1
|
Watanabe T, Inoue K, Kuniyoshi Y, Nakajima K, Aihara K. Comparison of Large Language Model with Aphasia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414016. [PMID: 40369908 DOI: 10.1002/advs.202414016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/28/2025] [Indexed: 05/16/2025]
Abstract
Large language models (LLMs) respond fluently but often inaccurately, which resembles aphasia in humans. Does this behavioral similarity indicate any resemblance in internal information processing between LLMs and aphasic humans? Here, we address this question by comparing the network dynamics between LLMs-ALBERT, GPT-2, Llama-3.1 and one Japanese variant of Llama-and various aphasic brains. Using energy landscape analysis, we quantify how frequently the network activity pattern is likely to move from one state to another (transition frequency) and how long it tends to dwell in each state (dwelling time). First, by investigating the frequency spectrums of these two indices for brain dynamics, we find that the degrees of the polarization of the transition frequency and dwelling time enable accurate classification of receptive aphasia, expressive aphasia and controls: receptive aphasia shows the bimodal distributions for both indices, whereas expressive aphasia exhibits the most uniform distributions. In parallel, we identify highly polarized distributions in both transition frequency and dwelling time in the network dynamics in the four LLMs. These findings indicate the similarity in internal information processing between LLMs and receptive aphasia, and the current approach can provide a novel diagnosis and classification tool for LLMs and help their performance improve.
Collapse
Affiliation(s)
- Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Katsuma Inoue
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yasuo Kuniyoshi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kohei Nakajima
- International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kazuyuki Aihara
- International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Theis N, Bahuguna J, Rubin JE, Banerjee SS, Muldoon B, Prasad KM. Energy of Functional Brain States Correlates With Cognition in Adolescent-Onset Schizophrenia and Healthy Persons. Hum Brain Mapp 2025; 46:e70129. [PMID: 39777939 PMCID: PMC11707705 DOI: 10.1002/hbm.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/25/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Adolescent-onset schizophrenia (AOS) is relatively rare, under-studied, and associated with more severe cognitive impairments and poorer outcomes than adult-onset schizophrenia. Neuroimaging has shown altered regional activations (first-order effects) and functional connectivity (second-order effects) in AOS compared to controls. The pairwise maximum entropy model (MEM) integrates first- and second-order factors into a single quantity called energy, which is inversely related to probability of occurrence of brain activity patterns. We take a combinatorial approach to study multiple brain-wide MEMs of task-associated components; hundreds of independent MEMs for various sub-systems were fit to 7 Tesla functional MRI scans. Acquisitions were collected from 23 AOS individuals and 53 healthy controls while performing the Penn Conditional Exclusion Test (PCET) for executive function, which is known to be impaired in AOS. Accuracy of PCET performance was significantly reduced among AOS compared with controls. A majority of the models showed significant negative correlation between PCET scores and the total energy attained over the fMRI. Severity of psychopathology was correlated positively with energy. Across all instantiations, the AOS group was associated with significantly more frequent occurrence of states of higher energy, assessed with a mixed effects model. An example MEM instance was investigated further using energy landscapes, which visualize high and low energy states on a low-dimensional plane, and trajectory analysis, which quantify the evolution of brain states throughout this landscape. Both supported patient-control differences in the energy profiles. The MEM's integrated representation of energy in task-associated systems can help characterize pathophysiology of AOS, cognitive impairments, and psychopathology.
Collapse
Affiliation(s)
- Nicholas Theis
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jyotika Bahuguna
- Department of NeuroscienceLaboratoire de Neurosciences Cognitive et Adaptive, University of StrasbourgStrasbourgFrance
| | | | | | - Brendan Muldoon
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Konasale M. Prasad
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Bioengineering, Swanson School of EngineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Wang Y, Qiao C, Qu G, Calhoun VD, Stephen JM, Wilson TW, Wang YP. A Deep Dynamic Causal Learning Model to Study Changes in Dynamic Effective Connectivity During Brain Development. IEEE Trans Biomed Eng 2024; 71:3390-3401. [PMID: 38968024 PMCID: PMC11700232 DOI: 10.1109/tbme.2024.3423803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
OBJECTIVE Brain dynamic effective connectivity (dEC), characterizes the information transmission patterns between brain regions that change over time, which provides insight into the biological mechanism underlying brain development. However, most existing methods predominantly capture fixed or temporally invariant EC, leaving dEC largely unexplored. METHODS Herein we propose a deep dynamic causal learning model specifically designed to capture dEC. It includes a dynamic causal learner to detect time-varying causal relationships from spatio-temporal data, and a dynamic causal discriminator to validate these findings by comparing original and reconstructed data. RESULTS Our model outperforms established baselines in the accuracy of identifying dynamic causalities when tested on the simulated data. When applied to the Philadelphia Neurodevelopmental Cohort, the model uncovers distinct patterns in dEC networks across different age groups. Specifically, the evolution process of brain dEC networks in young adults is more stable than in children, and significant differences in information transfer patterns exist between them. CONCLUSION This study highlights the brain's developmental trajectory, where networks transition from undifferentiated to specialized structures with age, in accordance with the improvement of an individual's cognitive and information processing capability. SIGNIFICANCE The proposed model consists of the identification and verification of dynamic causality, utilizing the spatio-temporal fusing information from fMRI. As a result, it can accurately detect dEC and characterize its evolution over age.
