Neurosci 2025; 20:nsaf045. [PMID: 40314104 PMCID: PMC12151009 DOI: 10.1093/scan/nsaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/15/2024] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
While knowledge and skill acquisition frequently occur in social interactions, the predominant focus of existing research remains centred on individual learning. Here, we investigate whether social interaction enhances language learning, and whether interbrain coupling changes across learning sessions. We utilized functional near-infrared spectroscopy to assess teacher-learner dyads engaging in a two-session training on a set of words and their plural inflections in a novel language. We compared a group trained with mutual communication with a noninteractive group, in which the learner could see and hear the teacher, but the teacher was unable to see or hear the learner (one-way mirror). Results revealed that compared to the No-interaction group, the Interaction group exhibited faster reaction times for vocabulary recognition and morphological inflections for the first session. The neuroimaging data revealed that interbrain coupling between the left inferior frontal gyrus (IFG) of the learner and the right IFG of the teacher positively predicted vocabulary accuracy in the first but not in the second session. The results collectively suggest that IFG interbrain coupling plays an essential role in the initial stages of learning, highlighting the significant impact of social interaction in enhancing learning, especially during the early phases of learning.
Collapse
Affiliation(s)
| | - Anna Markovich
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Andrey Markus
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Tali Bitan
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
2
|
Lu K, Wang X, Qiao X, Gao Z, Hao N. Group creativity emerges from triple ideation pathways: neurobehavioral evidence from an fNIRS hyperscanning study. Cereb Cortex 2025; 35:bhaf129. [PMID: 40432193 DOI: 10.1093/cercor/bhaf129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
This study explored the origins of creative ideas in groups, validating the triple-pathway model of group creative ideation with behavioral and neuroscientific evidence. A total of 123 college student dyads completed a creative ideation task and a contrast task while their brain activity was simultaneously recorded using functional near-infrared spectroscopy. Results identified three distinct ideation pathways-flexibility, persistence, and convergence-that collectively drove group creativity, accompanied by three interbrain synchrony states. STATE2, characterized by enhanced prefrontal-temporal interbrain synchrony, positively predicted group creative performance, whereas STATE3, marked by reduced frontal-parietal interbrain synchrony, negatively predicted it. Specifically, STATE2 facilitated group creativity through three mediating pathways: (1) the flexibility pathway alone, (2) combined flexibility-persistence or flexibility-convergence pathways, and (3) a sequential flexibility-persistence-convergence pathway with chain mediation effects. These findings provide neurobehavioral evidence for the triple-pathway model, underscoring the pivotal role of prefrontal-temporal interbrain synchrony in group creativity. They further demonstrate the dynamic, multi-pathway nature of group creative ideation, showing that a single cohort can flexibly employ three interchangeable pathways to generate novel ideas collaboratively.
Collapse
Affiliation(s)
- Kelong Lu
- School of Mental Health, Wenzhou Medical University, University Town, Chashan, Wenzhou, Zhejiang 325035, China
| | - Xinyue Wang
- School of Psychology, Nanjing Normal University, No. 122, Ninghai Road, Nanjing, Jiangsu 210023, China
| | - Xinuo Qiao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhongshan Road, Shanghai 200062, China
| | - Zhenni Gao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No. 5, Jing'an Road, Chengdu 610066, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhongshan Road, Shanghai 200062, China
- Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, No. 1688, Lianhua Road, Hefei 230601, China
| |
Collapse
|
3
|
Gemmerich R, Müller O, Schaller A. The application of fNIRS in studies on occupational workload: a systematic review. Front Public Health 2025; 13:1560605. [PMID: 40331113 PMCID: PMC12053328 DOI: 10.3389/fpubh.2025.1560605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
Background Occupational workload can contribute to significant health problems such as chronic stress, fatigue and burnout. To investigate the underlying mechanisms, it is necessary to monitor brain activity in real work environments. Functional near-infrared spectroscopy (fNIRS) is a portable, non-invasive neuroimaging method that captures neural correlates of occupational workload under natural conditions. However, despite its increasing application, a comprehensive overview of fNIRS-based research in this field is lacking. Therefore, this systematic review examines how fNIRS can be utilized to investigate occupational workload. Methods Following PRISMA 2020 guidelines, we conducted our systematic review by searching Web of Science, PubMed, and Scopus between November 15, 2023 and March 20, 2025. We included all studies published in English or German at any date, as long as they examined healthy adult professionals performing occupational tasks with functional near-infrared spectroscopy (fNIRS). Extracted data included study characteristics, workload details, signal processing methods, main fNIRS findings, and study quality, assessed using the JBI Critical Appraisal Tool. Results We included 41 studies. Of these, 23 reported a significant increase in oxygenated hemoglobin (HbO) concentration and functional connectivity in the prefrontal cortex (PFC) under higher occupational workload conditions. Only five studies examined typical office tasks. Nine studies analyzed differences in cortical activation between experts and novices, with experts showing increased HbO concentration in the PFC than novices. Regarding methodology, 26 studies used standardized optode placements, while only 17 applied systemic and extracerebral artifact correction. Small sample sizes and the absence of randomized controlled trials limited the reliability and reproducibility of the findings. Conclusion Functional near-infrared spectroscopy effectively detects neural correlates of occupational workload and provides objective insights into cognitive demands in real-world work settings. Standardizing optode placement, harmonizing signal-processing methods, and increasing sample sizes would enhance the validity and comparability of future research. Expanding investigations to typical office environments is also crucial for understanding daily workload and for developing interventions that promote employee well-being and productivity. Overall, fNIRS represents a promising tool for establishing evidence-based workplace health promotion strategies across diverse occupational settings.
Collapse
Affiliation(s)
- Robin Gemmerich
- Department of Workplace Health Promotion and Prevention, University of the Bundeswehr Munich, Neubiberg, Germany
| | | | - Andrea Schaller
- Department of Workplace Health Promotion and Prevention, University of the Bundeswehr Munich, Neubiberg, Germany
| |
Collapse
|
4
|
Isowa T, Ogawa K, Sato S, Kubota T, Ishiguro H. Investigation of the conditions for continuous information conveyance by two autonomous conversational agents. Front Robot AI 2025; 12:1417488. [PMID: 40313469 PMCID: PMC12044221 DOI: 10.3389/frobt.2025.1417488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 03/19/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction In recent years, information conveyance through conversation using agents such as robots and avatars has gained attention. Among them, conversation by two agents has been shown to encourage effective information conveyance. Previous studies have also demonstrated that incorporating subjective information, such as emotions, into conversations enhances this effect. Therefore, a medium for information conveyance involving two autonomous agents and including subjective information is expected to be effective. Methods In this study, such a medium was implemented, and the conditions necessary for it to convey information continuously were investigated. Objective information was defined as the content of existing news, and subjective information was defined as the preference toward the news. A frame structure was used for organizing objective information, and a network structure was used for subjective information. A method was developed to autonomously obtain both types of information. This knowledge was then distributed to two agents, who exchanged it and attempted to understand each other through conversation. Results Experiments were conducted to determine whether the subjective information obtained autonomously by the agents was as natural and consistent as that of humans. Further experiments examined the conditions for enabling continuous information conveyance using the medium. Discussion The results indicated that conveying important information first and using robots rather than text were effective strategies for maintaining continuous information conveyance.
Collapse
Affiliation(s)
- Takamichi Isowa
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Kohei Ogawa
- Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Satoshi Sato
- Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Tomonori Kubota
- Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroshi Ishiguro
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Dai X, Chen L, Zhou Q, Zhang Y. Effects of preference alignment and client-rated attachment style on therapy: The moderating role of interpersonal synchrony. Psychother Res 2025:1-15. [PMID: 40221970 DOI: 10.1080/10503307.2025.2491479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/14/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025] Open
Abstract
OBJECTIVE This study aims to explore whether activity-preference alignment provides unique contributions to the working alliance and counseling outcomes beyond the client-rated adult attachment style, and to examine the moderating roles of behavioral and brain synchrony in this process. METHODS Sixteen pairs of counselors and clients participated in five consecutive weekly counseling sessions. The 1st, 3rd, and 5th sessions took place offline in a near-infrared laboratory, while the 2nd and 4th sessions were conducted online via video conferencing. RESULTS After controlling for the client-rated adult attachment style, preference alignment showed a significant impact on symptom improvement. Specifically, preference alignment had a significant positive predictive effect on symptom improvement when counselor-guided behavioral synchronization was high. Attachment avoidance also negatively predicted the working alliance but only when client-guided brain synchronization in the temporoparietal junction was low. CONCLUSION The study suggests that preference alignment provides unique insights into symptom improvement beyond client-rated attachment style alone. Counselor-guided behavioral synchrony amplifies the effect of preference differences on symptom improvement, whereas client-guided brain synchrony reduces attachment avoidance's impact on the working alliance. These findings highlight that behavioral and brain synchrony impact therapeutic outcomes differently based on who guides the process, emphasizing the need to consider both interpersonal dynamics and alignment factors in counseling.
Collapse
Affiliation(s)
- Xiaoyan Dai
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Centre (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, People's Republic of China
| | - Liying Chen
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Centre (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, People's Republic of China
| | - Qianyi Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Centre (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, People's Republic of China
| | - Ya Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Centre (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, People's Republic of China
- Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei, People's Republic of China
| |
Collapse
|
6
|
Yamakoshi T, Sakamoto R, Fukuda T, Kanatome A, Koyama A, Ano Y. Effects of laughter on focus and stress in middle-aged adults: a single-blind, randomized controlled trial. BMC Complement Med Ther 2025; 25:123. [PMID: 40170014 PMCID: PMC11959982 DOI: 10.1186/s12906-025-04863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Disorders associated with mental health significantly impact disability-adjusted life year values and represent an ongoing problem in stressed societies. Worsening mental health also affects cognitive function and quality of life. Increasing attention has thus been attracted to preventive measures for mental and brain health in daily life. This has created a growing interest in care using laughter. This study assessed the effects of a short-term, laughter-based intervention on the mental health and cognitive functions of middle-aged adults. METHODS The study applied a single-blind, crossover-controlled trial design. Cognitive tasks (e.g., digit vigilance) were performed after participants viewed a video clip of approximately four minutes (comedic or control video), and the resulting scores were treated as the primary endpoint. The secondary endpoints included cerebral blood flow in the dorsolateral prefrontal cortex (measured using NIRS), heart rate variability (calculated from ECG), subjective mood assessment, and salivary stress biomarkers (e.g., α-amylase activity). RESULTS The study was conducted on 25 healthy Japanese-speaking adults aged 40 to 65. Results revealed a significant increase in digit vigilance scores. Compared to viewing the control video, participants evinced a trend toward an increase in serial seven subtraction scores after viewing the comedic video. No significant differences were found for other cognitive tasks. The cerebral blood flow was also significantly higher in the dorsolateral prefrontal cortex during the cognitive tasks performed after the participants viewed the comedic video compared to the control video. The outcomes of heart rate variability, subjective mood state assessment, and salivary stress markers also suggested that the comedic video intervention could subsequently contribute to the activation of parasympathetic activity and reduce psychological stress levels. CONCLUSIONS The outcomes indicated that interventions using short comedic videos can improve focus and may reduce psychological stress. These results support the clinical benefits of humor, which can be utilized as a simple, non-invasive approach to promoting the health of middle-aged adults. TRIAL REGISTRATION The study was approved by the ethics committee of Kirin Holdings Company (No. 2020-014) and registered in the University Hospital Medical Information Network (UMIN) database (Registration No. UMIN000043332; http://www.umin.ac.jp/ctr/ ) on February 15, 2021.
