1
|
Zedde M, Quatrale R, Cossu G, Sette MD, Pascarella R. The Role of the Claustrum in Parkinson's Disease and Vascular Parkinsonism: A Matter of Network? Life (Basel) 2025; 15:180. [PMID: 40003589 PMCID: PMC11855991 DOI: 10.3390/life15020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The mechanisms underlying extrapyramidal disorders and their anatomical substrate have been extensively investigated. Recently, the role of the claustrum in Parkinson's disease and other neurodegenerative conditions has been better detailed. The main aim of this review was to summarize the supporting evidence for the role of the claustrum in degenerative and vascular parkinsonism. METHODS The anatomy, biology, vascular supply, and connections of the claustrum in humans were identified and described, providing the substrate for the vascular involvement of the claustrum in large- and small-vessel disease. The vascular supply of the claustrum includes up to three different sources from a single artery, the middle cerebral artery, and it is known as territory with an intermediate hemodynamic risk. The connections of the claustrum make it a sensory integrator and a relevant point in several networks, from consciousness to movement planning. CONCLUSIONS The claustrum is still an incompletely explained structure. However, recent description of its multiple connections indicate that it is involved in several diseases, including Parkinson's disease. The evidence underlying its potential role in vascular parkinsonism is still scarce, but it might be a field warranting future investigations.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rocco Quatrale
- Dipartimento di Scienze Neurologiche, UOC di Neurologia—Ospedale dell’AngeloAULSS 3 Serenissima, 30174 Venice Mestre, Italy;
| | - Gianni Cossu
- Neurology Unit, Dept of Neuroscience, ARNAS Brotzu, 09047 Cagliari, Italy;
| | - Massimo Del Sette
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
2
|
Sihn D, Kim J, Kim MJ, Kim SP. The intrinsic propagation directionality of fMRI infra-slow activity during visual tasks. Neuroscience 2025; 564:52-59. [PMID: 39561955 DOI: 10.1016/j.neuroscience.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
The temporal order of propagation in the blood-oxygen-level-dependent (BOLD) infra-slow activity (ISA, 0.01-0.1 Hz) of functional magnetic resonance imaging (fMRI) can indicate the functional organization of the brain. While prior studies have revealed the temporal order of propagation of BOLD ISA during rest, how it emerges during cognitive tasks remains unclear. Furthermore, its differences between the gray and white matters at the whole-brain scale are unexplored. In this study, we probed the propagation of BOLD ISA using a publicly available fMRI dataset from participants performing visual detection and discrimination tasks (N = 46, 29 females). We examined the temporal order of propagation based on ISA oscillatory phase differences among brain parcels. During visual task performance, ISA in both the gray and white matters propagated in a direction from the visual cortex to the association cortex, including the default mode network (DMN). This result differs from the previously reported propagation direction during rest that traveled from the visual and somatosensory cortices to the DMN, suggesting that the functional organization may change when performing cognitive tasks. In addition, the propagation in the white matter represented more complex patterns than that in the gray matter, exhibiting that the cingulum preceded DMN. Our results may help the understanding of how task performance alters the sensory-DMN propagation according of ISA.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junsuk Kim
- School of Information Convergence, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Myung Joon Kim
- Department of Big Data Application, Hannam University, Daejeon 34430, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Meisler SL, Kubota E, Grotheer M, Gabrieli JDE, Grill-Spector K. A practical guide for combining functional regions of interest and white matter bundles. Front Neurosci 2024; 18:1385847. [PMID: 39221005 PMCID: PMC11363198 DOI: 10.3389/fnins.2024.1385847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Diffusion-weighted imaging (DWI) is the primary method to investigate macro- and microstructure of neural white matter in vivo. DWI can be used to identify and characterize individual-specific white matter bundles, enabling precise analyses on hypothesis-driven connections in the brain and bridging the relationships between brain structure, function, and behavior. However, cortical endpoints of bundles may span larger areas than what a researcher is interested in, challenging presumptions that bundles are specifically tied to certain brain functions. Functional MRI (fMRI) can be integrated to further refine bundles such that they are restricted to functionally-defined cortical regions. Analyzing properties of these Functional Sub-Bundles (FSuB) increases precision and interpretability of results when studying neural connections supporting specific tasks. Several parameters of DWI and fMRI analyses, ranging from data acquisition to processing, can impact the efficacy of integrating functional and diffusion MRI. Here, we discuss the applications of the FSuB approach, suggest best practices for acquiring and processing neuroimaging data towards this end, and introduce the FSuB-Extractor, a flexible open-source software for creating FSuBs. We demonstrate our processing code and the FSuB-Extractor on an openly-available dataset, the Natural Scenes Dataset.
Collapse
Affiliation(s)
- Steven L. Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Emily Kubota
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg, Germany
| | - John D. E. Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Wang Y, Wang H, Hu S, Nguchu BA, Zhang D, Chen S, Ji Y, Qiu B, Wang X. Sub-bundle based analysis reveals the role of human optic radiation in visual working memory. Hum Brain Mapp 2024; 45:e26800. [PMID: 39093044 PMCID: PMC11295295 DOI: 10.1002/hbm.26800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
White matter (WM) functional activity has been reliably detected through functional magnetic resonance imaging (fMRI). Previous studies have primarily examined WM bundles as unified entities, thereby obscuring the functional heterogeneity inherent within these bundles. Here, for the first time, we investigate the function of sub-bundles of a prototypical visual WM tract-the optic radiation (OR). We use the 7T retinotopy dataset from the Human Connectome Project (HCP) to reconstruct OR and further subdivide the OR into sub-bundles based on the fiber's termination in the primary visual cortex (V1). The population receptive field (pRF) model is then applied to evaluate the retinotopic properties of these sub-bundles, and the consistency of the pRF properties of sub-bundles with those of V1 subfields is evaluated. Furthermore, we utilize the HCP working memory dataset to evaluate the activations of the foveal and peripheral OR sub-bundles, along with LGN and V1 subfields, during 0-back and 2-back tasks. We then evaluate differences in 2bk-0bk contrast between foveal and peripheral sub-bundles (or subfields), and further examine potential relationships between 2bk-0bk contrast and 2-back task d-prime. The results show that the pRF properties of OR sub-bundles exhibit standard retinotopic properties and are typically similar to the properties of V1 subfields. Notably, activations during the 2-back task consistently surpass those under the 0-back task across foveal and peripheral OR sub-bundles, as well as LGN and V1 subfields. The foveal V1 displays significantly higher 2bk-0bk contrast than peripheral V1. The 2-back task d-prime shows strong correlations with 2bk-0bk contrast for foveal and peripheral OR fibers. These findings demonstrate that the blood oxygen level-dependent (BOLD) signals of OR sub-bundles encode high-fidelity visual information, underscoring the feasibility of assessing WM functional activity at the sub-bundle level. Additionally, the study highlights the role of OR in the top-down processes of visual working memory beyond the bottom-up processes for visual information transmission. Conclusively, this study innovatively proposes a novel paradigm for analyzing WM fiber tracts at the individual sub-bundle level and expands understanding of OR function.
Collapse
Affiliation(s)
- Yanming Wang
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Huan Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Sheng Hu
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Benedictor Alexander Nguchu
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Du Zhang
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Shishuo Chen
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Yang Ji
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Bensheng Qiu
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
- Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
| | - Xiaoxiao Wang
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
5
|
Sengupta A, Mishra A, Wang F, Chen LM, Gore JC. Characteristic BOLD signals are detectable in white matter of the spinal cord at rest and after a stimulus. Proc Natl Acad Sci U S A 2024; 121:e2316117121. [PMID: 38776372 PMCID: PMC11145258 DOI: 10.1073/pnas.2316117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 05/25/2024] Open
Abstract
We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.
Collapse
Affiliation(s)
- Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN37235
| |
Collapse
|
6
|
Jiang S, Wang Y, Pei H, Li H, Chen J, Yao Y, Li Q, Yao D, Luo C. Brain activation and connection across resting and motor-task states in patients with generalized tonic-clonic seizures. CNS Neurosci Ther 2024; 30:e14672. [PMID: 38644561 PMCID: PMC11033329 DOI: 10.1111/cns.14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS Motor abnormalities have been identified as one common symptom in patients with generalized tonic-clonic seizures (GTCS) inspiring us to explore the disease in a motor execution condition, which might provide novel insight into the pathomechanism. METHODS Resting-state and motor-task fMRI data were collected from 50 patients with GTCS, including 18 patients newly diagnosed without antiepileptic drugs (ND_GTCS) and 32 patients receiving antiepileptic drugs (AEDs_GTCS). Motor activation and its association with head motion and cerebral gradients were assessed. Whole-brain network connectivity across resting and motor states was further calculated and compared between groups. RESULTS All patients showed over-activation in the postcentral gyrus and the ND_GTCS showed decreased activation in putamen. Specifically, activation maps of ND_GTCS showed an abnormal correlation with head motion and cerebral gradient. Moreover, we detected altered functional network connectivity in patients within states and across resting and motor states by using repeated-measures analysis of variance. Patients did not show abnormal connectivity in the resting state, while distributed abnormal connectivity in the motor-task state. Decreased across-state network connectivity was also found in all patients. CONCLUSION Convergent findings suggested the over-response of activation and connection of the brain to motor execution in GTCS, providing new clues to uncover motor susceptibility underlying the disease.
Collapse
Affiliation(s)
- Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
- Research Unit of NeuroInformationChinese Academy of Medical SciencesChengduP. R. China
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceCenter for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Yuehan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Junxia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Yutong Yao
- Department of NeurosurgeySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Qifu Li
- Department of NeurologyHainan Medical UniversityHainanP. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
- Research Unit of NeuroInformationChinese Academy of Medical SciencesChengduP. R. China
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceCenter for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
- Research Unit of NeuroInformationChinese Academy of Medical SciencesChengduP. R. China
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceCenter for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| |
Collapse
|
7
|
Li Y, Peng J, Yang Z, Zhang F, Liu L, Wang P, Biswal BB. Altered white matter functional pathways in Alzheimer's disease. Cereb Cortex 2024; 34:bhad505. [PMID: 38436465 DOI: 10.1093/cercor/bhad505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/13/2023] [Accepted: 12/03/2023] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) is associated with functional disruption in gray matter (GM) and structural damage to white matter (WM), but the relationship to functional signal in WM is unknown. We performed the functional connectivity (FC) and graph theory analysis to investigate abnormalities of WM and GM functional networks and corpus callosum among different stages of AD from a publicly available dataset. Compared to the controls, AD group showed significantly decreased FC between the deep WM functional network (WM-FN) and the splenium of corpus callosum, between the sensorimotor/occipital WM-FN and GM visual network, but increased FC between the deep WM-FN and the GM sensorimotor network. In the clinical groups, the global assortativity, modular interaction between occipital WM-FN and visual network, nodal betweenness centrality, degree centrality, and nodal clustering coefficient in WM- and GM-FNs were reduced. However, modular interaction between deep WM-FN and sensorimotor network, and participation coefficients of deep WM-FN and splenium of corpus callosum were increased. These findings revealed the abnormal integration of functional networks in different stages of AD from a novel WM-FNs perspective. The abnormalities of WM functional pathways connect downward to the corpus callosum and upward to the GM are correlated with AD.