Collapse
|
4
|
Theis N, Bahuguna J, Rubin JE, Banerjee SS, Muldoon B, Prasad KM. Energy of functional brain states correlates with cognition in adolescent-onset schizophrenia and healthy persons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565753. [PMID: 37987003 PMCID: PMC10659315 DOI: 10.1101/2023.11.06.565753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Adolescent-onset schizophrenia (AOS) is rare, under-studied, and associated with more severe cognitive impairments and poorer outcomes than adult-onset schizophrenia. Neuroimaging has shown altered regional activations (first-order effects) and functional connectivity (second-order effects) in AOS compared to controls. The pairwise maximum entropy model (MEM) integrates first- and second-order factors into a single quantity called energy, which is inversely related to probability of occurrence of brain activity patterns. We take a combinatorial approach to study multiple brain-wide MEMs of task-associated components; hundreds of independent MEMs for various sub-systems are fit to 7 Tesla functional MRI scans. Acquisitions were collected from 23 AOS individuals and 53 healthy controls while performing the Penn Conditional Exclusion Test (PCET) for executive function, which is known to be impaired in AOS. Accuracy of PCET performance was significantly reduced among AOS compared to controls. A majority of the models showed significant negative correlation between PCET scores and the total energy attained over the fMRI. Across all instantiations, the AOS group was associated with significantly more frequent occurrence of states of higher energy, assessed with a mixed effects model. An example MEM instance was investigated further using energy landscapes, which visualize high and low energy states on a low-dimensional plane, and trajectory analysis, which quantify the evolution of brain states throughout this landscape. Both supported patient-control differences in the energy profiles. Severity of psychopathology was correlated positively with energy. The MEM's integrated representation of energy in task-associated systems can help characterize pathophysiology of AOS, cognitive impairments, and psychopathology.
Collapse
Affiliation(s)
- Nicholas Theis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jyotika Bahuguna
- Department of Neuroscience, Laboratoire de Neurosciences Cognitive et Adaptive, University of Strasbourg, France
| | | | | | - Brendan Muldoon
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Konasale M. Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Fan L, Su C, Li Y, Guo J, Huang Z, Zhang W, Liu T, Wang J. The alterations of repetitive transcranial magnetic stimulation on the energy landscape of resting-state networks differ across the human cortex. Hum Brain Mapp 2024; 45:e70029. [PMID: 39465912 PMCID: PMC11514123 DOI: 10.1002/hbm.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention tool for the noninvasive modulation of brain activity and behavior in neuroscience research and clinical settings. However, the resting-state dynamic evolution of large-scale functional brain networks following rTMS has rarely been investigated. Here, using resting-state fMRI images collected from 23 healthy individuals before (baseline) and after 1 Hz rTMS of the left frontal (FRO) and occipital (OCC) lobes, we examined the different effects of rTMS on brain dynamics across the human cortex. By fitting a pairwise maximum entropy model (pMEM), we constructed an energy landscape for the baseline and poststimulus conditions by fitting a pMEM. We defined dominant brain states (local minima) in the energy landscape with synergistic activation and deactivation patterns of large-scale functional networks. We calculated state dynamics including appearance probability, transitions and duration. The results showed that 1 Hz rTMS induced increased and decreased state probability, transitions and duration when delivered to the FRO and OCC targets, respectively. Most importantly, the shortest path and minimum cost between dominant brain states were altered after stimulation. The absolute sum of the costs from the source states to the destinations was lower after OCC stimulation than after FRO stimulation. In conclusion, our study characterized the dynamic trajectory of state transitions in the energy landscape and suggested that local rTMS can induce significant dynamic perturbation involving stimulated and distant functional networks, which aligns with the modern view of the dynamic and complex brain. Our results suggest low-dimensional mapping of rTMS-induced brain adaption, which will contribute to a broader and more effective application of rTMS in clinical settings.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Chunwang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jinjia Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Zi‐Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
- The Key Laboratory of Neuro‐informatics & Rehabilitation Engineering of Ministry of Civil AffairsXi'anShaanxiP. R. China
| |
Collapse
|
6
|
Su X, Li Y, Liu H, An S, Yao N, Li C, Shang M, Ma L, Yang J, Li J, Zhang M, Dun W, Huang ZG. Brain Network Dynamics in Women With Primary Dysmenorrhea During the Pain-Free Periovulation Phase. THE JOURNAL OF PAIN 2024; 25:104618. [PMID: 38945381 DOI: 10.1016/j.jpain.2024.104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
The human brain is a dynamic system that shows frequency-specific features. Neuroimaging studies have shown that both healthy individuals and those with chronic pain disorders experience pain influenced by various processes that fluctuate over time. Primary dysmenorrhea (PDM) is a chronic visceral pain that disrupts the coordinated activity of brain's functional network. However, it remains unclear whether the dynamic interactions across the whole-brain network over time and their associations with neurobehavioral symptoms are dependent on the frequency bands in patients with PDM during the pain-free periovulation phase. In this study, we used an energy landscape analysis to examine the interactions over time across the large-scale network in a sample of 59 patients with PDM and 57 healthy controls (HCs) at different frequency bands. Compared with HCs, patients with PDM exhibit aberrant brain dynamics, with more significant differences in the slow-4 frequency band. Patients with PDM show more indirect neural transition counts due to an unstable intermediate state, whereas neurotypical brain activity frequently transitions between 2 major states. This data-driven approach further revealed that the brains of individuals with PDM have more abnormal brain dynamics than HCs. Our results suggested that unstable brain dynamics were associated with the strength of brain functional segregation and the Pain Catastrophizing Scale score. Our findings provide preliminary evidence that atypical dynamics in the functional network may serve as a potential key feature and biological marker of patients with PDM during the pain-free phase. PERSPECTIVE: We applied energy landscape analysis on brain-imaging data to identify relatively stable and dominant brain activity patterns for patients with PDM. More atypical brain dynamics were found in the slow-4 band and were related to the strength of functional segregation, providing new insights into the dysfunction brain dynamics.
Collapse
Affiliation(s)
- Xing Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huiping Liu
- School of Future Technology, Xi'an Jiaotong University, Xi'an, China; Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Simeng An
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nan Yao
- Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Applied Physics, Xi'an University of Technology, Xi'an, China
| | - Chenxi Li
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Meiling Shang
- School of Future Technology, Xi'an Jiaotong University, Xi'an, China; Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Ma
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Yang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianlong Li
- Department of Urology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanghuan Dun
- Rehabilitation Medicine Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Khanra P, Nakuci J, Muldoon S, Watanabe T, Masuda N. Reliability of energy landscape analysis of resting-state functional MRI data. Eur J Neurosci 2024; 60:4265-4290. [PMID: 38837814 DOI: 10.1111/ejn.16390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Energy landscape analysis is a data-driven method to analyse multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test-retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e. within-participant reliability) than across different sets of sessions from different participants (i.e. between-participant reliability). We show that the energy landscape analysis has significantly higher within-participant than between-participant test-retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test-retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual-level energy landscape analysis for given data sets with a statistically controlled reliability.
