1
|
Moore IL, Smith DE, Long NM. Mnemonic brain state engagement is diminished in healthy aging. Neurobiol Aging 2025; 151:76-88. [PMID: 40245780 PMCID: PMC12050195 DOI: 10.1016/j.neurobiolaging.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025]
Abstract
Healthy older adults typically show impaired episodic memory - memory for when and where an event occurred. This selective episodic memory deficit may arise from differential engagement in the retrieval state, a brain state in which attention is focused internally in an attempt to access prior knowledge, and the encoding state, a brain state which supports the formation of new memories and that trades off with the retrieval state. We hypothesize that older adults are biased toward a retrieval state. We recorded scalp electroencephalography while young, middle-aged and older adults performed a memory task in which they were explicitly directed to either encode or retrieve on a given trial. We used multivariate pattern analysis of spectral activity to decode retrieval vs. encoding state engagement. We find that whereas all age groups can follow task demands to selectively engage in encoding or retrieval, mnemonic brain state engagement is diminished for older adults relative to young and middle-aged adults. These findings suggest that differential mnemonic state engagement may underlie age-related memory changes.
Collapse
Affiliation(s)
- Isabelle L Moore
- Department of Psychology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA.
| | - Devyn E Smith
- Department of Psychology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA
| | - Nicole M Long
- Department of Psychology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA.
| |
Collapse
|
2
|
Lalwani P, Polk T, Garrett DD. Modulation of brain signal variability in visual cortex reflects aging, GABA, and behavior. eLife 2025; 14:e83865. [PMID: 40243542 PMCID: PMC12005714 DOI: 10.7554/elife.83865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2024] [Indexed: 04/18/2025] Open
Abstract
Moment-to-moment neural variability has been shown to scale positively with the complexity of stimulus input. However, the mechanisms underlying the ability to align variability to input complexity are unknown. Using a combination of behavioral methods, computational modeling, fMRI, MR spectroscopy, and pharmacological intervention, we investigated the role of aging and GABA in neural variability during visual processing. We replicated previous findings that participants expressed higher variability when viewing more complex visual stimuli. Additionally, we found that such variability modulation was associated with higher baseline visual GABA levels and was reduced in older adults. When pharmacologically increasing GABA activity, we found that participants with lower baseline GABA levels showed a drug-related increase in variability modulation while participants with higher baseline GABA showed no change or even a reduction, consistent with an inverted-U account. Finally, higher baseline GABA and variability modulation were jointly associated with better visual-discrimination performance. These results suggest that GABA plays an important role in how humans utilize neural variability to adapt to the complexity of the visual world.
Collapse
Affiliation(s)
- Poortata Lalwani
- Department of Psychology, University of MichiganAnn ArborUnited States
| | - Thad Polk
- Department of Psychology, University of MichiganAnn ArborUnited States
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchBerlinGermany
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
| |
Collapse
|
3
|
Kalpouzos G, Persson J. Structure-function relationships in the human aging brain: An account of cross-sectional and longitudinal multimodal neuroimaging studies. Cortex 2025; 183:274-289. [PMID: 39756333 DOI: 10.1016/j.cortex.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
The patterns of brain activation and functional connectivity, task-related and task-free, as a function of age have been well documented over the past 30 years. However, the aging brain undergoes structural changes that are likely to affect the functional properties of the brain. The relationship between brain structure and function started to be investigated more recently. Brain structure and brain function can influence behavioral outcomes independently, and several studies highlight independent contribution of structure and function on cognition. Here, a central assumption is that brain structure also affects behavior indirectly through its influence on brain function. In such a model, structure supports function. Although findings generally suggest that structure may indeed influence function, the direction of the associations, the variability in terms of regional effects and age windows when associations are observed vary greatly. Also, a certain number of studies highlight the independent contribution of structure and function on cognition. A critical aspect of studying aging is the necessity of longitudinal designs, allowing to observe true aging effects - as compared with age differences in cross-sectional designs. This review aims to give an updated account on research dealing with multimodal neuroimaging in aging, and more specifically on the links between structure and function and associated cognitive outcomes, putting in parallel findings from cross-sectional and longitudinal studies. Additionally, we discuss potential mechanisms by which age-related changes in structure may affect function, but also factors (sample characteristics, methodology) that may contribute to the heterogeneity of the findings and the lack of consensus on the associations between structure, function, cognition and aging.
Collapse
Affiliation(s)
- Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Center for Lifespan Developmental Research (LEADER), School of Behavioral, Social and Legal Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
4
|
Faber S, Belden A, Loui P, McIntosh A. Network connectivity differences in music listening among older adults following a music-based intervention. AGING BRAIN 2024; 6:100128. [PMID: 39539646 PMCID: PMC11558634 DOI: 10.1016/j.nbas.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Music-based interventions are a common feature in long-term care with clinical reports highlighting music's ability to engage individuals with complex diagnoses. While these findings are promising, normative findings from healthy controls are needed to disambiguate treatment effects unique to pathology and those seen in healthy aging. The present study examines brain network dynamics during music listening in a sample of healthy older adults before and after a music-based intervention. We found intervention effects from hidden Markov model-estimated fMRI network data. Following the intervention, participants demonstrated greater occupancy (the amount of time a network was occupied) in a temporal-mesolimbic network. We conclude that network dynamics in healthy older adults are sensitive to music-based interventions. We discuss these findings' implications for future studies with individuals with neurodegeneration.
Collapse
Affiliation(s)
- Sarah Faber
- University of Toronto, 27 King’s College Cir, Toronto, ON M5S 1A1, Canada
- Simon Fraser University, 8888 University Dr W, Burnaby, BC V5A 1S6, Canada
| | - Alexander Belden
- Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Psyche Loui
- Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - A.R. McIntosh
- Simon Fraser University, 8888 University Dr W, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
5
|
Hennessee JP, Lung TC, Park DC, Kennedy KM. Age differences in BOLD modulation to task difficulty as a function of amyloid burden. Cereb Cortex 2024; 34:bhae357. [PMID: 39227310 PMCID: PMC11371418 DOI: 10.1093/cercor/bhae357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
Effective cognitive performance often requires the allocation of additional neural resources (i.e. blood-oxygen-level-dependent [BOLD] activation) as task demands increase, and this demand-related modulation is affected by amyloid-beta deposition and normal aging. The present study investigated these complex relationships between amyloid, modulation, and cognitive function (i.e. fluid ability). Participants from the Dallas Lifespan Brain Study (DLBS, n = 252, ages 50-89) completed a semantic judgment task during functional magnetic resonance imaging (fMRI) where the judgments differed in classification difficulty. Amyloid burden was assessed via positron emission tomography (PET) using 18F-florbetapir. A quadratic relationship between amyloid standardized value uptake ratios (SUVRs) and BOLD modulation was observed such that modulation was weaker in those with moderately elevated SUVRs (e.g. just reaching amyloid-positivity), whereas those with very high SUVRs (e.g. SUVR > 1.5) showed strong modulation. Greater modulation was related to better fluid ability, and this relationship was strongest in younger participants and those with lower amyloid burden. These results support the theory that effective demand-related modulation contributes to healthy cognitive aging, especially in the transition from middle age to older adulthood, whereas high modulation may be dysfunctional in those with substantial amyloid deposition.
Collapse
Affiliation(s)
- Joseph P Hennessee
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
| | - Tzu-Chen Lung
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
| | - Denise C Park
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Kristen M Kennedy
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
| |
Collapse
|
6
|
Wiśniowska J, Łojek E, Chabuda A, Kruszyński M, Kupryjaniuk A, Kulesza M, Olejnik A, Orzechowska P, Wolak H. The cognitive and cognitive-motor training contribution to the improvement of different aspects of executive functions in healthy adults aged 65 years and above-A randomized controlled trial. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:1032-1040. [PMID: 35931071 DOI: 10.1080/23279095.2022.2106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AIMS The study aimed at examining the effectiveness of cognitive-motor dual-task and single-task cognitive training on executive and attention functions in participants over 65 years of age. METHODS The study comprised 68 participants. They were randomly assigned to dual-task cognitive-motor training (DTT), single-task cognitive training (STT) or a control group (C). The training program in all groups encompassed 4 weeks and consisted of three, 30-min meetings a week. Specialized software was designed for the purposes of the study. Both before and after the training, the cognitive functioning was assessed using: Color Trials Test, Ruff Figural Fluency Test, Wisconsin Sorting Card Test, Digit Span, Verbal Fluency Test, Stroop Color-Word Test. RESULTS After the cognitive-motor training, improvement was achieved in the control and inhibition of reactions. Moreover, after the cognitive training, improvements in abstract thinking and categorization were reported. CONCLUSION Despite the small sample limitation, the preliminary result shows each form of the training supports a different aspect of executive functions but does not contribute to the improvement in attention.
Collapse
Affiliation(s)
| | - Emilia Łojek
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Anna Chabuda
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | | | - Maria Kulesza
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Science, Warsaw, Poland
| | | | | | - Hanna Wolak
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Faber S, Belden A, McIntosh R, Loui P. Network connectivity differences in music listening among older adults following a music-based intervention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598944. [PMID: 38915592 PMCID: PMC11195239 DOI: 10.1101/2024.06.13.598944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Music-based interventions are a common feature in long-term care with clinical reports highlighting music's ability to engage individuals with complex diagnoses. While these findings are promising, normative findings from healthy controls are needed to disambiguate treatment effects unique to pathology and those seen in healthy aging. The present study examines brain network dynamics during music listening in a sample of healthy older adults before and after a music-based intervention. We found intervention effects from hidden Markov model-estimated fMRI network data. Following the intervention, participants demonstrated greater occupancy (the amount of time a network was occupied) in a temporal-mesolimbic network. We conclude that network dynamics in healthy older adults are sensitive to music-based interventions. We discuss these findings' implications for future studies with individuals with neurodegeneration.
Collapse
|
8
|
Goodman ZT, Nomi JS, Kornfeld S, Bolt T, Saumure RA, Romero C, Bainter SA, Uddin LQ. Brain signal variability and executive functions across the life span. Netw Neurosci 2024; 8:226-240. [PMID: 38562287 PMCID: PMC10918754 DOI: 10.1162/netn_a_00347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
Neural variability is thought to facilitate survival through flexible adaptation to changing environmental demands. In humans, such capacity for flexible adaptation may manifest as fluid reasoning, inhibition of automatic responses, and mental set-switching-skills falling under the broad domain of executive functions that fluctuate over the life span. Neural variability can be quantified via the BOLD signal in resting-state fMRI. Variability of large-scale brain networks is posited to underpin complex cognitive activities requiring interactions between multiple brain regions. Few studies have examined the extent to which network-level brain signal variability across the life span maps onto high-level processes under the umbrella of executive functions. The present study leveraged a large publicly available neuroimaging dataset to investigate the relationship between signal variability and executive functions across the life span. Associations between brain signal variability and executive functions shifted as a function of age. Limbic-specific variability was consistently associated with greater performance across subcomponents of executive functions. Associations between executive function subcomponents and network-level variability of the default mode and central executive networks, as well as whole-brain variability, varied across the life span. Findings suggest that brain signal variability may help to explain to age-related differences in executive functions across the life span.