Collapse
Affiliation(s)
- Yilu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, NO. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, China
| | - Jinzhong Peng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, NO. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, China
| | - Zhenzhen Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, NO. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, China
| | - Fanyu Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, NO. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, China
| | - Lin Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, NO. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, China
| | - Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, NO. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, NO. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, 154 Summit Street, Newark 07102, NJ, United States
| |
Collapse
|
8
|
Ji GJ, Sun J, Hua Q, Zhang L, Zhang T, Bai T, Wei L, Wang X, Qiu B, Wang A, Sun H, Liao W, Yu F, Zhu C, Tian Y, He K, Wang K. White matter dysfunction in psychiatric disorders is associated with neurotransmitter and genetic profiles. NATURE MENTAL HEALTH 2023; 1:655-666. [DOI: 10.1038/s44220-023-00111-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/21/2023] [Indexed: 04/02/2025]
|
9
|
Zhao R, Wang P, Liu L, Zhang F, Hu P, Wen J, Li H, Biswal BB. Whole-brain structure-function coupling abnormalities in mild cognitive impairment: a study combining amplitude of low-frequency fluctuations and voxel-based morphometry. Front Neurosci 2023; 17:1236221. [PMID: 37583417 PMCID: PMC10424122 DOI: 10.3389/fnins.2023.1236221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Alzheimer's disease (AD), one of the leading diseases of the nervous system, is accompanied by symptoms such as loss of memory, thinking and language skills. Both mild cognitive impairment (MCI) and very mild cognitive impairment (VMCI) are the transitional pathological stages between normal aging and AD. While the changes in whole-brain structural and functional information have been extensively investigated in AD, The impaired structure-function coupling remains unknown. The current study employed the OASIS-3 dataset, which includes 53 MCI, 90 VMCI, and 100 Age-, gender-, and education-matched normal controls (NC). Several structural and functional parameters, such as the amplitude of low-frequency fluctuations (ALFF), voxel-based morphometry (VBM), and The ALFF/VBM ratio, were used To estimate The whole-brain neuroimaging changes In MCI, VMCI, and NC. As disease symptoms became more severe, these regions, distributed in the frontal-inf-orb, putamen, and paracentral lobule in the white matter (WM), exhibited progressively increasing ALFF (ALFFNC < ALFFVMCI < ALFFMCI), which was similar to the tendency for The cerebellum and putamen in the gray matter (GM). Additionally, as symptoms worsened in AD, the cuneus/frontal lobe in the WM and the parahippocampal gyrus/hippocampus in the GM showed progressively decreasing structure-function coupling. As the typical focal areas in AD, The parahippocampal gyrus and hippocampus showed significant positive correlations with the severity of cognitive impairment, suggesting the important applications of the ALFF/VBM ratio in brain disorders. On the other hand, these findings from WM functional signals provided a novel perspective for understanding the pathophysiological mechanisms involved In cognitive decline in AD.
Collapse
Affiliation(s)
- Rong Zhao
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Pan Wang
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Liu
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Fanyu Zhang
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Hu
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaping Wen
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongyi Li
- The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Bharat B. Biswal
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
10
|
Zhao J, Huang CC, Zhang Y, Liu Y, Tsai SJ, Lin CP, Lo CYZ. Structure-function coupling in white matter uncovers the abnormal brain connectivity in Schizophrenia. Transl Psychiatry 2023; 13:214. [PMID: 37339983 DOI: 10.1038/s41398-023-02520-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Schizophrenia is characterized by dysconnectivity syndrome. Evidence of widespread impairment of structural and functional integration has been demonstrated in schizophrenia. Although white matter (WM) microstructural abnormalities have been commonly reported in schizophrenia, the dysfunction of WM as well as the relationship between structure and function in WM remains uncertain. In this study, we proposed a novel structure-function coupling measurement to reflect neuronal information transfer, which combined spatial-temporal correlations of functional signals with diffusion tensor orientations in the WM circuit from functional and diffusion magnetic resonance images (MRI). By analyzing MRI data from 75 individuals with schizophrenia (SZ) and 89 healthy volunteers (HV), the associations between structure and function in WM regions in schizophrenia were examined. Randomized validation of the measurement was performed in the HV group to confirm the capacity of the neural signal transferring along the WM tracts, referring to quantifying the association between structure and function. Compared to HV, SZ showed a widespread decrease in the structure-function coupling within WM regions, involving the corticospinal tract and the superior longitudinal fasciculus. Additionally, the structure-function coupling in the WM tracts was found to be significantly correlated with psychotic symptoms and illness duration in schizophrenia, suggesting that abnormal signal transfer of neuronal fiber pathways could be a potential mechanism of the neuropathology of schizophrenia. This work supports the dysconnectivity hypothesis of schizophrenia from the aspect of circuit function, and highlights the critical role of WM networks in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Jiajia Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Shanghai Changning Mental Health Center, Shanghai, China.
| | - Yajuan Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Yuchen Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Chun-Yi Zac Lo
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Wang H, Wang X, Wang Y, Zhang D, Yang Y, Zhou Y, Qiu B, Zhang P. White matter BOLD signals at 7 Tesla reveal visual field maps in optic radiation and vertical occipital fasciculus. Neuroimage 2023; 269:119916. [PMID: 36736638 DOI: 10.1016/j.neuroimage.2023.119916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
There is growing evidence that blood-oxygen-level-dependent (BOLD) activity in the white matter (WM) can be detected by functional magnetic resonance imaging (fMRI). However, the functional relevance and significance of WM BOLD signals remain controversial. Here we investigated whether 7T BOLD fMRI can reveal fine-scale functional organizations of a WM bundle. Population receptive field (pRF) analyses of the 7T retinotopy dataset from the Human Connectome Project revealed clear contralateral retinotopic organizations of two visual WM bundles: the optic radiation (OR) and the vertical occipital fasciculus (VOF). The retinotopic maps of OR are highly consistent with post-mortem dissections and diffusion tractographies, while the VOF maps are compatible with the dorsal and ventral visual areas connected by the WM. Similar to the grey matter (GM) visual areas, both WM bundles show over-representations of the central visual field and increasing pRF size with eccentricity. Hemodynamic response functions of visual WM were slower and wider compared with those of GM areas. These findings clearly demonstrate that WM BOLD at 7 Tesla is closely coupled with neural activity related to axons, encoding highly specific information that can be used to characterize fine-scale functional organizations of a WM bundle.
Collapse
Affiliation(s)
- Huan Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxiao Wang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yanming Wang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Du Zhang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifeng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; School of Ophthalmology and Optometry and Eye hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.; University of Chinese Academy of Sciences, Beijing 100049, China..
| |
Collapse
|
12
|
Sengupta A, Mishra A, Wang F, Chen L, Gore J. Identification of synchronous BOLD signal patterns in white matter of primate spinal cord. RESEARCH SQUARE 2023:rs.3.rs-2389151. [PMID: 36993492 PMCID: PMC10055542 DOI: 10.21203/rs.3.rs-2389151/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Functional MRI studies of the brain have shown that blood-oxygenation-level-dependent (BOLD) signals are robustly detectable not only in gray matter (GM) but also in white matter (WM). Here, we report the detection and characteristics of BOLD signals in WM of spinal cord (SC) of squirrel monkeys. Tactile stimulus-evoked BOLD signal changes were detected in the ascending sensory tracts of SC using a General-Linear Model (GLM) as well as Independent Component Analysis (ICA). ICA of resting state signals identified coherent fluctuations from eight WM hubs which correspond closely with known anatomical locations of SC WM tracts. Resting state analyses showed that the WM hubs exhibited correlated signal fluctuations within and between SC segments in specific patterns that correspond well with the known neurobiological functions of WM tracts in SC. Overall, these findings suggest WM BOLD signals in SC show similar features as GM both at baseline and under stimulus conditions.
Collapse
Affiliation(s)
| | | | - Feng Wang
- Vanderbilt University Medical Center
| | - Li Chen
- Vanderbilt University Medical Center
| | - John Gore
- Vanderbilt University Medical Center
| |
Collapse
|
13
|
Marvel CL, Alm KH, Bhattacharya D, Rebman AW, Bakker A, Morgan OP, Creighton JA, Kozero EA, Venkatesan A, Nadkarni PA, Aucott JN. A multimodal neuroimaging study of brain abnormalities and clinical correlates in post treatment Lyme disease. PLoS One 2022; 17:e0271425. [PMID: 36288329 PMCID: PMC9604010 DOI: 10.1371/journal.pone.0271425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Lyme disease is the most common vector-borne infectious disease in the United States. Post-treatment Lyme disease (PTLD) is a condition affecting 10-20% of patients in which symptoms persist despite antibiotic treatment. Cognitive complaints are common among those with PTLD, suggesting that brain changes are associated with the course of the illness. However, there has been a paucity of evidence to explain the cognitive difficulties expressed by patients with PTLD. This study administered a working memory task to a carefully screened group of 12 patients with well-characterized PTLD and 18 healthy controls while undergoing functional MRI (fMRI). A subset of 12 controls and all 12 PTLD participants also received diffusion tensor imaging (DTI) to measure white matter integrity. Clinical variables were also assessed and correlated with these multimodal MRI findings. On the working memory task, the patients with PTLD responded more slowly, but no less accurately, than did controls. FMRI activations were observed in expected regions by the controls, and to a lesser extent, by the PTLD participants. The PTLD group also hypoactivated several regions relevant to the task. Conversely, novel regions were activated by the PTLD group that were not observed in controls, suggesting a compensatory mechanism. Notably, three activations were located in white matter of the frontal lobe. DTI measures applied to these three regions of interest revealed that higher axial diffusivity correlated with fewer cognitive and neurological symptoms. Whole-brain DTI analyses revealed several frontal lobe regions in which higher axial diffusivity in the patients with PTLD correlated with longer duration of illness. Together, these results show that the brain is altered by PTLD, involving changes to white matter within the frontal lobe. Higher axial diffusivity may reflect white matter repair and healing over time, rather than pathology, and cognition appears to be dynamically affected throughout this repair process.
Collapse
Affiliation(s)
- Cherie L. Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| | - Kylie H. Alm
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Deeya Bhattacharya
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alison W. Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Owen P. Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jason A. Creighton
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Erica A. Kozero
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Prianca A. Nadkarni
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - John N. Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
14
|
Ma H, Xie Z, Huang L, Gao Y, Zhan L, Hu S, Zhang J, Ding Q. The White Matter Functional Abnormalities in Patients with Transient Ischemic Attack: A Reinforcement Learning Approach. Neural Plast 2022; 2022:1478048. [PMID: 36300173 PMCID: PMC9592236 DOI: 10.1155/2022/1478048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background Transient ischemic attack (TIA) is a known risk factor for stroke. Abnormal alterations in the low-frequency range of the gray matter (GM) of the brain have been studied in patients with TIA. However, whether there are abnormal neural activities in the low-frequency range of the white matter (WM) in patients with TIA remains unknown. The current study applied two resting-state metrics to explore functional abnormalities in the low-frequency range of WM in patients with TIA. Furthermore, a reinforcement learning method was used to investigate whether altered WM function could be a diagnostic indicator of TIA. Methods We enrolled 48 patients with TIA and 41 age- and sex-matched healthy controls (HCs). Resting-state functional magnetic resonance imaging (rs-fMRI) and clinical/physiological/biochemical data were collected from each participant. We compared the group differences between patients with TIA and HCs in the low-frequency range of WM using two resting-state metrics: amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). The altered ALFF and fALFF values were defined as features of the reinforcement learning method involving a Q-learning algorithm. Results Compared with HCs, patients with TIA showed decreased ALFF in the right cingulate gyrus/right superior longitudinal fasciculus/left superior corona radiata and decreased fALFF in the right cerebral peduncle/right cingulate gyrus/middle cerebellar peduncle. Based on these two rs-fMRI metrics, an optimal Q-learning model was obtained with an accuracy of 82.02%, sensitivity of 85.42%, specificity of 78.05%, precision of 82.00%, and area under the curve (AUC) of 0.87. Conclusion The present study revealed abnormal WM functional alterations in the low-frequency range in patients with TIA. These results support the role of WM functional neural activity as a potential neuromarker in classifying patients with TIA and offer novel insights into the underlying mechanisms in patients with TIA from the perspective of WM function.