Collapse
Affiliation(s)
- Pitambar Khanra
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, USA
| | - Johan Nakuci
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sarah Muldoon
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, New York, USA
| | - Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
8
|
Qiao C, Gao B, Liu Y, Hu X, Hu W, Calhoun VD, Wang YP. Deep learning with explainability for characterizing age-related intrinsic differences in dynamic brain functional connectivity. Med Image Anal 2023; 90:102941. [PMID: 37683445 DOI: 10.1016/j.media.2023.102941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Although many deep learning models-based medical applications are performance-driven, i.e., accuracy-oriented, their explainability is more critical. This is especially the case with neuroimaging, where we are often interested in identifying biomarkers underlying brain development or disorders. Herein we propose an explainable deep learning approach by elucidating the information transmission mechanism between two layers of a deep network with a joint feature selection strategy that considers several shallow-layer explainable machine learning models and sparse learning of the deep network. At the end, we apply and validate the proposed approach to the analysis of dynamic brain functional connectivity (FC) from fMRI in a brain development study. Our approach can identify the differences within and between functional brain networks over age during development. The results indicate that the brain network transits from undifferentiated structures to more specialized and organized ones, and the information processing ability becomes more efficient as age increases. In addition, we detect two developmental patterns in the brain network: the FCs in regions related to visual and sound processing and mental regulation become weakened, while those between regions corresponding to emotional processing and cognitive activities are enhanced.
Collapse
Affiliation(s)
- Chen Qiao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Bin Gao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Yuechen Liu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Xinyu Hu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Wenxing Hu
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA.
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, USA; Emory University, Atlanta, GA 30303, USA.
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
9
|
Yang L, Qiao C, Zhou H, Calhoun VD, Stephen JM, Wilson TW, Wang Y. Explainable Multimodal Deep Dictionary Learning to Capture Developmental Differences From Three fMRI Paradigms. IEEE Trans Biomed Eng 2023; 70:2404-2415. [PMID: 37022875 PMCID: PMC11045007 DOI: 10.1109/tbme.2023.3244921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
OBJECTIVE Multimodal-based methods show great potential for neuroscience studies by integrating complementary information. There has been less multimodal work focussed on brain developmental changes. METHODS We propose an explainable multimodal deep dictionary learning method to uncover both the commonality and specificity of different modalities, which learns the shared dictionary and the modality-specific sparse representations based on the multimodal data and their encodings of a sparse deep autoencoder. RESULTS By regarding three fMRI paradigms collected during two tasks and resting state as modalities, we apply the proposed method on multimodal data to identify the brain developmental differences. The results show that the proposed model can not only achieve better performance in reconstruction, but also yield age-related differences in reoccurring patterns. Specifically, both children and young adults prefer to switch among states during two tasks while staying within a particular state during rest, but the difference is that children possess more diffuse functional connectivity patterns while young adults have more focused functional connectivity patterns. CONCLUSION AND SIGNIFICANCE To uncover the commonality and specificity of three fMRI paradigms to developmental differences, multimodal data and their encodings are used to train the shared dictionary and the modality-specific sparse representations. Identifying brain network differences helps to understand how the neural circuits and brain networks form and develop with age.
Collapse
|
10
|
Xu F, Qiao C, Zhou H, Calhoun VD, Stephen JM, Wilson TW, Wang Y. An explainable autoencoder with multi-paradigm fMRI fusion for identifying differences in dynamic functional connectivity during brain development. Neural Netw 2023; 159:185-197. [PMID: 36580711 PMCID: PMC11522794 DOI: 10.1016/j.neunet.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Multi-paradigm deep learning models show great potential for dynamic functional connectivity (dFC) analysis by integrating complementary information. However, many of them cannot use information from different paradigms effectively and have poor explainability, that is, the ability to identify significant features that contribute to decision making. In this paper, we propose a multi-paradigm fusion-based explainable deep sparse autoencoder (MF-EDSAE) to address these issues. Considering explainability, the MF-EDSAE is constructed based on a deep sparse autoencoder (DSAE). For integrating information effectively, the MF-EDASE contains the nonlinear fusion layer and multi-paradigm hypergraph regularization. We apply the model to the Philadelphia Neurodevelopmental Cohort and demonstrate it achieves better performance in detecting dynamic FC (dFC) that differ significantly during brain development than the single-paradigm DSAE. The experimental results show that children have more dispersive dFC patterns than adults. The function of the brain transits from undifferentiated systems to specialized networks during brain development. Meanwhile, adults have stronger connectivities between task-related functional networks for a given task than children. As the brain develops, the patterns of the global dFC change more quickly when stimulated by a task.
Collapse
Affiliation(s)
- Faming Xu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Chen Qiao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Huiyu Zhou
- School of Computing and Mathematical Sciences, University of Leicester, LE1 7RH, UK.
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30030, USA.