Collapse
Affiliation(s)
- Tatsuya Yamakoshi
- Kirin Central Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa-Shi, Kanagawa, 251-8555, Japan.
| | - Ryo Sakamoto
- Sakai City Medical Center, Psychosomatic Medicine, Sakai City, Japan
| | - Takafumi Fukuda
- Kirin Central Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa-Shi, Kanagawa, 251-8555, Japan
| | - Ayana Kanatome
- Kirin Central Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa-Shi, Kanagawa, 251-8555, Japan
| | - Atsuko Koyama
- Psychosomatic Medicine, Shiroyama Hospital, Osaka, Japan
- Psychosomatic Medicine, National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Yasuhisa Ano
- Kirin Central Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa-Shi, Kanagawa, 251-8555, Japan
| |
Collapse
|
7
|
Yin Z, Xuan B, Liu C, Yi J, Zheng X, Zhang M. The influence of task and interpersonal interdependence on cooperative behavior and its neural mechanisms. NPJ SCIENCE OF LEARNING 2025; 10:9. [PMID: 39988591 PMCID: PMC11847934 DOI: 10.1038/s41539-025-00303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Previous studies have insufficiently explored the influence of task and interpersonal interdependence on synchronous cooperation behavior. To address this gap, this study utilized fNIRS hyperscanning technique to investigate the behavioral and neural mechanisms within both friend and stranger dyads engaging in various levels of interdependent cooperation tasks. Our findings revealed that high interdependent cooperation task can improve the behavioral performance of both friend and stranger dyads, enhancing the intra-brain functional connectivity (FC) of right dorsolateral prefrontal cortex (DLPFC.R) and right supramarginal gyrus (SMG.R) in stranger dyads, as well as the inter-brain synchrony (IBS) of SMG.R. Additionally, high interdependent interpersonal relationship can strengthen the intra-brain FC of DLPFC.R and SMG.R, as well as the IBS of SMG.R, during low interdependent cooperation task. These insights underscore the critical importance of both task and interpersonal interdependences in shaping cooperative behavior and neural synchrony.
Collapse
Affiliation(s)
- Zijun Yin
- School of Educational Science, Anhui Normal University, Wuhu, China
| | - Bin Xuan
- School of Educational Science, Anhui Normal University, Wuhu, China.
| | - Chengchi Liu
- School of Educational Science, Anhui Normal University, Wuhu, China
| | - Jingchao Yi
- School of Educational Science, Anhui Normal University, Wuhu, China
| | - Xiaoyan Zheng
- School of Educational Science, Anhui Normal University, Wuhu, China
| | - Mingming Zhang
- School of Psychology, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
8
|
Luo H, Cai Y, Lin X, Duan L. Hyper-brain independent component analysis (HB-ICA): an approach for detecting inter-brain networks from fNIRS-hyperscanning data. BIOMEDICAL OPTICS EXPRESS 2025; 16:245-256. [PMID: 39816140 PMCID: PMC11729297 DOI: 10.1364/boe.542554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025]
Abstract
Functional near-infrared spectroscopy (fNIRS) -based hyperscanning is a popular new technology in the field of social neuroscience research. In recent years, studying human social interaction from the perspective of inter-brain networks has received increasing attention. In the present study, we proposed a new approach named the hyper-brain independent component analysis (HB-ICA) for detecting the inter-brain networks from fNIRS-hyperscanning data. HB-ICA is an ICA-based, data-driven method, and can be used to search the inter-brain networks of social interacting groups containing multiple participants. We validated the method by using both simulated data and in vivo fNIRS-hyperscanning data. The results showed that the HB-ICA had good performance in detecting the inter-brain networks in both simulation and in-vivo experiments. Our approach provided a promising tool for studying the neural mechanism of human social interactions.
Collapse
Affiliation(s)
- Hailing Luo
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yutong Cai
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xiuyun Lin
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Lian Duan
- School of Psychology, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Li J, Chen P, Pan J, Zhu C. Decision-making power enhances investors' neural processing of persuasive message in partnership investment. Neuroimage 2024; 304:120938. [PMID: 39557137 DOI: 10.1016/j.neuroimage.2024.120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Partnership investment is a common form of business where investors have different levels of power and need to persuade each other to reach a consensus. This study investigated the neural mechanisms underlying the impact of decision-making power on persuasive communication in partnership investment, aiming to provide neural evidence to test two competing hypotheses: the power-responsibility hypothesis and the power-overconfidence hypothesis. Using functional near-infrared spectroscopy (fNIRS), we recorded brain activity from persuader-receiver dyads as they engaged in a partnership investment task. Behavioral results showed that receivers' decisions were more affected by persuaders' persuasive messages when receivers had dominant decision-making power. Neurally, the functional connectivity (FC) between the left and right temporo-parietal junctions (lTPJ and rTPJ) of the receiver was significantly increased by their decision-making power. Additionally, we identified four pairs of interpersonal neural synchronization (INS) that exhibited significant enhancement when persuaders used numeric persuasion rather than non-numeric persuasion: lTPJ-rTPJ, left superior temporal gyrus (lSTG)-rTPJ, left middle temporal gyrus (lMTG)-rTPJ, and medial prefrontal cortex (mPFC)-lTPJ. The decision-making power amplified the INS difference in the last three pairs. Furthermore, using a support vector machine (SVM) algorithm, the INS could accurately predict receivers' adoption of persuasive messages when they held dominant decision-making power. Finally, we found that FC at lTPJ-rTPJ and INS at lSTG-rTPJ were positively associated with receivers' adoption of persuasive messages as well. Our study clarifies how decision-making power alters the way individuals process persuasive messages in partnership investment, providing insights into the neural basis of persuasion in group decision-making contexts and supporting the power-responsibility hypothesis.
Collapse
Affiliation(s)
- Jianbiao Li
- School of Economics, Institute for Study of Brain-Like Economics, Shandong University, Jinan, China
| | - Peikun Chen
- School of Economics, Institute for Study of Brain-Like Economics, Shandong University, Jinan, China
| | - Jingjing Pan
- Business School, University of Jinan, Jinan, China
| | - Chengkang Zhu
- School of Economics, Institute for Study of Brain-Like Economics, Shandong University, Jinan, China.
| |
Collapse
|
10
|
Li Q, Wang D, Xiao W, Tang Y, Sun Q, Sun B, Hu Z. Structured interaction between teacher and student in the flipped classroom enhances learning and interbrain synchrony. NPJ SCIENCE OF LEARNING 2024; 9:73. [PMID: 39622866 PMCID: PMC11612419 DOI: 10.1038/s41539-024-00286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Studies have found that flipped classroom teaching (FT) improves learning compared to lecture-based teaching (LT). However, whether the structured teacher-student interaction-the key feature of FT-plays an essential role in enhancing learning remains unclear, as do its neural underpinnings. Here, we compared three teaching conditions: FT with a video lecture and structured interaction, LT with a face-to-face lecture and spontaneous interaction, and control teaching (CT) with a video lecture and spontaneous interaction. The fNIRS-based hyperscanning technique was used to assess the interbrain synchrony (IBS) from teacher-student dyads. Results showed that the learning was significantly improved in FT than in LT and CT, and FT significantly increased teacher-student IBS in left DLPFC. Moreover, the IBS and learning improvements were positively correlated. Therefore, these findings indicate that the structured teacher-student interaction is crucial for enhancing learning in FT, and IBS serves as its neural foundation.
Collapse
Affiliation(s)
- Qi Li
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China
| | - Die Wang
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China
| | - Weilong Xiao
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, P. R. China
- Research Center of Tin Ka Ping Moral Education, Zhejiang Normal University, Jinhua, P. R. China
| | - Yingying Tang
- Neuroimaging Core, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Qi Sun
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, P. R. China.
| | - Binghai Sun
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, P. R. China.
- Research Center of Tin Ka Ping Moral Education, Zhejiang Normal University, Jinhua, P. R. China.
| | - Zhishan Hu
- Neuroimaging Core, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.
| |
Collapse
|
11
|
Zhao H, Zhang C, Tao R, Wang M, Yin Y, Xu S. Dyadic Similarity in Social Value Orientation Modulates Hyper-Brain Network Dynamics During Interpersonal Coordination: An fNIRS-Based Hyperscanning Study. Brain Topogr 2024; 38:15. [PMID: 39551818 DOI: 10.1007/s10548-024-01092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
As the fundamental dispositional determinant of social motivation, social value orientation (SVO) may modulate individuals' response patterns in interpersonal coordination contexts. Adopting fNIRS-based hyperscanning approach, the present investigation uncovered the hyper-brain network topological dynamics underlying the effect of the dyadic similarity in the social value orientation on interpersonal coordination. Our findings indicated that the dyads in proself group exhibited the higher degree of competitive intensity during the competitive coordination block, and the dyads in the prosocial group exhibited a higher degree of cooperative coordination during the cooperative coordination block. Distinct hyper-brain functional connectivity patterns and network topological characteristics were identified during the competitive and cooperative coordination blocks in the proself and prosocial groups. The nodal-network global efficiency at the right frontopolar area further mediated the effect of the dyadic deviation in social value orientation similarity on effective adjustments after the negative feedback during the cooperative coordination block in the prosocial group. Our findings manifested distinct behavioral performances and hyper-brain functional connectivity patterns underlying the effect of the dyadic similarity in social value orientation on interpersonal coordination in the real-time mode.
Collapse
Affiliation(s)
- Hanxuan Zhao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), Shanghai International Studies University, Shanghai, China
- School of Business and Management, Shanghai International Studies University, 550 Dalian West Road, Shanghai, 200083, China
| | - Can Zhang
- School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ruiwen Tao
- School of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mingjing Wang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), Shanghai International Studies University, Shanghai, China
- School of Business and Management, Shanghai International Studies University, 550 Dalian West Road, Shanghai, 200083, China
| | - Yuan Yin
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), Shanghai International Studies University, Shanghai, China
- School of Business and Management, Shanghai International Studies University, 550 Dalian West Road, Shanghai, 200083, China
| | - Sihua Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), Shanghai International Studies University, Shanghai, China.