Collapse
Affiliation(s)
| | - Jason S. Nomi
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Salome Kornfeld
- Department of Psychology, University of Miami, Coral Gables, FL, USA
- REHAB Basel, Klinik für Neurorehabilitation und Paraplegiologie, Basel, Switzerland
| | - Taylor Bolt
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger A. Saumure
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Celia Romero
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Sierra A. Bainter
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Lucina Q. Uddin
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Faber SEM, Belden AG, Loui P, McIntosh R. Age-related variability in network engagement during music listening. Netw Neurosci 2023; 7:1404-1419. [PMID: 38144689 PMCID: PMC10713012 DOI: 10.1162/netn_a_00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 12/26/2023] Open
Abstract
Listening to music is an enjoyable behaviour that engages multiple networks of brain regions. As such, the act of music listening may offer a way to interrogate network activity, and to examine the reconfigurations of brain networks that have been observed in healthy aging. The present study is an exploratory examination of brain network dynamics during music listening in healthy older and younger adults. Network measures were extracted and analyzed together with behavioural data using a combination of hidden Markov modelling and partial least squares. We found age- and preference-related differences in fMRI data collected during music listening in healthy younger and older adults. Both age groups showed higher occupancy (the proportion of time a network was active) in a temporal-mesolimbic network while listening to self-selected music. Activity in this network was strongly positively correlated with liking and familiarity ratings in younger adults, but less so in older adults. Additionally, older adults showed a higher degree of correlation between liking and familiarity ratings consistent with past behavioural work on age-related dedifferentiation. We conclude that, while older adults do show network and behaviour patterns consistent with dedifferentiation, activity in the temporal-mesolimbic network is relatively robust to dedifferentiation. These findings may help explain how music listening remains meaningful and rewarding in old age.
Collapse
Affiliation(s)
- Sarah E. M. Faber
- University of Toronto, Toronto, ON, Canada
- Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
10
|
Caciagli L, Paquola C, He X, Vollmar C, Centeno M, Wandschneider B, Braun U, Trimmel K, Vos SB, Sidhu MK, Thompson PJ, Baxendale S, Winston GP, Duncan JS, Bassett DS, Koepp MJ, Bernhardt BC. Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain 2023; 146:935-953. [PMID: 35511160 PMCID: PMC9976988 DOI: 10.1093/brain/awac150] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a common comorbidity of epilepsy and adversely impacts people with both frontal lobe (FLE) and temporal lobe (TLE) epilepsy. While its neural substrates have been investigated extensively in TLE, functional imaging studies in FLE are scarce. In this study, we profiled the neural processes underlying cognitive impairment in FLE and directly compared FLE and TLE to establish commonalities and differences. We investigated 172 adult participants (56 with FLE, 64 with TLE and 52 controls) using neuropsychological tests and four functional MRI tasks probing expressive language (verbal fluency, verb generation) and working memory (verbal and visuo-spatial). Patient groups were comparable in disease duration and anti-seizure medication load. We devised a multiscale approach to map brain activation and deactivation during cognition and track reorganization in FLE and TLE. Voxel-based analyses were complemented with profiling of task effects across established motifs of functional brain organization: (i) canonical resting-state functional systems; and (ii) the principal functional connectivity gradient, which encodes a continuous transition of regional connectivity profiles, anchoring lower-level sensory and transmodal brain areas at the opposite ends of a spectrum. We show that cognitive impairment in FLE is associated with reduced activation across attentional and executive systems, as well as reduced deactivation of the default mode system, indicative of a large-scale disorganization of task-related recruitment. The imaging signatures of dysfunction in FLE are broadly similar to those in TLE, but some patterns are syndrome-specific: altered default-mode deactivation is more prominent in FLE, while impaired recruitment of posterior language areas during a task with semantic demands is more marked in TLE. Functional abnormalities in FLE and TLE appear overall modulated by disease load. On balance, our study elucidates neural processes underlying language and working memory impairment in FLE, identifies shared and syndrome-specific alterations in the two most common focal epilepsies and sheds light on system behaviour that may be amenable to future remediation strategies.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Xiaosong He
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Maria Centeno
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Epilepsy Unit, Hospital Clínic de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Urs Braun
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Centre for Medical Image Computing, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
11
|
Wiśniowska J, Łojek E, Olejnik A, Chabuda A. The Characteristics of the Reduction of Interference Effect during Dual-Task Cognitive-Motor Training Compared to a Single Task Cognitive and Motor Training in Elderly: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1477. [PMID: 36674229 PMCID: PMC9864789 DOI: 10.3390/ijerph20021477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Many studies have indicated a weakening in several areas of cognitive functioning associated with the normal ageing process. One of the methods supporting cognitive functions in older adults is dual-task training which is based on performing cognitive and motor exercises at the same time. The study aimed at examining the characteristics of dual-task training compared to single-task training in participants over 65 years of age. Sixty-five subjects took part in the study. They were randomly assigned to three groups: dual-task cognitive-motor training (CM), single-task cognitive training (CT), and single-task motor training (MT). The training program in all groups encompassed 4 weeks and consisted of three, 30-min meetings a week. Specialized software was designed for the study. The main indicators, such as orientation and planning time and the number of errors, were monitored during the whole training in all groups. The obtained results have shown that the dual-task training was associated with a significantly greater number of movement errors, but not with a longer task planning time compared to the single-task condition training. There was a decrease in the time needed to plan a path in the mazes by subjects training in the CM, CT, and MT groups. The results indicate that after each type of training, the number of errors and the time needed to plan the path decrease, despite the increasing difficulty of the tasks. The length of planning time was strongly correlated with the number of errors made by individuals in the CM group (r = 0.74, p = 0.04), compared to the ST group-for which the said correlation was not significant (r = 0.7, p = 0.06). The dual-task cognitive-motor training is more cognitively demanding compared to the single-task cognitive and motor training. It manifests in a greater number of errors, but it does not extend the orientation and planning time.
Collapse
Affiliation(s)
| | - Emilia Łojek
- Faculty of Psychology, University of Warsaw, 00-183 Warsaw, Poland
| | | | - Anna Chabuda
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
12
|
Setton R, Mwilambwe-Tshilobo L, Girn M, Lockrow AW, Baracchini G, Hughes C, Lowe AJ, Cassidy BN, Li J, Luh WM, Bzdok D, Leahy RM, Ge T, Margulies DS, Misic B, Bernhardt BC, Stevens WD, De Brigard F, Kundu P, Turner GR, Spreng RN. Age differences in the functional architecture of the human brain. Cereb Cortex 2022; 33:114-134. [PMID: 35231927 PMCID: PMC9758585 DOI: 10.1093/cercor/bhac056] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
The intrinsic functional organization of the brain changes into older adulthood. Age differences are observed at multiple spatial scales, from global reductions in modularity and segregation of distributed brain systems, to network-specific patterns of dedifferentiation. Whether dedifferentiation reflects an inevitable, global shift in brain function with age, circumscribed, experience-dependent changes, or both, is uncertain. We employed a multimethod strategy to interrogate dedifferentiation at multiple spatial scales. Multi-echo (ME) resting-state fMRI was collected in younger (n = 181) and older (n = 120) healthy adults. Cortical parcellation sensitive to individual variation was implemented for precision functional mapping of each participant while preserving group-level parcel and network labels. ME-fMRI processing and gradient mapping identified global and macroscale network differences. Multivariate functional connectivity methods tested for microscale, edge-level differences. Older adults had lower BOLD signal dimensionality, consistent with global network dedifferentiation. Gradients were largely age-invariant. Edge-level analyses revealed discrete, network-specific dedifferentiation patterns in older adults. Visual and somatosensory regions were more integrated within the functional connectome; default and frontoparietal control network regions showed greater connectivity; and the dorsal attention network was more integrated with heteromodal regions. These findings highlight the importance of multiscale, multimethod approaches to characterize the architecture of functional brain aging.
Collapse
Affiliation(s)
- Roni Setton
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Laetitia Mwilambwe-Tshilobo
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Amber W Lockrow
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Colleen Hughes
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Wen-Ming Luh
- National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | - Danilo Bzdok
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
- School of Computer Science, McGill University, Montreal, QC, Canada
- Mila – Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Richard M Leahy
- Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| | - Bratislav Misic
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - W Dale Stevens
- Department of Psychology, York University, Toronto, ON, Canada
| | - Felipe De Brigard
- Department of Philosophy, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience, Durham, NC, USA
| | - Prantik Kundu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON, Canada
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
| |
Collapse
|
13
|
Pupíková M, Šimko P, Lamoš M, Gajdoš M, Rektorová I. Inter-individual differences in baseline dynamic functional connectivity are linked to cognitive aftereffects of tDCS. Sci Rep 2022; 12:20754. [PMID: 36456622 PMCID: PMC9715685 DOI: 10.1038/s41598-022-25016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has the potential to modulate cognitive training in healthy aging; however, results from various studies have been inconsistent. We hypothesized that inter-individual differences in baseline brain state may contribute to the varied results. We aimed to explore whether baseline resting-state dynamic functional connectivity (rs-dFC) and/or conventional resting-state static functional connectivity (rs-sFC) may be related to the magnitude of cognitive aftereffects of tDCS. To achieve this aim, we used data from our double-blind randomized sham-controlled cross-over tDCS trial in 25 healthy seniors in which bifrontal tDCS combined with cognitive training had induced significant behavioral aftereffects. We performed a backward regression analysis including rs-sFC/rs-dFC measures to explain the variability in the magnitude of tDCS-induced improvements in visual object-matching task (VOMT) accuracy. Rs-dFC analysis revealed four rs-dFC states. The occurrence rate of a rs-dFC state 4, characterized by a high correlation between the left fronto-parietal control network and the language network, was significantly associated with tDCS-induced VOMT accuracy changes. The rs-sFC measure was not significantly associated with the cognitive outcome. We show that flexibility of the brain state representing readiness for top-down control of object identification implicated in the studied task is linked to the tDCS-enhanced task accuracy.