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.
| | - Yuping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
11
|
Varanasi S, Tuli R, Han F, Chen R, Choa FS. Age Related Functional Connectivity Signature Extraction Using Energy-Based Machine Learning Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031603. [PMID: 36772649 PMCID: PMC9920122 DOI: 10.3390/s23031603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 05/14/2023]
Abstract
The study of brain connectivity plays an important role in understanding the functional organizations of the brain. It also helps to identify connectivity signatures that can be used for evaluating neural disorders and monitoring treatment efficacy. In this work, age-related changes in brain connectivity are studied to obtain aging signatures based on various modeling techniques. These include an energy-based machine learning technique to identify brain network interaction differences between two age groups with a large (30 years) age gap between them. Disconnectivity graphs and activation maps of the seven prominent resting-state networks (RSN) were obtained from functional MRI data of old and young adult subjects. Two-sample t-tests were performed on the local minimums with Bonferroni correction to control the family-wise error rate. These local minimums are connectivity states showing not only which brain regions but also how strong they are working together. They work as aging signatures that can be used to differentiate young and old groups. We found that the attention network's connectivity signature is a state with all the regions working together and young subjects have a stronger average connectivity among these regions. We have also found a common pattern between young and old subjects where the left and right brain regions of the frontal network are sometimes working separately instead of together. In summary, in this work, we combined machine learning and statistical approaches to extract connectivity signatures, which can be utilized to distinguish aging brains and monitor possible treatment efficacy.
Collapse
Affiliation(s)
- Sravani Varanasi
- Department of Electrical Engineering and Computer Science, University of Maryland Baltimore County, Baltimore, MD 21250, USA
- Correspondence:
| | - Roopan Tuli
- Department of Electrical Engineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Fei Han
- The Hilltop Institute, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Fow-Sen Choa
- Department of Electrical Engineering and Computer Science, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
12
|
Tozzi A, Mariniello L. Unusual Mathematical Approaches Untangle Nervous Dynamics. Biomedicines 2022; 10:biomedicines10102581. [PMID: 36289843 PMCID: PMC9599563 DOI: 10.3390/biomedicines10102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
The massive amount of available neurodata suggests the existence of a mathematical backbone underlying neuronal oscillatory activities. For example, geometric constraints are powerful enough to define cellular distribution and drive the embryonal development of the central nervous system. We aim to elucidate whether underrated notions from geometry, topology, group theory and category theory can assess neuronal issues and provide experimentally testable hypotheses. The Monge’s theorem might contribute to our visual ability of depth perception and the brain connectome can be tackled in terms of tunnelling nanotubes. The multisynaptic ascending fibers connecting the peripheral receptors to the neocortical areas can be assessed in terms of knot theory/braid groups. Presheaves from category theory permit the tackling of nervous phase spaces in terms of the theory of infinity categories, highlighting an approach based on equivalence rather than equality. Further, the physical concepts of soft-matter polymers and nematic colloids might shed new light on neurulation in mammalian embryos. Hidden, unexpected multidisciplinary relationships can be found when mathematics copes with neural phenomena, leading to novel answers for everlasting neuroscientific questions. For instance, our framework leads to the conjecture that the development of the nervous system might be correlated with the occurrence of local thermal changes in embryo–fetal tissues.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203-5017, USA
- Correspondence:
| | - Lucio Mariniello
- Department of Pediatrics, University Federico II, 80131 Naples, Italy
| |
Collapse
|
13
|
Fan L, Li C, Huang ZG, Zhao J, Wu X, Liu T, Li Y, Wang J. The longitudinal neural dynamics changes of whole brain connectome during natural recovery from poststroke aphasia. NEUROIMAGE: CLINICAL 2022; 36:103190. [PMID: 36174256 PMCID: PMC9668607 DOI: 10.1016/j.nicl.2022.103190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Poststroke aphasia is one of the most dramatic functional deficits that results from direct damage of focal brain regions and dysfunction of large-scale brain networks. The reconstruction of language function depends on the hierarchical whole-brain dynamic reorganization. However, investigations into the longitudinal neural changes of large-scale brain networks for poststroke aphasia remain scarce. Here we characterize large-scale brain dynamics in left-frontal-stroke aphasia through energy landscape analysis. Using fMRI during an auditory comprehension task, we find that aphasia patients suffer serious whole-brain dynamics perturbation in the acute and subacute stages after stroke, in which the brains were restricted into two major activity patterns. Following spontaneous recovery process, the brain flexibility improved in the chronic stage. Critically, we demonstrated that the abnormal neural dynamics are correlated with the aberrant brain network coordination. Taken together, the energy landscape analysis exhibited that the acute poststroke aphasia has a constrained, low dimensional brain dynamics, which were replaced by less constrained and high dimensional dynamics at chronic aphasia. Our study provides a new perspective to profoundly understand the pathological mechanisms of poststroke aphasia.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi 710032, PR China
| | - Zi-gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Jie Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, Shaanxi 710049, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| |
Collapse
|
14
|
Walter N, Hinterberger T. Self-organized criticality as a framework for consciousness: A review study. Front Psychol 2022; 13:911620. [PMID: 35911009 PMCID: PMC9336647 DOI: 10.3389/fpsyg.2022.911620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Objective No current model of consciousness is univocally accepted on either theoretical or empirical grounds, and the need for a solid unifying framework is evident. Special attention has been given to the premise that self-organized criticality (SOC) is a fundamental property of neural system. SOC provides a competitive model to describe the physical mechanisms underlying spontaneous brain activity, and thus, critical dynamics were proposed as general gauges of information processing representing a strong candidate for a surrogate measure of consciousness. As SOC could be a neurodynamical framework, which may be able to bring together existing theories and experimental evidence, the purpose of this work was to provide a comprehensive overview of progress of research on SOC in association with consciousness. Methods A comprehensive search of publications on consciousness and SOC published between 1998 and 2021 was conducted. The Web of Science database was searched, and annual number of publications and citations, type of articles, and applied methods were determined. Results A total of 71 publications were identified. The annual number of citations steadily increased over the years. Original articles comprised 50.7% and reviews/theoretical articles 43.6%. Sixteen studies reported on human data and in seven studies data were recorded in animals. Computational models were utilized in n = 12 studies. EcoG data were assessed in n = 4 articles, fMRI in n = 4 studies, and EEG/MEG in n = 10 studies. Notably, different analytical tools were applied in the EEG/MEG studies to assess a surrogate measure of criticality such as the detrended fluctuation analysis, the pair correlation function, parameters from the neuronal avalanche analysis and the spectral exponent. Conclusion Recent studies pointed out agreements of critical dynamics with the current most influencing theories in the field of consciousness research, the global workspace theory and the integrated information theory. Thus, the framework of SOC as a neurodynamical parameter for consciousness seems promising. However, identified experimental work was small in numbers, and a heterogeneity of applied analytical tools as a surrogate measure of criticality was observable, which limits the generalizability of findings.
