1
|
Daley L, Saini P, Watters H, Bassil Y, Schumacher EH, Trotti LM, Keilholz S. Altered functional connectivity and spatiotemporal dynamics in individuals with central disorders of hypersomnolence. Front Neurosci 2025; 19:1538479. [PMID: 40201187 PMCID: PMC11975921 DOI: 10.3389/fnins.2025.1538479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Idiopathic hypersomnia (IH) is a sleep disorder characterized by highly disruptive symptoms. Like narcolepsy type 1, a well-characterized sleep disorder, individuals with IH suffer from excessive daytime sleepiness, though there is little overlap in metabolic or neural biomarkers across these two disorders. This lack of common pathophysiology, combined with the clear overlap in symptoms presents an ideal paradigm for better understanding the impact of IH on an individual's functional activity and organization, and potentially, the underlying pathophysiology. Methods This study examines the observed functional connectivity in patients with IH, and patients with narcolepsy type 1 (NT1) against healthy control individuals. Static functional connectivity is compared, as are quasi-periodic patterns, acquired from the BOLD timecourse, for all groups. In addition to baseline data comparison, the study also included a post-nap condition, where the individuals included in this analysis napped for at least 10 min prior to the scanning session, to explore why individuals with IH do not feel "refreshed" after a nap like individuals with NT1 do. Results Assessing the groups' spatiotemporal patterns revealed key differences across both disorders and conditions: static connectivity revealed at baseline higher subcortical connectivity in the NT1 group. There was also observably less connectivity in the IH group both at baseline and post-nap, though none of these static analyses survived multiple comparisons correction to reach significance. The quasi-periodic pattern (QPP) results however found significant differences in the IH group in key networks, particularly the DAN/FPCN correlation is significantly different at baseline vs. post-nap, a trend not observed in either the control or NT1 groups. Conclusion The DAN and FPCN (task-positive correlates) are drastically altered both at baseline and post-nap when compared to the other groups, and may likely be a disorder-specific result. This study demonstrates that key networks for arousal are more heavily disrupted in IH patients, who are less affected by a nap, confirmed through both subject reporting and functional evidence through spatiotemporal patterns.
Collapse
Affiliation(s)
- Lauren Daley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Prabhjyot Saini
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Harrison Watters
- Department of Neuroscience, Emory University, Atlanta, GA, United States
| | - Yasmine Bassil
- Department of Neuroscience, Emory University, Atlanta, GA, United States
| | - Eric H. Schumacher
- Department of Neuroscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Lynn Marie Trotti
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
Watters H, Davis A, Fazili A, Daley L, LaGrow TJ, Schumacher EH, Keilholz S. Infraslow Dynamic Patterns in Human Cortical Networks Track a Spectrum of External to Internal Attention. Hum Brain Mapp 2025; 46:e70049. [PMID: 39980439 PMCID: PMC11843030 DOI: 10.1002/hbm.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 02/22/2025] Open
Abstract
Early efforts to understand the human cerebral cortex focused on localization of function, assigning functional roles to specific brain regions. More recent evidence depicts the cortex as a dynamic system, organized into flexible networks with patterns of spatiotemporal activity corresponding to attentional demands. In functional MRI (fMRI), dynamic analysis of such spatiotemporal patterns is highly promising for providing non-invasive biomarkers of neurodegenerative diseases and neural disorders. However, there is no established neurotypical spectrum to interpret the burgeoning literature of dynamic functional connectivity from fMRI across attentional states. In the present study, we apply dynamic analysis of network-scale spatiotemporal patterns in a range of fMRI datasets across numerous tasks including a left-right moving dot task, visual working memory tasks, congruence tasks, multiple resting state datasets, mindfulness meditators, and subjects watching TV. We find that cortical networks show shifts in dynamic functional connectivity across a spectrum that tracks the level of external to internal attention demanded by these tasks. Dynamics of networks often grouped into a single task positive network show divergent responses along this axis of attention, consistent with evidence that definitions of a single task positive network are misleading. Additionally, somatosensory and visual networks exhibit strong phase shifting along this spectrum of attention. Results were robust on a group and individual level, further establishing network dynamics as a potential individual biomarker. To our knowledge, this represents the first study of its kind to generate a spectrum of dynamic network relationships across such an axis of attention.
Collapse
Affiliation(s)
- Harrison Watters
- Emory Neuroscience Graduate ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Aleah Davis
- Agnes Scott CollegeDecaturGeorgiaUSA
- School of PsychologyGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Abia Fazili
- Emory Neuroscience Graduate ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Lauren Daley
- School of PsychologyGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - T. J. LaGrow
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | | | - Shella Keilholz
- Department of Biomedical EngineeringEmory University/Georgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Xu N, Yousefi B, Anumba N, LaGrow TJ, Zhang X, Keilholz S. QPPLab: A generally applicable software package for detecting, analyzing, and visualizing large-scale quasiperiodic spatiotemporal patterns (QPPs) of brain activity. SOFTWAREX 2025; 29:102067. [PMID: 39973967 PMCID: PMC11839147 DOI: 10.1016/j.softx.2025.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Quasi-periodic patterns (QPPs) are prominent spatiotemporal brain dynamics observed in functional neuroimaging data, reflecting the alternation of high and low activity across brain regions and their propagation along cortical gradients. QPPs have been linked to neural processes such as attention, arousal fluctuations, and cognitive function. Despite their significance, existing QPP analysis tools are limited by study-specific parameters and complex workflows. To address these challenges, we present QPPLab , an open-source MATLAB-based toolbox for detecting, analyzing, and visualizing QPPs from fMRI time series. QPPLab integrates correlation-based iterative algorithms, supports customizable parameter settings, and features automated workflows to simplify analysis. Processing times vary depending on dataset size and the selected mode, with the fast detection mode completing analyses that can be 4-6 times faster than the robust detection mode. Results include spatiotemporal templates of QPPs, sliding correlation time courses, and functional connectivity maps. By reducing manual parameter adjustments and providing user-friendly tools, QPPLab enables researchers to efficiently study QPPs across diverse datasets and species, advancing our understanding of intrinsic brain dynamics.
Collapse
Affiliation(s)
- Nan Xu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Fischell Department of Bioengineering, Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
| | - Behnaz Yousefi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Nmachi Anumba
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Theodore J LaGrow
- Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, United States
| | - Xiaodi Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Xu N, Yousefi B, Anumba N, LaGrow TJ, Zhang X, Keilholz S. QPPLab: A generally applicable software package for detecting, analyzing, and visualizing large-scale quasiperiodic spatiotemporal patterns (QPPs) of brain activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.25.559086. [PMID: 37808706 PMCID: PMC10557593 DOI: 10.1101/2023.09.25.559086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Quasi-periodic patterns (QPPs) are prominent spatiotemporal brain dynamics observed in functional neuroimaging data, reflecting the alternation of high and low activity across brain regions and their propagation along cortical gradients. QPPs have been linked to neural processes such as attention, arousal fluctuations, and cognitive function. Despite their significance, existing QPP analysis tools are limited by study-specific parameters and complex workflows. To address these challenges, we present QPPLab , an open-source MATLAB-based toolbox for detecting, analyzing, and visualizing QPPs from fMRI time series. QPPLab integrates correlation-based iterative algorithms, supports customizable parameter settings, and features automated workflows to simplify analysis. Processing times vary depending on dataset size and the selected mode, with the fast detection mode completing analyses that can be 4-6 times faster than the robust detection mode. Results include spatiotemporal templates of QPPs, sliding correlation time courses, and functional connectivity maps. By reducing manual parameter adjustments and providing user-friendly tools, QPPLab enables researchers to efficiently study QPPs across diverse datasets and species, advancing our understanding of intrinsic brain dynamics.