- School of Business and Management, Shanghai International Studies University, 550 Dalian West Road, Shanghai, 200083, China.
| |
Collapse
|
12
|
Deng X, Hosseini S, Miyake Y, Nozawa T. Cooperativeness as a Personality Trait and Its Impact on Cooperative Behavior in Young East Asian Adults Who Synchronized in Casual Conversations. Behav Sci (Basel) 2024; 14:987. [PMID: 39594287 PMCID: PMC11590874 DOI: 10.3390/bs14110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Cooperation is essential in social life, involving collaborative efforts for mutual benefits. Individual differences in the cooperativeness trait are pivotal in these interactions. A single-group pretest-posttest design was used in this study to determine if Duchenne smiling with gaze and inter-brain synchrony (IBS) during conversation mediates the relationship between cooperativeness and cooperative behavior. The relationships among the variables were examined using mediation analysis and path analysis. We hypothesized that Duchenne smiling with gaze would mediate cooperativeness' impact on cooperative behavior, while expecting IBS in the left prefrontal region to predict cooperative behavior. The results demonstrated that cooperativeness significantly predicted Duchenne smiling with gaze and cooperative behavior; however, Duchenne smiling with gaze did not mediate the relationship between them. Additionally, IBS during conversation did not predict successive cooperative behavior. These results suggest dispositional factors like cooperativeness may play a more decisive role than momentary expressional cues or neural synchrony in naturalistic unstructured communication in shaping cooperative behavioral outcomes after the communication. The study highlights how personality traits like cooperativeness shape nonverbal communication and social interactions, implying that interventions aimed at developing cooperativeness could lead to more effective collaboration in social settings.
Collapse
Affiliation(s)
- Xiaoqi Deng
- Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan; (X.D.); (S.H.); (Y.M.)
| | - Sarinasadat Hosseini
- Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan; (X.D.); (S.H.); (Y.M.)
| | - Yoshihiro Miyake
- Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan; (X.D.); (S.H.); (Y.M.)
| | - Takayuki Nozawa
- Department of Intellectual Information Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
13
|
Kelsen B, Liang SHY. Frontal EEG alpha asymmetry predicts foreign language anxiety while speaking a foreign language. Behav Brain Res 2024; 475:115216. [PMID: 39214421 DOI: 10.1016/j.bbr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/16/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Engaging in dialog requires interlocutors to coordinate sending and receiving linguistic signals to build a discourse based upon interpretations and perceptions interconnected with a range of emotions. Conversing in a foreign language may induce emotions such as anxiety which influence the quality communication. The neural processes underpinning these interactions are crucial to understanding foreign language anxiety (FLA). Electroencephalography (EEG) studies reveal that anxiety is often displayed via hemispheric frontal alpha asymmetry (FAA). To examine the neural mechanisms underlying FLA, we collected self-reported data on the listening and speaking sections of the Second language skill specific anxiety scale (L2AS) over behavioral, cognitive, and somatic domains and recorded EEG signals during participation in word chain turn-taking activities in first (L1, Chinese) and second (L2, English) languages. Regression analysis showed FAA for the L2 condition was a significant predictor primarily of the behavioral and somatic domains on the L2AS speaking section. The results are discussed along with implications for improving communication during L2 interactions.
Collapse
Affiliation(s)
- Brent Kelsen
- Language Center, National Taipei University, New Taipei City, Taiwan, ROC
| | - Sophie Hsin-Yi Liang
- Section of Child & Adolescent Psychiatry, Department of Psychiatry, Chang Gung Memorial Hospital at Taoyuan, No. 123, Dinghu Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC; School of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Tao, Yuan 333, Taiwan, ROC.
| |
Collapse
|
14
|
Huang RY, Zhang X, Liang ZW, Cai L, Peng XR, Cen YS, Yu J. Intergenerational or intragenerational learning? The relationship between interpersonal neural synchrony and older adult's learning acquisition. Exp Gerontol 2024; 194:112499. [PMID: 38901772 DOI: 10.1016/j.exger.2024.112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVES Lifelong learning facilitates active ageing, and intragenerational learning-the process by which older adults learn from their peers-is an effective means of achieving this goal. The present research aims to elucidate the mechanisms and differences between intergenerational and intragenerational learning models for older adults as evidenced by brain-to-brain synchrony. METHODS Fifty-six instructor-learner dyads completed a study comparing intergenerational and intragenerational learning models, as well as task difficulty. The study utilized a block puzzle task and functional near-infrared spectroscopy (fNIRS) for hyperscanning. RESULTS The instructor-learner dyads showed greater interpersonal neural synchrony (INS) and learning acquisition in the intragenerational learning model in the difficult task condition (t (54) = 3.49, p < 0.01), whereas the two learning models yielded similar results in the easy condition (t (54) = 1.96, p = 0.06). In addition, INS and self-efficacy mediated the association between learning models and learning acquisition in older adults (b = 0.14, SEM = 0.04, 95 % CI [0.01 0.16]). DISCUSSION This study is the first to provide evidence of interbrain synchrony in an investigation of the intragenerational learning model in older adults. Our findings suggest that intra-learning is as effective as traditional inter-learning and may be more effective in certain contexts, such as difficult tasks. Encouraging intra-learning in community service or educational activities can effectively mitigate the challenge of limited volunteers and enhance learning acquisition among older adults.
Collapse
Affiliation(s)
- Run-Yu Huang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xin Zhang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Zi-Wei Liang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Lin Cai
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Xue-Rui Peng
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Yu-Shan Cen
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Jing Yu
- Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
15
|
Li S, Yu L, Gan X, Hou Y, Pan Y, Luo Y, Hu Y. The acquired dyad inclination and decreased interpersonal brain communication in the pursuit of collective benefit. Neuroimage 2024; 297:120700. [PMID: 38942103 DOI: 10.1016/j.neuroimage.2024.120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
People perform better collectively than individually, a phenomenon known as the collective benefit. To pursue the benefit, they may learn from previous behaviors, come to know whose initial opinion should be valued, and develop the inclination to take it as the collective one. Such learning may affect interpersonal brain communication. To test these hypotheses, this study recruited participant dyads to conduct a perceptual task on which they made individual decisions first and then the collective one. The enhanced interpersonal brain synchronization (IBS) between participants was explored when individual decisions were in disagreement vs. agreement. Computational modeling revealed that participant dyads developed the dyad inclination of taking the higher-able participants', not the lower-able ones' decisions as their collective ones. Brain analyses unveiled the enhanced IBS at frontopolar areas, premotor areas, supramarginal gyri, and right temporal-parietal junctions. The premotor IBS correlated negatively with dyad inclination and collective benefit in the absence of correction. The Granger causality analyses further supported the negative relation of dyad inclination with inter-brain communication. This study highlights that dyads learn to weigh individuals' decisions, resulting in dyad inclinations, and explores associated inter-brain communication, offering insights into the dynamics of collective decision-making.
Collapse
Affiliation(s)
- Shuyi Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China
| | - Linwei Yu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China
| | - Xiaorong Gan
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China
| | - Yingying Hou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yi Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China.
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
16
|
Zhou X, Wong PCM. Hyperscanning to explore social interaction among autistic minds. Neurosci Biobehav Rev 2024; 163:105773. [PMID: 38889594 DOI: 10.1016/j.neubiorev.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Hyperscanning - the monitoring of brain activity of two or more people simultaneously - has emerged to be a popular tool for assessing neural features of social interaction. This perspective article focuses on hyperscanning studies that use functional near-infrared spectroscopy (fNIRS), a technique that is very conducive to studies requiring naturalistic paradigms. In particular, we are interested in neural features that are related to social interaction deficits among individuals with autism spectrum disorders (ASD). This population has received relatively little attention in research using neuroimaging hyperscanning techniques, compared to neurotypical individuals. The study is outlined as follows. First, we summarize the findings about brain-behavior connections related to autism from previously published fNIRS hyperscanning studies. Then, we propose a preliminary theoretical framework of inter-brain coherence (IBC) with testable hypotheses concerning this population. Finally, we provide two examples of areas of inquiry in which studies could be particularly relevant for social-emotional/behavioral development for autistic children, focusing on intergenerational relationships in family units and learning in classroom settings in mainstream schools.
Collapse
Affiliation(s)
- Xin Zhou
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Patrick C M Wong
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Linguistics and Modern Languages, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
17
|
Carollo A, Esposito G. Hyperscanning literature after two decades of neuroscientific research: A scientometric review. Neuroscience 2024; 551:345-354. [PMID: 38866073 DOI: 10.1016/j.neuroscience.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Hyperscanning, a neuroimaging approach introduced in 2002 for simultaneously recording the brain activity of multiple participants, has significantly contributed to our understanding of social interactions. Nevertheless, the existing literature requires systematic organization to advance our knowledge. This study, after two decades of hyperscanning research, aims to identify the primary thematic domains and the most influential documents in the field. We conducted a scientometric analysis to examine co-citation patterns quantitatively, using a sample of 548 documents retrieved from Scopus and their 32,022 cited references. Our analysis revealed ten major thematic domains in hyperscanning research, with the most impactful document authored by Czeszumski and colleagues in 2020. Notably, while hyperscanning was initially developed for functional magnetic resonance imaging (fMRI), our findings indicate a substantial influence of research conducted using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). The introduction of fNIRS and advancements in EEG methods have enabled the implementation of more ecologically valid experiments for investigating social interactions. The study also highlights the need for more research that combines multi-brain neural stimulation with neuroimaging techniques to understand the causal role played by interpersonal neural synchrony in social interactions.
Collapse
Affiliation(s)
- Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| |
Collapse
|
18
|
Wang H, Li L. Effects of two-person synchronized cycling exercise on interpersonal cooperation: A near-infrared spectroscopy hyperscanning study. Int J Clin Health Psychol 2024; 24:100492. [PMID: 39308780 PMCID: PMC11416475 DOI: 10.1016/j.ijchp.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Although psychological research indicating the synchronous activities can promote interpersonal cooperation, thus far there is no direct evidence that two-person synchronous exercise effectively enhances interpersonal cooperative behaviors in Physical exercise field. This suggests that, although synchronization phenomenon is widespread in sports and is considered a potential tool for enhancing teamwork, its specific effects and functioning mechanisms still need to be clarified by further scientific research. This study intends to use two-person synchronized cycling exercise to investigate the synchronized exercise effect on interpersonal cooperative behavior and its underlying neural mechanisms. Methods Eighty college students without regular exercise habits will be randomly assigned to the experimental group (10 male dyads and 10 female dyads) and the control group (10 male dyads and 10 female dyads). During the experiment, dyads in the experimental group performed a 30-minute synchronized cycling exercise with synchronized pedaling movements; dyads in the control group rested sedentary in the same environment for 30 minutes. Interpersonal cooperative behavior was assessed with the Prisoner's Dilemma task, and the interpersonal neural synchronization(INS) data were collected in the prefrontal cortex using near-infrared hyperscanning. Results This study compared behavior and brain activity before and after synchronous exercise. Behavioral results revealed that, compared to pre-exercise, dyads in the post-exercise had higher average cooperation rates, higher cooperation efficiency and shorter cooperation response times. Compared to post-sedentary, dyads in the post-exercise had shorter cooperation response times and higher cooperation efficiency. Furthermore, brain data showed that,compared to pre-exercise, dyads in the post-exercise had stronger INS in the dorsolateral prefrontal cortex(DLPFC), whereas the dyads in the post-exercise had stronge INS in the DLPFC compared to post-sedentary. After controlling for dyads' anxiety and mood states, this study also found a marginally significant negative correlation between INS differences in the left DLPFC and cooperation response time differences. Conclusions This research confirms, from both behavioral and neuroscience perspectives, that one synchronization cycle can significantly enhance interpersonal cooperative behavior, and this positive effect is closely associated with increased INS in the left DLPFC. This study provides new insights into understanding how positive interactive exercises promote interpersonal cooperation through specific neural mechanisms.