Collapse
Affiliation(s)
- Monika Pupíková
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Šimko
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology - CEITEC, Masaryk university, Brno, Czech Republic
| | - Martin Gajdoš
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic.
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, ICRC, St Anne's University Hospital and Faculty of Medicine, Brno, Czech Republic.
| |
Collapse
|
14
|
Qin S, Basak C. Fitness and arterial stiffness in healthy aging: Modifiable cardiovascular risk factors contribute to altered default mode network patterns during executive function. Neuropsychologia 2022; 172:108269. [PMID: 35595064 DOI: 10.1016/j.neuropsychologia.2022.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
Increases in cardiovascular risks such as high blood pressure and low physical fitness have been independently associated with altered default mode network (DMN) activation patterns in healthy aging. However, cardiovascular risk is a multidimensional health problem. Therefore, we need to investigate multiple cardiovascular risk factors and their contributions to cognition and DMN activations in older adults, which has not yet been done. The current fMRI study examined contributions of two common modifiable cardiovascular risk factors (arterial stiffness and physical fitness) on DMN activations involved during random n-back, a task of executive functioning and working memory, in older adults. The results how that high cardiovascular risk of either increased arterial stiffness or decreased fitness independently contributed to worse task performance and reduced deactivations in two DMN regions: the anterior and posterior cingulate cortices. We then examined not only the potential interaction between the two risk factors, but also their additive (i.e., combined) effect on performance and DMN deactivations. A significant interaction between the two cardiovascular risk factors was observed on performance, with arterial stiffness moderating the relationship between physical fitness and random n-back accuracy. The additive effect of the two factors on task performance was driven by arterial stiffness. Arterial stiffness was also found to be the driving factor when the additive effect of the two risk factors was examined on DMN deactivations. However, in posterior cingulate cortex, a hub region of the DMN, the additive effect on its deactivation was significantly higher than the effect of each risk factor alone. These results suggest that the effects of cardiovascular risks on the aging brain are complicated and multi-dimensional, with arterial stiffness moderating or driving the combined effects on performance and anterior DMN deactivations, but physical fitness contributing additional effect to posterior DMN deactivation during executive functioning.
Collapse
Affiliation(s)
- Shuo Qin
- Center for Vital Longevity, University of Texas at Dallas, United States
| | - Chandramallika Basak
- Center for Vital Longevity, University of Texas at Dallas, United States; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, United States.
| |
Collapse
|
15
|
Othman Z, Abdul Halim AS, Azman KF, Ahmad AH, Zakaria R, Sirajudeen KNS, Wijaya A, Ahmi A. Profiling the Research Landscape on Cognitive Aging: A Bibliometric Analysis and Network Visualization. Front Aging Neurosci 2022; 14:876159. [PMID: 35572132 PMCID: PMC9093595 DOI: 10.3389/fnagi.2022.876159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives This study aimed to profile the cognitive aging research landscape from 1956 to 2021. Methods A total of 3,779 documents were retrieved from the Scopus database for the bibliometric analysis and network visualization. By comparing each keyword's overall connection strength (centrality), frequency (density), and average year of publication (novelty) to the calculated median values acquired from the overlay view of the VOSviewer map, the enhanced strategic diagrams (ESDs) were constructed. Results The findings showed an increasing trend in the number of publications. The United States leads the contributing countries in cognitive aging research. The scientific productivity pattern obeyed Lotka's law. The most productive researcher was Deary, I. J., with the highest number of publications. The collaborative index showed an increasing trend from 1980 onwards. Frontiers in Aging Neuroscience is the most prestigious journal in the field of cognitive aging research. In Bradford core journals zone 1, the top 10 core journals of cognitive aging research provided more than half of the total articles (697, or 55.36 percent). Conclusions For the next decades, the trending topics in cognitive aging research include neuropsychological assessment, functional connectivity, human immunodeficiency virus (HIV), decision-making, gender, compensation, default mode network, learning and memory, brain-derived neurotrophic factor (BDNF), obesity, D-galactose, epigenetics, frailty, mortality, mini-mental state examination (MMSE), anxiety, and gait speed.
Collapse
Affiliation(s)
- Zahiruddin Othman
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | | | - Asma Hayati Ahmad
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Rahimah Zakaria
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Adi Wijaya
- Department of Health Information Management, Universitas Indonesia Maju, Jakarta, Indonesia
| | - Aidi Ahmi
- Tunku Puteri Intan Safinaz School of Accountancy, Universiti Utara Malaysia, Sintok, Malaysia
| |
Collapse
|
16
|
Brown RM, Gruijters SLK, Kotz SA. Prediction in the aging brain: Merging cognitive, neurological, and evolutionary perspectives. J Gerontol B Psychol Sci Soc Sci 2022; 77:1580-1591. [PMID: 35429160 PMCID: PMC9434449 DOI: 10.1093/geronb/gbac062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Although the aging brain is typically characterized by declines in a variety of cognitive functions, there has been growing attention to cognitive functions that may stabilize or improve with age. We integrate evidence from behavioral, computational, and neurological domains under the hypothesis that over the life span the brain becomes more effective at predicting (i.e., utilizing knowledge) compared to learning. Moving beyond mere description of the empirical literature—with the aim of arriving at a deeper understanding of cognitive aging—we provide potential explanations for a learning-to-prediction shift based on evolutionary models and principles of senescence and plasticity. The proposed explanations explore whether the occurrence of a learning-to-prediction shift can be explained by (changes in) the fitness effects of learning and prediction over the life span. Prediction may optimize (a) the allocation of limited resources across the life span, and/or (b) late-life knowledge transfer (social learning). Alternatively, late-life prediction may reflect a slower decline in prediction compared to learning. By discussing these hypotheses, we aim to provide a foundation for an integrative neurocognitive–evolutionary perspective on aging and to stimulate further theoretical and empirical work.
Collapse
Affiliation(s)
- Rachel M Brown
- Institute of Psychology, RWTH Aachen University, Aachen, Germany
| | - Stefan L K Gruijters
- Faculty of Psychology, Open University of the Netherlands, Heerlen, the Netherlands
| | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
17
|
Rieck JR, DeSouza B, Baracchini G, Grady CL. Reduced modulation of BOLD variability as a function of cognitive load in healthy aging. Neurobiol Aging 2022; 112:215-230. [DOI: 10.1016/j.neurobiolaging.2022.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
|
18
|
Amer T, Wynn JS, Hasher L. Cluttered memory representations shape cognition in old age. Trends Cogn Sci 2022; 26:255-267. [DOI: 10.1016/j.tics.2021.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/11/2023]
|
19
|
Wong WT, Tan NC, Lim JE, Allen JC, Lee WS, Quah JHM, Paulpandi M, Teh TA, Lim SH, Malhotra R. Comparison of Time Taken to Assess Cognitive Function Using a Fully Immersive and Automated Virtual Reality System vs. the Montreal Cognitive Assessment. Front Aging Neurosci 2021; 13:756891. [PMID: 34887743 PMCID: PMC8650134 DOI: 10.3389/fnagi.2021.756891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Dementia is increasingly prevalent globally. Existing questionnaire-based cognitive assessment tools may not comprehensively assess cognitive function and real-time task-performance across all cognitive domains. CAVIRE (Cognitive Assessment by VIrtual REality), a fully immersive virtual reality system incorporating automated audio-visual instructions and a scoring matrix was developed to assess the six cognitive domains, with potential to maintain consistency in execution of the testing environment and possibly time-saving in busy primary care practice. Aims: This is a feasibility study to compare the completion times of the questionnaire-based Montreal Cognitive Assessment (MoCA) and the CAVIRE in cognitively-healthy Asian adults aged between 35 and 74 years, overall, and in and across each 10-year age group (35-44; 45-54; 55-64; 65-74). Methods: A total of 100 participants with a MoCA score of 26 or more were recruited equally into the four 10-year age groups at a primary care clinic in Singapore. Completion time for the MoCA assessment for each participant was recorded. They were assessed using the CAVIRE, comprising 13 segments featuring common everyday activities assessing all six cognitive domains, and the completion time was also recorded through the embedded automated scoring and timing framework. Results: Completion time for CAVIRE as compared to MoCA was significantly (p < 0.01) shorter, overall (mean difference: 74.9 (SD) seconds) and in each age group. Younger, vs. older, participants completed both the MoCA and CAVIRE tasks in a shorter time. There was a greater variability in the completion time for the MoCA, most markedly in the oldest group, whereas completion time was less variable for the CAVIRE tasks in all age groups, with most consistency in the 45-54 year-age group. Conclusion: We demonstrate almost equivalent completion times for a VR and a questionnaire-based cognition assessment, with inter-age group variation in VR completion time synonymous to that in conventional screening methods. The CAVIRE has the potential to be an alternative screening modality for cognition in the primary care setting.
Collapse
Affiliation(s)
- Wei Teen Wong
- SingHealth Polyclinics-Outram, SingHealth Polyclinics, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,SingHealth Duke-NUS Family Medicine Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ngiap Chuan Tan
- Duke-NUS Medical School, Singapore, Singapore.,SingHealth Duke-NUS Family Medicine Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,Head Office, SingHealth Polyclinics, Singapore, Singapore
| | - Jie En Lim
- Duke-NUS Medical School, Singapore, Singapore
| | - John Carson Allen
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Wan Sian Lee
- SingHealth Polyclinics-Outram, SingHealth Polyclinics, Singapore, Singapore
| | - Joanne Hui Min Quah
- Duke-NUS Medical School, Singapore, Singapore.,SingHealth Duke-NUS Family Medicine Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,Head Office, SingHealth Polyclinics, Singapore, Singapore
| | | | - Tuan Ann Teh
- Technology Development Centre, Institute of Technical Education College West, Singapore, Singapore
| | - Soon Huat Lim
- Technology Development Centre, Institute of Technical Education College West, Singapore, Singapore
| | - Rahul Malhotra
- Centre for Ageing Research and Education, Duke-NUS Medical School, Singapore, Singapore.,Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
20
|
Rieck JR, Baracchini G, Grady CL. Contributions of Brain Function and Structure to Three Different Domains of Cognitive Control in Normal Aging. J Cogn Neurosci 2021; 33:1811-1832. [PMID: 34375414 DOI: 10.1162/jocn_a_01685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cognitive control involves the flexible allocation of mental resources during goal-directed behavior and comprises three correlated but distinct domains-inhibition, shifting, and working memory. The work of Don Stuss and others has demonstrated that frontal and parietal cortices are crucial to cognitive control, particularly in normal aging, which is characterized by reduced control mechanisms. However, the structure-function relationships specific to each domain and subsequent impact on performance are not well understood. In the current study, we examined both age and individual differences in functional activity associated with core domains of cognitive control in relation to fronto-parietal structure and task performance. Participants (n = 140, aged 20-86 years) completed three fMRI tasks: go/no-go (inhibition), task switching (shifting), and n-back (working memory), in addition to structural and diffusion imaging. All three tasks engaged a common set of fronto-parietal regions; however, the contributions of age, brain structure, and task performance to functional activity were unique to each domain. Aging was associated with differences in functional activity for all tasks, largely in regions outside common fronto-parietal control regions. Shifting and inhibition showed greater contributions of structure to overall decreases in brain activity, suggesting that more intact fronto-parietal structure may serve as a scaffold for efficient functional response. Working memory showed no contribution of structure to functional activity but had strong effects of age and task performance. Together, these results provide a comprehensive and novel examination of the joint contributions of aging, performance, and brain structure to functional activity across multiple domains of cognitive control.