Collapse
Affiliation(s)
- Nan Xu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Fischell Department of Bioengineering, Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
| | - Behnaz Yousefi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Nmachi Anumba
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Theodore J LaGrow
- Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, United States
| | - Xiaodi Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
5
|
Tuunanen J, Helakari H, Huotari N, Väyrynen T, Järvelä M, Kananen J, Kivipää A, Raitamaa L, Ebrahimi SM, Kallio M, Piispala J, Kiviniemi V, Korhonen V. Cardiovascular and vasomotor pulsations in the brain and periphery during awake and NREM sleep in a multimodal fMRI study. Front Neurosci 2024; 18:1457732. [PMID: 39440186 PMCID: PMC11493778 DOI: 10.3389/fnins.2024.1457732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The cerebrospinal fluid dynamics in the human brain are driven by physiological pulsations, including cardiovascular pulses and very low-frequency (< 0.1 Hz) vasomotor waves. Ultrafast functional magnetic resonance imaging (fMRI) facilitates the simultaneous measurement of these signals from venous and arterial compartments independently with both classical venous blood oxygenation level dependent (BOLD) and faster arterial spin-phase contrast. Methods In this study, we compared the interaction of these two pulsations in awake and sleep using fMRI and peripheral fingertip photoplethysmography in both arterial and venous signals in 10 healthy subjects (5 female). Results Sleep increased the power of brain cardiovascular pulsations, decreased peripheral pulsation, and desynchronized them. However, vasomotor waves increase power and synchronicity in both brain and peripheral signals during sleep. Peculiarly, lag between brain and peripheral vasomotor signals reversed in sleep within the default mode network. Finally, sleep synchronized cerebral arterial vasomotor waves with venous BOLD waves within distinct parasagittal brain tissue. Discussion These changes in power and pulsation synchrony may reflect systemic sleep-related changes in vascular control between the periphery and brain vasculature, while the increased synchrony of arterial and venous compartments may reflect increased convection of regional neurofluids in parasagittal areas in sleep.
Collapse
Affiliation(s)
- Johanna Tuunanen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Heta Helakari
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Niko Huotari
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Tommi Väyrynen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Matti Järvelä
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Janne Kananen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Annastiina Kivipää
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Lauri Raitamaa
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Seyed-Mohsen Ebrahimi
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Mika Kallio
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Johanna Piispala
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Vesa Korhonen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| |
Collapse
|
6
|
Meyer-Baese L, Anumba N, Bolt T, Daley L, LaGrow TJ, Zhang X, Xu N, Pan WJ, Schumacher EH, Keilholz S. Variation in the distribution of large-scale spatiotemporal patterns of activity across brain states. Front Syst Neurosci 2024; 18:1425491. [PMID: 39157289 PMCID: PMC11327057 DOI: 10.3389/fnsys.2024.1425491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
A few large-scale spatiotemporal patterns of brain activity (quasiperiodic patterns or QPPs) account for most of the spatial structure observed in resting state functional magnetic resonance imaging (rs-fMRI). The QPPs capture well-known features such as the evolution of the global signal and the alternating dominance of the default mode and task positive networks. These widespread patterns of activity have plausible ties to neuromodulatory input that mediates changes in nonlocalized processes, including arousal and attention. To determine whether QPPs exhibit variations across brain conditions, the relative magnitude and distribution of the three strongest QPPs were examined in two scenarios. First, in data from the Human Connectome Project, the relative incidence and magnitude of the QPPs was examined over the course of the scan, under the hypothesis that increasing drowsiness would shift the expression of the QPPs over time. Second, using rs-fMRI in rats obtained with a novel approach that minimizes noise, the relative incidence and magnitude of the QPPs was examined under three different anesthetic conditions expected to create distinct types of brain activity. The results indicate that both the distribution of QPPs and their magnitude changes with brain state, evidence of the sensitivity of these large-scale patterns to widespread changes linked to alterations in brain conditions.
Collapse
Affiliation(s)
- Lisa Meyer-Baese
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Nmachi Anumba
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - T. Bolt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - L. Daley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - T. J. LaGrow
- Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Xiaodi Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Nan Xu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Wen-Ju Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - E. H. Schumacher
- Psychology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Shella Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Foster M, Scheinost D. Brain states as wave-like motifs. Trends Cogn Sci 2024; 28:492-503. [PMID: 38582654 DOI: 10.1016/j.tics.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
There is ample evidence of wave-like activity in the brain at multiple scales and levels. This emerging literature supports the broader adoption of a wave perspective of brain activity. Specifically, a brain state can be described as a set of recurring, sequential patterns of propagating brain activity, namely a wave. We examine a collective body of experimental work investigating wave-like properties. Based on these works, we consider brain states as waves using a scale-agnostic framework across time and space. Emphasis is placed on the sequentiality and periodicity associated with brain activity. We conclude by discussing the implications, prospects, and experimental opportunities of this framework.
Collapse
Affiliation(s)
- Maya Foster
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Anumba N, Kelberman MA, Pan W, Marriott A, Zhang X, Xu N, Weinshenker D, Keilholz S. The Effects of Locus Coeruleus Optogenetic Stimulation on Global Spatiotemporal Patterns in Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595327. [PMID: 38826205 PMCID: PMC11142206 DOI: 10.1101/2024.05.23.595327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Whole-brain intrinsic activity as detected by resting-state fMRI can be summarized by three primary spatiotemporal patterns. These patterns have been shown to change with different brain states, especially arousal. The noradrenergic locus coeruleus (LC) is a key node in arousal circuits and has extensive projections throughout the brain, giving it neuromodulatory influence over the coordinated activity of structurally separated regions. In this study, we used optogenetic-fMRI in rats to investigate the impact of LC stimulation on the global signal and three primary spatiotemporal patterns. We report small, spatially specific changes in global signal distribution as a result of tonic LC stimulation, as well as regional changes in spatiotemporal patterns of activity at 5 Hz tonic and 15 Hz phasic stimulation. We also found that LC stimulation had little to no effect on the spatiotemporal patterns detected by complex principal component analysis. These results show that the effects of LC activity on the BOLD signal in rats may be small and regionally concentrated, as opposed to widespread and globally acting.
Collapse
Affiliation(s)
- Nmachi Anumba
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Michael A Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA, United States
- Molecular Cellular and Developmental Biology Department, University of Colorado Boulder, Boulder, CO, United States
| | - Wenju Pan
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Alexia Marriott
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Xiaodi Zhang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Nan Xu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
9
|
Meyer-Baese L, Anumba N, Bolt T, Daley L, LaGrow TJ, Zhang X, Xu N, Pan WJ, Schumacher E, Keilholz S. Variation in the Distribution of Large-scale Spatiotemporal Patterns of Activity Across Brain States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591295. [PMID: 38746246 PMCID: PMC11092498 DOI: 10.1101/2024.04.26.591295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A few large-scale spatiotemporal patterns of brain activity (quasiperiodic patterns or QPPs) account for most of the spatial structure observed in resting state functional magnetic resonance imaging (rs-fMRI). The QPPs capture well-known features such as the evolution of the global signal and the alternating dominance of the default mode and task positive networks. These widespread patterns of activity have plausible ties to neuromodulatory input that mediates changes in nonlocalized processes, including arousal and attention. To determine whether QPPs exhibit variations across brain conditions, the relative magnitude and distribution of the three strongest QPPs were examined in two scenarios. First, in data from the Human Connectome Project, the relative incidence and magnitude of the QPPs was examined over the course of the scan, under the hypothesis that increasing drowsiness would shift the expression of the QPPs over time. Second, using rs-fMRI in rats obtained with a novel approach that minimizes noise, the relative incidence and magnitude of the QPPs was examined under three different anesthetic conditions expected to create distinct types of brain activity. The results indicate that both the distribution of QPPs and their magnitude changes with brain state, evidence of the sensitivity of these large-scale patterns to widespread changes linked to alterations in brain conditions.