Collapse
Affiliation(s)
- Huiling Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
19
|
Zhang M, Yin Z, Zhang X, Zhang H, Bao M, Xuan B. Neural mechanisms distinguishing two types of cooperative problem-solving approaches: An fNIRS hyperscanning study. Neuroimage 2024; 291:120587. [PMID: 38548038 DOI: 10.1016/j.neuroimage.2024.120587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Collaborative cooperation (CC) and division of labor cooperation (DLC) are two prevalent forms of cooperative problem-solving approaches in daily life. Despite extensive research on the neural mechanisms underlying cooperative problem-solving approaches, a notable gap exists between the neural processes that support CC and DLC. The present study utilized a functional near-infrared spectroscopy (fNIRS) hyperscanning technique along with a classic cooperative tangram puzzle task to investigate the neural mechanisms engaged by both friends and stranger dyads during CC versus DLC. The key findings of this study were as follows: (1) Dyads exhibited superior behavioral performance in the DLC task than in the CC task. The CC task bolstered intra-brain functional connectivity and inter-brain synchrony (IBS) in regions linked to the mirror neuron system (MNS), spatial perception (SP) and cognitive control. (2) Friend dyads showed stronger IBS in brain regions associated with the MNS than stranger dyads. (3) Perspective-taking predicted not only dyads' behavioral performance in the CC task but also their IBS in brain regions associated with SP during the DLC task. Taken together, these findings elucidate the divergent behavioral performance and neural connection patterns between the two cooperative problem-solving approaches. This study provides novel insights into the various neurocognitive processes underlying flexible coordination strategies in real-world cooperative contexts.
Collapse
Affiliation(s)
- Mingming Zhang
- School of Psychology, Shanghai Normal University, 100, Guilin Road, Shanghai 200234, China
| | - Zijun Yin
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Xue Zhang
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Hui Zhang
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Mingjing Bao
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Bin Xuan
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China.
| |
Collapse
|
20
|
De Felice S, Hakim U, Gunasekara N, Pinti P, Tachtsidis I, Hamilton A. Having a chat and then watching a movie: how social interaction synchronises our brains during co-watching. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae006. [PMID: 38707237 PMCID: PMC11069416 DOI: 10.1093/oons/kvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
How does co-presence change our neural experience of the world? Can a conversation change how we synchronise with our partner during later events? Using fNIRS hyperscanning, we measured brain activity from 27 pairs of familiar adults simultaneously over frontal, temporal and parietal regions bilaterally, as they co-watched two different episodes of a short cartoon. In-between the two episodes, each pair engaged in a face-to-face conversation on topics unrelated to the cartoon episodes. Brain synchrony was calculated using wavelet transform coherence and computed separately for real pairs and shuffled pseudo) pairs. Findings reveal that real pairs showed increased brain synchrony over right Dorso-Lateral Pre-Frontal cortex (DLPFC) and right Superior Parietal Lobe (SPL), compared to pseudo pairs (who had never seen each other and watched the same movie at different times; uncorrected for multiple comparisons). In addition, co-watching after a conversation was associated with greater synchrony over right TPJ compared to co-watching before a conversation, and this effect was significantly higher in real pairs (who engaged in conversation with each other) compared to pseudo pairs (who had a conversation with someone else; uncorrected for multiple comparisons). The present study has shed the light on the role of social interaction in modulating brain synchrony across people not just during social interaction, but even for subsequent non-social activities. These results have implications in the growing domain of naturalistic neuroimaging and interactive neuroscience.
Collapse
Affiliation(s)
- S De Felice
- Department of Psychology, University of Cambridge, 2 Free School Lane, CB2 3RF, UK
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, London WC1N 3AZ, UK
| | - U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - N Gunasekara
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, 33 Torrington place, London WC1E 7JL, UK
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, London WC1N 3AZ, UK
| |
Collapse
|
21
|
Ni J, Yang J, Ma Y. Social bonding in groups of humans selectively increases inter-status information exchange and prefrontal neural synchronization. PLoS Biol 2024; 22:e3002545. [PMID: 38502637 PMCID: PMC10950240 DOI: 10.1371/journal.pbio.3002545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Social groups in various social species are organized with hierarchical structures that shape group dynamics and the nature of within-group interactions. In-group social bonding, exemplified by grooming behaviors among animals and collective rituals and team-building activities in human societies, is recognized as a practical adaptive strategy to foster group harmony and stabilize hierarchical structures in both human and nonhuman animal groups. However, the neurocognitive mechanisms underlying the effects of social bonding on hierarchical groups remain largely unexplored. Here, we conducted simultaneous neural recordings on human participants engaged in-group communications within small hierarchical groups (n = 528, organized into 176 three-person groups) to investigate how social bonding influenced hierarchical interactions and neural synchronizations. We differentiated interpersonal interactions between individuals of different (inter-status) or same (intra-status) social status and observed distinct effects of social bonding on inter-status and intra-status interactions. Specifically, social bonding selectively increased frequent and rapid information exchange and prefrontal neural synchronization for inter-status dyads but not intra-status dyads. Furthermore, social bonding facilitated unidirectional neural alignment from group leader to followers, enabling group leaders to predictively align their prefrontal activity with that of followers. These findings provide insights into how social bonding influences hierarchical dynamics and neural synchronization while highlighting the role of social status in shaping the strength and nature of social bonding experiences in human groups.
Collapse
Affiliation(s)
- Jun Ni
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jiaxin Yang
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
22
|
Shamay-Tsoory SG, Marton-Alper IZ, Markus A. Post-interaction neuroplasticity of inter-brain networks underlies the development of social relationship. iScience 2024; 27:108796. [PMID: 38292433 PMCID: PMC10825012 DOI: 10.1016/j.isci.2024.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Inter-brain coupling has been increasingly recognized for its role in supporting connectedness during social communication. Here we investigate whether inter-brain coupling is plastic and persists beyond the offset of social interaction, facilitating the emergence of social closeness. Dyads were concurrently scanned using functional near infrared spectroscopy (fNIRS) while engaging in a task that involved movement synchronization. To assess post-interaction neuroplasticity, participants performed a baseline condition with no interaction before and after the interaction. The results reveal heightened inter-brain coupling in neural networks comprising the inferior frontal gyrus (IFG) and dorsomedial prefrontal cortex in the post-task compared to the pre-task baseline. Critically, the right IFG emerged as a highly connected hub, with post-task inter-brain coupling in this region predicting the levels of motivation to connect socially. We suggest that post-interactions inter-brain coupling may reflect consolidation of socially related cues, underscoring the role of inter-brain plasticity in fundamental aspects of relationship development.
Collapse
Affiliation(s)
- Simone G. Shamay-Tsoory
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| | | | - Andrey Markus
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| |
Collapse
|
23
|
Zhang W, Qiu L, Tang F, Sun HJ. Gender differences in cognitive and affective interpersonal emotion regulation in couples: an fNIRS hyperscanning. Soc Cogn Affect Neurosci 2023; 18:nsad057. [PMID: 37837406 PMCID: PMC10612568 DOI: 10.1093/scan/nsad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/24/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023] Open
Abstract
Emotion regulation is vital in maintaining romantic relationships in couples. Although gender differences exist in cognitive and affective strategies during 'intrapersonal' emotion regulation, it is unclear how gender differences through affective bonds work in 'interpersonal' emotion regulation (IER) in couples. Thirty couple dyads and 30 stranger dyads underwent functional near-infrared spectroscopy hyperscanning recordings when targets complied with their partner's cognitive engagement (CE) and affective engagement (AE) strategies after viewing sad and neutral videos. Behaviorally, for males, CE was less effective than AE in both groups, but little difference occurred for females between AE and CE. For couples, Granger causality analysis showed that male targets had less neural activity than female targets in CH06, CH13 and CH17 during CE. For inflow and outflow activities on CH06 and CH13 (frontopolar cortex), respectively, male targets had less activity in the CE condition than in the AE condition, while for outflow activities on CH 17 (dorsolateral prefrontal cortex), female targets had more activity in the CE condition than in the AE condition. However, these differences were not observed in strangers. These results suggest gender differences in CE but not in AE and dissociable flow patterns in male and female targets in couples during sadness regulation.
Collapse
Affiliation(s)
- Wenhai Zhang
- School of Education Science, Hengyang Normal University, Hengyang 421002, China
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang 421002, China
| | - Lanting Qiu
- School of Education Science, Hengyang Normal University, Hengyang 421002, China
| | - Fanggui Tang
- School of Education Science, Hengyang Normal University, Hengyang 421002, China
| | - Hong-Jin Sun
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
24
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Bi X, Cui H, Ma Y. Hyperscanning Studies on Interbrain Synchrony and Child Development: A Narrative Review. Neuroscience 2023; 530:38-45. [PMID: 37657749 DOI: 10.1016/j.neuroscience.2023.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Social interactions between parents and children are closely linked with children's development, and interbrain synchrony has been shown to be a neural marker of social interaction. However, to truly capture the essence of social interactions through interbrain synchrony, it is necessary to simultaneously discuss the parental and child brains and adequately record neurological signals during parent-child interactions in interactive tasks. In the current review, we have reviewed three main contents. First, we discuss the correlation between parent-child interbrain synchrony and the development of cognitive (e.g., emotion regulation, attention, and learning) and behavioral abilities (e.g., cooperation, problem-solving) in children. Second, we examine the different neural mechanisms of interbrain synchrony in mother-child and father-child interactions, aiming to highlight the separate roles of mother and father in child development. Last, we have integrated four methods to enhance interbrain synchrony, including communication patterns, nonverbal behavior, music, and multichannel stimulation. A significant correlation exists between parent-child interbrain synchrony and the development of children's cognitive and behavioral abilities. This summary may be useful for expanding researchers' and practitioners' understanding of the ways in which parenting and the parent-child relationship shape children' cognitive and behavioral abilities.