Collapse
Affiliation(s)
| | | | - Cheryl L Grady
- Rotman Research Institute at Baycrest.,University of Toronto
| |
Collapse
|
21
|
Rieck JR, Baracchini G, Nichol D, Abdi H, Grady CL. Reconfiguration and dedifferentiation of functional networks during cognitive control across the adult lifespan. Neurobiol Aging 2021; 106:80-94. [PMID: 34256190 DOI: 10.1016/j.neurobiolaging.2021.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/12/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Healthy aging is accompanied by reduced cognitive control and widespread alterations in the underlying brain networks; but the extent to which large-scale functional networks in older age show reduced specificity across different domains of cognitive control is unclear. Here we use cov-STATIS (a multi-table multivariate technique) to examine similarity of functional connectivity during different domains of cognitive control-inhibition, initiation, shifting, and working memory-across the adult lifespan. We report two major findings: (1) Functional connectivity patterns during initiation, inhibition, and shifting were more similar in older ages, particularly for control and default networks, a pattern consistent with dedifferentiation of the neural correlates associated with cognitive control; and (2) Networks exhibited age-related reconfiguration such that frontal, default, and dorsal attention networks were more integrated whereas sub-networks of somato-motor system were more segregated in older age. Together these findings offer new evidence for dedifferentiation and reconfiguration of functional connectivity underlying different aspects of cognitive control in normal aging.
Collapse
Affiliation(s)
- Jenny R Rieck
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
| | - Giulia Baracchini
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Daniel Nichol
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
| | - Hervé Abdi
- The University of Texas at Dallas, Richardson, Texas, USA
| | - Cheryl L Grady
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada; Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Pongpipat EE, Kennedy KM, Foster CM, Boylan MA, Rodrigue KM. Functional Connectivity Within and Between n-Back Modulated Regions: An Adult Lifespan Psychophysiological Interaction Investigation. Brain Connect 2021; 11:103-118. [PMID: 33317393 PMCID: PMC7984940 DOI: 10.1089/brain.2020.0791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Working memory (WM) and its blood-oxygen-level-dependent-related parametric modulation under load decrease with age. Functional connectivity (FC) generally increases with WM load; however, how aging impacts connectivity and whether this is load-dependent, region-dependent, or associated with cognitive performance is unclear. Methods: This study examines these questions in 170 healthy adults (meanage = 52.99 ± 19.18) who completed functional magnetic resonance imaging scanning during an n-back task (0-, 2-, 3-, and 4-back). The FC was estimated by utilizing a modified generalized psychophysiological interaction approach with seeds from fronto-parietal (FP) and default mode (DM) regions that modulated to n-back difficulty. The FC analyses focused on both connectivity during WM engagement (task vs. control) and connectivity in response to increased WM load (linear slope across conditions). Each analysis utilized within- and between-region FC, predicted by age (linear or quadratic), and its associations with in- and out-of-scanner task performance. Results: Engaging in WM either generally (task vs. control) or as a function of difficulty strengthened integration within- and between-FP and DM regions. Notably, these task-sensitive functional connections were robust to the effects of age. Stronger negative FC between FP and DM regions was also associated with better WM performance in an age-dependent manner, occurring selectively in middle-aged and older adults. Discussion: These results suggest that FC is critical for engaging in cognitively demanding tasks, and its lack of sensitivity to healthy aging may provide a means to maintain cognition across the adult lifespan. Thus, this study highlights the contribution of maintenance in brain function to support working memory processing with aging.
Collapse
Affiliation(s)
- Ekarin E. Pongpipat
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, Texas, USA
| | - Kristen M. Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, Texas, USA
| | - Chris M. Foster
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, Texas, USA
| | - Maria A. Boylan
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, Texas, USA
| | - Karen M. Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
23
|
Diaz MT, Karimi H, Troutman SBW, Gertel VH, Cosgrove AL, Zhang H. Neural sensitivity to phonological characteristics is stable across the lifespan. Neuroimage 2020; 225:117511. [PMID: 33129928 PMCID: PMC7812596 DOI: 10.1016/j.neuroimage.2020.117511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022] Open
Abstract
Aging is often associated with declines in language production. For example, compared to younger adults, older adults experience more tip-of-the-tongue (TOT) states, show decreased speed and accuracy in naming objects, and have more pauses and fillers in speech, all of which indicate age-related increases in retrieval difficulty. While prior work has suggested that retrieval difficulty may be phonologically based, it is unclear whether there are age-related differences in the organization of phonological information per se or whether age-related difficulties may arise from accessing that information. Here we used fMRI to investigate the neural and behavioral basis of phonological neighborhood denisty (PND) effects on picture naming across the lifespan (N=91, ages 20-75). Consistent with prior work, behavioral results revealed that higher PND led to faster picture naming times and higher accuracies overall, and that older adults were less accurate in their responses. Consistent with the behavioral analyses, fMRI analyses showed that increasing PND was associated with decreased activation in auditory and motor language regions, including bilateral superior temporal gyri and bilateral precentral gyri. Interestingly, although there were age-related increases in functional activation to picture naming, there were no age-related modulations of neural sensitivity to PND. Overall, these results suggest that having a large cohort of phonological neighbors facilitates language production, and although aging is associated with increases in language production difficulty, sensitivity to phonological features during language production is stable across the lifespan.
Collapse
Affiliation(s)
- Michele T Diaz
- Department of Psychology, The Pennsylvania State University, USA; Social, Life, and Engineering Sciences Imaging Center, The Pennsylvania State University, USA.
| | - Hossein Karimi
- Department of Psychology, Mississippi State University, USA
| | | | | | | | - Haoyun Zhang
- Social, Life, and Engineering Sciences Imaging Center, The Pennsylvania State University, USA
| |
Collapse
|
24
|
Hernandez AR, Truckenbrod LM, Barrett ME, Lubke KN, Clark BJ, Burke SN. Age-Related Alterations in Prelimbic Cortical Neuron Arc Expression Vary by Behavioral State and Cortical Layer. Front Aging Neurosci 2020; 12:588297. [PMID: 33192482 PMCID: PMC7655965 DOI: 10.3389/fnagi.2020.588297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortical and medial temporal lobe connectivity is critical for higher cognitive functions that decline in older adults. Likewise, these cortical areas are among the first to show anatomical, functional, and biochemical alterations in advanced age. The prelimbic subregion of the prefrontal cortex and the perirhinal cortex of the medial temporal lobe are densely reciprocally connected and well-characterized as undergoing age-related neurobiological changes that correlate with behavioral impairment. Despite this fact, it remains to be determined how changes within these brain regions manifest as alterations in their functional connectivity. In our previous work, we observed an increased probability of age-related dysfunction for perirhinal cortical neurons that projected to the prefrontal cortex in old rats compared to neurons that were not identified as projection neurons. The current study was designed to investigate the extent to which aged prelimbic cortical neurons also had altered patterns of Arc expression during behavior, and if this was more evident in those cells that had long-range projections to the perirhinal cortex. The expression patterns of the immediate-early gene Arc were quantified in behaviorally characterized rats that also received the retrograde tracer cholera toxin B (CTB) in the perirhinal cortex to identify projection neurons to this region. As in our previous work, the current study found that CTB+ cells were more active than those that did not have the tracer. Moreover, there were age-related reductions in prelimbic cortical neuron Arc expression that correlated with a reduced ability of aged rats to multitask. Unlike the perirhinal cortex, however, the age-related reduction in Arc expression was equally likely in CTB+ and CTB- negative cells. Thus, the selective vulnerability of neurons with long-range projections to dysfunction in old age may be a unique feature of the perirhinal cortex. Together, these observations identify a mechanism involving prelimbic-perirhinal cortical circuit disruption in cognitive aging.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Leah M. Truckenbrod
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Maya E. Barrett
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Katelyn N. Lubke
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Benjamin J. Clark
- Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Sara N. Burke
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States,*Correspondence: Sara N. Burke,
| |
Collapse
|
25
|
Amer T, Giovanello KS, Nichol DR, Hasher L, Grady CL. Neural Correlates of Enhanced Memory for Meaningful Associations with Age. Cereb Cortex 2020; 29:4568-4579. [PMID: 30921462 DOI: 10.1093/cercor/bhy334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Evidence suggests that age differences in associative memory are attenuated for associations that are consistent with prior knowledge. Such knowledge structures have traditionally been associated with the default network (DN), which also shows reduced modulation with age. In the present study, we investigated whether DN activity and connectivity patterns could account for this age-related effect. Younger and older adults underwent functional magnetic resonance imaging as they learned realistic and unrealistic prices of common grocery items. Both groups showed greater activity in the DN during the encoding of realistic, relative to unrealistic, prices. Moreover, DN activity at encoding and retrieval and its connectivity with an attention control network at encoding were associated with enhanced memory for realistic prices. Finally, older adults showed overactivation of control regions during retrieval of realistic prices relative to younger adults. Our findings suggest that DN activity and connectivity patterns (traditionally viewed as indicators of cognitive failure with age), and additional recruitment of control regions, might underlie older adults' enhanced memory for meaningful associations.