Collapse
Affiliation(s)
- Lisa Meyer-Baese
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | - Nmachi Anumba
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | - T Bolt
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | - L Daley
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | - T J LaGrow
- Electrical and Computer Engineering, Georgia Institute of Technology
| | - Xiaodi Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | - Nan Xu
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | - Wen-Ju Pan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | | | - Shella Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| |
Collapse
|
10
|
Watters H, Davis A, Fazili A, Daley L, LaGrow TJ, Schumacher EH, Keilholz S. Infraslow dynamic patterns in human cortical networks track a spectrum of external to internal attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590625. [PMID: 38712098 PMCID: PMC11071428 DOI: 10.1101/2024.04.22.590625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Early efforts to understand the human cerebral cortex focused on localization of function, assigning functional roles to specific brain regions. More recent evidence depicts the cortex as a dynamic system, organized into flexible networks with patterns of spatiotemporal activity corresponding to attentional demands. In functional MRI (fMRI), dynamic analysis of such spatiotemporal patterns is highly promising for providing non-invasive biomarkers of neurodegenerative diseases and neural disorders. However, there is no established neurotypical spectrum to interpret the burgeoning literature of dynamic functional connectivity from fMRI across attentional states. In the present study, we apply dynamic analysis of network-scale spatiotemporal patterns in a range of fMRI datasets across numerous tasks including a left-right moving dot task, visual working memory tasks, congruence tasks, multiple resting state datasets, mindfulness meditators, and subjects watching TV. We find that cortical networks show shifts in dynamic functional connectivity across a spectrum that tracks the level of external to internal attention demanded by these tasks. Dynamics of networks often grouped into a single task positive network show divergent responses along this axis of attention, consistent with evidence that definitions of a single task positive network are misleading. Additionally, somatosensory and visual networks exhibit strong phase shifting along this spectrum of attention. Results were robust on a group and individual level, further establishing network dynamics as a potential individual biomarker. To our knowledge, this represents the first study of its kind to generate a spectrum of dynamic network relationships across such an axis of attention.
Collapse
Affiliation(s)
| | - Aleah Davis
- Agnes Scott College
- Georgia Institute of Technology School of Psychology
| | | | - Lauren Daley
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | - TJ LaGrow
- Georgia Institute of Technology School of Electrical and Computer Engineering
| | | | - Shella Keilholz
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| |
Collapse
|
11
|
Watters H, Fazili A, Daley L, Belden A, LaGrow TJ, Bolt T, Loui P, Keilholz S. Creative tempo: Spatiotemporal dynamics of the default mode network in improvisational musicians. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588391. [PMID: 38645080 PMCID: PMC11030431 DOI: 10.1101/2024.04.07.588391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intrinsic dynamics of human brain activity display a recurring pattern of anti-correlated activity between the default mode network (DMN), associated with internal processing and mentation, and task positive regions, associated with externally directed attention. In human functional magnetic resonance imaging (fMRI) data, this anti-correlated pattern is detectable on the infraslow timescale (<0.1 Hz) as a quasi-periodic pattern (QPP). While the DMN is implicated in creativity and musicality in traditional time-averaged functional connectivity studies, no one has yet explored how creative training may alter dynamic spatiotemporal patterns involving the DMN such as QPPs. In the present study, we compare the outputs of two QPP detection approaches, sliding window algorithm and complex principal components analysis (cPCA). We apply both methods to an existing dataset of musicians captured with resting state fMRI, grouped as either classical, improvisational, or minimally trained non-musicians. The original time-averaged functional connectivity (FC) analysis of this dataset used improvisation as a proxy for creative thinking and found that the DMN and visual networks (VIS) display higher connectivity in improvisational musicians. We expand upon this dataset's original study and find that QPP analysis detects convergent results at the group level with both methods. In improvisational musicians, dynamic functional correlation in the group-averaged QPP was found to be increased between the DMN-VIS and DMN-FPN for both the QPP algorithm and complex principal components analysis (cPCA) methods. Additionally, we found an unexpected increase in FC in the group-averaged QPP between the dorsal attention network and amygdala in improvisational musicians; this result was not reported in the original seed-based study of this dataset. The current study represents a novel application of two dynamic FC detection methods with results that replicate and expand upon previous seed-based FC findings. The results show the robustness of both the QPP phenomenon and its detection methods. This study also demonstrates the value of dynamic FC methods in reproducing seed-based findings and their promise in detecting group-wise or individual differences that may be missed by traditional seed-based resting state fMRI studies.
Collapse
Affiliation(s)
| | | | - Lauren Daley
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | | | - T J LaGrow
- Georgia Institute of Technology School of Electrical and Computer Engineering
| | - Taylor Bolt
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | | | - Shella Keilholz
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| |
Collapse
|
12
|
De Waegenaere S, van den Berg M, Keliris GA, Adhikari MH, Verhoye M. Early altered directionality of resting brain network state transitions in the TgF344-AD rat model of Alzheimer's disease. Front Hum Neurosci 2024; 18:1379923. [PMID: 38646161 PMCID: PMC11026683 DOI: 10.3389/fnhum.2024.1379923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease resulting in memory loss and cognitive decline. Synaptic dysfunction is an early hallmark of the disease whose effects on whole-brain functional architecture can be identified using resting-state functional MRI (rsfMRI). Insights into mechanisms of early, whole-brain network alterations can help our understanding of the functional impact of AD's pathophysiology. Methods Here, we obtained rsfMRI data in the TgF344-AD rat model at the pre- and early-plaque stages. This model recapitulates the major pathological and behavioral hallmarks of AD. We used co-activation pattern (CAP) analysis to investigate if and how the dynamic organization of intrinsic brain functional networks states, undetectable by earlier methods, is altered at these early stages. Results We identified and characterized six intrinsic brain states as CAPs, their spatial and temporal features, and the transitions between the different states. At the pre-plaque stage, the TgF344-AD rats showed reduced co-activation of hub regions in the CAPs corresponding to the default mode-like and lateral cortical network. Default mode-like network activity segregated into two distinct brain states, with one state characterized by high co-activation of the basal forebrain. This basal forebrain co-activation was reduced in TgF344-AD animals mainly at the pre-plaque stage. Brain state transition probabilities were altered at the pre-plaque stage between states involving the default mode-like network, lateral cortical network, and basal forebrain regions. Additionally, while the directionality preference in the network-state transitions observed in the wild-type animals at the pre-plaque stage had diminished at the early-plaque stage, TgF344-AD animals continued to show directionality preference at both stages. Discussion Our study enhances the understanding of intrinsic brain state dynamics and how they are impacted at the early stages of AD, providing a nuanced characterization of the early, functional impact of the disease's neurodegenerative process.
Collapse
Affiliation(s)
- Sam De Waegenaere
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Monica van den Berg
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | - Mohit H. Adhikari
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Seeburger DT, Xu N, Ma M, Larson S, Godwin C, Keilholz SD, Schumacher EH. Time-varying functional connectivity predicts fluctuations in sustained attention in a serial tapping task. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:111-125. [PMID: 38253775 PMCID: PMC10979291 DOI: 10.3758/s13415-024-01156-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
The mechanisms for how large-scale brain networks contribute to sustained attention are unknown. Attention fluctuates from moment to moment, and this continuous change is consistent with dynamic changes in functional connectivity between brain networks involved in the internal and external allocation of attention. In this study, we investigated how brain network activity varied across different levels of attentional focus (i.e., "zones"). Participants performed a finger-tapping task, and guided by previous research, in-the-zone performance or state was identified by low reaction time variability and out-of-the-zone as the inverse. In-the-zone sessions tended to occur earlier in the session than out-of-the-zone blocks. This is unsurprising given the way attention fluctuates over time. Employing a novel method of time-varying functional connectivity, called the quasi-periodic pattern analysis (i.e., reliable, network-level low-frequency fluctuations), we found that the activity between the default mode network (DMN) and task positive network (TPN) is significantly more anti-correlated during in-the-zone states versus out-of-the-zone states. Furthermore, it is the frontoparietal control network (FPCN) switch that differentiates the two zone states. Activity in the dorsal attention network (DAN) and DMN were desynchronized across both zone states. During out-of-the-zone periods, FPCN synchronized with DMN, while during in-the-zone periods, FPCN switched to synchronized with DAN. In contrast, the ventral attention network (VAN) synchronized more closely with DMN during in-the-zone periods compared with out-of-the-zone periods. These findings demonstrate that time-varying functional connectivity of low frequency fluctuations across different brain networks varies with fluctuations in sustained attention or other processes that change over time.