Collapse
Affiliation(s)
- Xiaoyan Bi
- School of Education, Guangzhou University, Guangzhou, China; Institution of Science, Chinese Academy of Science, Beijing, China
| | - Hongbo Cui
- School of Education, Guangzhou University, Guangzhou, China
| | - Yankun Ma
- School of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
26
|
Lin S, Zhao H, Duan H. Brain-to-brain synchrony during dyadic action co-representation under acute stress: evidence from fNIRS-based hyperscanning. Front Psychol 2023; 14:1251533. [PMID: 37744595 PMCID: PMC10511757 DOI: 10.3389/fpsyg.2023.1251533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Unexpected acute stressors may affect our co-representation with other co-actors when completing the joint tasks. The present study adopted the emergent functional near-infrared spectroscopy (fNIRS)-based hyperscanning method to explore the brain-to-brain synchrony when implementing the Joint Simon Task under acute stress induced in the laboratory. The behavioral results reported that the joint Simon effect (JSE) was found in both the stress group and the control group, but the joint Simon effect in the stress group was significantly lessened than the joint Simon effect in the control group, demonstrating that when completing the joint action task in the state of acute stress, women's ability to distinguishing self- from other-related mental representations was improved, and the strength of women's action co-representation was diminished. The fNIRS results showed that when completing the joint Simon task in the state of the acute stress, the brain-to-brain synchrony at the r-TPJ in the stress group was significantly higher than that in the control group, demonstrating that the increased brain-to-brain synchrony at the TPJ may be served as the critical brain-to-brain neural mechanism underlying the joint action task under acute stress.
Collapse
Affiliation(s)
- Suqin Lin
- School of Preschool Education, Xi’an University, Xi’an, China
| | - Hanxuan Zhao
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Haijun Duan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
27
|
Bornstein MH, Esposito G. Coregulation: A Multilevel Approach via Biology and Behavior. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1323. [PMID: 37628322 PMCID: PMC10453544 DOI: 10.3390/children10081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
In this article, we explore the concept of coregulation, which encompasses the mutual adaptation between partners in response to one another's biology and behavior. Coregulation operates at both biological (hormonal and nervous system) and behavioral (affective and cognitive) levels and plays a crucial role in the development of self-regulation. Coregulation extends beyond the actions of individuals in a dyad and involves interactive contributions of both partners. We use as an example parent-child coregulation, which is pervasive and expected, as it emerges from shared genetic relatedness, cohabitation, continuous interaction, and the influence of common factors like culture, which facilitate interpersonal coregulation. We also highlight the emerging field of neural attunement, which investigates the coordination of brain-based neural activities between individuals, particularly in social interactions. Understanding the mechanisms and significance of neural attunement adds a new dimension to our understanding of coregulation and its implications for parent-child relationships and child development.
Collapse
Affiliation(s)
- Marc H. Bornstein
- Child and Family Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Trento, Italy;
| |
Collapse
|
28
|
Park J, Shin J, Lee J, Jeong J. Inter-Brain Synchrony Pattern Investigation on Triadic Board Game Play-Based Social Interaction: An fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2923-2932. [PMID: 37410649 DOI: 10.1109/tnsre.2023.3292844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Recent advances in functional neuroimaging techniques, including methodologies such as fNIRS, have enabled the evaluation of inter-brain synchrony (IBS) induced by interpersonal interactions. However, the social interactions assumed in existing dyadic hyperscanning studies do not sufficiently emulate polyadic social interactions in the real world. Therefore, we devised an experimental paradigm that incorporates the Korean folk board game "Yut-nori" to reproduce social interactions that emulate social activities in the real world. We recruited 72 participants aged 25.2 ± 3.9 years (mean ± standard deviation) and divided them into 24 triads to play Yut-nori, following the standard or modified rules. The participants either competed against an opponent (standard rule) or cooperated with an opponent (modified rule) to achieve a goal efficiently. Three different fNIRS devices were employed to record cortical hemodynamic activations in the prefrontal cortex both individually and simultaneously. Wavelet transform coherence (WTC) analyses were performed to assess prefrontal IBS within a frequency range of 0.05-0.2 Hz. Consequently, we observed that cooperative interactions increased prefrontal IBS across overall frequency bands of interest. In addition, we also found that different purposes for cooperation generated different spectral characteristics of IBS depending on the frequency bands. Moreover, IBS in the frontopolar cortex (FPC) reflected the influence of verbal interactions. The findings of our study suggest that future hyperscanning studies should consider polyadic social interactions to reveal the properties of IBS in real-world interactions.
Collapse
|
29
|
Zhao W, Liu Q, Zhang X, Song X, Zhang Z, Qing P, Liu X, Zhu S, Yang W, Kendrick KM. Differential responses in the mirror neuron system during imitation of individual emotional facial expressions and association with autistic traits. Neuroimage 2023; 277:120263. [PMID: 37399932 DOI: 10.1016/j.neuroimage.2023.120263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023] Open
Abstract
The mirror neuron system (MNS), including the inferior frontal gyrus (IFG), inferior parietal lobule (IPL) and superior temporal sulcus (STS) plays an important role in action representation and imitation and may be dysfunctional in autism spectrum disorder (ASD). However, it's not clear how these three regions respond and interact during the imitation of different basic facial expressions and whether the pattern of responses is influenced by autistic traits. Thus, we conducted a natural facial expression (happiness, angry, sadness and fear) imitation task in 100 healthy male subjects where expression intensity was measured using facial emotion recognition software (FaceReader) and MNS responses were recorded using functional near-infrared spectroscopy (fNIRS). Autistic traits were measured using the Autism Spectrum Quotient questionnaire. Results showed that imitation of happy expressions produced the highest expression intensity but a small deactivation in MNS responses, suggesting a lower processing requirement compared to other expressions. A cosine similarity analysis indicated a distinct pattern of MNS responses during imitation of each facial expression with functional intra-hemispheric connectivity between the left IPL and left STS being significantly higher during happy compared to other expressions, while inter-hemispheric connectivity between the left and right IPL differed between imitation of fearful and sad expressions. Furthermore, functional connectivity changes during imitation of each different expression could reliably predict autistic trait scores. Overall, the results provide evidence for distinct patterns of functional connectivity changes between MNS regions during imitation of different emotions which are also associated with autistic traits.
Collapse
Affiliation(s)
- Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China; Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, 523808, China
| | - Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaolu Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhao Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Peng Qing
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaolong Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China
| | - Siyu Zhu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wenxu Yang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
30
|
Zhang W, Qiu L, Tang F, Li H. Affective or cognitive interpersonal emotion regulation in couples: an fNIRS hyperscanning study. Cereb Cortex 2023; 33:7960-7970. [PMID: 36944535 DOI: 10.1093/cercor/bhad091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/23/2023] Open
Abstract
Sadness regulation is crucial for maintaining the romantic relationships of couples. Interpersonal emotion regulation, including affective engagement (AE) and cognitive engagement (CE), activates social brain networks. However, it is unclear how AE and CE regulate sadness in couples through affective bonds. We recruited 30 heterosexual couple dyads and 30 heterosexual stranger dyads and collected functional near-infrared spectroscopy hyperscanning data while each dyad watched sad or neutral videos and while the regulator regulated the target's sadness. Then, we characterized interbrain synchronization (IBS) and Granger causality (GC). The results indicated that AE and CE were more effective for couples than for strangers and that sadness evaluation of female targets was lower than that of male targets. CE-induced IBS at CH13 (BA10, right middle frontal gyrus) was lower for female targets than for male targets, while no gender difference in AE was detected. GC change at CH13 during CE was lower in the sad condition for male targets than for female targets, while no gender difference in AE was discovered. These observations suggest that AE and CE activate affective bonds but that CE was more effective for regulating sadness in female targets, revealing different neural patterns of cognitive and affective sadness regulation in couples.
Collapse
Affiliation(s)
- Wenhai Zhang
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang 421002, China
- Mental Health Center, Yancheng Institute of Technology, Yancheng 224051, China
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, East China Normal University, Shanghai 200062, China
| | - Lanting Qiu
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang 421002, China
| | - Fanggui Tang
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang 421002, China
| | - Hong Li
- Key Laboratory of Brain Cognition and Educational Science, Ministry of Education; School of Psychology, South China Normal University, Guangzhou Guangdong, China
| |
Collapse
|
31
|
Shao C, Zhang X, Wu Y, Zhang W, Sun B. Increased Interpersonal Brain Synchronization in Romantic Couples Is Associated with Higher Honesty: An fNIRS Hyperscanning Study. Brain Sci 2023; 13:brainsci13050833. [PMID: 37239304 DOI: 10.3390/brainsci13050833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies on the brain-brain interaction of deception have shown different patterns of interpersonal brain synchronization (IBS) between different genders. However, the brain-brain mechanisms in the cross-sex composition need to be better understood. Furthermore, there needs to be more discussion about how relationships (e.g., romantic couples vs. strangers) affect the brain-brain mechanism under interactive deception. To elaborate on these issues, we used the functional near-infrared spectroscopy (fNIRS)-based hyperscanning approach to simultaneously measure interpersonal brain synchronization (IBS) in romantic couples (heterosexual) and cross-sex stranger dyads during the sender-receiver game. The behavioral results found that the deception rate of males was lower than that of females, and romantic couples were deceived less than strangers. Significantly increased IBS was observed in the frontopolar cortex (FPC) and right temporoparietal junction (rTPJ) of the romantic couple group. Moreover, the IBS is negatively correlated with the deception rate. No significantly increased IBS was observed in cross-sex stranger dyads. The result corroborated the lower deception of males and romantic couples in cross-sex interactions. Furthermore, IBS in the PFC and rTPJ was the underlying dual-brain neural basis for supporting honesty in romantic couples.
Collapse
Affiliation(s)
- Chong Shao
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
| | - Xuecheng Zhang
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
| | - You Wu
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
| | - Wenhai Zhang
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Big Data Center for Educational Neuroscience and Artificial Intelligence, Hengyang Normal University, Hengyang 421001, China
| | - Binghai Sun
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
32
|
Zhao H, Zhang C, Tao R, Duan H, Xu S. Distinct inter-brain synchronization patterns underlying group decision-making under uncertainty with partners in different interpersonal relationships. Neuroimage 2023; 272:120043. [PMID: 37003448 DOI: 10.1016/j.neuroimage.2023.120043] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/04/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Humans may behave in different manners when making decisions with friends and strangers. Whether the interpersonal relationship and the characteristics of the individuals in the group affected the group decision-making under uncertainty in the real-time interaction remains unknown. Using the turn-based Balloon Analogue Risk Task (BART), the present study examined the group decision-making propensity under uncertainty with partners in different interpersonal relationships and interpersonal orientations. Corresponding inter-brain synchronization (IBS) patterns at the prefrontal cortex (PFC) were also uncovered with the fNIRS-based hyperscanning approach. Behavioral results identified that dyads in the friend group exhibited the uncertainty-averse propensity when comparing with the stranger group. The fNIRS results reported that feedback-related IBS at the left inferior frontal gyrus (l-IFG) and medial frontopolar cortex (mFPC) during different feedbacks was modulated by interpersonal relationships. The IBS at all channels in the PFC during the positive and negative feedbacks, respectively, predicted the decision-making propensity under uncertainty in the stranger and friend groups based on the support vector machine (SVM) algorithm. The moderating role of the social value orientation (SVO) was also verified in the mediation effect of the dyad closeness on the decision-making propensity under uncertainty via the IBS at the right lateral frontopolar cortex (r-FPC). These findings demonstrated disparate behavioral responses and inter-brain synchronization patterns underlying group decision-making under uncertainty with partners in different interpersonal relationships.