Collapse
|
15
|
Wang J, Wang K, Liu T, Wang L, Suo D, Xie Y, Funahashi S, Wu J, Pei G. Abnormal Dynamic Functional Networks in Subjective Cognitive Decline and Alzheimer's Disease. Front Comput Neurosci 2022; 16:885126. [PMID: 35586480 PMCID: PMC9108158 DOI: 10.3389/fncom.2022.885126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Subjective cognitive decline (SCD) is considered to be the preclinical stage of Alzheimer's disease (AD) and has the potential for the early diagnosis and intervention of AD. It was implicated that CSF-tau, which increases very early in the disease process in AD, has a high sensitivity and specificity to differentiate AD from normal aging, and the highly connected brain regions behaved more tau burden in patients with AD. Thus, a highly connected state measured by dynamic functional connectivity may serve as the early changes of AD. In this study, forty-five normal controls (NC), thirty-six individuals with SCD, and thirty-five patients with AD were enrolled to obtain the resting-state functional magnetic resonance imaging scanning. Sliding windows, Pearson correlation, and clustering analysis were combined to investigate the different levels of information transformation states. Three states, namely, the low state, the middle state, and the high state, were characterized based on the strength of functional connectivity between each pair of brain regions. For the global dynamic functional connectivity analysis, statistically significant differences were found among groups in the three states, and the functional connectivity in the middle state was positively correlated with cognitive scales. Furthermore, the whole brain was parcellated into four networks, namely, default mode network (DMN), cognitive control network (CCN), sensorimotor network (SMN), and occipital-cerebellum network (OCN). For the local network analysis, statistically significant differences in CCN for low state and SMN for middle state and high state were found in normal controls and patients with AD. Meanwhile, the differences were also found in normal controls and individuals with SCD. In addition, the functional connectivity in SMN for high state was positively correlated with cognitive scales. Converging results showed the changes in dynamic functional states in individuals with SCD and patients with AD. In addition, the changes were mainly in the high strength of the functional connectivity state.
Collapse
Affiliation(s)
- Jue Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kexin Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Tiantian Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yunyan Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shintaro Funahashi
- Kokoro Research Center, Kyoto University, Kyoto, Japan
- Laboratory of Cognitive Brain Science, Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
- *Correspondence: Jinglong Wu
| | - Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Guangying Pei
| |
Collapse
|
16
|
Yuan J, Ji S, Luo L, Lv J, Liu T. Control energy assessment of spatial interactions among
macro‐scale
brain networks. Hum Brain Mapp 2022; 43:2181-2203. [PMID: 35072300 PMCID: PMC8996365 DOI: 10.1002/hbm.25780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Many recent studies have revealed that spatial interactions of functional brain networks derived from fMRI data can well model functional connectomes of the human brain. However, it has been rarely explored what the energy consumption characteristics are for such spatial interactions of macro‐scale functional networks, which remains crucial for the understanding of brain organization, behavior, and dynamics. To explore this unanswered question, this article presents a novel framework for quantitative assessment of energy consumptions of macro‐scale functional brain network's spatial interactions via two main effective computational methodologies. First, we designed a novel scheme combining dictionary learning and hierarchical clustering to derive macro‐scale consistent brain network templates that can be used to define a common reference space for brain network interactions and energy assessments. Second, the control energy consumption for driving the brain networks during their spatial interactions is computed from the viewpoint of the linear network control theory. Especially, the energetically favorable brain networks were identified and their energy characteristics were comprehensively analyzed. Experimental results on the Human Connectome Project (HCP) task‐based fMRI (tfMRI) data showed that the proposed methods can reveal meaningful, diverse energy consumption patterns of macro‐scale network interactions. In particular, those networks present remarkable differences in energy consumption. The energetically least favorable brain networks are stable and consistent across HCP tasks such as motor, language, social, and working memory tasks. In general, our framework provides a new perspective to characterize human brain functional connectomes by quantitative assessment for the energy consumption of spatial interactions of macro‐scale brain networks.
Collapse
Affiliation(s)
- Jing Yuan
- College of Artificial Intelligence Nankai University Tianjin China
| | - Senquan Ji
- College of Artificial Intelligence Nankai University Tianjin China
| | - Liao Luo
- College of Artificial Intelligence Nankai University Tianjin China
| | - Jinglei Lv
- School of Biomedical Engineering The University of Sydney Sydney New South Wales Australia
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Laboratory, Department of Computer Science and Bioimaging Research Center The University of Georgia Athens Georgia USA
| |
Collapse
|
17
|
Chen B. A Preliminary Study of Abnormal Centrality of Cortical Regions and Subsystems in Whole Brain Functional Connectivity of Autism Spectrum Disorder Boys. Clin EEG Neurosci 2022; 53:3-11. [PMID: 34152841 DOI: 10.1177/15500594211026282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The abnormal cortices of autism spectrum disorder (ASD) brains are uncertain. However, the pathological alterations of ASD brains are distributed throughout interconnected cortical systems. Functional connections (FCs) methodology identifies cooperation and separation characteristics of information process in macroscopic cortical activity patterns under the context of network neuroscience. Embracing the graph theory concepts, this paper introduces eigenvector centrality index (EC score) ground on the FCs, and further develops a new framework for researching the dysfunctional cortex of ASD in holism significance. The important process is to uncover noticeable regions and subsystems endowed with antagonistic stance in EC-scores of 26 ASD boys and 28 matched healthy controls (HCs). For whole brain regional EC scores of ASD boys, orbitofrontal superior medial cortex, insula R, posterior cingulate gyrus L, and cerebellum 9 L are endowed with different EC scores significantly. In the brain subsystems level, EC scores of DMN, prefrontal lobe, and cerebellum are aberrant in the ASD boys. Generally, the EC scores display widespread distribution of diseased regions in ASD brains. Meanwhile, the discovered regions and subsystems, such as MPFC, AMYG, INS, prefrontal lobe, and DMN, are engaged in social processing. Meanwhile, the CBCL externalizing problem scores are associated with EC scores.