Collapse
Affiliation(s)
- Dolly T Seeburger
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Nan Xu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Marcus Ma
- College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sam Larson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Christine Godwin
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shella D Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Eric H Schumacher
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
14
|
Xiang J, Sun Y, Wu X, Guo Y, Xue J, Niu Y, Cui X. Abnormal Spatial and Temporal Overlap of Time-Varying Brain Functional Networks in Patients with Schizophrenia. Brain Sci 2023; 14:40. [PMID: 38248255 PMCID: PMC10813230 DOI: 10.3390/brainsci14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Schizophrenia (SZ) is a complex psychiatric disorder with unclear etiology and pathological features. Neuroscientists are increasingly proposing that schizophrenia is an abnormality in the dynamic organization of brain networks. Previous studies have found that the dynamic brain networks of people with SZ are abnormal in both space and time. However, little is known about the interactions and overlaps between hubs of the brain underlying spatiotemporal dynamics. In this study, we aimed to investigate different patterns of spatial and temporal overlap of hubs between SZ patients and healthy individuals. Specifically, we obtained resting-state functional magnetic resonance imaging data from the public dataset for 43 SZ patients and 49 healthy individuals. We derived a representation of time-varying functional connectivity using the Jackknife Correlation (JC) method. We employed the Betweenness Centrality (BC) method to identify the hubs of the brain's functional connectivity network. We then applied measures of temporal overlap, spatial overlap, and hierarchical clustering to investigate differences in the organization of brain hubs between SZ patients and healthy controls. Our findings suggest significant differences between SZ patients and healthy controls at the whole-brain and subnetwork levels. Furthermore, spatial overlap and hierarchical clustering analysis showed that quasi-periodic patterns were disrupted in SZ patients. Analyses of temporal overlap revealed abnormal pairwise engagement preferences in the hubs of SZ patients. These results provide new insights into the dynamic characteristics of the network organization of the SZ brain.
Collapse
Affiliation(s)
- Jie Xiang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Yumeng Sun
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Xubin Wu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Yuxiang Guo
- School of Software, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Jiayue Xue
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Yan Niu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Xiaohong Cui
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| |
Collapse
|
15
|
Pagani M, Gutierrez-Barragan D, de Guzman AE, Xu T, Gozzi A. Mapping and comparing fMRI connectivity networks across species. Commun Biol 2023; 6:1238. [PMID: 38062107 PMCID: PMC10703935 DOI: 10.1038/s42003-023-05629-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Technical advances in neuroimaging, notably in fMRI, have allowed distributed patterns of functional connectivity to be mapped in the human brain with increasing spatiotemporal resolution. Recent years have seen a growing interest in extending this approach to rodents and non-human primates to understand the mechanism of fMRI connectivity and complement human investigations of the functional connectome. Here, we discuss current challenges and opportunities of fMRI connectivity mapping across species. We underscore the critical importance of physiologically decoding neuroimaging measures of brain (dys)connectivity via multiscale mechanistic investigations in animals. We next highlight a set of general principles governing the organization of mammalian connectivity networks across species. These include the presence of evolutionarily conserved network systems, a dominant cortical axis of functional connectivity, and a common repertoire of topographically conserved fMRI spatiotemporal modes. We finally describe emerging approaches allowing comparisons and extrapolations of fMRI connectivity findings across species. As neuroscientists gain access to increasingly sophisticated perturbational, computational and recording tools, cross-species fMRI offers novel opportunities to investigate the large-scale organization of the mammalian brain in health and disease.
Collapse
Affiliation(s)
- Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - A Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ting Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute, New York, NY, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
16
|
Xu N, Smith DM, Jeno G, Seeburger DT, Schumacher EH, Keilholz SD. The interaction between random and systematic visual stimulation and infraslow quasiperiodic spatiotemporal patterns of whole brain activity. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-19. [PMID: 37701786 PMCID: PMC10494556 DOI: 10.1162/imag_a_00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 05/14/2023] [Indexed: 09/14/2023]
Abstract
One prominent feature of the infraslow BOLD signal during rest or task is quasi-periodic spatiotemporal pattern (QPP) of signal changes that involves an alternation of activity in key functional networks and propagation of activity across brain areas, and that is known to tie to the infraslow neural activity involved in attention and arousal fluctuations. This ongoing whole-brain pattern of activity might potentially modify the response to incoming stimuli or be modified itself by the induced neural activity. To investigate this, we presented checkerboard sequences flashing at 6Hz to subjects. This is a salient visual stimulus that is known to produce a strong response in visual processing regions. Two different visual stimulation sequences were employed, a systematic stimulation sequence in which the visual stimulus appeared every 20.3 secs and a random stimulation sequence in which the visual stimulus occurred randomly every 14~62.3 secs. Three central observations emerged. First, the two different stimulation conditions affect the QPP waveform in different aspects, i.e., systematic stimulation has greater effects on its phase and random stimulation has greater effects on its magnitude. Second, the QPP was more frequent in the systematic condition with significantly shorter intervals between consecutive QPPs compared to the random condition. Third, the BOLD signal response to the visual stimulus across both conditions was swamped by the QPP at the stimulus onset. These results provide novel insights into the relationship between intrinsic patterns and stimulated brain activity.
Collapse
Affiliation(s)
- Nan Xu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Derek M. Smith
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - George Jeno
- School of Computer Science, Georgia Institute of Technology, Atlanta, GA, United States
| | - Dolly T. Seeburger
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Eric H. Schumacher
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Shella D. Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
17
|
Xu N, Smith DM, Jeno G, Seeburger DT, Schumacher EH, Keilholz SD. The interaction between random and systematic visual stimulation and infraslow quasiperiodic spatiotemporal patterns of whole brain activity. Neuroimage 2023:120165. [PMID: 37172663 DOI: 10.1016/j.neuroimage.2023.120165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
One prominent feature of the infraslow BOLD signal during rest or task is quasi-periodic spatiotemporal pattern (QPP) of signal changes that involves an alternation of activity in key functional networks and propagation of activity across brain areas, and that is known to tie to the infraslow neural activity involved in attention and arousal fluctuations. This ongoing whole-brain pattern of activity might potentially modify the response to incoming stimuli or be modified itself by the induced neural activity. To investigate this, we presented checkerboard sequences flashing at 6Hz to subjects. This is a salient visual stimulus that is known to produce a strong response in visual processing regions. Two different visual stimulation sequences were employed, a systematic stimulation sequence in which the visual stimulus appeared every 20.3 secs and a random stimulation sequence in which the visual stimulus occurred randomly every 14∼62.3 secs. Three central observations emerged. First, the two different stimulation conditions affect the QPP waveform in different aspects, i.e., systematic stimulation has greater effects on its phase and random stimulation has greater effects on its magnitude. Second, the QPP was more frequent in the systematic condition with significantly shorter intervals between consecutive QPPs compared to the random condition. Third, the BOLD signal response to the visual stimulus across both conditions was swamped by the QPP at the stimulus onset. These results provide novel insights into the relationship between intrinsic patterns and stimulated brain activity.