Collapse
Affiliation(s)
- Huibin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
- Integrated Medical School, Jiamusi University, Jiamusi, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Lina Huang
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Yanyan Gao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Heilongjiang 150080, China
| | - Su Hu
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiaxi Zhang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Qingguo Ding
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| |
Collapse
|
15
|
Meng L, Wang H, Zou T, Wang X, Chen H, Xie F, Li R. Attenuated brain white matter functional network interactions in Parkinson's disease. Hum Brain Mapp 2022; 43:4567-4579. [PMID: 35674466 PMCID: PMC9491278 DOI: 10.1002/hbm.25973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 01/21/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by extensive structural abnormalities in cortical and subcortical brain areas. However, an association between changes in the functional networks in brain white matter (BWM) and Parkinson's symptoms remains unclear. With confirming evidence that resting-state functional magnetic resonance imaging (rs-fMRI) of BWM signals can effectively describe neuronal activity, this study investigated the interactions among BWM functional networks in PD relative to healthy controls (HC). Sixty-eight patients with PD and sixty-three HC underwent rs-fMRI. Twelve BWM functional networks were identified by K-means clustering algorithm, which were further classified as deep, middle, and superficial layers. Network-level interactions were examined via coefficient Granger causality analysis. Compared with the HC, the patients with PD displayed significantly weaker functional interaction strength within the BWM networks, particularly excitatory influences from the superficial to deep networks. The patients also showed significantly weaker inhibitory influences from the deep to superficial networks. Additionally, the sum of the absolutely positive/negative regression coefficients of the tri-layered networks in the patients was lower relative to HC (p < .05, corrected for false discovery rate). Moreover, we found the functional interactions involving the deep BWM networks negatively correlated with part III of the Unified Parkinson's Disease Rating Scales and Hamilton Depression Scales. Taken together, we demonstrated attenuated BWM interactions in PD and these abnormalities were associated with clinical motor and nonmotor symptoms. These findings may aid understanding of the neuropathology of PD and its progression throughout the nervous system from the perspective of BWM function.
Collapse
Affiliation(s)
- Li Meng
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hongyu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Fangfang Xie
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| |
Collapse
|
16
|
Abdullah AN, Ahmad AH, Zakaria R, Tamam S, Abd Hamid AI, Chai WJ, Omar H, Abdul Rahman MR, Fitzrol DN, Idris Z, Ghani ARI, Wan Mohamad WNA, Mustafar F, Hanafi MH, Reza MF, Umar H, Mohd Zulkifly MF, Ang SY, Zakaria Z, Musa KI, Othman A, Embong Z, Sapiai NA, Kandasamy R, Ibrahim H, Abdullah MZ, Amaruchkul K, Valdes-Sosa PA, Bringas Vega ML, Biswal B, Songsiri J, Yaacob HS, Sumari P, Noh NA, Azman A, Jamir Singh PS, Abdullah JM. Disruption of white matter integrity and its relationship with cognitive function in non-severe traumatic brain injury. Front Neurol 2022; 13:1011304. [PMID: 36303559 PMCID: PMC9592834 DOI: 10.3389/fneur.2022.1011304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Impairment in cognitive function is a recognized outcome of traumatic brain injury (TBI). However, the degree of impairment has variable relationship with TBI severity and time post injury. The underlying pathology is often due to diffuse axonal injury that has been found even in mild TBI. In this study, we examine the state of white matter putative connectivity in patients with non-severe TBI in the subacute phase, i.e., within 10 weeks of injury and determine its relationship with neuropsychological scores. METHODS We conducted a case-control prospective study involving 11 male adult patients with non-severe TBI and an age-matched control group of 11 adult male volunteers. Diffusion MRI scanning and neuropsychological tests were administered within 10 weeks post injury. The difference in fractional anisotropy (FA) values between the patient and control groups was examined using tract-based spatial statistics. The FA values that were significantly different between patients and controls were then correlated with neuropsychological tests in the patient group. RESULTS Several clusters with peak voxels of significant FA reductions (p < 0.05) in the white matter skeleton were seen in patients compared to the control group. These clusters were located in the superior fronto-occipital fasciculus, superior longitudinal fasciculus, uncinate fasciculus, and cingulum, as well as white matter fibers in the area of genu of corpus callosum, anterior corona radiata, superior corona radiata, anterior thalamic radiation and part of inferior frontal gyrus. Mean global FA magnitude correlated significantly with MAVLT immediate recall scores while matrix reasoning scores correlated positively with FA values in the area of right superior fronto-occipital fasciculus and left anterior corona radiata. CONCLUSION The non-severe TBI patients had abnormally reduced FA values in multiple regions compared to controls that correlated with several measures of executive function during the sub-acute phase of TBI.
Collapse
Affiliation(s)
- Aimi Nadhiah Abdullah
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Asma Hayati Ahmad
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Sofina Tamam
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Aini Ismafairus Abd Hamid
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wen Jia Chai
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hazim Omar
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Riddha Abdul Rahman
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Diana Noma Fitzrol
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zamzuri Idris
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Abdul Rahman Izaini Ghani
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wan Nor Azlen Wan Mohamad
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Faiz Mustafar
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Hafiz Hanafi
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohamed Faruque Reza
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hafidah Umar
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Faizal Mohd Zulkifly
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Song Yee Ang
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zaitun Zakaria
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Kamarul Imran Musa
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Azizah Othman
- Department of Pediatrics, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zunaina Embong
- Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nur Asma Sapiai
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Haidi Ibrahim
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Mohd Zaid Abdullah
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Kannapha Amaruchkul
- Graduate School of Applied Statistics, National Institute of Development Administration (NIDA), Bangkok, Thailand
| | - Pedro Antonio Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- The Cuban Neurosciences Center, La Habana, Cuba
| | - Maria Luisa Bringas Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- The Cuban Neurosciences Center, La Habana, Cuba
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Jitkomut Songsiri
- EE410 Control Systems Laboratory, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Hamwira Sakti Yaacob
- Department of Computer Science, Kulliyah of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Putra Sumari
- School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nor Azila Noh
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Azlinda Azman
- School of Social Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Jafri Malin Abdullah
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
17
|
Combined functional and structural imaging of brain white matter reveals stage-dependent impairment in multiple system atrophy of cerebellar type. NPJ Parkinsons Dis 2022; 8:105. [PMID: 35977953 PMCID: PMC9385720 DOI: 10.1038/s41531-022-00371-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Advances in fMRI of brain white matter (WM) have established the feasibility of understanding how functional signals of WM evolve with brain diseases. By combining functional signals with structural features of WM, the current study characterizes functional and structural impairments of WM in cerebelar type multiple system atrophy, with the goal to derive new mechanistic insights into the pathological progression of this disease. Our analysis of 30 well-diagnosed patients revealed pronounced decreases in functional connectivity in WM bundles of the cerebellum and brainstem, and concomitant local structural alterations that depended on the disease stage. The novel findings implicate a critical time point in the pathological evolution of the disease, which could guide optimal therapeutic interventions. Furthermore, fMRI signals of impaired WM bundles exhibited superior sensitivity in differentiating initial disease development, which demonstrates great potential of using these signals to inform disease management.
Collapse
|
18
|
Li J, Li J, Huang P, Huang LN, Ding QG, Zhan L, Li M, Zhang J, Zhang H, Cheng L, Li H, Liu DQ, Zhou HY, Jia XZ. Increased functional connectivity of white-matter in myotonic dystrophy type 1. Front Neurosci 2022; 16:953742. [PMID: 35979335 PMCID: PMC9377538 DOI: 10.3389/fnins.2022.953742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is the most common and dominant inherited neuromuscular dystrophy disease in adults, involving multiple organs, including the brain. Although structural measurements showed that DM1 is predominantly associated with white-matter damage, they failed to reveal the dysfunction of the white-matter. Recent studies have demonstrated that the functional activity of white-matter is of great significance and has given us insights into revealing the mechanisms of brain disorders. Materials and methods Using resting-state fMRI data, we adopted a clustering analysis to identify the white-matter functional networks and calculated functional connectivity between these networks in 16 DM1 patients and 18 healthy controls (HCs). A two-sample t-test was conducted between the two groups. Partial correlation analyzes were performed between the altered white-matter FC and clinical MMSE or HAMD scores. Results We identified 13 white-matter functional networks by clustering analysis. These white-matter functional networks can be divided into a three-layer network (superficial, middle, and deep) according to their spatial distribution. Compared to HCs, DM1 patients showed increased FC within intra-layer white-matter and inter-layer white-matter networks. For intra-layer networks, the increased FC was mainly located in the inferior longitudinal fasciculus, prefrontal cortex, and corpus callosum networks. For inter-layer networks, the increased FC of DM1 patients is mainly located in the superior corona radiata and deep networks. Conclusion Results demonstrated the abnormalities of white-matter functional connectivity in DM1 located in both intra-layer and inter-layer white-matter networks and suggested that the pathophysiology mechanism of DM1 may be related to the white-matter functional dysconnectivity. Furthermore, it may facilitate the treatment development of DM1.
Collapse
Affiliation(s)
- Jing Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jie Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Pei Huang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Na Huang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Qing-Guo Ding
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiaxi Zhang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum, Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Dong-Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Hai-Yan Zhou
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Ze Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
19
|
Jiang Y, Yao D, Zhou J, Tan Y, Huang H, Wang M, Chang X, Duan M, Luo C. Characteristics of disrupted topological organization in white matter functional connectome in schizophrenia. Psychol Med 2022; 52:1333-1343. [PMID: 32880241 DOI: 10.1017/s0033291720003141] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neuroimaging characteristics have demonstrated disrupted functional organization in schizophrenia (SZ), involving large-scale networks within grey matter (GM). However, previous studies have ignored the role of white matter (WM) in supporting brain function. METHODS Using resting-state functional MRI and graph theoretical approaches, we investigated global topological disruptions of large-scale WM and GM networks in 93 SZ patients and 122 controls. Six global properties [clustering coefficient (Cp), shortest path length (Lp), local efficiency (Eloc), small-worldness (σ), hierarchy (β) and synchronization (S) and three nodal metrics [nodal degree (Knodal), nodal efficiency (Enodal) and nodal betweenness (Bnodal)] were utilized to quantify the topological organization in both WM and GM networks. RESULTS At the network level, both WM and GM networks exhibited reductions in Eloc, Cp and S in SZ. The SZ group showed reduced σ and β only for the WM network. Furthermore, the Cp, Eloc and S of the WM network were negatively correlated with negative symptoms in SZ. At the nodal level, the SZ showed nodal disturbances in the corpus callosum, optic radiation, posterior corona radiata and tempo-occipital WM tracts. For GM, the SZ manifested increased nodal centralities in frontoparietal regions and decreased nodal centralities in temporal regions. CONCLUSIONS These findings provide the first evidence for abnormal global topological properties in SZ from the perspective of a substantial whole brain, including GM and WM. Nodal centralities enhance GM areas, along with a reduction in adjacent WM, suggest that WM functional alterations may be compensated for adjacent GM impairments in SZ.