Collapse
Affiliation(s)
- Bo Chen
- 12626Hangzhou Dianzi University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
18
|
Jeong SO, Kang J, Pae C, Eo J, Park SM, Son J, Park HJ. Empirical Bayes estimation of pairwise maximum entropy model for nonlinear brain state dynamics. Neuroimage 2021; 244:118618. [PMID: 34571159 DOI: 10.1016/j.neuroimage.2021.118618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
The pairwise maximum entropy model (pMEM) has recently gained widespread attention to exploring the nonlinear characteristics of brain state dynamics observed in resting-state functional magnetic resonance imaging (rsfMRI). Despite its unique advantageous features, the practical application of pMEM for individuals is limited as it requires a much larger sample than conventional rsfMRI scans. Thus, this study proposes an empirical Bayes estimation of individual pMEM using the variational expectation-maximization algorithm (VEM-MEM). The performance of the VEM-MEM is evaluated for several simulation setups with various sample sizes and network sizes. Unlike conventional maximum likelihood estimation procedures, the VEM-MEM can reliably estimate the individual model parameters, even with small samples, by effectively incorporating the group information as the prior. As a test case, the individual rsfMRI of children with attention deficit hyperactivity disorder (ADHD) is analyzed compared to that of typically developed children using the default mode network, executive control network, and salient network, obtained from the Healthy Brain Network database. We found that the nonlinear dynamic properties uniquely established on the pMEM differ for each group. Furthermore, pMEM parameters are more sensitive to group differences and are better associated with the behavior scores of ADHD compared to the Pearson correlation-based functional connectivity. The simulation and experimental results suggest that the proposed method can reliably estimate the individual pMEM and characterize the dynamic properties of individuals by utilizing empirical information of the group brain state dynamics.
Collapse
Affiliation(s)
- Seok-Oh Jeong
- Department of Statistics, Hankuk University of Foreign Studies, Yong-In, Republic of Korea
| | - Jiyoung Kang
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chongwon Pae
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinseok Eo
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, Republic of Korea
| | - Sung Min Park
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
| | - Junho Son
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, Republic of Korea; Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Watanabe T. Causal roles of prefrontal cortex during spontaneous perceptual switching are determined by brain state dynamics. eLife 2021; 10:69079. [PMID: 34713803 PMCID: PMC8631941 DOI: 10.7554/elife.69079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
The prefrontal cortex (PFC) is thought to orchestrate cognitive dynamics. However, in tests of bistable visual perception, no direct evidence supporting such presumable causal roles of the PFC has been reported except for a recent work. Here, using a novel brain-state-dependent neural stimulation system, we identified causal effects on percept dynamics in three PFC activities—right frontal eye fields, dorsolateral PFC (DLPFC), and inferior frontal cortex (IFC). The causality is behaviourally detectable only when we track brain state dynamics and modulate the PFC activity in brain-state-/state-history-dependent manners. The behavioural effects are underpinned by transient neural changes in the brain state dynamics, and such neural effects are quantitatively explainable by structural transformations of the hypothetical energy landscapes. Moreover, these findings indicate distinct functions of the three PFC areas: in particular, the DLPFC enhances the integration of two PFC-active brain states, whereas IFC promotes the functional segregation between them. This work resolves the controversy over the PFC roles in spontaneous perceptual switching and underlines brain state dynamics in fine investigations of brain-behaviour causality. A cube that seems to shift its spatial arrangement as you keep looking; the elegant silhouette of a pirouetting dancer, which starts to spin in the opposite direction the more you stare at it; an illustration that shows two profiles – or is it a vase? These optical illusions are examples of bistable visual perception. Beyond their entertaining aspect, they provide a way for scientists to explore the dynamics of human consciousness, and the neural regions involved in this process. Some studies show that bistable visual perception is associated with the activation of the prefrontal cortex, a brain area involved in complex cognitive processes. However, it is unclear whether this region is required for the illusions to emerge. Some research has showed that even if sections of the prefrontal cortex are temporally deactivated, participants can still experience the illusions. Instead, Takamitsu Watanabe proposes that bistable visual perception is a process tied to dynamic brain states – that is, that distinct regions of the prefontal cortex are required for this fluctuating visual awareness, depending on the state of the whole brain. Such causal link cannot be observed if brain activity is not tracked closely. To investigate this, the brain states of 65 participants were recorded as individuals were experiencing the optical illusions; the activity of their various brain regions could therefore be mapped, and then areas of the prefrontal cortex could precisely be inhibited at the right time using transcranial magnetic stimulation. This revealed that, indeed, prefrontal cortex regions were necessary for bistable visual perception, but not in a simple way. Instead, which ones were required and when depended on activity dynamics taking place in the whole brain. Overall, these results indicate that monitoring brain states is necessary to better understand – and ultimately, control – the neural pathways underlying perception and behaviour.