Collapse
Affiliation(s)
- Nan Xu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Derek M Smith
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States; Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - George Jeno
- School of Computer Science, Georgia Institute of Technology, Atlanta, GA, United States
| | - Dolly T Seeburger
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Eric H Schumacher
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Shella D Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
18
|
Wang S, Chang C. Complex topology meets simple statistics. Nat Neurosci 2023; 26:732-734. [PMID: 37095400 DOI: 10.1038/s41593-023-01295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Affiliation(s)
- Shiyu Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
19
|
Gozzi A, Zerbi V. Modeling Brain Dysconnectivity in Rodents. Biol Psychiatry 2023; 93:419-429. [PMID: 36517282 DOI: 10.1016/j.biopsych.2022.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
Altered or atypical functional connectivity as measured with functional magnetic resonance imaging (fMRI) is a hallmark feature of brain connectopathy in psychiatric, developmental, and neurological disorders. However, the biological underpinnings and etiopathological significance of this phenomenon remain unclear. The recent development of MRI-based techniques for mapping brain function in rodents provides a powerful platform to uncover the determinants of functional (dys)connectivity, whether they are genetic mutations, environmental risk factors, or specific cellular and circuit dysfunctions. Here, we summarize the recent contribution of rodent fMRI toward a deeper understanding of network dysconnectivity in developmental and psychiatric disorders. We highlight substantial correspondences in the spatiotemporal organization of rodent and human fMRI networks, supporting the translational relevance of this approach. We then show how this research platform might help us comprehend the importance of connectional heterogeneity in complex brain disorders and causally relate multiscale pathogenic contributors to functional dysconnectivity patterns. Finally, we explore how perturbational techniques can be used to dissect the fundamental aspects of fMRI coupling and reveal the causal contribution of neuromodulatory systems to macroscale network activity, as well as its altered dynamics in brain diseases. These examples outline how rodent functional imaging is poised to advance our understanding of the bases and determinants of human functional dysconnectivity.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering, École polytechnique fédérale de Lausanne, Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
| |
Collapse
|
20
|
Cabral J, Fernandes FF, Shemesh N. Intrinsic macroscale oscillatory modes driving long range functional connectivity in female rat brains detected by ultrafast fMRI. Nat Commun 2023; 14:375. [PMID: 36746938 PMCID: PMC9902553 DOI: 10.1038/s41467-023-36025-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals correlate across distant brain areas, shaping functionally relevant intrinsic networks. However, the generative mechanism of fMRI signal correlations, and in particular the link with locally-detected ultra-slow oscillations, are not fully understood. To investigate this link, we record ultrafast ultrahigh field fMRI signals (9.4 Tesla, temporal resolution = 38 milliseconds) from female rats across three anesthesia conditions. Power at frequencies extending up to 0.3 Hz is detected consistently across rat brains and is modulated by anesthesia level. Principal component analysis reveals a repertoire of modes, in which transient oscillations organize with fixed phase relationships across distinct cortical and subcortical structures. Oscillatory modes are found to vary between conditions, resonating at faster frequencies under medetomidine sedation and reducing both in number, frequency, and duration with the addition of isoflurane. Peaking in power within clear anatomical boundaries, these oscillatory modes point to an emergent systemic property. This work provides additional insight into the origin of oscillations detected in fMRI and the organizing principles underpinning spontaneous long-range functional connectivity.
Collapse
Affiliation(s)
- Joana Cabral
- Preclinical MRI Lab, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Francisca F Fernandes
- Preclinical MRI Lab, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Preclinical MRI Lab, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
21
|
Tena A, Clarià F, Solsona F, Povedano M. Voiceprint and machine learning models for early detection of bulbar dysfunction in ALS. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107309. [PMID: 36549252 DOI: 10.1016/j.cmpb.2022.107309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/02/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Bulbar dysfunction is a term used in amyotrophic lateral sclerosis (ALS). It refers to motor neuron disability in the corticobulbar area of the brainstem which leads to a dysfunction of speech and swallowing. One of the earliest symptoms of bulbar dysfunction is voice deterioration characterized by grossly defective articulation, extremely slow laborious speech, marked hypernasality and severe harshness. Recently, research efforts have focused on voice analysis to capture this dysfunction. The main aim of this paper is to provide a new methodology to diagnose this dysfunction automatically at early stages of the disease, earlier than clinicians can do. METHODS The study focused on the creation of a voiceprint consisting of a pattern generated from the quasi-periodic components of a steady portion of the five Spanish vowels and the computation of the five principal and independent components of this pattern. Then, a set of statistically significant features was obtained using multivariate analysis of variance and the outcomes of the most common supervised classification models were obtained. RESULTS The best model (random forest) obtained an accuracy, sensitivity and specificity of 88.3%, 85.0% and 95.0% respectively when classifying bulbar vs. control participants but the results worsened when classifying bulbar vs. no-bulbar patients (accuracy, sensitivity and specificity of 78.7%, 80.0% and 77.5% respectively for support vector machines). Due to the great uncertainty found in the annotated corpus of the ALS patients without bulbar involvement, we used a safe semi-supervised support vector machine to relabel the ALS participants diagnosed without bulbar involvement as bulbar and no-bulbar. The performance of the results obtained increased, especially when classifying bulbar and no-bulbar patients obtaining an accuracy, sensitivity and specificity of 91.0%, 83.3% and 100.0% respectively for support vector machines. This demonstrates that our model can improve the diagnosis of bulbar dysfunction compared not only with clinicians, but also the methods published to date. CONCLUSIONS The results obtained demonstrate the efficiency and applicability of the methodology presented in this paper. It may lead to the development of a cheap and easy-to-use tool to identify this dysfunction in early stages of the disease and monitor progress.
Collapse
Affiliation(s)
- Alberto Tena
- CIMNE. Building C1, North Campus, UPC. Gran Capità, Barcelona 08034, Spain; Department of Computer Science and Industrial Engineering, University of Lleida, Lleida, 25001 Spain.
| | - Francesc Clarià
- Department of Computer Science and Industrial Engineering, University of Lleida, Lleida, 25001 Spain.
| | - Francesc Solsona
- Department of Computer Science and Industrial Engineering, University of Lleida, Lleida, 25001 Spain.
| | - Mónica Povedano
- Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet, Barcelona, Spain.
| |
Collapse
|
22
|
Zhang J, Northoff G. Beyond noise to function: reframing the global brain activity and its dynamic topography. Commun Biol 2022; 5:1350. [PMID: 36481785 PMCID: PMC9732046 DOI: 10.1038/s42003-022-04297-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
How global and local activity interact with each other is a common question in complex systems like climate and economy. Analogously, the brain too displays 'global' activity that interacts with local-regional activity and modulates behavior. The brain's global activity, investigated as global signal in fMRI, so far, has mainly been conceived as non-neuronal noise. We here review the findings from healthy and clinical populations to demonstrate the neural basis and functions of global signal to brain and behavior. We show that global signal (i) is closely coupled with physiological signals and modulates the arousal level; and (ii) organizes an elaborated dynamic topography and coordinates the different forms of cognition. We also postulate a Dual-Layer Model including both background and surface layers. Together, the latest evidence strongly suggests the need to go beyond the view of global signal as noise by embracing a dual-layer model with background and surface layer.
Collapse
Affiliation(s)
- Jianfeng Zhang
- grid.263488.30000 0001 0472 9649Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China ,grid.263488.30000 0001 0472 9649School of Psychology, Shenzhen University, Shenzhen, China
| | - Georg Northoff
- grid.13402.340000 0004 1759 700XMental Health Center, Zhejiang University School of Medicine, Hangzhou, China ,grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, Canada ,grid.410595.c0000 0001 2230 9154Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
23
|
Khalilzad Sharghi V, Maltbie EA, Pan WJ, Keilholz SD, Gopinath KS. Selective blockade of rat brain T-type calcium channels provides insights on neurophysiological basis of arousal dependent resting state functional magnetic resonance imaging signals. Front Neurosci 2022; 16:909999. [PMID: 36003960 PMCID: PMC9393715 DOI: 10.3389/fnins.2022.909999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
A number of studies point to slow (0.1–2 Hz) brain rhythms as the basis for the resting-state functional magnetic resonance imaging (rsfMRI) signal. Slow waves exist in the absence of stimulation, propagate across the cortex, and are strongly modulated by vigilance similar to large portions of the rsfMRI signal. However, it is not clear if slow rhythms serve as the basis of all neural activity reflected in rsfMRI signals, or just the vigilance-dependent components. The rsfMRI data exhibit quasi-periodic patterns (QPPs) that appear to increase in strength with decreasing vigilance and propagate across the brain similar to slow rhythms. These QPPs can complicate the estimation of functional connectivity (FC) via rsfMRI, either by existing as unmodeled signal or by inducing additional wide-spread correlation between voxel-time courses of functionally connected brain regions. In this study, we examined the relationship between cortical slow rhythms and the rsfMRI signal, using a well-established pharmacological model of slow wave suppression. Suppression of cortical slow rhythms led to significant reduction in the amplitude of QPPs but increased rsfMRI measures of intrinsic FC in rats. The results suggest that cortical slow rhythms serve as the basis of only the vigilance-dependent components (e.g., QPPs) of rsfMRI signals. Further attenuation of these non-specific signals enhances delineation of brain functional networks.