Collapse
Affiliation(s)
- Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, P. R. China
| | - Jingyu Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yue Tan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - MeiLin Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Department of Psychiatry, Chengdu Mental Health Center, Chengdu, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| |
Collapse
|
20
|
Qin Z, Liang HB, Li M, Hu Y, Wu J, Qiao Y, Liu JR, Du X. Disrupted White Matter Functional Connectivity With the Cerebral Cortex in Migraine Patients. Front Neurosci 2022; 15:799854. [PMID: 35095401 PMCID: PMC8793828 DOI: 10.3389/fnins.2021.799854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Background: In attempts to understand the migraine patients’ overall brain functional architecture, blood oxygenation level-dependent (BOLD) signals in the white matter (WM) and gray matter (GM) were considered in the current study. Migraine, a severe and multiphasic brain condition, is characterized by recurrent attacks of headaches. BOLD fluctuations in a resting state exhibit similar temporal and spectral profiles in both WM and GM. It is feasible to explore the functional interactions between WM tracts and GM regions in migraine. Methods: Forty-eight migraineurs without aura (MWoA) and 48 healthy controls underwent resting-state functional magnetic resonance imaging. Pearson’s correlations between the mean time courses of 48 white matter (WM) bundles and 82 gray matter (GM) regions were computed for each subject. Two-sample t-tests were performed on the Pearson’s correlation coefficients (CC) to compare the differences between the MWoA and healthy controls in the GM-averaged CC of each bundle and the WM-averaged CC of each GM region. Results: The MWoAs exhibited an overall decreased average temporal CC between BOLD signals in 82 GM regions and 48 WM bundles compared with healthy controls, while little was increased. In particular, WM bundles such as left anterior corona radiata, left external capsule and bilateral superior longitudinal fasciculus had significantly decreased mean CCs with GM in MWoA. On the other hand, 16 GM regions had significantly decreased mean CCs with WM in MWoA, including some areas that are parts of the somatosensory regions, auditory cortex, temporal areas, frontal areas, cingulate cortex, and parietal cortex. Conclusion: Decreased functional connections between WM bundles and GM regions might contribute to disrupted functional connectivity between the parts of the pain processing pathway in MWoAs, which indicated that functional and connectivity abnormalities in cortical regions may not be limited to GM regions but are instead associated with functional abnormalities in WM tracts.
Collapse
Affiliation(s)
- Zhaoxia Qin
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Huai-Bin Liang
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yue Hu
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Ren Liu
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jian-Ren Liu,
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Xiaoxia Du,
| |
Collapse
|
21
|
Power spectra reveal distinct BOLD resting-state time courses in white matter. Proc Natl Acad Sci U S A 2021; 118:2103104118. [PMID: 34716261 DOI: 10.1073/pnas.2103104118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Accurate characterization of the time courses of blood-oxygen-level-dependent (BOLD) signal changes is crucial for the analysis and interpretation of functional MRI data. While several studies have shown that white matter (WM) exhibits distinct BOLD responses evoked by tasks, there have been no comprehensive investigations into the time courses of spontaneous signal fluctuations in WM. We measured the power spectra of the resting-state time courses in a set of regions within WM identified as showing synchronous signals using independent components analysis. In each component, a clear separation between voxels into two categories was evident, based on their power spectra: one group exhibited a single peak, and the other had an additional peak at a higher frequency. Their groupings are location specific, and their distributions reflect unique neurovascular and anatomical configurations. Importantly, the two categories of voxels differed in their engagement in functional integration, revealed by differences in the number of interregional connections based on the two categories separately. Taken together, these findings suggest WM signals are heterogeneous in nature and depend on local structural-vascular-functional associations.
Collapse
|
22
|
Jia X, Chang X, Bai L, Wang Y, Dong D, Gan S, Wang S, Li X, Yang X, Sun Y, Li T, Xiong F, Niu X, Yan H. A Longitudinal Study of White Matter Functional Network in Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2686-2697. [PMID: 33906419 DOI: 10.1089/neu.2021.0017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Some patients after mild traumatic brain injury (mTBI) experience microstructural damages in the long-distance white matter (WM) connections, which disrupts the functional connectome of large-scale brain networks that support cognitive function. Patterns of WM structural damage following mTBI were well documented using diffusion tensor imaging (DTI). However, the functional organization of WM and its association with gray matter functional networks (GM-FNs) and its DTI metrics remain unknown. The present study adopted resting-state functional magnetic resonance imaging to explore WM functional properties in mTBI patients (108 acute patients, 48 chronic patients, 46 healthy controls [HCs]). Eleven large-scale WM functional networks (WM-FNs) were constructed by the k-means clustering algorithm of voxel-wise WM functional connectivity (FC). Compared with HCs, acute mTBI patients observed enhanced FC between inferior fronto-occipital fasciculus (IFOF) WM-FN and primary sensorimotor WM-FNs, and cortical primary sensorimotor GM-FNs. Further, acute mTBI patients showed increased DTI metrics (mean diffusivity, axial diffusivity, and radial diffusivity) in deep WM-FNs and higher-order cognitive WM-FNs. Moreover, mTBI patients demonstrated full recovery of FC and partial recovery of DTI metrics in the chronic stage. Additionally, enhanced FC between IFOF WM-FN and anterior cerebellar GM-FN was correlated with impaired information processing speed. Our findings provide novel evidence for functional and structural alteration of WM-FNs in mTBI patients. Importantly, the convergent damage of the IFOF network might imply its crucial role in our understanding of the pathophysiology mechanism of mTBI patients.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xuebin Chang
- School of Life Science and Technology, Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Lijun Bai
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yulin Wang
- Department of Experimental and Applied Psychology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Data Analysis, Ghent University, Ghent, Belgium
| | - Debo Dong
- School of Life Science and Technology, Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
| | - Shuoqiu Gan
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shan Wang
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Li
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xuefei Yang
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yinxiang Sun
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianhui Li
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Feng Xiong
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Niu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Yan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
- Department of Linguistics, Xidian University, Xi'an, China
| |
Collapse
|
23
|
Li X, Jiang Y, Li W, Qin Y, Li Z, Chen Y, Tong X, Xiao F, Zuo X, Gong Q, Zhou D, Yao D, An D, Luo C. Disrupted functional connectivity in white matter resting-state networks in unilateral temporal lobe epilepsy. Brain Imaging Behav 2021; 16:324-335. [PMID: 34478055 DOI: 10.1007/s11682-021-00506-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Unilateral temporal lobe epilepsy (TLE) is the most common type of focal epilepsy characterized by foci in the unilateral temporal lobe grey matters of regions such as the hippocampus. However, it remains unclear how the functional features of white matter are altered in TLE. In the current study, resting-state functional magnetic resonance imaging (fMRI) was performed on 71 left TLE (LTLE) patients, 79 right TLE (RTLE) patients and 47 healthy controls (HC). Clustering analysis was used to identify fourteen white matter networks (WMN). The functional connectivity (FC) was calculated among WMNs and between WMNs and grey matter. Furthermore, the FC laterality of hemispheric WMNs was assessed. First, both patient groups showed decreased FCs among WMNs. Specifically, cerebellar white matter illustrated decreased FCs with the cerebral superficial WMNs, implying a dysfunctional interaction between the cerebellum and the cerebral cortex in TLE. Second, the FCs between WMNs and the ipsilateral hippocampus (grey matter foci) were also reduced in patient groups, which may suggest insufficient functional integration in unilateral TLE. Interestingly, RTLE showed more severe abnormalities of white matter FCs, including links to the bilateral hippocampi and temporal white matter, than LTLE. Taken together, these findings provide functional evidence of white matter abnormalities, extending the understanding of the pathological mechanism of white matter impairments in unilateral TLE.
Collapse
Affiliation(s)
- Xuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Yingjie Qin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Zhiliang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xin Tong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Xiaojun Zuo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
24
|
Abramian D, Larsson M, Eklund A, Aganj I, Westin CF, Behjat H. Diffusion-informed spatial smoothing of fMRI data in white matter using spectral graph filters. Neuroimage 2021; 237:118095. [PMID: 34000402 PMCID: PMC8356807 DOI: 10.1016/j.neuroimage.2021.118095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/07/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Brain activation mapping using functional magnetic resonance imaging (fMRI) has been extensively studied in brain gray matter (GM), whereas in large disregarded for probing white matter (WM). This unbalanced treatment has been in part due to controversies in relation to the nature of the blood oxygenation level-dependent (BOLD) contrast in WM and its detectability. However, an accumulating body of studies has provided solid evidence of the functional significance of the BOLD signal in WM and has revealed that it exhibits anisotropic spatio-temporal correlations and structure-specific fluctuations concomitant with those of the cortical BOLD signal. In this work, we present an anisotropic spatial filtering scheme for smoothing fMRI data in WM that accounts for known spatial constraints on the BOLD signal in WM. In particular, the spatial correlation structure of the BOLD signal in WM is highly anisotropic and closely linked to local axonal structure in terms of shape and orientation, suggesting that isotropic Gaussian filters conventionally used for smoothing fMRI data are inadequate for denoising the BOLD signal in WM. The fundamental element in the proposed method is a graph-based description of WM that encodes the underlying anisotropy observed across WM, derived from diffusion-weighted MRI data. Based on this representation, and leveraging graph signal processing principles, we design subject-specific spatial filters that adapt to a subject's unique WM structure at each position in the WM that they are applied at. We use the proposed filters to spatially smooth fMRI data in WM, as an alternative to the conventional practice of using isotropic Gaussian filters. We test the proposed filtering approach on two sets of simulated phantoms, showcasing its greater sensitivity and specificity for the detection of slender anisotropic activations, compared to that achieved with isotropic Gaussian filters. We also present WM activation mapping results on the Human Connectome Project's 100-unrelated subject dataset, across seven functional tasks, showing that the proposed method enables the detection of streamline-like activations within axonal bundles.