Collapse
Affiliation(s)
- Hanxuan Zhao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China
| | - Can Zhang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China
| | - Ruiwen Tao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China
| | - Haijun Duan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, 199 South Chang' an Road, Xi'an 710062, China.
| | - Sihua Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China; School of Education, Huaibei Normal University, Huaibei, China; Anhui Engineering Research Center for Intelligent Computing and Application on Cognitive Behavior, Huaibei Normal University, Huaibei, China.
| |
Collapse
|
33
|
Zhang Q, Liu Z, Qian H, Hu Y, Gao X. Interpersonal Competition in Elderly Couples: A Functional Near-Infrared Spectroscopy Hyperscanning Study. Brain Sci 2023; 13:brainsci13040600. [PMID: 37190565 DOI: 10.3390/brainsci13040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Elderly people tend not to compete with others, and if they do, the mechanism behind the competition is not clear. In this study, groups of elderly couples and matched cross-sex controls were recruited to perform a competitive button-pressing task, while their brain signals were simultaneously collected using functional near-infrared spectroscopy (fNIRS) hyperscanning. Several fundamental observations were made. First, controls showed attenuated interpersonal competition across task processes, but couples held the competition with each other. Second, couples demonstrated increased inter-brain synchronization (IBS) between the middle temporal cortex and the temporoparietal junction across task processes. Third, Granger causality analysis in couples revealed significant differences between the directions (i.e., from men to women, and from women to men) in the first half of the competitive task, whereas there was no significant difference in the second half. Finally, the groups of couples and controls could be successfully discriminated against based on IBS by using a machine-learning approach. In sum, these findings indicate that elderly couples can maintain interpersonal competition, and such maintenance might be associated with changes in the IBS of the mentalizing system. It suggests the possible positive impact of long-term spouse relationships on interpersonal interactions, both behaviorally and neurally, in terms of competition.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Zhennan Liu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Haoyue Qian
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200234, China
| | - Yinying Hu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Xiangping Gao
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
34
|
Pérez A, Davis MH. Speaking and listening to inter-brain relationships. Cortex 2023; 159:54-63. [PMID: 36608420 DOI: 10.1016/j.cortex.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Studies of inter-brain relationships thrive, and yet many reservations regarding their scope and interpretation of these phenomena have been raised by the scientific community. It is thus essential to establish common ground on methodological and conceptual definitions related to this topic and to open debate about any remaining points of uncertainty. We here offer insights to improve the conceptual clarity and empirical standards offered by social neuroscience studies of inter-personal interaction using hyperscanning with a particular focus on verbal communication.
Collapse
Affiliation(s)
- Alejandro Pérez
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| |
Collapse
|
35
|
He Y, Wang X, Lu K, Hao N. Letting leaders spontaneously emerge yields better creative outcomes and higher leader-follower interbrain synchrony during creative group communication. Cereb Cortex 2023:7008113. [PMID: 36708018 DOI: 10.1093/cercor/bhac524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/29/2023] Open
Abstract
This study aimed to investigate how the ways leaders arise (appointed vs. emergent) affect the leader-follower interaction during creative group communication. Hyperscanning technique was adopted to reveal the underlying interpersonal neural correlates using functional near-infrared spectroscopy. Participants were assigned into 3-person groups to complete a creative problem-solving task. These groups were randomly split into conditions of appointed (condition A) and emergent (condition E) leaders. Creative group outcomes were better in condition E, accompanied by more frequent perspective-taking behaviors between leaders and followers. The interpersonal brain synchronization (IBS) increment for leader-follower pairs was significantly higher at the right angular gyrus (rAG), between the rAG and the right supramarginal gyrus (rSMG), and between the right middle temporal gyrus and the right motor cortex in condition E and positively correlated with perspective-taking behaviors between leaders and followers. The graph-based analysis showed higher nodal betweenness of the rAG and the rSMG in condition E. These results indicated the neural coupling of brain regions involved in mentalizing, semantic processing and motor imagery may underlie the dynamic information transmission between leaders and followers during creative group communication.
Collapse
Affiliation(s)
- Yingyao He
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhong Shan Road, Shanghai 200062, China
| | - Xinyue Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhong Shan Road, Shanghai 200062, China
| | - Kelong Lu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhong Shan Road, Shanghai 200062, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhong Shan Road, Shanghai 200062, China
| |
Collapse
|
36
|
Wei Y, Liu J, Zhang T, Su W, Tang X, Tang Y, Xu L, Qian Z, Zhang T, Li X, Wang J. Reduced interpersonal neural synchronization in right inferior frontal gyrus during social interaction in participants with clinical high risk of psychosis: An fNIRS-based hyperscanning study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110634. [PMID: 36099966 DOI: 10.1016/j.pnpbp.2022.110634] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Clinical high risk (CHR) of psychosis is characterized by cognitive impairment in social interaction. However, research investigating the neurobiological underpinnings of social interactions and interpersonal relationships in CHR participants is sparse. METHODS 21 CHR and 54 healthy controls (HCs) participated in the study. Dyads were formed between one CHR, one sex-matched HC, and two sex-matched HCs comprising 19 CHR-HC dyads and 19 HC-HC dyads. The concentration changes of oxyhemoglobin and deoxyhemoglobin were examined during a two-block button-press "cooperation" and "competition" task using functional near-infrared spectroscopy(fNIRS) hyperscanning technology. CHR diagnosis and psychopathological assessments were performed by Structured Interview for Prodromal Syndromes (SIPS) and Scale of Prodromal Symptoms (SOPS). Neural synchronizations were compared between CHR-HC dyads and HC-HC dyads. Correlation analyses were performed to identify the relationship between neural synchronization, clinical syndrome and cognition. RESULTS During the cooperation, but not the competition task, the CHR-HC dyads showed reduced inter-brain neural synchronization (INS) in the right inferior frontal gyrus (IFG) compared to the HC-HC dyads. INS also showed a positive correlation with the average cooperation rate. Moreover, the reduced INS in the CHR-HC group was significantly correlated with symptoms score of suspiciousness/persecutory ideas and movement disorders. CONCLUSIONS The decreased INS in right IFG during cooperation could account for CHR's cognitive impairment of social interaction. Our findings provide evidence that inter-brain neural synchronization potentially represents a biomarker of social interaction deficits of CHR.
Collapse
Affiliation(s)
- Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jieqiong Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tingyu Zhang
- Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China; Shanghai Changning Mental Health Center, Shanghai, 200335, China; Institute of Wisdom in China, East China Normal University, Shanghai, 200062, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
37
|
Xu M, Morimoto S, Hoshino E, Suzuki K, Minagawa Y. Two-in-one system and behavior-specific brain synchrony during goal-free cooperative creation: an analytical approach combining automated behavioral classification and the event-related generalized linear model. NEUROPHOTONICS 2023; 10:013511. [PMID: 36789283 PMCID: PMC9917717 DOI: 10.1117/1.nph.10.1.013511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE In hyperscanning studies of natural social interactions, behavioral coding is usually necessary to extract brain synchronizations specific to a particular behavior. The more natural the task is, the heavier the coding effort is. We propose an analytical approach to resolve this dilemma, providing insights and avenues for future work in interactive social neuroscience. AIM The objective is to solve the laborious coding problem for naturalistic hyperscanning by proposing a convenient analytical approach and to uncover brain synchronization mechanisms related to human cooperative behavior when the ultimate goal is highly free and creative. APPROACH This functional near-infrared spectroscopy hyperscanning study challenged a cooperative goal-free creative game in which dyads can communicate freely without time constraints and developed an analytical approach that combines automated behavior classification (computer vision) with a generalized linear model (GLM) in an event-related manner. Thirty-nine dyads participated in this study. RESULTS Conventional wavelet-transformed coherence (WTC) analysis showed that joint play induced robust between-brain synchronization (BBS) among the hub-like superior and middle temporal regions and the frontopolar and dorsomedial/dorsolateral prefrontal cortex (PFC) in the right hemisphere, in contrast to sparse within-brain synchronization (WBS). Contrarily, similar regions within a single brain showed strong WBS with similar connection patterns during independent play. These findings indicate a two-in-one system for performing creative problem-solving tasks. Further, WTC-GLM analysis combined with computer vision successfully extracted BBS, which was specific to the events when one of the participants raised his/her face to the other. This brain-to-brain synchrony between the right dorsolateral PFC and the right temporo-parietal junction suggests joint functioning of these areas when mentalization is necessary under situations with restricted social signals. CONCLUSIONS Our proposed analytical approach combining computer vision and WTC-GLM can be applied to extract inter-brain synchrony associated with social behaviors of interest.
Collapse
Affiliation(s)
- Mingdi Xu
- Keio University, Center for Life-span Development of Communication Skills, Yokohama, Japan
- Keio University, Global Research Institute, Tokyo, Japan
| | - Satoshi Morimoto
- Keio University, Center for Life-span Development of Communication Skills, Yokohama, Japan
- Keio University, Global Research Institute, Tokyo, Japan
| | - Eiichi Hoshino
- Keio University, Center for Life-span Development of Communication Skills, Yokohama, Japan
- Keio University, Global Research Institute, Tokyo, Japan
| | - Kenji Suzuki
- University of Tsukuba, Faculty of Engineering, Information and Systems, Tsukuba, Japan
| | - Yasuyo Minagawa
- Keio University, Center for Life-span Development of Communication Skills, Yokohama, Japan
- Keio University, Department of Psychology, Faculty of Letters, Tokyo, Japan
| |
Collapse
|
38
|
Hou Y, Zhang D, Gan X, Hu Y. Group polarization calls for group-level brain communication. Neuroimage 2022; 264:119739. [PMID: 36356821 DOI: 10.1016/j.neuroimage.2022.119739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Group of people shows the shift towards extreme of decision-making as opposed to individuals. Previous studies have revealed two directions of group polarization, i.e., risky shift and cautious shift, but how group of brains drive these shifts remains unknown. In the current study, we arranged risk advantage and disadvantage situations to elicit group polarization of risky shift and cautious shift respectively, and examined the averaged inter-brain synchronization (ABS) among participant triads during group decision making versus individual decision making. The elicited group polarizations were accompanied by the enhanced ABS at bilateral prefrontal areas and left temporoparietal junction (TPJ). Specifically, the TPJ ABS was equivalent in risky shift and cautious shift, and based on machine learning analyses, could predict the extent of group polarization; for two shifts, it negatively correlated with negative emotion. However, the right prefrontal ABS was stronger in risky shift than in cautious shift, and the same area showed the larger brain deactivation in former shift, indicating weaker executive control. For the left prefrontal ABS, only the equivalent ABS was found for two shifts. In sum, group polarization of risky shift and cautious shift calls for inter-brain communication at the group level, and the former shift is with deactivation and more brain synchronization. Our study suggests emotional and cognitive adjustment in decision making of the group compared with individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Dingning Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xiaorong Gan
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
39
|
Boukarras S, Ferri D, Frisanco A, Farnese ML, Consiglio C, Alvino I, Bianchi F, D’Acunto A, Borgogni L, Aglioti SM. Bringing social interaction at the core of organizational neuroscience. Front Psychol 2022; 13:1034454. [PMID: 36467198 PMCID: PMC9714489 DOI: 10.3389/fpsyg.2022.1034454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 10/25/2023] Open
Abstract
Organizations are composed of individuals working together for achieving specific goals, and interpersonal dynamics do exert a strong influence on workplace behaviour. Nevertheless, the dual and multiple perspective of interactions has been scarcely considered by Organizational Neuroscience (ON), the emerging field of study that aims at incorporating findings from cognitive and brain sciences into the investigation of organizational behaviour. This perspective article aims to highlight the potential benefits of adopting experimental settings involving two or more participants (the so-called "second person" approach) for studying the neural bases of organizational behaviour. Specifically, we stress the idea that moving beyond the individual perspective and capturing the dynamical relationships occurring within dyads or groups (e.g., leaders and followers, salespersons and clients, teams) might bring novel insights into the rising field of ON. In addition, designing research paradigms that reliably recreate real work and life situations might increase the generalizability and ecological validity of its results. We start with a brief overview of the current state of ON research and we continue by describing the second-person approach to social neuroscience. In the last paragraph, we try and outline how this approach could be extended to ON. To this end, we focus on leadership, group processes and emotional contagion as potential targets of interpersonal ON research.