Collapse
Affiliation(s)
- Vahid Khalilzad Sharghi
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Eric A. Maltbie
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Wen-Ju Pan
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Kaundinya S. Gopinath
- Department of Radiology & Imaging Sciences, Emory University, Atlanta, GA, United States
- *Correspondence: Kaundinya S. Gopinath,
| |
Collapse
|
24
|
Bolt T, Nomi JS, Bzdok D, Salas JA, Chang C, Thomas Yeo BT, Uddin LQ, Keilholz SD. A parsimonious description of global functional brain organization in three spatiotemporal patterns. Nat Neurosci 2022; 25:1093-1103. [PMID: 35902649 DOI: 10.1038/s41593-022-01118-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Resting-state functional magnetic resonance imaging (MRI) has yielded seemingly disparate insights into large-scale organization of the human brain. The brain's large-scale organization can be divided into two broad categories: zero-lag representations of functional connectivity structure and time-lag representations of traveling wave or propagation structure. In this study, we sought to unify observed phenomena across these two categories in the form of three low-frequency spatiotemporal patterns composed of a mixture of standing and traveling wave dynamics. We showed that a range of empirical phenomena, including functional connectivity gradients, the task-positive/task-negative anti-correlation pattern, the global signal, time-lag propagation patterns, the quasiperiodic pattern and the functional connectome network structure, are manifestations of these three spatiotemporal patterns. These patterns account for much of the global spatial structure that underlies functional connectivity analyses and unifies phenomena in resting-state functional MRI previously thought distinct.
Collapse
Affiliation(s)
- Taylor Bolt
- Emory University/Georgia Institute of Technology, Atlanta, GA, USA. .,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jason S Nomi
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danilo Bzdok
- The Neuro (Montreal Neurological Institute), McGill University & Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Jorge A Salas
- Departments of Electrical and Computer Engineering, Computer Science, and Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Catie Chang
- Departments of Electrical and Computer Engineering, Computer Science, and Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - B T Thomas Yeo
- Department of Electrical & Computer Engineering, Centre for Translational MR Research, Centre for Sleep & Cognition, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
25
|
Khan AF, Zhang F, Shou G, Yuan H, Ding L. Transient brain-wide coactivations and structured transitions revealed in hemodynamic imaging data. Neuroimage 2022; 260:119460. [PMID: 35868615 PMCID: PMC9472706 DOI: 10.1016/j.neuroimage.2022.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Brain-wide patterns in resting human brains, as either structured functional connectivity (FC) or recurring brain states, have been widely studied in the neuroimaging literature. In particular, resting-state FCs estimated over windowed timeframe neuroimaging data from sub-minutes to minutes using correlation or blind source separation techniques have reported many brain-wide patterns of significant behavioral and disease correlates. The present pilot study utilized a novel whole-head cap-based high-density diffuse optical tomography (DOT) technology, together with data-driven analysis methods, to investigate recurring transient brain-wide patterns in spontaneous fluctuations of hemodynamic signals at the resolution of single timeframes from thirteen healthy adults in resting conditions. Our results report that a small number, i.e., six, of brain-wide coactivation patterns (CAPs) describe major spatiotemporal dynamics of spontaneous hemodynamic signals recorded by DOT. These CAPs represent recurring brain states, showing spatial topographies of hemispheric symmetry, and exhibit highly anticorrelated pairs. Moreover, a structured transition pattern among the six brain states is identified, where two CAPs with anterior-posterior spatial patterns are significantly involved in transitions among all brain states. Our results further elucidate two brain states of global positive and negative patterns, indicating transient neuronal coactivations and co-deactivations, respectively, over the entire cortex. We demonstrate that these two brain states are responsible for the generation of a subset of peaks and troughs in global signals (GS), supporting the recent reports on neuronal relevance of hemodynamic GS. Collectively, our results suggest that transient neuronal events (i.e., CAPs), global brain activity, and brain-wide structured transitions co-exist in humans and these phenomena are closely related, which extend the observations of similar neuronal events recently reported in animal hemodynamic data. Future studies on the quantitative relationship among these transient events and their relationships to windowed FCs along with larger sample size are needed to understand their changes with behaviors and diseased conditions.
Collapse
Affiliation(s)
- Ali Fahim Khan
- Stephenson School of Biomedical Engineering, University of Oklahoma, 110 W. Boyd St. DEH room 150, Norman, OK 73019, USA
| | - Fan Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 110 W. Boyd St. DEH room 150, Norman, OK 73019, USA
| | - Guofa Shou
- Stephenson School of Biomedical Engineering, University of Oklahoma, 110 W. Boyd St. DEH room 150, Norman, OK 73019, USA
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, 110 W. Boyd St. DEH room 150, Norman, OK 73019, USA; Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, USA
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, 110 W. Boyd St. DEH room 150, Norman, OK 73019, USA; Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, USA.
| |
Collapse
|
26
|
Brain-wide neural co-activations in resting human. Neuroimage 2022; 260:119461. [PMID: 35820583 PMCID: PMC9472753 DOI: 10.1016/j.neuroimage.2022.119461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 06/03/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Spontaneous neural activity in human as assessed with resting-state functional magnetic resonance imaging (fMRI) exhibits brain-wide coordinated patterns in the frequency of < 0.1 Hz. However, understanding of fast brain-wide networks at the timescales of neuronal events (milliseconds to sub-seconds) and their spatial, spectral, and transitional characteristics remain limited due to the temporal constraints of hemodynamic signals. With milli-second resolution and whole-head coverage, scalp-based electroencephalography (EEG) provides a unique window into brain-wide networks with neuronal-timescale dynamics, shedding light on the organizing principles of brain functions. Using the state-of-the-art signal processing techniques, we reconstructed cortical neural tomography from resting-state EEG and extracted component-based co-activation patterns (cCAPs). These cCAPs revealed brain-wide intrinsic networks and their dynamics, indicating the configuration/reconfiguration of resting human brains into recurring and transitional functional states, which are featured with the prominent spatial phenomena of global patterns and anti-state pairs of co-(de)activations. Rich oscillational structures across a wide frequency band (i.e., 0.6 Hz, 5 Hz, and 10 Hz) were embedded in the nonstationary dynamics of these functional states. We further identified a superstructure that regulated between-state immediate and long-range transitions involving the entire set of identified cCAPs and governed a significant aspect of brain-wide network dynamics. These findings demonstrated how resting-state EEG data can be functionally decomposed using cCAPs to reveal rich dynamic structures of brain-wide human neural activations.
Collapse
|
27
|
Bloom PA, VanTieghem M, Gabard‐Durnam L, Gee DG, Flannery J, Caldera C, Goff B, Telzer EH, Humphreys KL, Fareri DS, Shapiro M, Algharazi S, Bolger N, Aly M, Tottenham N. Age-related change in task-evoked amygdala-prefrontal circuitry: A multiverse approach with an accelerated longitudinal cohort aged 4-22 years. Hum Brain Mapp 2022; 43:3221-3244. [PMID: 35393752 PMCID: PMC9188973 DOI: 10.1002/hbm.25847] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022] Open
Abstract
The amygdala and its connections with medial prefrontal cortex (mPFC) play central roles in the development of emotional processes. While several studies have suggested that this circuitry exhibits functional changes across the first two decades of life, findings have been mixed - perhaps resulting from differences in analytic choices across studies. Here we used multiverse analyses to examine the robustness of task-based amygdala-mPFC function findings to analytic choices within the context of an accelerated longitudinal design (4-22 years-old; N = 98; 183 scans; 1-3 scans/participant). Participants recruited from the greater Los Angeles area completed an event-related emotional face (fear, neutral) task. Parallel analyses varying in preprocessing and modeling choices found that age-related change estimates for amygdala reactivity were more robust than task-evoked amygdala-mPFC functional connectivity to varied analytical choices. Specification curves indicated evidence for age-related decreases in amygdala reactivity to faces, though within-participant changes in amygdala reactivity could not be differentiated from between-participant differences. In contrast, amygdala-mPFC functional connectivity results varied across methods much more, and evidence for age-related change in amygdala-mPFC connectivity was not consistent. Generalized psychophysiological interaction (gPPI) measurements of connectivity were especially sensitive to whether a deconvolution step was applied. Our findings demonstrate the importance of assessing the robustness of findings to analysis choices, although the age-related changes in our current work cannot be overinterpreted given low test-retest reliability. Together, these findings highlight both the challenges in estimating developmental change in longitudinal cohorts and the value of multiverse approaches in developmental neuroimaging for assessing robustness of results.