Collapse
Affiliation(s)
- David Abramian
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Martin Larsson
- Centre of Mathematical Sciences, Lund University, Lund, Sweden
| | - Anders Eklund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden; Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Iman Aganj
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hamid Behjat
- Department of Biomedical Engineering, Lund University, Lund, Sweden; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
25
|
Elucidation of the relationship between sensory processing and white matter using diffusion tensor imaging tractography in young adults. Sci Rep 2021; 11:12088. [PMID: 34103636 PMCID: PMC8187654 DOI: 10.1038/s41598-021-91569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/26/2021] [Indexed: 11/08/2022] Open
Abstract
Sensory processing and behaviors are altered during the development of connectivity between the sensory cortices and multiple brain regions in an experience-dependent manner. To reveal the relationship between sensory processing and brain white matter, we investigated the association between the Adolescent/Adult Sensory Profile (AASP) and neural connectivity in the white matter tracts of 84 healthy young adults using diffusion tensor imaging (DTI). We observed a positive relationship between AASP scores (i.e., sensory sensitivity, sensation avoiding, activity level)/subscores (i.e., sensory sensitivity–activity level, sensation avoiding–touch) and DTI parameters in the cingulum–cingulate gyrus bundle (CCG) and between AASP subscores (i.e., sensory sensitivity–auditory) and a diffusion parameter in the uncinate fasciculus (UNC). The diffusion parameters that correlated with AASP scores/subscores and AASP quadrant scores (i.e., sensory avoiding and sensitivity) were axonal diffusivity (AD) and mean diffusivity (MD) in the CCG and MD in the UNC. Moreover, the increased sensory avoiding and sensitivity scores represent the sensitization of sensory processing, and the level of diffusivity parameters indicates white matter microstructure variability, such as axons and myelin from diffusivity of water molecules. Thus, the present study suggests that the CCG and UNC are critical white matter microstructures for determining the level of sensory processing in young adults.
Collapse
|
26
|
Xu Q, Weng Y, Liu C, Qiu L, Yang Y, Zhou Y, Wang F, Lu G, Zhang LJ, Qi R. Distributed Functional Connectome of White Matter in Patients With Functional Dyspepsia. Front Hum Neurosci 2021; 15:589578. [PMID: 33935665 PMCID: PMC8085333 DOI: 10.3389/fnhum.2021.589578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose: We aimed to find out the distributed functional connectome of white matter in patients with functional dyspepsia (FD). Methods: 20 patients with FD and 24 age- and gender-matched healthy controls were included into the study. The functional connectome of white matter and graph theory were used to these participants. Two-sample t-test was used for the detection the abnormal graph properties in FD. Pearson correlation was used for the relationship between properties and the clinical and neuropshychological information. Results: Patients with FD and healthy controls showed small-world properties in functional connectome of white matter. Compared with healthy controls, the FD group showed decreased global properties (Cp, S, Eglobal, and Elocal). Four pairs of fiber bundles that are connected to the frontal lobe, insula, and thalamus were affected in the FD group. Duration and Pittsburgh Sleep Quality Index positively correlated with the betweenness centrality of white matter regions of interest. Conclusion: FD patients turned to a non-optimized functional organization of WM brain network. Frontal lobe, insula, and thalamus were key regions in brain information exchange of FD. It provided some novel imaging evidences for the mechanism of FD.
Collapse
Affiliation(s)
- Qiang Xu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chang Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lianli Qiu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yulin Yang
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifei Zhou
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fangyu Wang
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangming Lu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Basso MA, Frey S, Guerriero KA, Jarraya B, Kastner S, Koyano KW, Leopold DA, Murphy K, Poirier C, Pope W, Silva AC, Tansey G, Uhrig L. Using non-invasive neuroimaging to enhance the care, well-being and experimental outcomes of laboratory non-human primates (monkeys). Neuroimage 2021; 228:117667. [PMID: 33359353 PMCID: PMC8005297 DOI: 10.1016/j.neuroimage.2020.117667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/09/2023] Open
Abstract
Over the past 10-20 years, neuroscience witnessed an explosion in the use of non-invasive imaging methods, particularly magnetic resonance imaging (MRI), to study brain structure and function. Simultaneously, with access to MRI in many research institutions, MRI has become an indispensable tool for researchers and veterinarians to guide improvements in surgical procedures and implants and thus, experimental as well as clinical outcomes, given that access to MRI also allows for improved diagnosis and monitoring for brain disease. As part of the PRIMEatE Data Exchange, we gathered expert scientists, veterinarians, and clinicians who treat humans, to provide an overview of the use of non-invasive imaging tools, primarily MRI, to enhance experimental and welfare outcomes for laboratory non-human primates engaged in neuroscientific experiments. We aimed to provide guidance for other researchers, scientists and veterinarians in the use of this powerful imaging technology as well as to foster a larger conversation and community of scientists and veterinarians with a shared goal of improving the well-being and experimental outcomes for laboratory animals.
Collapse
Affiliation(s)
- M A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences UCLA Los Angeles CA 90095 USA
| | - S Frey
- Rogue Research, Inc. Montreal, QC, Canada
| | - K A Guerriero
- Washington National Primate Research Center University of Washington Seattle, WA USA
| | - B Jarraya
- Cognitive Neuroimaging Unit, INSERM, CEA, NeuroSpin center, 91191 Gif/Yvette, France; Université Paris-Saclay, UVSQ, Foch hospital, Paris, France
| | - S Kastner
- Princeton Neuroscience Institute & Department of Psychology Princeton University Princeton, NJ USA
| | - K W Koyano
- National Institute of Mental Health NIH Bethesda MD 20892 USA
| | - D A Leopold
- National Institute of Mental Health NIH Bethesda MD 20892 USA
| | - K Murphy
- Biosciences Institute and Centre for Behaviour and Evolution, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH United Kingdom UK
| | - C Poirier
- Biosciences Institute and Centre for Behaviour and Evolution, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH United Kingdom UK
| | - W Pope
- Department of Radiology UCLA Los Angeles, CA 90095 USA
| | - A C Silva
- Department of Neurobiology University of Pittsburgh, Pittsburgh PA 15261 USA
| | - G Tansey
- National Eye Institute NIH Bethesda MD 20892 USA
| | - L Uhrig
- Cognitive Neuroimaging Unit, INSERM, CEA, NeuroSpin center, 91191 Gif/Yvette, France
| |
Collapse
|
28
|
Wang P, Wang J, Tang Q, Alvarez TL, Wang Z, Kung YC, Lin CP, Chen H, Meng C, Biswal BB. Structural and functional connectivity mapping of the human corpus callosum organization with white-matter functional networks. Neuroimage 2020; 227:117642. [PMID: 33338619 DOI: 10.1016/j.neuroimage.2020.117642] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
The corpus callosum serves as a crucial organization for understanding the information integration between the two hemispheres. Our previous study explored the functional connectivity between the corpus callosum and white-matter functional networks (WM-FNs), but the corresponding physical connectivity remains unknown. The current study uses the resting-state fMRI of Human Connectome Project data to identify ten WM-FNs in 108 healthy subjects, and then independently maps the structural and functional connectivity between the corpus callosum and above WM-FNs using the diffusion tensor images (DTI) tractography and resting-state functional connectivity (RSFC). Our results demonstrated that the structural and functional connectivity between the human corpus callosum and WM-FNs have the following high overall correspondence: orbitofrontal WM-FN, DTI map = 89% and RSFC map = 92%; sensorimotor middle WM-FN, DTI map = 47% and RSFC map = 77%; deep WM-FN, DTI map = 50% and RSFC map = 79%; posterior corona radiata WM-FN, DTI map = 82% and RSFC map = 73%. These findings reinforce the notion that the corpus callosum has unique spatial distribution patterns connecting to distinct WM-FNs. However, important differences between the structural and functional connectivity mapping results were also observed, which demonstrated a synergy between DTI tractography and RSFC toward better understanding the information integration of primary and higher-order functional systems in the human brain.
Collapse
Affiliation(s)
- Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianlin Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tara L Alvarez
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Zedong Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi-Chia Kung
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
29
|
Frizzell TO, Grajauskas LA, Liu CC, Ghosh Hajra S, Song X, D'Arcy RCN. White Matter Neuroplasticity: Motor Learning Activates the Internal Capsule and Reduces Hemodynamic Response Variability. Front Hum Neurosci 2020; 14:509258. [PMID: 33192383 PMCID: PMC7649291 DOI: 10.3389/fnhum.2020.509258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 09/29/2020] [Indexed: 01/12/2023] Open
Abstract
Numerous studies have noted the importance of white matter changes in motor learning, but existing literature only focuses on structural and microstructural MRI changes, as there are limited tools available for in vivo investigations of white matter function. One method that has gained recent prominence is the application of blood oxygen level dependent (BOLD) fMRI to white matter, with high-field scanners now being able to better detect the smaller hemodynamic changes present in this tissue type compared to those in the gray matter. However, fMRI techniques have yet to be applied to investigations of neuroplastic change with motor learning in white matter. White matter function represents an unexplored component of neuroplasticity and is essential for gaining a complete understanding of learning-based changes occurring throughout the whole brain. Twelve healthy, right-handed participants completed fine motor and gross motor tasks with both hands, using an MRI compatible computer mouse. Using a crossover design along with a prior analysis approach to establish WM activation, participants received a baseline scan followed by 2 weeks of training, returning for a midpoint and endpoint scan. The motor tasks were designed to be selectively difficult for the left hand, leading to a training effect only in that condition. Analysis targeted the comparison and detection of training-associated right vs left hand changes. A statistically significant improvement in motor task score was only noted for the left-hand motor condition. A corresponding change in the temporal characteristics of the white matter hemodynamic response was shown within only the right corticospinal tract. The hemodynamic response exhibited a reduction in the dispersion characteristics after the training period. To our knowledge, this is the first report of MRI detectable functional neuroplasticity in white matter, suggesting that modifications in temporal characteristics of white matter hemodynamics may underlie functional neuroplasticity in this tissue.
Collapse
Affiliation(s)
- Tory O Frizzell
- Simon Fraser University ImageTech Lab, Health Science and Innovation, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada.,Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Lukas A Grajauskas
- Simon Fraser University ImageTech Lab, Health Science and Innovation, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada.,Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Careesa C Liu
- Simon Fraser University ImageTech Lab, Health Science and Innovation, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada.,Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.,Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Sujoy Ghosh Hajra
- Simon Fraser University ImageTech Lab, Health Science and Innovation, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada.,Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.,Flight Research Laboratory, National Research Council Canada, Ottawa, ON, Canada
| | - Xiaowei Song
- Simon Fraser University ImageTech Lab, Health Science and Innovation, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan C N D'Arcy
- Simon Fraser University ImageTech Lab, Health Science and Innovation, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada.,Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Kinany N, Pirondini E, Micera S, Van De Ville D. Dynamic Functional Connectivity of Resting-State Spinal Cord fMRI Reveals Fine-Grained Intrinsic Architecture. Neuron 2020; 108:424-435.e4. [PMID: 32910894 DOI: 10.1016/j.neuron.2020.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022]
Abstract
The neuroimaging community has shown tremendous interest in exploring the brain's spontaneous activity using functional magnetic resonance imaging (fMRI). On the contrary, the spinal cord has been largely overlooked despite its pivotal role in processing sensorimotor signals. Only a handful of studies have probed the organization of spinal resting-state fluctuations, always using static measures of connectivity. Many innovative approaches have emerged for analyzing dynamics of brain fMRI, but they have not yet been applied to the spinal cord, although they could help disentangle its functional architecture. Here, we leverage a dynamic connectivity method based on the clustering of hemodynamic-informed transients to unravel the rich dynamic organization of spinal resting-state signals. We test this approach in 19 healthy subjects, uncovering fine-grained spinal components and highlighting their neuroanatomical and physiological nature. We provide a versatile tool, the spinal innovation-driven co-activation patterns (SpiCiCAP) framework, to characterize spinal circuits during rest and task, as well as their disruption in neurological disorders.
Collapse
Affiliation(s)
- Nawal Kinany
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Elvira Pirondini
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pontedera, Italy.