Collapse
Affiliation(s)
- Sarah Boukarras
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Donato Ferri
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- EY, Rome, Italy
| | - Althea Frisanco
- Santa Lucia Foundation, IRCCS, Rome, Italy
- Sapienza University of Rome and CLNS@Sapienza, Italian Institute of Technology, Rome, Italy
| | | | - Chiara Consiglio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Ilario Alvino
- Department of Legal Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Bianchi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- EY, Rome, Italy
| | | | - Laura Borgogni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Salvatore Maria Aglioti
- Santa Lucia Foundation, IRCCS, Rome, Italy
- Sapienza University of Rome and CLNS@Sapienza, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
40
|
Lin JFL, Imada T, Meltzoff AN, Hiraishi H, Ikeda T, Takahashi T, Hasegawa C, Yoshimura Y, Kikuchi M, Hirata M, Minabe Y, Asada M, Kuhl PK. Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children. Cereb Cortex 2022; 33:4116-4134. [PMID: 36130088 PMCID: PMC10068303 DOI: 10.1093/cercor/bhac330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Verbal interaction and imitation are essential for language learning and development in young children. However, it is unclear how mother-child dyads synchronize oscillatory neural activity at the cortical level in turn-based speech interactions. Our study investigated interbrain synchrony in mother-child pairs during a turn-taking paradigm of verbal imitation. A dual-MEG (magnetoencephalography) setup was used to measure brain activity from interactive mother-child pairs simultaneously. Interpersonal neural synchronization was compared between socially interactive and noninteractive tasks (passive listening to pure tones). Interbrain networks showed increased synchronization during the socially interactive compared to noninteractive conditions in the theta and alpha bands. Enhanced interpersonal brain synchrony was observed in the right angular gyrus, right triangular, and left opercular parts of the inferior frontal gyrus. Moreover, these parietal and frontal regions appear to be the cortical hubs exhibiting a high number of interbrain connections. These cortical areas could serve as a neural marker for the interactive component in verbal social communication. The present study is the first to investigate mother-child interbrain neural synchronization during verbal social interactions using a dual-MEG setup. Our results advance our understanding of turn-taking during verbal interaction between mother-child dyads and suggest a role for social "gating" in language learning.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan.,Institute of Linguistics, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| | - Hirotoshi Hiraishi
- Hamamatsu University School of Medicine, 1 Chome-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | | | - Chiaki Hasegawa
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, 2 Chome-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Minoru Asada
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
41
|
Wang X, Lu K, He Y, Gao Z, Hao N. Close spatial distance and direct gaze bring better communication outcomes and more intertwined neural networks. Neuroimage 2022; 261:119515. [PMID: 35932994 DOI: 10.1016/j.neuroimage.2022.119515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 07/24/2022] [Indexed: 10/31/2022] Open
Abstract
Non-verbal cues tone our communication. Previous studies found that non-verbal factors, such as spatial distance and gaze direction, significantly impact interpersonal communication. However, little is known about the behind multi-brain neural correlates and whether it could affect high-level creative group communication. Here, we provided a new, scalable, and neuro-based approach to explore the effects of non-verbal factors on different communication tasks, and revealed the underlying multi-brain neural correlates using fNIRS-based hyperscanning technique. Across two experiments, we found that closer spatial distance and more direct gaze angle could promote collaborative behaviors, improve both creative and non-creative communication outcomes, and enhance inter-brain neural synchronization. Moreover, compared to the non-creative communication task, participants' inter-brain network was more intertwined when performing the creative communication task. These findings suggest that close spatial distance and direct gaze serve as positive social cues, bringing interacting brains into alignment and optimizing inter-brain information transfer, thus improving communication outcomes.
Collapse
Affiliation(s)
- Xinyue Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China, 200062
| | - Kelong Lu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China, 200062
| | - Yingyao He
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China, 200062
| | - Zhenni Gao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China, 200062
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China, 200062.
| |
Collapse
|
42
|
The presence of adjacent others facilitates interpersonal neural synchronization in the left prefrontal cortex during a simple addition task. Sci Rep 2022; 12:12662. [PMID: 35879339 PMCID: PMC9314338 DOI: 10.1038/s41598-022-16936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
The hyperscanning technique, that is, simultaneous measurement of neural signals in more than one person, is a powerful research tool for understanding humans' social interactions. In recent years, many studies have investigated interpersonal neural synchronization during various types of communication processes. However, there has been little focus on the impact of the presence of others without explicit social interaction, despite the mere presence of others having been suggested as influencing behavior. In this study, we clarify whether neural signals during a self-paced, repeated, addition task are synchronized when another individual is adjacent without direct interaction. Twenty pairs of participants were measured using a hyperscanning approach with near-infrared spectroscopy. The results show that interpersonal neural synchronization of the task-related signal in the left forehead region was enhanced under the condition of being adjacent to another participant. By contrast, a significant decrease in neural synchronization in the center of the forehead region, where increased neural synchronization is often reported in explicit communication, was observed. Thus, the results indicate that the adjacency of others modulates interpersonal neural synchronization in the task-related signal, and the effect on cognitive processing is different from that of explicit social interaction.
Collapse
|
43
|
Liang Z, Li S, Zhou S, Chen S, Li Y, Chen Y, Zhao Q, Huang F, Lu C, Yu Q, Zhou Z. Increased or decreased? Interpersonal neural synchronization in group creation. Neuroimage 2022; 260:119448. [PMID: 35843516 DOI: 10.1016/j.neuroimage.2022.119448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022] Open
Abstract
Group creation is the process by which group members collaborate to produce novel and useful ideas or products, including ideas generation and evaluation. However, the interpersonal neural mechanism of group creation during natural communication remains unclear. In this study, two groups of same-sex dyads with similar individual creativity collaborated to complete the Product Improvement Task (creative condition) and the Item Purchase Plan Task (control condition), respectively. Functional near-infrared spectroscopy (fNIRS) was used to record both members' neural activity in the left prefrontal (lPFC) and right temporal-parietal junction (rTPJ) regions during the task. Considering that the role asymmetry of group members may have an impact on interpersonal neural patterns, we identified leaders and followers in the dyads based on participant performance. The results showed that leaders and followers in the creative condition had significantly lower interpersonal neural synchronization (INS) in the right superior temporal gyrus-left superior frontal gyrus, right supramarginal gyrus-left superior frontal gyrus, and right supramarginal gyrus-left middle frontal gyrus than in the control condition. Partial multivariate Granger causality analyses revealed the influence between dyads was bidirectional but was significantly stronger from the leaders to the followers than the other direction. In addition, in the creative task, the INS was significantly associated with novelty, appropriateness, and conflict of views. All these findings suggest that the ideas generation and ideas evaluation process in group creation have poor interpersonal neural activity coupling due to factors such as the difficulty of understanding novel ideas. However, performances may be improved when groups can better integrate views and reach collective understanding, intentions, and goals. Furthermore, we found that there are differences in the dynamics of INS in different brain regions. The INS related to the novelty of the group creation decreased in the early stages, while the INS related to the appropriateness decreased in the middle stages. Our findings reveal a unique interpersonal neural pattern of group creation processes in the context of natural communication.
Collapse
Affiliation(s)
- Zheng Liang
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Songqing Li
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China; College of Electronic Engineering, Naval University of Engineering, Wuhan, China
| | - Siyuan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shi Chen
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Ying Li
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China; School of Preschool Education, Changsha Normal University, Changsha, China
| | - Yanran Chen
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Qingbai Zhao
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang, China.
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Quanlei Yu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Zhijin Zhou
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| |
Collapse
|
44
|
Crum J, Zhang X, Noah A, Hamilton A, Tachtsidis I, Burgess PW, Hirsch J. An Approach to Neuroimaging Interpersonal Interactions in Mental Health Interventions. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:669-679. [PMID: 35144035 PMCID: PMC9271588 DOI: 10.1016/j.bpsc.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/31/2021] [Accepted: 01/25/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Conventional paradigms in clinical neuroscience tend to be constrained in terms of ecological validity, raising several challenges to studying the mechanisms mediating treatments and outcomes in clinical settings. Addressing these issues requires real-world neuroimaging techniques that are capable of continuously collecting data during free-flowing interpersonal interactions and that allow for experimental designs that are representative of the clinical situations in which they occur. METHODS In this work, we developed a paradigm that fractionates the major components of human-to-human verbal interactions occurring in clinical situations and used functional near-infrared spectroscopy to assess the brain systems underlying clinician-client discourse (N = 30). RESULTS Cross-brain neural coupling between people was significantly greater during clinical interactions compared with everyday life verbal communication, particularly between the prefrontal cortex (e.g., inferior frontal gyrus) and inferior parietal lobule (e.g., supramarginal gyrus). The clinical tasks revealed extensive increases in activity across the prefrontal cortex, especially in the rostral prefrontal cortex (area 10), during periods in which participants were required to silently reason about the dysfunctional cognitions of the other person. CONCLUSIONS This work demonstrates a novel experimental approach to investigating the neural underpinnings of interpersonal interactions that typically occur in clinical settings, and its findings support the idea that particular prefrontal systems might be critical to cultivating mental health.