Collapse
Affiliation(s)
- Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, Tokyo, Japan.,RIKEN Centre for Brain Science, Saitama, Japan
| |
Collapse
|
20
|
Kang J, Jeong S, Pae C, Park H. Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics. Hum Brain Mapp 2021; 42:3411-3428. [PMID: 33934421 PMCID: PMC8249903 DOI: 10.1002/hbm.25442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/24/2022] Open
Abstract
The pairwise maximum entropy model (MEM) for resting state functional MRI (rsfMRI) has been used to generate energy landscape of brain states and to explore nonlinear brain state dynamics. Researches using MEM, however, has mostly been restricted to fixed‐effect group‐level analyses, using concatenated time series across individuals, due to the need for large samples in the parameter estimation of MEM. To mitigate the small sample problem in analyzing energy landscapes for individuals, we propose a Bayesian estimation of individual MEM using variational Bayes approximation (BMEM). We evaluated the performances of BMEM with respect to sample sizes and prior information using simulation. BMEM showed advantages over conventional maximum likelihood estimation in reliably estimating model parameters for individuals with small sample data, particularly utilizing the empirical priors derived from group data. We then analyzed individual rsfMRI of the Human Connectome Project to show the usefulness of MEM in differentiating individuals and in exploring neural correlates for human behavior. MEM and its energy landscape properties showed high subject specificity comparable to that of functional connectivity. Canonical correlation analysis identified canonical variables for MEM highly associated with cognitive scores. Inter‐individual variations of cognitive scores were also reflected in energy landscape properties such as energies, occupation times, and basin sizes at local minima. We conclude that BMEM provides an efficient method to characterize dynamic properties of individuals using energy landscape analysis of individual brain states.
Collapse
Affiliation(s)
- Jiyoung Kang
- Center for Systems and Translational Brain ScienceInstitute of Human Complexity and Systems Science, Yonsei UniversitySeoulSouth Korea
- Department of Nuclear Medicine, PsychiatryYonsei University College of MedicineSeoulSouth Korea
| | - Seok‐Oh Jeong
- Department of StatisticsHankuk University of Foreign StudiesYong‐In, SeoulSouth Korea
| | - Chongwon Pae
- Center for Systems and Translational Brain ScienceInstitute of Human Complexity and Systems Science, Yonsei UniversitySeoulSouth Korea
- Department of Nuclear Medicine, PsychiatryYonsei University College of MedicineSeoulSouth Korea
| | - Hae‐Jeong Park
- Center for Systems and Translational Brain ScienceInstitute of Human Complexity and Systems Science, Yonsei UniversitySeoulSouth Korea
- Department of Nuclear Medicine, PsychiatryYonsei University College of MedicineSeoulSouth Korea
- Graduate School of Medical Science, Brain Korea 21 ProjectYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
21
|
Park HJ, Kang J. A Computational Framework for Controlling the Self-Restorative Brain Based on the Free Energy and Degeneracy Principles. Front Comput Neurosci 2021; 15:590019. [PMID: 33935674 PMCID: PMC8079648 DOI: 10.3389/fncom.2021.590019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
The brain is a non-linear dynamical system with a self-restoration process, which protects itself from external damage but is often a bottleneck for clinical treatment. To treat the brain to induce the desired functionality, formulation of a self-restoration process is necessary for optimal brain control. This study proposes a computational model for the brain's self-restoration process following the free-energy and degeneracy principles. Based on this model, a computational framework for brain control is established. We posited that the pre-treatment brain circuit has long been configured in response to the environmental (the other neural populations') demands on the circuit. Since the demands persist even after treatment, the treated circuit's response to the demand may gradually approximate the pre-treatment functionality. In this framework, an energy landscape of regional activities, estimated from resting-state endogenous activities by a pairwise maximum entropy model, is used to represent the pre-treatment functionality. The approximation of the pre-treatment functionality occurs via reconfiguration of interactions among neural populations within the treated circuit. To establish the current framework's construct validity, we conducted various simulations. The simulations suggested that brain control should include the self-restoration process, without which the treatment was not optimal. We also presented simulations for optimizing repetitive treatments and optimal timing of the treatment. These results suggest a plausibility of the current framework in controlling the non-linear dynamical brain with a self-restoration process.
Collapse
Affiliation(s)
- Hae-Jeong Park
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, South Korea.,Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Project, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Cognitive Science, Yonsei University, Seoul, South Korea
| | - Jiyoung Kang
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, South Korea.,Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Regonia PR, Takamura M, Nakano T, Ichikawa N, Fermin A, Okada G, Okamoto Y, Yamawaki S, Ikeda K, Yoshimoto J. Modeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis. Front Psychiatry 2021; 12:780997. [PMID: 34899435 PMCID: PMC8656401 DOI: 10.3389/fpsyt.2021.780997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Our current understanding of melancholic depression is shaped by its position in the depression spectrum. The lack of consensus on how it should be treated-whether as a subtype of depression, or as a distinct disorder altogethe-interferes with the recovery of suffering patients. In this study, we analyzed brain state energy landscape models of melancholic depression, in contrast to healthy and non-melancholic energy landscapes. Our analyses showed significant group differences on basin energy, basin frequency, and transition dynamics in several functional brain networks such as basal ganglia, dorsal default mode, and left executive control networks. Furthermore, we found evidences suggesting the connection between energy landscape characteristics (basin characteristics) and depressive symptom scores (BDI-II and SHAPS). These results indicate that melancholic depression is distinguishable from its non-melancholic counterpart, not only in terms of depression severity, but also in brain dynamics.