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
31
|
Wang T, Wilkes DM, Li M, Wu X, Gore JC, Ding Z. Hemodynamic Response Function in Brain White Matter in a Resting State. Cereb Cortex Commun 2020; 1:tgaa056. [PMID: 33073237 PMCID: PMC7552822 DOI: 10.1093/texcom/tgaa056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/14/2022] Open
Abstract
The hemodynamic response function (HRF) characterizes temporal variations of blood oxygenation level-dependent (BOLD) signals. Although a variety of HRF models have been proposed for gray matter responses to functional demands, few studies have investigated HRF profiles in white matter particularly under resting conditions. In the present work we quantified the nature of the HRFs that are embedded in resting state BOLD signals in white matter, and which modulate the temporal fluctuations of baseline signals. We demonstrate that resting state HRFs in white matter could be derived by referencing to intrinsic avalanches in gray matter activities, and the derived white matter HRFs had reduced peak amplitudes and delayed peak times as compared with those in gray matter. Distributions of the time delays and correlation profiles in white matter depend on gray matter activities as well as white matter tract distributions, indicating that resting state BOLD signals in white matter encode neural activities associated with those of gray matter. This is the first investigation of derivations and characterizations of resting state HRFs in white matter and their relations to gray matter activities. Findings from this work have important implications for analysis of BOLD signals in the brain.
Collapse
Affiliation(s)
- Ting Wang
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | - D Mitchell Wilkes
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Muwei Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xi Wu
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Zhaohua Ding
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
32
|
Huang Y, Yang Y, Hao L, Hu X, Wang P, Ding Z, Gao JH, Gore JC. Detection of functional networks within white matter using independent component analysis. Neuroimage 2020; 222:117278. [PMID: 32835817 PMCID: PMC7736513 DOI: 10.1016/j.neuroimage.2020.117278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/02/2022] Open
Abstract
Spontaneous fluctuations in MRI signals from gray matter (GM) in the brain are interpreted as originating from variations in neural activity, and their inter-regional correlations may be analyzed to reveal functional connectivity. However, most studies of intrinsic neuronal activity have ignored the spontaneous fluctuations that also arise in white matter (WM). In this work, we explore spontaneous fluctuations in resting state MRI signals in WM based on spatial independent component analyses (ICA), a data-driven approach that separates signals into independent sources without making specific modeling assumptions. ICA has become widely accepted as a valuable approach for identifying functional connectivity within cortex but has been rarely applied to derive equivalent structures within WM. Here, BOLD signal changes in WM of a group of subjects performing motor tasks were first detected using ICA, and a spatial component whose time course was consistent with the task was found, demonstrating the analysis is sensitive to evoked BOLD signals in WM. Secondly, multiple spatial components were derived by applying ICA to identify those voxels in WM whose MRI signals showed similar temporal behaviors in a resting state. These functionally-related structures are grossly symmetric and coincide with corresponding tracts identified from diffusion MRI. Finally, functional connectivity was quantified by calculating correlations between pairs of structures to explore the synchronicity of resting state BOLD signals across WM regions, and the experimental results revealed that there exist two distinct groupings of functional correlations in WM tracts at rest. Our study provides further insights into the nature of activation patterns, functional responses and connectivity in WM, and support previous suggestions that BOLD signals in WM show similarities with cortical activations and are characterized by distinct underlying structures in tasks and at rest.
Collapse
Affiliation(s)
- Yali Huang
- College of Electronics and Information Engineering, Hebei University, Baoding 071002, China
| | - Yang Yang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lei Hao
- College of Electronics and Information Engineering, Hebei University, Baoding 071002, China
| | - Xuefang Hu
- College of Electronics and Information Engineering, Hebei University, Baoding 071002, China
| | - Peiguang Wang
- College of Electronics and Information Engineering, Hebei University, Baoding 071002, China; College of Mathematics and Information Science, Hebei University, Baoding 071002, China.
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, United States; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, United States
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China; McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, United States; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
33
|
Bu X, Liang K, Lin Q, Gao Y, Qian A, Chen H, Chen W, Wang M, Yang C, Huang X. Exploring white matter functional networks in children with attention-deficit/hyperactivity disorder. Brain Commun 2020; 2:fcaa113. [PMID: 33215081 PMCID: PMC7660033 DOI: 10.1093/braincomms/fcaa113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/05/2023] Open
Abstract
Attention-deficit/hyperactivity disorder has been identified to involve the impairment of large-scale functional networks within grey matter, and recent studies have suggested that white matter, which also encodes neural activity, can manifest intrinsic functional organization similar to that of grey matter. However, the alterations in white matter functional networks in attention-deficit/hyperactivity disorder remain unknown. We recruited a total of 99 children, including 66 drug-naive patients and 33 typically developing controls aged from 6 to 14, to characterize the alterations in functional networks within white matter in drug-naive children with attention-deficit/hyperactivity disorder. Using clustering analysis, resting-state functional MRI data in the white matter were parsed into different networks. Intrinsic activity within each network and connectivity between networks and the associations between network activity strength and clinical symptoms were assessed. We identified eight distinct white matter functional networks: the default mode network, the somatomotor network, the dorsal attention network, the ventral attention network, the visual network, the deep frontoparietal network, the deep frontal network and the inferior corticospinal-posterior cerebellum network. The default mode, somatomotor, dorsal attention and ventral attention networks showed lower spontaneous neural activity in patients. In particular, the default mode network and the somatomotor network largely showed higher connectivity with other networks, which correlated with more severe hyperactive behaviour, while the dorsal and ventral attention networks mainly had lower connectivity with other networks, which correlated with poor attention performance. In conclusion, there are two distinct patterns of white matter functional networks in children with attention-deficit/hyperactivity disorder, with one being the hyperactivity-related hot networks including default mode network and somatomotor network and the other being inattention-related cold networks including dorsal attention and ventral attention network. These results extended upon our understanding of brain functional networks in attention-deficit/hyperactivity disorder from the perspective of white matter dysfunction.
Collapse
Affiliation(s)
- Xuan Bu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Kaili Liang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxia Lin
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Andan Qian
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Hong Chen
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Wanying Chen
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
34
|
Li J, Biswal BB, Meng Y, Yang S, Duan X, Cui Q, Chen H, Liao W. A neuromarker of individual general fluid intelligence from the white-matter functional connectome. Transl Psychiatry 2020; 10:147. [PMID: 32404889 PMCID: PMC7220913 DOI: 10.1038/s41398-020-0829-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroimaging studies have uncovered the neural roots of individual differences in human general fluid intelligence (Gf). Gf is characterized by the function of specific neural circuits in brain gray-matter; however, the association between Gf and neural function in brain white-matter (WM) remains unclear. Given reliable detection of blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals in WM, we used a functional, rather than an anatomical, neuromarker in WM to identify individual Gf. We collected longitudinal BOLD-fMRI data (in total three times, ~11 months between time 1 and time 2, and ~29 months between time 1 and time 3) in normal volunteers at rest, and identified WM functional connectomes that predicted the individual Gf at time 1 (n = 326). From internal validation analyses, we demonstrated that the constructed predictive model at time 1 predicted an individual's Gf from WM functional connectomes at time 2 (time 1 ∩ time 2: n = 105) and further at time 3 (time 1 ∩ time 3: n = 83). From external validation analyses, we demonstrated that the predictive model from time 1 was generalized to unseen individuals from another center (n = 53). From anatomical aspects, WM functional connectivity showing high predictive power predominantly included the superior longitudinal fasciculus system, deep frontal WM, and ventral frontoparietal tracts. These results thus demonstrated that WM functional connectomes offer a novel applicable neuromarker of Gf and supplement the gray-matter connectomes to explore brain-behavior relationships.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Qian Cui
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- School of Public Administration, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| |
Collapse
|
35
|
Concomitant modulation of BOLD responses in white matter pathways and cortex. Neuroimage 2020; 216:116791. [PMID: 32330682 DOI: 10.1016/j.neuroimage.2020.116791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/03/2023] Open
Abstract
In response to a flickering visual stimulus, the BOLD response in primary visual cortex varies with the flickering frequency and is maximal when it is close to 8Hz. In previous studies we demonstrated that BOLD signals in specific white matter (WM) pathways covary with the alternations between stimulus conditions in a block design in similar manner to gray matter (GM) regions. Here we investigated whether WM tracts show varying responses to changes in flicker frequency and are modulated in the same manner as cortical areas. We used a Fourier analysis of BOLD signals to measure the signal amplitude and phase at the fundamental frequency of a block-design task in which flickering visual stimuli alternated with blank presentations, avoiding the assumption of any specific hemodynamic response function. The BOLD responses in WM pathways and the primary visual cortex were evaluated for flicker frequencies varying between 2 and 14Hz. The variations with frequency of BOLD signals in specific WM tracts followed closely those in primary visual cortex, suggesting that variations in cortical activation are directly coupled to corresponding BOLD signals in connected WM tracts. Statistically significant differences in the timings of BOLD responses were also measured between visual cortex and specific WM bundles. These results confirm that when cortical BOLD responses are modulated by selecting different task parameters, relevant WM tracts exhibit corresponding BOLD signals that are also affected.
Collapse
|
36
|
Yang Z, Li X, Zhou J, Wu X, Ding Z. Functional clustering of whole brain white matter fibers. J Neurosci Methods 2020; 335:108626. [PMID: 32032716 PMCID: PMC7093303 DOI: 10.1016/j.jneumeth.2020.108626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/28/2019] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Large numbers of fibers produced by fiber tractography are often grouped into bundles with anatomical interpretations. Traditional clustering methods usually generate bundles with spatial anatomic coherences only. To associate bundles with function, some studies incorporate functional connectivity of grey matter to guide clustering on the premise that fibers provide the basis of information transmission for cortex. However, functional properties along fiber tracts were ignored by these methods. Considering several recent studies showing that BOLD (Blood-Oxygen-Level Dependent) signals of white matter contain functional information of axonal fibers, this work is motivated to demonstrate that whole brain white matter fibers can be clustered with integration of functional and structural information they contain. NEW METHODS We proposed a novel algorithm based on Gaussian mixture model and expectation maximization to achieve optimal bundling with both structural and functional coherences. The functional coherence between two fibers is defined as the average correlation in BOLD signal between corresponding points. Whole brain fibers under resting state and sensory stimulation conditions were used to demonstrate the effectiveness of the proposed technique. RESULTS Our in vivo experiments show the robustness of proposed algorithm and influences of weights between structure and function, and repeatability of reconstructed major bundles across individuals. COMPARISON WITH EXISTING METHODS In contrast to traditional methods, the proposed clustering method can achieve structurally more compact bundles, which are specifically related to evoking function. CONCLUSION The proposed concept and framework can be used to identify functional pathways and their structural features under specific function loading.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, PR China; College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Xiaojie Li
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Jiliu Zhou
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Xi Wu
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, United States.
| |
Collapse
|
37
|
Wang P, Meng C, Yuan R, Wang J, Yang H, Zhang T, Zaborszky L, Alvarez TL, Liao W, Luo C, Chen H, Biswal BB. The Organization of the Human Corpus Callosum Estimated by Intrinsic Functional Connectivity with White-Matter Functional Networks. Cereb Cortex 2020; 30:3313-3324. [PMID: 32080708 DOI: 10.1093/cercor/bhz311] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
The corpus callosum is the commissural bridge of white-matter bundles important for the human brain functions. Previous studies have analyzed the structural links between cortical gray-matter networks and subregions of corpus callosum. While meaningful white-matter functional networks (WM-FNs) were recently reported, how these networks functionally link with distinct subregions of corpus callosum remained unknown. The current study used resting-state functional magnetic resonance imaging of the Human Connectome Project test–retest data to identify 10 cerebral WM-FNs in 119 healthy subjects and then parcellated the corpus callosum into distinct subregions based on the functional connectivity between each callosal voxel and above networks. Our results demonstrated the reproducible identification of WM-FNs and their links with known gray-matter functional networks across two runs. Furthermore, we identified reliably parcellated subregions of the corpus callosum, which might be involved in primary and higher order functional systems by functionally connecting with WM-FNs. The current study extended our knowledge about the white-matter functional signals to the intrinsic functional organization of human corpus callosum, which could help researchers understand the neural substrates underlying normal interhemispheric functional connectivity as well as dysfunctions in various mental disorders.