Collapse
Affiliation(s)
| | | | | | - Dylan G. Gee
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
| | | | - Christina Caldera
- Department of PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Bonnie Goff
- Department of PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Eva H. Telzer
- University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | | | | | - Sameah Algharazi
- Department of PsychologyCity College of New YorkNew YorkNew YorkUSA
| | - Niall Bolger
- Department of PsychologyColumbia UniversityNew YorkNew YorkUSA
| | - Mariam Aly
- Department of PsychologyColumbia UniversityNew YorkNew YorkUSA
| | - Nim Tottenham
- Department of PsychologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
28
|
Weber I, Oehrn CR. NoLiTiA: An Open-Source Toolbox for Non-linear Time Series Analysis. Front Neuroinform 2022; 16:876012. [PMID: 35811996 PMCID: PMC9263366 DOI: 10.3389/fninf.2022.876012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In many scientific fields including neuroscience, climatology or physics, complex relationships can be described most parsimoniously by non-linear mechanics. Despite their relevance, many neuroscientists still apply linear estimates in order to evaluate complex interactions. This is partially due to the lack of a comprehensive compilation of non-linear methods. Available packages mostly specialize in only one aspect of non-linear time-series analysis and most often require some coding proficiency to use. Here, we introduce NoLiTiA, a free open-source MATLAB toolbox for non-linear time series analysis. In comparison to other currently available non-linear packages, NoLiTiA offers (1) an implementation of a broad range of classic and recently developed methods, (2) an implementation of newly proposed spatially and time-resolved recurrence amplitude analysis and (3) an intuitive environment accessible even to users with little coding experience due to a graphical user interface and batch-editor. The core methodology derives from three distinct fields of complex systems theory, including dynamical systems theory, recurrence quantification analysis and information theory. Besides established methodology including estimation of dynamic invariants like Lyapunov exponents and entropy-based measures, such as active information storage, we include recent developments of quantifying time-resolved aperiodic oscillations. In general, the toolbox will make non-linear methods accessible to the broad neuroscientific community engaged in time series processing.
Collapse
Affiliation(s)
- Immo Weber
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Carina R. Oehrn
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
29
|
Maltbie E, Yousefi B, Zhang X, Kashyap A, Keilholz S. Comparison of Resting-State Functional MRI Methods for Characterizing Brain Dynamics. Front Neural Circuits 2022; 16:681544. [PMID: 35444518 PMCID: PMC9013751 DOI: 10.3389/fncir.2022.681544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Resting-state functional MRI (fMRI) exhibits time-varying patterns of functional connectivity. Several different analysis approaches have been developed for examining these resting-state dynamics including sliding window connectivity (SWC), phase synchrony (PS), co-activation pattern (CAP), and quasi-periodic patterns (QPP). Each of these approaches can be used to generate patterns of activity or inter-areal coordination which vary across time. The individual frames can then be clustered to produce temporal groupings commonly referred to as “brain states.” Several recent publications have investigated brain state alterations in clinical populations, typically using a single method for quantifying frame-wise functional connectivity. This study directly compares the results of k-means clustering in conjunction with three of these resting-state dynamics methods (SWC, CAP, and PS) and quantifies the brain state dynamics across several metrics using high resolution data from the human connectome project. Additionally, these three dynamics methods are compared by examining how the brain state characterizations vary during the repeated sequences of brain states identified by a fourth dynamic analysis method, QPP. The results indicate that the SWC, PS, and CAP methods differ in the clusters and trajectories they produce. A clear illustration of these differences is given by how each one results in a very different clustering profile for the 24s sequences explicitly identified by the QPP algorithm. PS clustering is sensitive to QPPs with the mid-point of most QPP sequences grouped into the same single cluster. CAPs are also highly sensitive to QPPs, separating each phase of the QPP sequences into different sets of clusters. SWC (60s window) is less sensitive to QPPs. While the QPPs are slightly more likely to occur during specific SWC clusters, the SWC clustering does not vary during the 24s QPP sequences, the goal of this work is to improve both the practical and theoretical understanding of different resting-state dynamics methods, thereby enabling investigators to better conceptualize and implement these tools for characterizing functional brain networks.
Collapse
|
30
|
Xu N, LaGrow TJ, Anumba N, Lee A, Zhang X, Yousefi B, Bassil Y, Clavijo GP, Khalilzad Sharghi V, Maltbie E, Meyer-Baese L, Nezafati M, Pan WJ, Keilholz S. Functional Connectivity of the Brain Across Rodents and Humans. Front Neurosci 2022; 16:816331. [PMID: 35350561 PMCID: PMC8957796 DOI: 10.3389/fnins.2022.816331] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal, is increasingly utilized for the investigation of the brain's physiological and pathological functional activity. Rodents, as a typical animal model in neuroscience, play an important role in the studies that examine the neuronal processes that underpin the spontaneous fluctuations in the BOLD signal and the functional connectivity that results. Translating this knowledge from rodents to humans requires a basic knowledge of the similarities and differences across species in terms of both the BOLD signal fluctuations and the resulting functional connectivity. This review begins by examining similarities and differences in anatomical features, acquisition parameters, and preprocessing techniques, as factors that contribute to functional connectivity. Homologous functional networks are compared across species, and aspects of the BOLD fluctuations such as the topography of the global signal and the relationship between structural and functional connectivity are examined. Time-varying features of functional connectivity, obtained by sliding windowed approaches, quasi-periodic patterns, and coactivation patterns, are compared across species. Applications demonstrating the use of rs-fMRI as a translational tool for cross-species analysis are discussed, with an emphasis on neurological and psychiatric disorders. Finally, open questions are presented to encapsulate the future direction of the field.
Collapse
Affiliation(s)
- Nan Xu
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Theodore J. LaGrow
- Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, United States
| | - Nmachi Anumba
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Azalea Lee
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
- Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaodi Zhang
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Behnaz Yousefi
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Yasmine Bassil
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
| | - Gloria P. Clavijo
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | | | - Eric Maltbie
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Lisa Meyer-Baese
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Maysam Nezafati
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Wen-Ju Pan
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Shella Keilholz
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
| |
Collapse
|
31
|
Individualized event structure drives individual differences in whole-brain functional connectivity. Neuroimage 2022; 252:118993. [DOI: 10.1016/j.neuroimage.2022.118993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/25/2021] [Accepted: 02/10/2022] [Indexed: 01/04/2023] Open
|
32
|
Zhang X, Maltbie EA, Keilholz SD. Spatiotemporal trajectories in resting-state FMRI revealed by convolutional variational autoencoder. Neuroimage 2021; 244:118588. [PMID: 34607021 PMCID: PMC8637345 DOI: 10.1016/j.neuroimage.2021.118588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Recent resting-state fMRI studies have shown that brain activity exhibits temporal variations in functional connectivity by using various approaches including sliding window correlation, co-activation patterns, independent component analysis, quasi-periodic patterns, and hidden Markov models. These methods often model the brain activity as a discretized hopping among several brain states that are defined by the spatial configurations of network activity. However, the discretized states are merely a simplification of what is likely to be a continuous process, where each network evolves over time following its unique path. To model these characteristic spatiotemporal trajectories, we trained a variational autoencoder using rs-fMRI data and evaluated the spatiotemporal features of the latent variables obtained from the trained networks. Our results suggest that there are a relatively small number of approximately orthogonal whole-brain spatiotemporal patterns that capture the most prominent features of rs-fMRI data, which can serve as the building blocks to construct all possible spatiotemporal dynamics in resting state fMRI. These spatiotemporal patterns provide insight into how activity flows across the brain in concordance with known network structures and functional connectivity gradients.