Collapse
Affiliation(s)
- Tarek Amer
- Department of Psychology, University of Toronto, Toronto, ON, USA.,Rotman Research Institute, Toronto, ON, USA.,Department of Psychology, Columbia University, New York, NY, USA
| | - Kelly S Giovanello
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Lynn Hasher
- Department of Psychology, University of Toronto, Toronto, ON, USA.,Rotman Research Institute, Toronto, ON, USA
| | - Cheryl L Grady
- Department of Psychology, University of Toronto, Toronto, ON, USA.,Rotman Research Institute, Toronto, ON, USA.,Department of Psychiatry, University of Toronto, Toronto, ON, USA
| |
Collapse
|
26
|
Boylan MA, Foster CM, Pongpipat EE, Webb CE, Rodrigue KM, Kennedy KM. Greater BOLD Variability is Associated With Poorer Cognitive Function in an Adult Lifespan Sample. Cereb Cortex 2020; 31:562-574. [PMID: 32915200 PMCID: PMC7727366 DOI: 10.1093/cercor/bhaa243] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 12/01/2022] Open
Abstract
Moment-to-moment fluctuations in brain signal assessed by functional magnetic resonance imaging blood oxygenation level dependent (BOLD) variability is increasingly thought to represent important “signal” rather than measurement-related “noise.” Efforts to characterize BOLD variability in healthy aging have yielded mixed outcomes, demonstrating both age-related increases and decreases in BOLD variability and both detrimental and beneficial associations. Utilizing BOLD mean-squared-successive-differences (MSSD) during a digit n-back working memory (WM) task in a sample of healthy adults (aged 20–94 years; n = 171), we examined effects of aging on whole-brain 1) BOLD variability during task (mean condition MSSD across 0–2–3-4 back conditions), 2) BOLD variability modulation to incrementally increasing WM difficulty (linear slope from 0–2–3-4 back), and 3) the association of age-related differences in variability with in- and out-of-scanner WM performance. Widespread cortical and subcortical regions evidenced increased mean variability with increasing age, with no regions evidencing age-related decrease in variability. Additionally, posterior cingulate/precuneus exhibited increased variability to WM difficulty. Notably, both age-related increases in BOLD variability were associated with significantly poorer WM performance in all but the oldest adults. These findings lend support to the growing corpus suggesting that brain-signal variability is altered in healthy aging; specifically, in this adult lifespan sample, BOLD-variability increased with age and was detrimental to cognitive performance.
Collapse
Affiliation(s)
- Maria A Boylan
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Chris M Foster
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Ekarin E Pongpipat
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Christina E Webb
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| |
Collapse
|
27
|
Laurita AC, DuPre E, Ebner NC, Turner GR, Spreng RN. Default network interactivity during mentalizing about known others is modulated by age and social closeness. Soc Cogn Affect Neurosci 2020; 15:537-549. [PMID: 32399555 PMCID: PMC7328027 DOI: 10.1093/scan/nsaa067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/15/2020] [Accepted: 05/05/2020] [Indexed: 11/12/2022] Open
Abstract
In young adults, mentalizing about known others engages the default network, with differential brain response modulated by social closeness. While the functional integrity of the default network changes with age, few studies have investigated how these changes impact the representation of known others, across levels of closeness. Young (N = 29, 16 females) and older (N = 27, 12 females) adults underwent functional magnetic resonance imaging (fMRI) scanning while making trait judgments for social others varying in closeness. Multivariate analyses (partial least squares) identified default network activation for trait judgments across both age cohorts. For young adults, romantic partner and self-judgments differed from other levels of social closeness and were associated with activity in default and salience networks. In contrast, default network interactivity was not modulated by social closeness for older adults. In two functional connectivity analyses, both age groups demonstrated connectivity between dorsal and ventral medial prefrontal cortex and other default network regions during trait judgments. However older, but not young, adults also showed increased functional coupling between medial and lateral prefrontal brain regions that did not vary by category of known other. Mentalizing about others engages default and frontal brain regions in older adulthood, and this coupling is poorly modulated by social closeness.
Collapse
Affiliation(s)
- Anne C Laurita
- Health Promotion & Prevention Services, University Health Services, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth DuPre
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Quebec H3A 2B4, Canada
| | - Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA.,Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL 32611, USA.,Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL 32611, USA
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Quebec H3A 2B4, Canada.,Department of Psychiatry, McGill University, Quebec H3A 2B4, Canada.,Department of Psychology, McGill University, Quebec H3A 2B4, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Quebec H3A 2B4, Canada
| |
Collapse
|
28
|
Grady CL, Rieck JR, Nichol D, Garrett DD. Functional Connectivity within and beyond the Face Network Is Related to Reduced Discrimination of Degraded Faces in Young and Older Adults. Cereb Cortex 2020; 30:6206-6223. [DOI: 10.1093/cercor/bhaa179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Degrading face stimuli reduces face discrimination in both young and older adults, but the brain correlates of this decline in performance are not fully understood. We used functional magnetic resonance imaging to examine the effects of degraded face stimuli on face and nonface brain networks and tested whether these changes would predict the linear declines seen in performance. We found decreased activity in the face network (FN) and a decrease in the similarity of functional connectivity (FC) in the FN across conditions as degradation increased but no effect of age. FC in whole-brain networks also changed with increasing degradation, including increasing FC between the visual network and cognitive control networks. Older adults showed reduced modulation of this whole-brain FC pattern. The strongest predictors of within-participant decline in accuracy were changes in whole-brain network FC and FC similarity of the FN. There was no influence of age on these brain-behavior relations. These results suggest that a systems-level approach beyond the FN is required to understand the brain correlates of performance decline when faces are obscured with noise. In addition, the association between brain and behavior changes was maintained into older age, despite the dampened FC response to face degradation seen in older adults.
Collapse
Affiliation(s)
- Cheryl L Grady
- Rotman Research Institute, Baycrest, Toronto, ON M6A2E1, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Jenny R Rieck
- Rotman Research Institute, Baycrest, Toronto, ON M6A2E1, Canada
| | - Daniel Nichol
- Rotman Research Institute, Baycrest, Toronto, ON M6A2E1, Canada
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
29
|
Webb CE, Hoagey DA, Rodrigue KM, Kennedy KM. Frontostriatal white matter connectivity: age differences and associations with cognition and BOLD modulation. Neurobiol Aging 2020; 94:154-163. [PMID: 32623262 DOI: 10.1016/j.neurobiolaging.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/21/2020] [Accepted: 05/31/2020] [Indexed: 01/09/2023]
Abstract
Despite the importance of cortico-striatal circuits to cognition, investigation of age effects on the structural circuitry connecting these regions is limited. The current study examined age effects on frontostriatal white matter connectivity, and identified associations with both executive function performance and dynamic modulation of blood-oxygen-level-dependent (BOLD) activation to task difficulty in a lifespan sample of 169 healthy humans aged 20-94 years. Greater frontostriatal diffusivity was associated with poorer executive function and this negative association strengthened with increasing age. Whole-brain functional magnetic resonance imaging (fMRI) analyses additionally indicated an association between frontostriatal mean diffusivity and BOLD modulation to difficulty selectively in the striatum across 2 independent fMRI tasks. This association was moderated by age, such that younger- and middle-aged individuals showed reduced dynamic range of difficulty modulation as a function of increasing frontostriatal diffusivity. Together these results demonstrate the importance of age-related degradation of frontostriatal circuitry on executive functioning across the lifespan, and highlight the need to capture brain changes occurring in early-to middle-adulthood.
Collapse
Affiliation(s)
- Christina E Webb
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - David A Hoagey
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA.
| |
Collapse
|
30
|
Webb CE, Rodrigue KM, Hoagey DA, Foster CM, Kennedy KM. Contributions of White Matter Connectivity and BOLD Modulation to Cognitive Aging: A Lifespan Structure-Function Association Study. Cereb Cortex 2020; 30:1649-1661. [PMID: 31599929 PMCID: PMC7132902 DOI: 10.1093/cercor/bhz193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/30/2019] [Accepted: 07/27/2019] [Indexed: 11/14/2022] Open
Abstract
The ability to flexibly modulate brain activation to increasing cognitive challenge decreases with aging. This age-related decrease in dynamic range of function of regional gray matter may be, in part, due to age-related degradation of regional white matter tracts. Here, a lifespan sample of 171 healthy adults (aged 20-94) underwent magnetic resonance imaging (MRI) scanning including diffusion-weighted imaging (for tractography) and functional imaging (a digit n-back task). We utilized structural equation modeling to test the hypothesis that age-related decrements in white matter microstructure are associated with altered blood-oxygen-level-dependent (BOLD) modulation, and both in turn, are associated with scanner-task accuracy and executive function performance. Specified structural equation model evidenced good fit, demonstrating that increased age negatively affects n-back task accuracy and executive function performance in part due to both degraded white matter tract microstructure and reduced task-difficulty-related BOLD modulation. We further demonstrated that poorer white matter microstructure integrity was associated with weakened BOLD modulation, particularly in regions showing positive modulation effects, as opposed to negative modulation effects. This structure-function association study provides further evidence that structural connectivity influences functional activation, and the two mechanisms in tandem are predictive of cognitive performance, both during the task, and for cognition measured outside the scanner environment.
Collapse
Affiliation(s)
- Christina E Webb
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - David A Hoagey
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Chris M Foster
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| |
Collapse
|
31
|
Turner MP, Fischer H, Sivakolundu DK, Hubbard NA, Zhao Y, Rypma B, Bäckman L. Age-differential relationships among dopamine D1 binding potential, fusiform BOLD signal, and face-recognition performance. Neuroimage 2020; 206:116232. [PMID: 31593794 DOI: 10.1016/j.neuroimage.2019.116232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 11/19/2022] Open
Abstract
Facial recognition ability declines in adult aging, but the neural basis for this decline remains unknown. Cortical areas involved in face recognition exhibit lower dopamine (DA) receptor availability and lower blood-oxygen-level-dependent (BOLD) signal during task performance with advancing adult age. We hypothesized that changes in the relationship between these two neural systems are related to age differences in face-recognition ability. To test this hypothesis, we leveraged positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to measure D1 receptor binding potential (BPND) and BOLD signal during face-recognition performance. Twenty younger and 20 older participants performed a face-recognition task during fMRI scanning. Face recognition accuracy was lower in older than in younger adults, as were D1 BPND and BOLD signal across the brain. Using linear regression, significant relationships between DA and BOLD were found in both age-groups in face-processing regions. Interestingly, although the relationship was positive in younger adults, it was negative in older adults (i.e., as D1 BPND decreased, BOLD signal increased). Ratios of BOLD:D1 BPND were calculated and relationships to face-recognition performance were tested. Multiple linear regression revealed a significant Group × BOLD:D1 BPND Ratio interaction. These results suggest that, in the healthy system, synchrony between neurotransmitter (DA) and hemodynamic (BOLD) systems optimizes the level of BOLD activation evoked for a given DA input (i.e., the gain parameter of the DA input-neural activation function), facilitating task performance. In the aged system, however, desynchronization between these brain systems would reduce the gain parameter of this function, adversely impacting task performance and contributing to reduced face recognition in older adults.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nicholas A Hubbard
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
32
|
Rodrigue KM, Daugherty AM, Foster CM, Kennedy KM. Striatal iron content is linked to reduced fronto-striatal brain function under working memory load. Neuroimage 2020; 210:116544. [PMID: 31972284 DOI: 10.1016/j.neuroimage.2020.116544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/26/2022] Open
Abstract
Non-heme iron accumulation contributes to age-related decline in brain structure and cognition via a cascade of oxidative stress and inflammation, although its effect on brain function is largely unexplored. Thus, we examine the impact of striatal iron on dynamic range of BOLD modulation to working memory load. N = 166 healthy adults (age 20-94) underwent cognitive testing and an imaging session including n-back (0-, 2-, 3-, and 4-back fMRI), R2*-weighted imaging, and pcASL to measure cerebral blood flow. A statistical model was constructed to predict voxelwise BOLD modulation by age, striatal iron content and an age × iron interaction, controlling for cerebral blood flow, sex, and task response time. A significant interaction between age and striatal iron content on BOLD modulation was found selectively in the putamen, caudate, and inferior frontal gyrus. Greater iron was associated with reduced modulation to difficulty, particularly in middle-aged and younger adults with greater iron content. Further, iron-related decreases in modulation were associated with poorer executive function in an age-dependent manner. These results suggest that iron may contribute to differences in functional brain activation prior to older adulthood, highlighting the potential role of iron as an early factor contributing to trajectories of functional brain aging.