Collapse
Affiliation(s)
- Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Rui Yuan
- Department of Psychiatry, Stanford University, Palo Alto, CA 94305, USA
| | - Jianlin Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tao Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Tara L Alvarez
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
38
|
Polosecki P, Castro E, Rish I, Pustina D, Warner JH, Wood A, Sampaio C, Cecchi GA. Resting-state connectivity stratifies premanifest Huntington's disease by longitudinal cognitive decline rate. Sci Rep 2020; 10:1252. [PMID: 31988371 PMCID: PMC6985137 DOI: 10.1038/s41598-020-58074-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/10/2020] [Indexed: 11/17/2022] Open
Abstract
Patient stratification is critical for the sensitivity of clinical trials at early stages of neurodegenerative disorders. In Huntington’s disease (HD), genetic tests make cognitive, motor and brain imaging measurements possible before symptom manifestation (pre-HD). We evaluated pre-HD stratification models based on single visit resting-state functional MRI (rs-fMRI) data that assess observed longitudinal motor and cognitive change rates from the multisite Track-On HD cohort (74 pre-HD, 79 control participants). We computed longitudinal performance change on 10 tasks (including visits from the preceding TRACK-HD study when available), as well as functional connectivity density (FCD) maps in single rs-fMRI visits, which showed high test-retest reliability. We assigned pre-HD subjects to subgroups of fast, intermediate, and slow change along single tasks or combinations of them, correcting for expectations based on aging; and trained FCD-based classifiers to distinguish fast- from slow-progressing individuals. For robustness, models were validated across imaging sites. Stratification models distinguished fast- from slow-changing participants and provided continuous assessments of decline applicable to the whole pre-HD population, relying on previously-neglected white matter functional signals. These results suggest novel correlates of early deterioration and a robust stratification strategy where a single MRI measurement provides an estimate of multiple ongoing longitudinal changes.
Collapse
Affiliation(s)
- Pablo Polosecki
- IBM T.J. Watson Research Center, Yorktown Heights, Yorktown, NY, USA.
| | - Eduardo Castro
- IBM T.J. Watson Research Center, Yorktown Heights, Yorktown, NY, USA
| | - Irina Rish
- IBM T.J. Watson Research Center, Yorktown Heights, Yorktown, NY, USA
| | | | | | - Andrew Wood
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | | | | |
Collapse
|
39
|
Li J, Biswal BB, Wang P, Duan X, Cui Q, Chen H, Liao W. Exploring the functional connectome in white matter. Hum Brain Mapp 2019; 40:4331-4344. [PMID: 31276262 PMCID: PMC6865787 DOI: 10.1002/hbm.24705] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 02/03/2023] Open
Abstract
A major challenge in neuroscience is understanding how brain function emerges from the connectome. Most current methods have focused on quantifying functional connectomes in gray-matter (GM) signals obtained from functional magnetic resonance imaging (fMRI), while signals from white-matter (WM) have generally been excluded as noise. In this study, we derived a functional connectome from WM resting-state blood-oxygen-level-dependent (BOLD)-fMRI signals from a large cohort (n = 488). The WM functional connectome exhibited weak small-world topology and nonrandom modularity. We also found a long-term (i.e., over 10 months) topological reliability, with topological reproducibility within different brain parcellation strategies, spatial distance effect, global and cerebrospinal fluid signals regression or not. Furthermore, the small-worldness was positively correlated with individuals' intelligence values (r = .17, pcorrected = .0009). The current findings offer initial evidence using WM connectome and present additional measures by which to uncover WM functional information in both healthy individuals and in cases of clinical disease.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew Jersey
| | - Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Qian Cui
- School of Public AdministrationUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
40
|
Gore JC, Li M, Gao Y, Wu TL, Schilling KG, Huang Y, Mishra A, Newton AT, Rogers BP, Chen LM, Anderson AW, Ding Z. Functional MRI and resting state connectivity in white matter - a mini-review. Magn Reson Imaging 2019; 63:1-11. [PMID: 31376477 DOI: 10.1016/j.mri.2019.07.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
Functional MRI (fMRI) signals are robustly detectable in white matter (WM) but they have been largely ignored in the fMRI literature. Their nature, interpretation, and relevance as potential indicators of brain function remain under explored and even controversial. Blood oxygenation level dependent (BOLD) contrast has for over 25 years been exploited for detecting localized neural activity in the cortex using fMRI. While BOLD signals have been reliably detected in grey matter (GM) in a very large number of studies, such signals have rarely been reported from WM. However, it is clear from our own and other studies that although BOLD effects are weaker in WM, using appropriate detection and analysis methods they are robustly detectable both in response to stimuli and in a resting state. BOLD fluctuations in a resting state exhibit similar temporal and spectral profiles in both GM and WM, and their relative low frequency (0.01-0.1 Hz) signal powers are comparable. They also vary with baseline neural activity e.g. as induced by different levels of anesthesia, and alter in response to a stimulus. In previous work we reported that BOLD signals in WM in a resting state exhibit anisotropic temporal correlations with neighboring voxels. On the basis of these findings, we derived functional correlation tensors that quantify the correlational anisotropy in WM BOLD signals. We found that, along many WM tracts, the directional preferences of these functional correlation tensors in a resting state are grossly consistent with those revealed by diffusion tensors, and that external stimuli tend to enhance visualization of specific and relevant fiber pathways. These findings support the proposition that variations in WM BOLD signals represent tract-specific responses to neural activity. We have more recently shown that sensory stimulations induce explicit BOLD responses along parts of the projection fiber pathways, and that task-related BOLD changes in WM occur synchronously with the temporal pattern of stimuli. WM tracts also show a transient signal response following short stimuli analogous to but different from the hemodynamic response function (HRF) characteristic of GM. Thus there is converging and compelling evidence that WM exhibits both resting state fluctuations and stimulus-evoked BOLD signals very similar (albeit weaker) to those in GM. A number of studies from other laboratories have also reported reliable observations of WM activations. Detection of BOLD signals in WM has been enhanced by using specialized tasks or modified data analysis methods. In this mini-review we report summaries of some of our recent studies that provide evidence that BOLD signals in WM are related to brain functional activity and deserve greater attention by the neuroimaging community.
Collapse
Affiliation(s)
- John C Gore
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America; Department of Molecular Physiology and Biophysics, Vanderbilt University, United States of America; Department of Physics and Astronomy, Vanderbilt University, United States of America.
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America
| | - Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Yali Huang
- Vanderbilt University Institute of Imaging Science, United States of America
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, United States of America
| | - Allen T Newton
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Electrical Engineering and Computer Science, Vanderbilt University, United States of America
| |
Collapse
|
41
|
Joutsa J, Horn A, Hsu J, Fox MD. Localizing parkinsonism based on focal brain lesions. Brain 2019; 141:2445-2456. [PMID: 29982424 DOI: 10.1093/brain/awy161] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/19/2018] [Indexed: 01/20/2023] Open
Abstract
Bradykinesia, rigidity, and tremor frequently co-occur, a clinical syndrome known as parkinsonism. Because this syndrome is commonly seen in Parkinson's disease, symptoms are often attributed to cell loss in the substantia nigra. However, parkinsonism occurs in several other neurological disorders and often fails to correlate with nigrostriatal pathology, raising the question of which brain region(s) cause this syndrome. Here, we studied cases of new-onset parkinsonism following focal brain lesions. We identified 29 cases, only 31% of which hit the substantia nigra. Lesions were located in a variety of different cortical and subcortical locations. To determine whether these heterogeneous lesion locations were part of a common brain network, we leveraged the human brain connectome and a recently validated technique termed lesion network mapping. Lesion locations causing parkinsonism were functionally connected to a common network of regions including the midbrain, basal ganglia, cingulate cortex, and cerebellum. The most sensitive and specific connectivity was to the claustrum. This lesion connectivity pattern matched atrophy patterns seen in Parkinson's disease, progressive supranuclear palsy, and multiple system atrophy, suggesting a shared neuroanatomical substrate for parkinsonism. Lesion connectivity also predicted medication response and matched the pattern of effective deep brain stimulation, suggesting relevance as a treatment target. Our results, based on causal brain lesions, lend insight into the localization of parkinsonism, one of the most common syndromes in neurology. Because many patients with parkinsonism fail to respond to dopaminergic medication, these results may aid the development of alternative treatments.10.1093/brain/awy161_video1awy161media15815555971001.
Collapse
Affiliation(s)
- Juho Joutsa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Neurology, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin, Berlin, Germany
| | - Joey Hsu
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Ji G, Ren C, Li Y, Sun J, Liu T, Gao Y, Xue D, Shen L, Cheng W, Zhu C, Tian Y, Hu P, Chen X, Wang K. Regional and network properties of white matter function in Parkinson's disease. Hum Brain Mapp 2019; 40:1253-1263. [PMID: 30414340 PMCID: PMC6865582 DOI: 10.1002/hbm.24444] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with dysfunction in cortices as well as white matter (WM) tracts. While the changes to WM structure have been extensively investigated in PD, the nature of the functional changes to WM remains unknown. In this study, the regional activity and functional connectivity of WM were compared between PD patients (n = 57) and matched healthy controls (n = 52), based on multimodel magnetic resonance imaging data sets. By tract-based spatial statistical analyses of regional activity, patients showed decreased structural-functional coupling in the left corticospinal tract compared to controls. This tract also displayed abnormally increased functional connectivity within the left post-central gyrus and left putamen in PD patients. At the network level, the WM functional network showed small-worldness in both controls and PD patients, yet it was abnormally increased in the latter group. Based on the features of the WM functional connectome, previously un-evaluated individuals could be classified with fair accuracy (73%) and area under the curve of the receiver operating characteristics (75%). These neuroimaging findings provide direct evidence for WM functional changes in PD, which is crucial to understand the functional role of fiber tracts in the pathology of neural circuits.