Collapse
Affiliation(s)
- Paul Rossener Regonia
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.,Department of Computer Science, College of Engineering, University of the Philippines Diliman, Quezon City, Philippines
| | - Masahiro Takamura
- Center for Brain, Mind and KANSEI Research Sciences, Hiroshima University, Hiroshima, Japan.,Department of Neurology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Takashi Nakano
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.,School of Medicine, Fujita Health University, Toyoake, Japan
| | - Naho Ichikawa
- Center for Brain, Mind and KANSEI Research Sciences, Hiroshima University, Hiroshima, Japan
| | - Alan Fermin
- Center for Brain, Mind and KANSEI Research Sciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Center for Brain, Mind and KANSEI Research Sciences, Hiroshima University, Hiroshima, Japan.,Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Research Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazushi Ikeda
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Junichiro Yoshimoto
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
23
|
Kang J, Jung K, Eo J, Son J, Park HJ. Dynamic causal modeling of hippocampal activity measured via mesoscopic voltage-sensitive dye imaging. Neuroimage 2020; 213:116755. [DOI: 10.1016/j.neuroimage.2020.116755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022] Open
|
24
|
Bahrami M, Lyday RG, Casanova R, Burdette JH, Simpson SL, Laurienti PJ. Using Low-Dimensional Manifolds to Map Relationships Between Dynamic Brain Networks. Front Hum Neurosci 2019; 13:430. [PMID: 31920590 PMCID: PMC6914694 DOI: 10.3389/fnhum.2019.00430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/21/2019] [Indexed: 01/12/2023] Open
Abstract
As the field of dynamic brain networks continues to expand, new methods are needed to allow for optimal handling and understanding of this explosion in data. We propose here a novel approach that embeds dynamic brain networks onto a two-dimensional (2D) manifold based on similarities and differences in network organization. Each brain network is represented as a single point on the low dimensional manifold with networks of similar topology being located in close proximity. The rich spatio-temporal information has great potential for visualization, analysis, and interpretation of dynamic brain networks. The fact that each network is represented by a single point makes it possible to switch between the low-dimensional space and the full connectivity of any given brain network. Thus, networks in a specific region of the low-dimensional space can be examined to identify network features, such as the location of brain network hubs or the interconnectivity between brain circuits. In this proof-of-concept manuscript, we show that these low dimensional manifolds contain meaningful information, as they were able to successfully discriminate between cognitive tasks and study populations. This work provides evidence that embedding dynamic brain networks onto low dimensional manifolds has the potential to help us better visualize and understand dynamic brain networks with the hope of gaining a deeper understanding of normal and abnormal brain dynamics.
Collapse
Affiliation(s)
- Mohsen Bahrami
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Biomedical Engineering, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, United States
| | - Robert G Lyday
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ramon Casanova
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jonathan H Burdette
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sean L Simpson
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Paul J Laurienti
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
25
|
Kang J, Pae C, Park HJ. Graph-theoretical analysis for energy landscape reveals the organization of state transitions in the resting-state human cerebral cortex. PLoS One 2019; 14:e0222161. [PMID: 31498822 PMCID: PMC6733463 DOI: 10.1371/journal.pone.0222161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/22/2019] [Indexed: 11/19/2022] Open
Abstract
The resting-state brain is often considered a nonlinear dynamic system transitioning among multiple coexisting stable states. Despite the increasing number of studies on the multistability of the brain system, the processes of state transitions have rarely been systematically explored. Thus, we investigated the state transition processes of the human cerebral cortex system at rest by introducing a graph-theoretical analysis of the state transition network. The energy landscape analysis of brain state occurrences, estimated using the pairwise maximum entropy model for resting-state fMRI data, identified multiple local minima, some of which mediate multi-step transitions toward the global minimum. The state transition among local minima is clustered into two groups according to state transition rates and most inter-group state transitions were mediated by a hub transition state. The distance to the hub transition state determined the path length of the inter-group transition. The cortical system appeared to have redundancy in inter-group transitions when the hub transition state was removed. Such a hub-like organization of transition processes disappeared when the connectivity of the cortical system was altered from the resting-state configuration. In the state transition, the default mode network acts as a transition hub, while coactivation of the prefrontal cortex and default mode network is captured as the global minimum. In summary, the resting-state cerebral cortex has a well-organized architecture of state transitions among stable states, when evaluated by a graph-theoretical analysis of the nonlinear state transition network of the brain.
Collapse
Affiliation(s)
- Jiyoung Kang
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chongwon Pae
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Tozzi A. The multidimensional brain. Phys Life Rev 2019; 31:86-103. [PMID: 30661792 DOI: 10.1016/j.plrev.2018.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/17/2018] [Accepted: 12/27/2018] [Indexed: 01/24/2023]
Abstract
Brain activity takes place in three spatial-plus time dimensions. This rather obvious claim has been recently questioned by papers that, taking into account the big data outburst and novel available computational tools, are starting to unveil a more intricate state of affairs. Indeed, various brain activities and their correlated mental functions can be assessed in terms of trajectories embedded in phase spaces of dimensions higher than the canonical ones. In this review, I show how further dimensions may not just represent a convenient methodological tool that allows a better mathematical treatment of otherwise elusive cortical activities, but may also reflect genuine functional or anatomical relationships among real nervous functions. I then describe how to extract hidden multidimensional information from real or artificial neurodata series, and make clear how our mind dilutes, rather than concentrates as currently believed, inputs coming from the environment. Finally, I argue that the principle "the higher the dimension, the greater the information" may explain the occurrence of mental activities and elucidate the mechanisms of human diseases associated with dimensionality reduction.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, University of North Texas, 1155 Union Circle, #311427 Denton, TX 76203-5017, USA.
| |
Collapse
|
27
|
Brain network dynamics in high-functioning individuals with autism. Nat Commun 2017; 8:16048. [PMID: 28677689 PMCID: PMC5504272 DOI: 10.1038/ncomms16048] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/24/2017] [Indexed: 01/28/2023] Open
Abstract
Theoretically, autism should be underpinned by aberrant brain dynamics. However, how brain activity changes over time in individuals with autism spectrum disorder (ASD) remains unknown. Here we characterize brain dynamics in autism using an energy-landscape analysis applied to resting-state fMRI data. Whereas neurotypical brain activity frequently transits between two major brain states via an intermediate state, high-functioning adults with ASD show fewer neural transitions due to an unstable intermediate state, and these infrequent transitions predict the severity of autism. Moreover, in contrast to the controls whose IQ is correlated with the neural transition frequency, IQ scores of individuals with ASD are instead predicted by the stability of their brain dynamics. Finally, such brain–behaviour associations are related to functional segregation between brain networks. These findings suggest that atypical functional coordination in the brains of adults with ASD underpins overly stable neural dynamics, which supports both their ASD symptoms and cognitive abilities. Though individuals with autism spectrum disorder (ASD) show a number of neural abnormalities, the relationship between global dynamic neural patterns and ASD symptoms remains unclear. Here, authors describe such global brain dynamics, relate these to cognitive abilities, ASD symptoms, and predict ASD diagnosis.
Collapse
|