Collapse
Affiliation(s)
- Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, TX, USA.
| | - Ana M Daugherty
- Department of Psychology, Department of Psychiatry and Behavioral Neurosciences, Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Chris M Foster
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, TX, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
33
|
Qin S, Basak C. Age-related differences in brain activation during working memory updating: An fMRI study. Neuropsychologia 2020; 138:107335. [PMID: 31923524 DOI: 10.1016/j.neuropsychologia.2020.107335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 01/27/2023]
Abstract
Recent neuroimaging studies have reported an age-related reduction in brain activations in response to working memory load in task-sensitive brain regions. The current fMRI study investigated the age-related differences in brain activations of the updating mechanism in working memory, which was not investigated in previous studies. With a hybrid block/event-related design, this study was able to examine changes in BOLD signals (i.e., neuromodulation) to increase in updating, a type of cognitive control that is understudied. Older adults were separated into young-old and old-old cohorts to examine whether, within healthy aging, the neuromodulation to cognitive control decreases with age. Our results show that younger adults activate left precentral gyrus and right cerebellum more during trials that require updating than trials that do not require updating. Although older adults showed reduced neuromodulation in these two regions, the old-old cohort failed to show any significant neuromodulation in response to updating. Moreover, older adults not only showed reduced suppressions of the default mode network (DMN) regions during the task, they also overactivated some of the DMN regions, esp. the old-old, when compared to the younger adults. Older adults also showed overactivations in a region (right precentral gyrus) that is contralateral to a task-sensitive region that was activated in the younger adults during updating. Brain-behavior correlations suggest that age-related overactivations of these DMN regions and the right precentral gyrus are maladaptive to their performance. Our results suggest that not only the neuromodulation in response to updating demands is diminished in healthy aging, older adults also show maladaptive increases in activations of task-irrelevant regions and reduced hemispheric specificity during updating. These effects are most pronounced in old-old cohort, compared to young-old, suggesting that age-related declines in neuromodulation during cognitive control is more pronounced in older cohorts within healthy aging.
Collapse
Affiliation(s)
- Shuo Qin
- University of Texas at Dallas, TX, 75080, USA
| | | |
Collapse
|
34
|
Li X, Bäckman L, Persson J. The relationship of age and DRD2 polymorphisms to frontostriatal brain activity and working memory performance. Neurobiol Aging 2019; 84:189-199. [PMID: 31629117 DOI: 10.1016/j.neurobiolaging.2019.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) in both prefrontal cortex (PFC) and caudate nucleus is critical for working memory (WM) function. The C957T and Taq1A polymorphisms of the DRD2 gene are related to DA D2 receptor densities in PFC and striatum. Using functional MRI, we investigated the relationship of age and these 2 DRD2 gene polymorphisms to WM function and examined possible age by gene interactions. Results demonstrated less caudate activity for older adults (70-80 years; n = 112) compared with the younger age group (25-65 years; n = 191), suggesting age-related functional differences in this region. Importantly, there was a gene-related difference regarding WM performance and frontostriatal brain activity. Specifically, better WM performance and greater activity in PFC were found among C957T C allele carriers. Combined genetic markers for increased DA D2 receptor density were associated with greater caudate activity and higher WM updating performance. The genetic effects on blood oxygen level-dependent activity were only observed in older participants, suggesting magnified genetic effects in aging. Our findings emphasize the importance of DA-related genes in regulating WM functioning in aging and demonstrate a positive link between DA and brain activation in the frontostriatal circuitry.
Collapse
Affiliation(s)
- Xin Li
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden.
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
35
|
Spreng RN, Turner GR. The Shifting Architecture of Cognition and Brain Function in Older Adulthood. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2019; 14:523-542. [PMID: 31013206 DOI: 10.1177/1745691619827511] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cognitive aging is often described in the context of loss or decline. Emerging research suggests that the story is more complex, with older adults showing both losses and gains in cognitive ability. With increasing age, declines in controlled, or fluid, cognition occur in the context of gains in crystallized knowledge of oneself and the world. This inversion in cognitive capacities, from greater reliance on fluid abilities in young adulthood to increasingly crystallized or semanticized cognition in older adulthood, has profound implications for cognitive and real-world functioning in later life. The shift in cognitive architecture parallels changes in the functional network architecture of the brain. Observations of greater functional connectivity between lateral prefrontal brain regions, implicated in cognitive control, and the default network, implicated in memory and semantic processing, led us to propose the default-executive coupling hypothesis of aging. In this review we provide evidence that these changes in the functional architecture of the brain serve as a neural mechanism underlying the shifting cognitive architecture from younger to older adulthood. We incorporate findings spanning cognitive aging and cognitive neuroscience to present an integrative model of cognitive and brain aging, describing its antecedents, determinants, and implications for real-world functioning.
Collapse
Affiliation(s)
- R Nathan Spreng
- 1 Department of Neurology and Neurosurgery, McGill University
| | | |
Collapse
|
36
|
Adnan A, Beaty R, Lam J, Spreng RN, Turner GR. Intrinsic default-executive coupling of the creative aging brain. Soc Cogn Affect Neurosci 2019; 14:291-303. [PMID: 30783663 PMCID: PMC6399613 DOI: 10.1093/scan/nsz013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/18/2018] [Accepted: 11/07/2018] [Indexed: 11/13/2022] Open
Abstract
Creativity refers to the ability to generate novel associations and has been linked to better problem-solving and real-world functional abilities. In younger adults, creative cognition has been associated with functional connectivity among brain networks implicated in executive control [fronto-parietal network (FPN) and salience network (SN)] and associative or elaborative processing default network (DN). Here, we investigate whether creativity is associated with the intrinsic network architecture of the brain and how these associations may differ for younger and older adults. Young (mean age: 24.76, n = 22) and older (mean age: 70.03, n = 44) adults underwent multi-echo functional magnetic resonance image scanning at rest and completed a divergent-thinking task to assess creative cognition outside the scanner. Divergent thinking in older adults, compared to young adults, was associated with functional connectivity between the default and both executive control networks (FPN and SN) as well as more widespread default-executive coupling. Finally, the ventromedial prefrontal cortex appears to be a critical node involved in within- and between-network connectivity associated with creative cognition in older adulthood. Patterns of intrinsic network coupling revealed here suggest a putative neural mechanism underlying a greater role for mnemonic processes in creative cognition in older adulthood.
Collapse
Affiliation(s)
- Areeba Adnan
- Department of Psychology, York University, Toronto, Ontario Canada
| | - Roger Beaty
- Department of Psychology, Harvard University, Cambridge, Massachusetts, USA
| | - Jaeger Lam
- Department of Psychology, York University, Toronto, Ontario Canada
| | - R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Departments of Psychology and Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario Canada
| |
Collapse
|
37
|
Habak C, Seghier ML, Brûlé J, Fahim MA, Monchi O. Age Affects How Task Difficulty and Complexity Modulate Perceptual Decision-Making. Front Aging Neurosci 2019; 11:28. [PMID: 30881300 PMCID: PMC6405634 DOI: 10.3389/fnagi.2019.00028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Abstract
Decisions differ in difficulty and rely on perceptual information that varies in richness (complexity); aging affects cognitive function including decision-making, and yet, the interaction between difficulty and perceptual complexity have rarely been addressed in aging. Using a parametric fMRI modulation analysis and psychophysics, we address how task difficulty affects decision-making when controlling for the complexity of the perceptual context in which decisions are made. Perceptual complexity was varied in a factorial design while participants made perceptual judgments on the spatial frequency of two patches that either shared the same orientation (simple condition) or were orthogonal in orientation (complex condition). Psychophysical thresholds were measured for each participant in each condition and served to set individualized levels of difficulty during scanning. Findings indicate that discriminability interacts with complexity, to influence decisional difficulty. Modulation as a function of difficulty is maintained with age, as indicated by coupling between increased activation in fronto-parietal regions and suppression in the lateral hubs, however, age has a specific effect in the ventral anterior cingulate cortex (ACC), driven by performance at near-threshold (difficult) levels for the simpler stimulus combination condition, but not the more complex one. Taken together, our findings suggest that the context of difficulty, or what is perceived as important, changes with age, and that decisions that would seem neutral to younger participants, may carry more emphasis with age.
Collapse
Affiliation(s)
- Claudine Habak
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education, Abu Dhabi, United Arab Emirates
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Mohamed L. Seghier
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education, Abu Dhabi, United Arab Emirates
| | - Julie Brûlé
- School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Mohamed A. Fahim
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education, Abu Dhabi, United Arab Emirates
| | - Oury Monchi
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Clinical Neurosciences, and Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Foster CM, Kennedy KM, Horn MM, Hoagey DA, Rodrigue KM. Both hyper- and hypo-activation to cognitive challenge are associated with increased beta-amyloid deposition in healthy aging: A nonlinear effect. Neuroimage 2018; 166:285-292. [PMID: 29108941 DOI: 10.1016/j.neuroimage.2017.10.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 11/29/2022] Open
Abstract
Beta-amyloid (Aβ) positive individuals hyper-activate brain regions compared to those not at-risk; however, hyperactivation is then thought to diminish as Alzheimer's disease symptomatology begins, evidencing eventual hypoactivation. It remains unclear when in the disease staging this transition occurs. We hypothesized that differential levels of amyloid burden would be associated with both increased and decreased activation (i.e., a quadratic trajectory) in cognitively-normal adults. Participants (N = 62; aged 51-94) underwent an fMRI spatial distance-judgment task and Amyvid-PET scanning. Voxelwise regression modeled age, linear-Aβ, and quadratic-Aβ as predictors of BOLD activation to difficult spatial distance-judgments. A significant quadratic-Aβ effect on BOLD response explained differential activation in bilateral angular/temporal and medial prefrontal cortices, such that individuals with slightly elevated Aβ burden exhibited hyperactivation whereas even higher Aβ burden was then associated with hypoactivation. Importantly, in high-Aβ individuals, Aβ load moderated the effect of BOLD activation on behavioral task performance, where in lower-elevation, greater deactivation was associated with better accuracy, but in higher-elevation, greater deactivation was associated with poorer accuracy during the task. This study reveals a dose-response, quadratic relationship between increasing Aβ burden and alterations in BOLD activation to cognitive challenge in cognitively-normal individuals that suggests 1) the shift from hyper-to hypo-activation may begin early in disease staging, 2) depends, in part, on degree of Aβ burden, and 3) tracks cognitive performance.