Collapse
Affiliation(s)
- James Crum
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.
| | - Xian Zhang
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Adam Noah
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Antonia Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Paul W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Joy Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut; Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
45
|
Nazneen T, Islam IB, Sajal MSR, Jamal W, Amin MA, Vaidyanathan R, Chau T, Mamun KA. Recent Trends in Non-invasive Neural Recording Based Brain-to-Brain Synchrony Analysis on Multidisciplinary Human Interactions for Understanding Brain Dynamics: A Systematic Review. Front Comput Neurosci 2022; 16:875282. [PMID: 35782087 PMCID: PMC9245014 DOI: 10.3389/fncom.2022.875282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The study of brain-to-brain synchrony has a burgeoning application in the brain-computer interface (BCI) research, offering valuable insights into the neural underpinnings of interacting human brains using numerous neural recording technologies. The area allows exploring the commonality of brain dynamics by evaluating the neural synchronization among a group of people performing a specified task. The growing number of publications on brain-to-brain synchrony inspired the authors to conduct a systematic review using the PRISMA protocol so that future researchers can get a comprehensive understanding of the paradigms, methodologies, translational algorithms, and challenges in the area of brain-to-brain synchrony research. This review has gone through a systematic search with a specified search string and selected some articles based on pre-specified eligibility criteria. The findings from the review revealed that most of the articles have followed the social psychology paradigm, while 36% of the selected studies have an application in cognitive neuroscience. The most applied approach to determine neural connectivity is a coherence measure utilizing phase-locking value (PLV) in the EEG studies, followed by wavelet transform coherence (WTC) in all of the fNIRS studies. While most of the experiments have control experiments as a part of their setup, a small number implemented algorithmic control, and only one study had interventional or a stimulus-induced control experiment to limit spurious synchronization. Hence, to the best of the authors' knowledge, this systematic review solely contributes to critically evaluating the scopes and technological advances of brain-to-brain synchrony to allow this discipline to produce more effective research outcomes in the remote future.
Collapse
Affiliation(s)
- Tahnia Nazneen
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
| | - Iffath Binta Islam
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
| | - Md. Sakibur Rahman Sajal
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | | | - M. Ashraful Amin
- Department of Computer Science and Engineering, Independent University, Dhaka, Bangladesh
| | - Ravi Vaidyanathan
- Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Tom Chau
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Khondaker A. Mamun
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| |
Collapse
|
46
|
Wang X, Zhang Y, He Y, Lu K, Hao N. Dynamic Inter-Brain Networks Correspond With Specific Communication Behaviors: Using Functional Near-Infrared Spectroscopy Hyperscanning During Creative and Non-creative Communication. Front Hum Neurosci 2022; 16:907332. [PMID: 35721354 PMCID: PMC9201441 DOI: 10.3389/fnhum.2022.907332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Social interaction is a dynamic and variable process. However, most hyperscanning studies implicitly assume that inter-brain synchrony (IBS) is constant and rarely investigate the temporal variability of the multi-brain networks. In this study, we used sliding windows and k-mean clustering to obtain a set of representative inter-brain network states during different group communication tasks. By calculating the network parameters and temporal occurrence of the inter-brain states, we found that dense efficient interbrain states and sparse inefficient interbrain states appeared alternately and periodically, and the occurrence of efficient interbrain states was positively correlated with collaborative behaviors and group performance. Moreover, compared to common communication, the occurrence of efficient interbrain states and state transitions were significantly higher during creative communication, indicating a more active and intertwined neural network. These findings may indicate that there is a close correspondence between inter-brain network states and social behaviors, contributing to the flourishing literature on group communication.
Collapse
|
47
|
Zhou C, Cheng X, Liu C, Li P. Interpersonal coordination enhances brain-to-brain synchronization and influences responsibility attribution and reward allocation in social cooperation. Neuroimage 2022; 252:119028. [PMID: 35217208 DOI: 10.1016/j.neuroimage.2022.119028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
Fair distribution of resources matters to both individual interests and group harmony during social cooperation. Different allocation rules, including equity- and equality-based rules, have been widely discussed in reward allocation research; however, it remains unclear whether and how individuals' cooperative manner, such as interpersonal coordination, influence their subsequent responsibility attribution and reward allocation. Here, 46 dyads conducted a time estimation task-either synergistically (the coordination group) or solely (the control group)-while their brain activities were measured using a functional near-infrared spectroscopy hyperscanning approach. Dyads in the coordination group showed higher behavioral synchrony and higher interpersonal brain synchronization (IBS) in the dorsal lateral prefrontal cortex (DLPFC) during the time estimation task than those in the control group. They also showed a more egalitarian tendency of responsibility attribution for the task outcome. More importantly, dyads in the coordination group who had higher IBS in the dorsal medial prefrontal cortex (DMPFC) were more inclined to make egalitarian reward allocations, and this effect was mediated by responsibility attribution. Our findings elucidate the influence of interpersonal coordination on reward allocation and the critical role of the prefrontal cortex in these processes.
Collapse
Affiliation(s)
- Can Zhou
- School of Psychology, Shenzhen University, No 3688, Nanhai Road, Nanshan District, Shenzhen 518060, China
| | - Xiaojun Cheng
- School of Psychology, Shenzhen University, No 3688, Nanhai Road, Nanshan District, Shenzhen 518060, China
| | - Chengwei Liu
- School of Education, Hunan University of Science and Technology, Xiangtan, China
| | - Peng Li
- School of Psychology, Shenzhen University, No 3688, Nanhai Road, Nanshan District, Shenzhen 518060, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China.
| |
Collapse
|
48
|
Zhou S, Zhang Y, Fu Y, Wu L, Li X, Zhu N, Li D, Zhang M. The Effect of Task Performance and Partnership on Interpersonal Brain Synchrony during Cooperation. Brain Sci 2022; 12:brainsci12050635. [PMID: 35625021 PMCID: PMC9139361 DOI: 10.3390/brainsci12050635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Interpersonal brain synchrony (IBS) during cooperation has not been systematically investigated. To address this research gap, this study assessed neural synchrony during a cooperative jigsaw puzzle solving task using functional near-infrared spectroscopy (fNIRS)-based hyperscanning. IBS was measured for successful and failed tasks in 31 dyads in which the partners were familiar or unknown to each other. No significant difference in IBS was observed between the different types of cooperative partnership; however, stronger IBS within regions of the pars triangularis Broca’s area, right frontopolar cortex, and right temporoparietal junction was observed during task success. These results highlight the effect of better task performance on cooperative IBS for the first time and further extend understanding of the neural basis of cooperation.
Collapse
Affiliation(s)
- Shujin Zhou
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Yuxuan Zhang
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Yiwen Fu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Lingling Wu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Xiaodie Li
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Ningning Zhu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Dan Li
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Mingming Zhang
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
- College of Marxism, Kashgar Vocational and Technical College, Kashgar, Xinjiang 844000, China
- Correspondence: ; Tel.: +86-137-7669-9751
| |
Collapse
|
49
|
Eloy L, Doherty EJ, Spencer CA, Bobko P, Hirshfield L. Using fNIRS to Identify Transparency- and Reliability-Sensitive Markers of Trust Across Multiple Timescales in Collaborative Human-Human-Agent Triads. FRONTIERS IN NEUROERGONOMICS 2022; 3:838625. [PMID: 38235468 PMCID: PMC10790910 DOI: 10.3389/fnrgo.2022.838625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/08/2022] [Indexed: 01/19/2024]
Abstract
Intelligent agents are rapidly evolving from assistants into teammates as they perform increasingly complex tasks. Successful human-agent teams leverage the computational power and sensory capabilities of automated agents while keeping the human operator's expectation consistent with the agent's ability. This helps prevent over-reliance on and under-utilization of the agent to optimize its effectiveness. Research at the intersection of human-computer interaction, social psychology, and neuroergonomics has identified trust as a governing factor of human-agent interactions that can be modulated to maintain an appropriate expectation. To achieve this calibration, trust can be monitored continuously and unobtrusively using neurophysiological sensors. While prior studies have demonstrated the potential of functional near-infrared spectroscopy (fNIRS), a lightweight neuroimaging technology, in the prediction of social, cognitive, and affective states, few have successfully used it to measure complex social constructs like trust in artificial agents. Even fewer studies have examined the dynamics of hybrid teams of more than 1 human or 1 agent. We address this gap by developing a highly collaborative task that requires knowledge sharing within teams of 2 humans and 1 agent. Using brain data obtained with fNIRS sensors, we aim to identify brain regions sensitive to changes in agent behavior on a long- and short-term scale. We manipulated agent reliability and transparency while measuring trust, mental demand, team processes, and affect. Transparency and reliability levels are found to significantly affect trust in the agent, while transparency explanations do not impact mental demand. Reducing agent communication is shown to disrupt interpersonal trust and team cohesion, suggesting similar dynamics as human-human teams. Contrasts of General Linear Model analyses identify dorsal medial prefrontal cortex activation specific to assessing the agent's transparency explanations and characterize increases in mental demand as signaled by dorsal lateral prefrontal cortex and frontopolar activation. Short scale event-level data is analyzed to show that predicting whether an individual will trust the agent, with data from 15 s before their decision, is feasible with fNIRS data. Discussing our results, we identify targets and directions for future neuroergonomics research as a step toward building an intelligent trust-modulation system to optimize human-agent collaborations in real time.
Collapse
Affiliation(s)
- Lucca Eloy
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Emily J. Doherty
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Cara A. Spencer
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Philip Bobko
- Department of Management, Gettysburg College, Gettysburg, PA, United States
| | - Leanne Hirshfield
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
50
|
Cooperative Behavior Evokes Interbrain Synchrony in the Prefrontal and Temporoparietal Cortex: A Systematic Review and Meta-Analysis of fNIRS Hyperscanning Studies. eNeuro 2022; 9:ENEURO.0268-21.2022. [PMID: 35365502 PMCID: PMC9014979 DOI: 10.1523/eneuro.0268-21.2022] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/09/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Single-brain neuroimaging studies have shown that human cooperation is associated with neural activity in frontal and temporoparietal regions. However, it remains unclear whether single-brain studies are informative about cooperation in real life, where people interact dynamically. Such dynamic interactions have become the focus of interbrain studies. An advantageous technique in this regard is functional near-infrared spectroscopy (fNIRS) because it is less susceptible to movement artifacts than more conventional techniques like electroencephalography (EEG) or functional magnetic resonance imaging (fMRI). We conducted a systematic review and the first quantitative meta-analysis of fNIRS hyperscanning of cooperation, based on thirteen studies with 890 human participants. Overall, the meta-analysis revealed evidence of statistically significant interbrain synchrony while people were cooperating, with large overall effect sizes in both frontal and temporoparietal areas. All thirteen studies observed significant interbrain synchrony in the prefrontal cortex (PFC), suggesting that this region is particularly relevant for cooperative behavior. The consistency in these findings is unlikely to be because of task-related activations, given that the relevant studies used diverse cooperation tasks. Together, the present findings support the importance of interbrain synchronization of frontal and temporoparietal regions in interpersonal cooperation. Moreover, the present article highlights the usefulness of meta-analyses as a tool for discerning patterns in interbrain dynamics.
Collapse
|