Collapse
Affiliation(s)
- Gong‐Jun Ji
- Department of Medical Psychology, Chaohu Clinical Medical CollegeAnhui Medical UniversityHefeiChina
| | - Cuiping Ren
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Ying Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Tingting Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Yaxiang Gao
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Dongzhang Xue
- Department of NeurologyThe 123 Hospital of People's Liberation ArmyBengbuChina
| | - Longshan Shen
- Department of ImagingThe Second Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Wen Cheng
- College of Literature and EducationBengbu CollegeBengbuChina
| | - Chunyan Zhu
- Department of Medical Psychology, Chaohu Clinical Medical CollegeAnhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Xianwen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| |
Collapse
|
43
|
Wang J, Yang Z, Zhang M, Shan Y, Rong D, Ma Q, Liu H, Wu X, Li K, Ding Z, Lu J. Disrupted functional connectivity and activity in the white matter of the sensorimotor system in patients with pontine strokes. J Magn Reson Imaging 2018; 49:478-486. [PMID: 30291655 DOI: 10.1002/jmri.26214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/22/2018] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jingjuan Wang
- Department of Nuclear Medicine; Xuanwu Hospital Capital Medical University; Beijing China
| | - Zhipeng Yang
- Department of Computer Science; Chengdu University Information Technology; Chengdu China
- Vanderbilt University Institute of Imaging Science; Nashville Tennessee USA
| | - Miao Zhang
- Department of Radiology; Xuanwu Hospital Capital Medical University; Beijing China
| | - Yi Shan
- Department of Radiology; Xuanwu Hospital Capital Medical University; Beijing China
| | - Dongdong Rong
- Department of Radiology; Xuanwu Hospital Capital Medical University; Beijing China
| | - Qingfeng Ma
- Department of Neurology; Xuanwu Hospital Capital Medical University; Beijing China
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts USA
| | - Xi Wu
- Department of Computer Science; Chengdu University Information Technology; Chengdu China
- Vanderbilt University Institute of Imaging Science; Nashville Tennessee USA
| | - Kuncheng Li
- Department of Radiology; Xuanwu Hospital Capital Medical University; Beijing China
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science; Nashville Tennessee USA
- Department of Electrical Engineering and Computer Science; Vanderbilt University; Nashville Tennessee USA
| | - Jie Lu
- Department of Nuclear Medicine; Xuanwu Hospital Capital Medical University; Beijing China
- Department of Radiology; Xuanwu Hospital Capital Medical University; Beijing China
| |
Collapse
|
44
|
Resting-state white matter-cortical connectivity in non-human primate brain. Neuroimage 2018; 184:45-55. [PMID: 30205207 DOI: 10.1016/j.neuroimage.2018.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 02/03/2023] Open
Abstract
Numerous studies have used functional magnetic resonance imaging (fMRI) to characterize functional connectivity between cortical regions by analyzing correlations in blood oxygenation level dependent (BOLD) signals in a resting state. However, to date, there have been only a handful of studies reporting resting state BOLD signals in white matter. Nonetheless, a growing number of reports has emerged in recent years suggesting white matter BOLD signals can be reliably detected, though their biophysical origins remain unclear. Moreover, recent studies have identified robust correlations in a resting state between signals from cortex and specific white matter tracts. In order to further validate and interpret these findings, we studied a non-human primate model to investigate resting-state connectivity patterns between parcellated cortical volumes and specific white matter bundles. Our results show that resting-state connectivity patterns between white and gray matter structures are not randomly distributed but share notable similarities with diffusion- and histology-derived anatomic connectivities. This suggests that resting-state BOLD correlations between white matter fiber tracts and the gray matter regions to which they connect are directly related to the anatomic arrangement and density of WM fibers. We also measured how different levels of baseline neural activity, induced by varying levels of anesthesia, modulate these patterns. As anesthesia levels were raised, we observed weakened correlation coefficients between specific white matter tracts and gray matter regions while key features of the connectivity pattern remained similar. Overall, results from this study provide further evidence that neural activity is detectable by BOLD fMRI in both gray and white matter throughout the resting brain. The combined use of gray and white matter functional connectivity could also offer refined full-scale functional parcellation of the entire brain to characterize its functional architecture.
Collapse
|
45
|
Voxel-wise detection of functional networks in white matter. Neuroimage 2018; 183:544-552. [PMID: 30144573 DOI: 10.1016/j.neuroimage.2018.08.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 11/24/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) depicts neural activity in the brain indirectly by measuring blood oxygenation level dependent (BOLD) signals. The majority of fMRI studies have focused on detecting cortical activity in gray matter (GM), but whether functional BOLD signal changes also arise in white matter (WM), and whether neural activities trigger hemodynamic changes in WM similarly to GM, remain controversial, particularly in light of the much lower vascular density in WM. However, BOLD effects in WM are readily detected under hypercapnic challenges, and the number of reports supporting reliable detections of stimulus-induced activations in WM continues to grow. Rather than assume a particular hemodynamic response function, we used a voxel-by-voxel analysis of frequency spectra in WM to detect WM activations under visual stimulation, whose locations were validated with fiber tractography using diffusion tensor imaging (DTI). We demonstrate that specific WM regions are robustly activated in response to visual stimulation, and that regional distributions of WM activation are consistent with fiber pathways reconstructed using DTI. We further examined the variation in the concordance between WM activation and fiber density in groups of different sample sizes, and compared the signal profiles of BOLD time series between resting state and visual stimulation conditions in activated GM as well as activated and non-activated WM regions. Our findings confirm that BOLD signal variations in WM are modulated by neural activity and are detectable with conventional fMRI using appropriate methods, thus offering the potential of expanding functional connectivity measurements throughout the brain.
Collapse
|
46
|
Yang Z, He P, Zhou J, Ding Z, Wu X. Functional Informed Fiber Tracking Using Combination of Diffusion and Functional MRI. IEEE Trans Biomed Eng 2018; 66:794-801. [PMID: 30028686 DOI: 10.1109/tbme.2018.2856829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fiber tractography using diffusion weighted MRI (DWI) is a primary tool for mapping structural connectivity in the human brain in vivo. However, this method suffers from a number of inherent limitations that have a significant impact on its capability in faithfully constructing fiber bundles for specific function. In this paper, a novel tractography algorithm combining DWI and functional MRI (fMRI) was proposed. Specifically, a spatio-temporal correlation tensor that characterizes the anisotropy of fMRI signals in white matter was introduced to complement the estimation of fiber orientation density function from DWI. The proposed method has been demonstrated to identify functional pathways implicated in fMRI task. It can effectively follow tracts in the genu of the corpus callosum that connects to the frontal lobe cortex, obtain connections between the thalamus and the anterior insula under sensory simulation, and reconstruct optic radiations in the visual circuit under visual stimulation. Taken together, the method we proposed in this work may benefit our understanding of structure-function relations in the human brain.
Collapse
|
47
|
Zhou Y, Zhang H, Zhang L, Cao X, Yang R, Feng Q, Yap PT, Shen D. Functional MRI registration with tissue-specific patch-based functional correlation tensors. Hum Brain Mapp 2018; 39:2303-2316. [PMID: 29504193 DOI: 10.1002/hbm.24021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/17/2018] [Indexed: 02/01/2023] Open
Abstract
Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) rely on accurate intersubject registration of functional areas. This is typically achieved through registration using high-resolution structural images with more spatial details and better tissue contrast. However, accumulating evidence has suggested that such strategy cannot align functional regions well because functional areas are not necessarily consistent with anatomical structures. To alleviate this problem, a number of registration algorithms based directly on rs-fMRI data have been developed, most of which utilize functional connectivity (FC) features for registration. However, most of these methods usually extract functional features only from the thin and highly curved cortical grey matter (GM), posing great challenges to accurate estimation of whole-brain deformation fields. In this article, we demonstrate that additional useful functional features can also be extracted from the whole brain, not restricted to the GM, particularly the white-matter (WM), for improving the overall functional registration. Specifically, we quantify local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals using tissue-specific patch-based functional correlation tensors (ts-PFCTs) in both GM and WM. Functional registration is then performed by integrating the features from different tissues using the multi-channel large deformation diffeomorphic metric mapping (mLDDMM) algorithm. Experimental results show that our method achieves superior functional registration performance, compared with conventional registration methods.
Collapse
Affiliation(s)
- Yujia Zhou
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina
| | - Lichi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, China.,Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina
| | - Xiaohuan Cao
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina.,School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Ru Yang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina
| | - Qianjin Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina.,Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
48
|
Detection of synchronous brain activity in white matter tracts at rest and under functional loading. Proc Natl Acad Sci U S A 2017; 115:595-600. [PMID: 29282320 DOI: 10.1073/pnas.1711567115] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Functional MRI based on blood oxygenation level-dependent (BOLD) contrast is well established as a neuroimaging technique for detecting neural activity in the cortex of the human brain. While detection and characterization of BOLD signals, as well as their electrophysiological and hemodynamic/metabolic origins, have been extensively studied in gray matter (GM), the detection and interpretation of BOLD signals in white matter (WM) remain controversial. We have previously observed that BOLD signals in a resting state reveal structure-specific anisotropic temporal correlations in WM and that external stimuli alter these correlations and permit visualization of task-specific fiber pathways, suggesting variations in WM BOLD signals are related to neural activity. In this study, we provide further strong evidence that BOLD signals in WM reflect neural activities both in a resting state and under functional loading. We demonstrate that BOLD signal waveforms in stimulus-relevant WM pathways are synchronous with the applied stimuli but with various degrees of time delay and that signals in WM pathways exhibit clear task specificity. Furthermore, resting-state signal fluctuations in WM tracts show significant correlations with specific parcellated GM volumes. These observations support the notion that neural activities are encoded in WM circuits similarly to cortical responses.
Collapse
|
49
|
Chen X, Zhang H, Zhang L, Shen C, Lee SW, Shen D. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Hum Brain Mapp 2017; 38:5019-5034. [PMID: 28665045 DOI: 10.1002/hbm.23711] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 05/11/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
Brain functional connectivity (FC) extracted from resting-state fMRI (RS-fMRI) has become a popular approach for diagnosing various neurodegenerative diseases, including Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). Current studies mainly construct the FC networks between grey matter (GM) regions of the brain based on temporal co-variations of the blood oxygenation level-dependent (BOLD) signals, which reflects the synchronized neural activities. However, it was rarely investigated whether the FC detected within the white matter (WM) could provide useful information for diagnosis. Motivated by the recently proposed functional correlation tensors (FCT) computed from RS-fMRI and used to characterize the structured pattern of local FC in the WM, we propose in this article a novel MCI classification method based on the information conveyed by both the FC between the GM regions and that within the WM regions. Specifically, in the WM, the tensor-based metrics (e.g., fractional anisotropy [FA], similar to the metric calculated based on diffusion tensor imaging [DTI]) are first calculated based on the FCT and then summarized along each of the major WM fiber tracts connecting each pair of the brain GM regions. This could capture the functional information in the WM, in a similar network structure as the FC network constructed for the GM, based only on the same RS-fMRI data. Moreover, a sliding window approach is further used to partition the voxel-wise BOLD signal into multiple short overlapping segments. Then, both the FC and FCT between each pair of the brain regions can be calculated based on the BOLD signal segments in the GM and WM, respectively. In such a way, our method can generate dynamic FC and dynamic FCT to better capture functional information in both GM and WM and further integrate them together by using our developed feature extraction, selection, and ensemble learning algorithms. The experimental results verify that the dynamic FCT can provide valuable functional information in the WM; by combining it with the dynamic FC in the GM, the diagnosis accuracy for MCI subjects can be significantly improved even using RS-fMRI data alone. Hum Brain Mapp 38:5019-5034, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaobo Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lichi Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Celina Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Seong-Whan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|