Collapse
Affiliation(s)
- Chris M Foster
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Marci M Horn
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - David A Hoagey
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA.
| |
Collapse
|
39
|
Kennedy KM, Foster CM, Rodrigue KM. Increasing beta-amyloid deposition in cognitively healthy aging predicts nonlinear change in BOLD modulation to difficulty. Neuroimage 2018; 183:142-149. [PMID: 30102997 PMCID: PMC6197922 DOI: 10.1016/j.neuroimage.2018.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 11/24/2022] Open
Abstract
Recent evidence indicates that the relationship between increased beta-amyloid (Aβ) deposition and functional task-activation can be characterized by a non-linear trajectory of change in functional activation (Foster et al., 2017), explaining mixed results in prior literature showing both increases and decreases in activation as a function of beta-amyloid burden in cognitively normal adults. Here we sought to replicate this nonlinear effect in the same sample using a different functional paradigm to test the generalizability of this phenomenon. Participants (N = 68 healthy adults aged 49-94) underwent fMRI (0-, 2-, 3-, 4-back working memory task; WM) and 18F-Florbetapir PET scanning. A parametric WM load contrast was used as the dependent variable in a model with age, mean cortical Aβ, and Aβ2 as predictors. Results revealed that nonlinear amyloid (Aβ2) was a significant negative predictor of modulation of activation to WM load in two large inferior clusters: bilateral subcortical nuclei and bilateral lateral cerebellum. Individuals with slightly elevated Aβ burden evidenced greater modulation as compared to individuals with little or no Aβ burden, whereas individuals with the greatest Aβ burden evidenced lesser modulation as compared to individuals with slightly elevated Aβ. Increased modulation to WM load predicted better task accuracy and executive function measured outside the scanner. The current study provides further evidence for a dose-response, nonlinear relationship between increasing Aβ burden and alteration in brain activation in cognitively healthy adults, extending the existing evidence to dynamic range of activation to task difficulty, and reconciling seemingly discrepant effects of amyloid on brain function.
Collapse
Affiliation(s)
- Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA.
| | - Chris M Foster
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA
| |
Collapse
|
40
|
Evidence Linking Brain Activity Modulation to Age and to Deductive Training. Neural Plast 2018; 2018:1401579. [PMID: 30595688 PMCID: PMC6286755 DOI: 10.1155/2018/1401579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/29/2018] [Accepted: 10/14/2018] [Indexed: 11/17/2022] Open
Abstract
Electrical brain activity modulation in terms of changes in its intensity and spatial distribution is a function of age and task demand. However, the dynamics of brain modulation is unknown when it depends on external factors such as training. The aim of this research is to verify the effect of deductive reasoning training on the modulation in the brain activity of healthy younger and older adults (N = 47 (mean age of 21 ± 3.39) and N = 38 (mean age of 68.92 ± 5.72)). The analysis reveals the benefits of training, showing that it lowers cerebral activation while increasing the number of correct responses in the trained reasoning task (p < 0.001). The brain source generators were identified by time-averaging low-resolution brain electromagnetic tomography (sLORETA) current density images. In both groups, a bilateral overactivation associated with the task and not with age was identified. However, while the profile of bilateral activation in younger adults was symmetrical in anterior areas, in the older ones, the profile was located asymmetrically in anterior and posterior areas. Consequently, bilaterality may be a marker of how the brain adapts to maintain cognitive function in demanding tasks in both age groups. However, the differential bilateral locations across age groups indicate that the tendency to brain modulation is determined by age.
Collapse
|
41
|
Adnan A, Beaty R, Silvia P, Spreng RN, Turner GR. Creative aging: functional brain networks associated with divergent thinking in older and younger adults. Neurobiol Aging 2018; 75:150-158. [PMID: 30572185 DOI: 10.1016/j.neurobiolaging.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 01/17/2023]
Abstract
Creative thinking is associated with connectivity between the default and executive control networks in the young brain. In aging, this pattern of functional coupling has been observed across multiple tasks. We have described this as the Default-Executive Coupling Hypothesis of Aging and suggest that this connectivity pattern may also be associated with creativity in older adulthood. However, age differences in brain networks implicated in creativity have yet to be investigated. The overarching goal of the present study was to examine age-related changes to functional brain networks associated with creativity. Specifically, we explored functional connectivity patterns among default and executive control brain regions associated with creative thoughts in older and younger adults. In a cross-sectional design, young (mean age = 21 y; n = 30) and older (mean age = 70 y; n = 25) participants completed a divergent thinking task during fMRI, which was examined using region of interest functional connectivity analyses. Consistent with predictions, analyses demonstrated that default and executive networks are more functionally coupled during creative thinking for older than younger adults. Critically, despite similar performance on an in-scanner creativity task, increased network efficiency was associated with creative ability for older adults only. These findings provide novel evidence of default-executive coupling as a putative mechanism associated with creative ability in later life.
Collapse
Affiliation(s)
- Areeba Adnan
- Department of Psychology, York University, Toronto, ON, Canada
| | - Roger Beaty
- Department of Psychology, Harvard University, Boston, MA, USA
| | - Paul Silvia
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON, Canada.
| |
Collapse
|
42
|
Kosako M, Akiho H, Miwa H, Kanazawa M, Fukudo S. Impact of symptoms by gender and age in Japanese subjects with irritable bowel syndrome with constipation (IBS-C): a large population-based internet survey. Biopsychosoc Med 2018; 12:12. [PMID: 30186363 PMCID: PMC6122187 DOI: 10.1186/s13030-018-0131-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Background Irritable bowel syndrome with constipation (IBS-C) is a representative psychosomatic disorder. Several pathophysiological factors have been linked to IBS symptoms such as the modulation of gastrointestinal motility, visceral hypersensitivity, dysregulation of the gut-brain axis, genetic and environmental factors, sequelae of infection, and psychosocial disorders. It is likely that biopsychosocial aspects of IBS-C underlie its gender and age effects. However, the influence of each symptom of IBS-C by gender and age is not well understood. We hypothesized that the expression rate of each IBS-C symptom in females and in subjects aged 20–49 years was higher than that of subjects who were male and aged 50–79 years. Methods We conducted an internet survey of 30,000 adults from the general Japanese population. IBS-C subjects were asked to answer a questionnaire on the degree of anxiety, thoughts about bowel habits, and their dominant gastrointestinal symptoms together with exacerbation factors. The correlation between gender and age and IBS-C symptoms was analyzed. Results When analyzed by gender, the expression rate of abdominal discomfort, abdominal distention, and abdominal fullness was significantly higher in female than male IBS-C subjects (66.5% vs. 58.7%, p < 0.05; 54.7% vs. 43.6%, p < 0.01; 18.9% vs. 9.6%, p < 0.01, respectively). When analyzed by age, the expression rate of abdominal distention and abdominal pain was significantly higher among IBS-C subjects aged 20–49 years than those aged 50–79 years (55.7% vs. 46.8%, p < 0.05; 36.6% vs. 20.6%, p < 0.001, respectively). In contrast, there was no gender or age differences with regard to the most common and bothersome symptom (abdominal bloating) among IBS-C subjects. Conclusions The expression rate of some IBS-C symptoms was higher among females and those aged 20–49 years than males and those aged 50–79 years, respectively. It is important to understand the impact of symptoms by gender and age to evaluate the pathology of IBS-C from a biopsychosocial perspective. Trial registration Although this survey was an anonymous internet survey, we obtained informed consent for the study as an online response. The disclosure of this study was approved by the Ethics Committee of Tohoku University Graduate School of Medicine (approval number: 2015–1-405).
Collapse
Affiliation(s)
- Masanori Kosako
- 1Japan-Asia Clinical Development 1, Development, Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo, 103-8411 Japan
| | - Hiraku Akiho
- 2Former employee of Astellas Pharma Inc., Tokyo, Japan
| | - Hiroto Miwa
- 3Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Motoyori Kanazawa
- 4Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Fukudo
- 4Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
43
|
McDonald AP, D'Arcy RCN, Song X. Functional MRI on executive functioning in aging and dementia: A scoping review of cognitive tasks. Aging Med (Milton) 2018; 1:209-219. [PMID: 31942499 PMCID: PMC6880681 DOI: 10.1002/agm2.12037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022] Open
Abstract
Cognitive decline with aging and dementia is especially poignant with regard to the executive functioning that is necessary for activities of daily independent living. The relationship between age-related neurodegeneration in the prefrontal cortex and executive functioning has been uniquely investigated using task-phase functional magnetic resonance imaging (fMRI) to detect brain activity in response to stimuli; however, a comprehensive list of task designs that have been implemented to task-phase fMRI is absent in the literature. The purpose of this review was to recognize what methods have been used to study executive functions with aging and dementia in fMRI tasks, and to describe and categorize them. The following cognitive subdomains were emphasized: cognitive flexibility, planning and decision-making, working memory, cognitive control/inhibition, semantic processing, attention and concentration, emotional functioning, and multitasking. Over 30 different task-phase fMRI designs were found to have been implemented in the literature, all adopted from standard neuropsychological assessments. Cognitive set-shifting and decision-making tasks were particularly well studied in regard to age-related neurodegeneration, while emotional functioning and multitasking designs were found to be the least utilized. Summarizing the information on which tasks have shown the greatest usability will assist in the future design and implementation of effective fMRI experiments targeting executive functioning.
Collapse
Affiliation(s)
- Andrew P. McDonald
- Health Sciences and InnovationFraser Health AuthoritySurreyBritish ColumbiaCanada
- Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ryan C. N. D'Arcy
- Health Sciences and InnovationFraser Health AuthoritySurreyBritish ColumbiaCanada
- ImageTech LaboratorySimon Fraser UniversitySurreyBritish ColumbiaCanada
| | - Xiaowei Song
- Health Sciences and InnovationFraser Health AuthoritySurreyBritish ColumbiaCanada
- ImageTech LaboratorySimon Fraser UniversitySurreyBritish ColumbiaCanada
| |
Collapse
|
44
|
Eudave L, Martínez M, Luis EO, Pastor MA. Default-mode network dynamics are restricted during high speed discrimination in healthy aging: Associations with neurocognitive status and simulated driving behavior. Hum Brain Mapp 2018; 39:4196-4212. [PMID: 29962070 DOI: 10.1002/hbm.24240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/12/2018] [Accepted: 05/23/2018] [Indexed: 11/06/2022] Open
Abstract
Numerous daily tasks, including car driving, require fine visuospatial tuning. One such visuospatial ability, speed discrimination, declines with aging but its neural underpinnings remain unknown. In this study, we use fMRI to explore the effect of aging during a high speed discrimination task and its neural underpinnings, along with a complete neuropsychological assessment and a simulated driving evaluation in order to examine how they interact with each other through a multivariate regression approach. Beyond confirming that high speed discrimination performance is diminished in the elderly, we found that this deficit might be partly due to a lack of modulation in the activity and connectivity of the default mode network (DMN) in this age group, as well as an over-recruitment of frontoparietal and cerebellar regions, possibly as a compensatory mechanism. In addition, younger adults tended to drive at faster speeds, a behavior that was associated to adequate DMN dynamics and executive functioning, an effect that seems to be lost in the elderly. In summary, these results reveal how age-related declines in fine visuospatial abilities, such as high speed discrimination, were distinctly mediated by DMN functioning, a mechanism also associated to speeding behavior in a driving simulator.
Collapse
Affiliation(s)
- Luis Eudave
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
| | - Martín Martínez
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
| | - Elkin O Luis
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain.,School of Education and Psychology, University of Navarra, Pamplona, Spain
| | - María A Pastor
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
| |
Collapse
|
45
|
Hernandez AR, Reasor JE, Truckenbrod LM, Campos KT, Federico QP, Fertal KE, Lubke KN, Johnson SA, Clark BJ, Maurer AP, Burke SN. Dissociable effects of advanced age on prefrontal cortical and medial temporal lobe ensemble activity. Neurobiol Aging 2018; 70:217-232. [PMID: 30031931 PMCID: PMC6829909 DOI: 10.1016/j.neurobiolaging.2018.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
Abstract
The link between age-related cellular changes within brain regions and larger scale neuronal ensemble dynamics critical for cognition has not been fully elucidated. The present study measured neuron activity within medial prefrontal cortex (PFC), perirhinal cortex (PER), and hippocampal subregion CA1 of young and aged rats by labeling expression of the immediate-early gene Arc. The proportion of cells expressing Arc was quantified at baseline and after a behavior that requires these regions. In addition, PER and CA1 projection neurons to PFC were identified with retrograde labeling. Within CA1, no age-related differences in neuronal activity were observed in the entire neuron population or within CA1 pyramidal cells that project to PFC. Although behavior was comparable across age groups, behaviorally driven Arc expression was higher in the deep layers of both PER and PFC and lower in the superficial layers of these regions. Moreover, age-related changes in activity levels were most evident within PER cells that project to PFC. These data suggest that the PER-PFC circuit is particularly vulnerable in advanced age.
Collapse
Affiliation(s)
- Abbi R Hernandez
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Jordan E Reasor
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Leah M Truckenbrod
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Keila T Campos
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Quinten P Federico
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Kaeli E Fertal
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Katelyn N Lubke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Sarah A Johnson
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Andrew P Maurer
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL; Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Sara N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL; Institute on Aging, University of Florida, Gainesville, FL.
| |
Collapse
|
46
|
Brown CA, Jiang Y, Smith CD, Gold BT. Age and Alzheimer's pathology disrupt default mode network functioning via alterations in white matter microstructure but not hyperintensities. Cortex 2018; 104:58-74. [PMID: 29758374 DOI: 10.1016/j.cortex.2018.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 02/07/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
Abstract
The default mode network (DMN) comprises defined brain regions contributing to internally-directed thought processes. Reductions in task-induced deactivation in the DMN have been associated with increasing age and poorer executive task performance, but factors underlying these functional changes remain unclear. We investigated contributions of white matter (WM) microstructure, WM hyperintensities (WMH) and Alzheimer's pathology to age-related alterations in DMN function. Thirty-five cognitively normal older adults and 29 younger adults underwent working memory task fMRI and diffusion tensor imaging. In the older adults, we measured cerebrospinal fluid tau and Aβ42 (markers of AD pathology), and WMH on FLAIR imaging (marker of cerebrovascular disease). We identified a set of regions showing DMN deactivation and a set of inter-connecting WM tracts (DMN-WM) common to both age groups. There were negative associations between DMN deactivation and task performance in older adults, consistent with previous studies. Decreased DMN deactivation was associated with AD pathology and WM microstructure but not with WMH volume. Mediation analyses showed that WM microstructure mediated declines in DMN deactivation associated with both aging and AD pathology. Together these results suggest that AD pathology may exert a "second-hit" on WM microstructure, over-and-above the effects of age, both contributing to diminished DMN deactivation in older adults.
Collapse
Affiliation(s)
| | - Yang Jiang
- Department of Behavioral Science, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA
| | - Charles D Smith
- Department of Neurology, University of Kentucky, Lexington, KY, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA
| | - Brian T Gold
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
47
|
Effects of task complexity and age-differences on task-related functional connectivity of attentional networks. Neuropsychologia 2018; 114:50-64. [PMID: 29655800 DOI: 10.1016/j.neuropsychologia.2018.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 11/21/2022]
Abstract
Studies investigating the strength and membership of regions within multiple functional networks primarily focus on either resting state or single cognitive tasks. The goals of the current study were to investigate whether task-related functional connectivity changes with task complexity, and whether this connectivity-complexity relationship is age-sensitive. We assessed seed-to-voxel functional connectivity for the default mode network (DMN) and two attentional networks [cingulo-opercular (CO), fronto-parietal (FP)] in three cognitive control tasks of increasing complexity (Single task, Dual task, and Memory Updating), across younger and older adults (N = 52; NYoung = 23; NOld = 29). The three tasks systematically varied in cognitive control demands due to differing maintenance, switching, and updating requirements. Functional connectivity for all networks, resulting from task > rest contrasts, increased with greater task complexity, irrespective of age and gray matter volume. Moreover, between-network connectivity for DMN, CO, and FP regions was greatest for working memory updating, the most complex task. Regarding age-related differences in accuracy, none were observed for Single or Dual tasks, but older adults had poorer accuracy in Memory Updating. More anterior frontal clusters of functional connectivity were observed for older, compared to younger, adults; these were limited to seeds of the two attentional networks. Importantly, increased connectivity in these additional frontal regions in older adults were non-compensatory, because they were associated with detrimental task performance, especially Memory Updating. For the Memory Updating > Rest, the younger > older contrast resulted in greater DMN seed connectivity to regions in the other two attentional networks, implicating increased reliance on between-network connectivity for the DMN seeds during complex cognitive tasks. Our results also implicate functional connectivity between attentional networks and the cerebellum during cognitive control. Reliability of multiple seeds in the seed-to-voxel connectivity is also discussed.
Collapse
|
48
|
Grady CL, Garrett DD. Brain signal variability is modulated as a function of internal and external demand in younger and older adults. Neuroimage 2018; 169:510-523. [DOI: 10.1016/j.neuroimage.2017.12.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022] Open
|
49
|
Chai WJ, Abd Hamid AI, Abdullah JM. Working Memory From the Psychological and Neurosciences Perspectives: A Review. Front Psychol 2018; 9:401. [PMID: 29636715 PMCID: PMC5881171 DOI: 10.3389/fpsyg.2018.00401] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/09/2018] [Indexed: 11/29/2022] Open
Abstract
Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory’s capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects.
Collapse
Affiliation(s)
- Wen Jia Chai
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Aini Ismafairus Abd Hamid
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Center for Neuroscience Services and Research, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Center for Neuroscience Services and Research, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
50
|
De Vis JB, Peng SL, Chen X, Li Y, Liu P, Sur S, Rodrigue KM, Park DC, Lu H. Arterial-spin-labeling (ASL) perfusion MRI predicts cognitive function in elderly individuals: A 4-year longitudinal study. J Magn Reson Imaging 2018; 48:449-458. [PMID: 29292540 DOI: 10.1002/jmri.25938] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/12/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND With the disappointing outcomes of clinical trials on patients with Alzheimer's disease or mild cognitive impairment (MCI), there is increasing attention to understanding cognitive decline in normal elderly individuals, with the goal of identifying subjects who are most susceptible to imminent cognitive impairment. PURPOSE/HYPOTHESIS To evaluate the potential of cerebral blood flow (CBF) as a biomarker by investigating the relationship between CBF at baseline and cognition at follow-up. STUDY TYPE Prospective longitudinal study with a 4-year time interval. POPULATION 309 healthy subjects aged 20-89 years old. FIELD STRENGTH/SEQUENCE 3T pseudo-continuous-arterial-spin-labeling MRI. ASSESSMENT CBF at baseline and cognitive assessment at both baseline and follow-up. STATISTICAL TESTS Linear regression analyses with age, systolic blood pressure, physical activity, and baseline cognition as covariates. RESULTS Linear regression analyses revealed that whole-brain CBF at baseline was predictive of general fluid cognition at follow-up. This effect was observed in the older group (age ≥54 years, β = 0.221, P = 0.004), but not in younger or entire sample (β = 0.018, P = 0.867 and β = 0.089, P = 0.098, respectively). Among major brain lobes, frontal CBF had the highest sensitivity in predicting future cognition, with a significant effect observed for fluid cognition (β = 0.244 P = 0.001), episodic memory (β = 0.294, P = 0.001), and reasoning (β = 0.186, P = 0.027). These associations remained significant after accounting for baseline cognition. Voxelwise analysis revealed that medial frontal cortex and anterior cingulate cortex, part of the default mode network (DMN), are among the most important regions in predicting fluid cognition. DATA CONCLUSION In a healthy aging cohort, CBF can predict general cognitive ability as well as specific domains of cognitive function. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2018;48:449-458.
Collapse
Affiliation(s)
- Jill B De Vis
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shin-Lei Peng
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Xi Chen
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Texas, USA
| | - Yang Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandeepa Sur
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Texas, USA
| | - Denise C Park
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Texas, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|