Collapse
Affiliation(s)
- Xiaodi Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Health Sciences Research Building, 1760 Haygood Drive, SuiteW200, Atlanta, GA, 30322, USA.
| | - Eric A Maltbie
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Health Sciences Research Building, 1760 Haygood Drive, SuiteW200, Atlanta, GA, 30322, USA.
| | - Shella D Keilholz
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Health Sciences Research Building, 1760 Haygood Drive, SuiteW200, Atlanta, GA, 30322, USA.
| |
Collapse
|
33
|
Single-neuron firing cascades underlie global spontaneous brain events. Proc Natl Acad Sci U S A 2021; 118:2105395118. [PMID: 34795053 DOI: 10.1073/pnas.2105395118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
The resting brain consumes enormous energy and shows highly organized spontaneous activity. To investigate how this activity is manifest among single neurons, we analyzed spiking discharges of ∼10,000 isolated cells recorded from multiple cortical and subcortical regions of the mouse brain during immobile rest. We found that firing of a significant proportion (∼70%) of neurons conformed to a ubiquitous, temporally sequenced cascade of spiking that was synchronized with global events and elapsed over timescales of 5 to 10 s. Across the brain, two intermixed populations of neurons supported orthogonal cascades. The relative phases of these cascades determined, at each moment, the response magnitude evoked by an external visual stimulus. Furthermore, the spiking of individual neurons embedded in these cascades was time locked to physiological indicators of arousal, including local field potential power, pupil diameter, and hippocampal ripples. These findings demonstrate that the large-scale coordination of low-frequency spontaneous activity, which is commonly observed in brain imaging and linked to arousal, sensory processing, and memory, is underpinned by sequential, large-scale temporal cascades of neuronal spiking across the brain.
Collapse
|
34
|
Contribution of animal models toward understanding resting state functional connectivity. Neuroimage 2021; 245:118630. [PMID: 34644593 DOI: 10.1016/j.neuroimage.2021.118630] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Functional connectivity, which reflects the spatial and temporal organization of intrinsic activity throughout the brain, is one of the most studied measures in human neuroimaging research. The noninvasive acquisition of resting state functional magnetic resonance imaging (rs-fMRI) allows the characterization of features designated as functional networks, functional connectivity gradients, and time-varying activity patterns that provide insight into the intrinsic functional organization of the brain and potential alterations related to brain dysfunction. Functional connectivity, hence, captures dimensions of the brain's activity that have enormous potential for both clinical and preclinical research. However, the mechanisms underlying functional connectivity have yet to be fully characterized, hindering interpretation of rs-fMRI studies. As in other branches of neuroscience, the identification of the neurophysiological processes that contribute to functional connectivity largely depends on research conducted on laboratory animals, which provide a platform where specific, multi-dimensional investigations that involve invasive measurements can be carried out. These highly controlled experiments facilitate the interpretation of the temporal correlations observed across the brain. Indeed, information obtained from animal experimentation to date is the basis for our current understanding of the underlying basis for functional brain connectivity. This review presents a compendium of some of the most critical advances in the field based on the efforts made by the animal neuroimaging community.
Collapse
|
35
|
Gu Y, Sainburg LE, Kuang S, Han F, Williams JW, Liu Y, Zhang N, Zhang X, Leopold DA, Liu X. Brain Activity Fluctuations Propagate as Waves Traversing the Cortical Hierarchy. Cereb Cortex 2021; 31:3986-4005. [PMID: 33822908 PMCID: PMC8485153 DOI: 10.1093/cercor/bhab064] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The brain exhibits highly organized patterns of spontaneous activity as measured by resting-state functional magnetic resonance imaging (fMRI) fluctuations that are being widely used to assess the brain's functional connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional connectivity, although this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic signal. Here, we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI connectivity.
Collapse
Affiliation(s)
- Yameng Gu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lucas E Sainburg
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sizhe Kuang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Feng Han
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jack W Williams
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yikang Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiang Zhang
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
36
|
Raitamaa L, Huotari N, Korhonen V, Helakari H, Koivula A, Kananen J, Kiviniemi V. Spectral analysis of physiological brain pulsations affecting the BOLD signal. Hum Brain Mapp 2021; 42:4298-4313. [PMID: 34037278 PMCID: PMC8356994 DOI: 10.1002/hbm.25547] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Physiological pulsations have been shown to affect the global blood oxygen level dependent (BOLD) signal in human brain. While these pulsations have previously been regarded as noise, recent studies show their potential as biomarkers of brain pathology. We used the extended 5 Hz spectral range of magnetic resonance encephalography (MREG) data to investigate spatial and frequency distributions of physiological BOLD signal sources. Amplitude spectra of the global image signals revealed cardiorespiratory envelope modulation (CREM) peaks, in addition to the previously known very low frequency (VLF) and cardiorespiratory pulsations. We then proceeded to extend the amplitude of low frequency fluctuations (ALFF) method to each of these pulsations. The respiratory pulsations were spatially dominating over most brain structures. The VLF pulsations overcame the respiratory pulsations in frontal and parietal gray matter, whereas cardiac and CREM pulsations had this effect in central cerebrospinal fluid (CSF) spaces and major blood vessels. A quasi‐periodic pattern (QPP) analysis showed that the CREM pulsations propagated as waves, with a spatiotemporal pattern differing from that of respiratory pulsations, indicating them to be distinct intracranial physiological phenomenon. In conclusion, the respiration has a dominant effect on the global BOLD signal and directly modulates cardiovascular brain pulsations.
Collapse
Affiliation(s)
- Lauri Raitamaa
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Niko Huotari
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Vesa Korhonen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Heta Helakari
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Anssi Koivula
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Janne Kananen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Vesa Kiviniemi
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| |
Collapse
|
37
|
Yousefi B, Keilholz S. Propagating patterns of intrinsic activity along macroscale gradients coordinate functional connections across the whole brain. Neuroimage 2021; 231:117827. [PMID: 33549755 DOI: 10.1016/j.neuroimage.2021.117827] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022] Open
Abstract
The intrinsic activity of the human brain, observed with resting-state fMRI (rsfMRI) and functional connectivity, exhibits macroscale spatial organization such as functional networks and gradients. Dynamic analysis techniques have shown that functional connectivity is a mere summary of time-varying patterns with distinct spatial and temporal characteristics. A better understanding of these patterns might provide insight into aspects of the brain's intrinsic activity that cannot be inferred by functional connectivity or the spatial maps derived from it, such as functional networks and gradients. Here, we describe three spatiotemporal patterns of coordinated activity across the whole brain obtained by averaging similar ~20-second-long segments of rsfMRI timeseries. In each of these patterns, activity propagates along a particular macroscale functional gradient, simultaneously across the cerebral cortex and in most other brain regions. In some regions, like the thalamus, the propagation suggests previously-undescribed gradients. The coordinated activity across areas is consistent with known tract-based connections, and nuanced differences in the timing of peak activity between regions point to plausible driving mechanisms. The magnitude of correlation within and particularly between functional networks is remarkably diminished when these patterns are regressed from the rsfMRI timeseries, a quantitative demonstration of their significant role in functional connectivity. Taken together, our results suggest that a few recurring patterns of propagating intrinsic activity along macroscale gradients give rise to and coordinate functional connections across the whole brain.
Collapse
Affiliation(s)
- Behnaz Yousefi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta 30322, GA, United States
| | - Shella Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta 30322, GA, United States.
| |
Collapse
|
38
|
Sobczak F, He Y, Sejnowski TJ, Yu X. Predicting the fMRI Signal Fluctuation with Recurrent Neural Networks Trained on Vascular Network Dynamics. Cereb Cortex 2021; 31:826-844. [PMID: 32940658 PMCID: PMC7906791 DOI: 10.1093/cercor/bhaa260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/19/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Resting-state functional MRI (rs-fMRI) studies have revealed specific low-frequency hemodynamic signal fluctuations (<0.1 Hz) in the brain, which could be related to neuronal oscillations through the neurovascular coupling mechanism. Given the vascular origin of the fMRI signal, it remains challenging to separate the neural correlates of global rs-fMRI signal fluctuations from other confounding sources. However, the slow-oscillation detected from individual vessels by single-vessel fMRI presents strong correlation to neural oscillations. Here, we use recurrent neural networks (RNNs) to predict the future temporal evolution of the rs-fMRI slow oscillation from both rodent and human brains. The RNNs trained with vessel-specific rs-fMRI signals encode the unique brain oscillatory dynamic feature, presenting more effective prediction than the conventional autoregressive model. This RNN-based predictive modeling of rs-fMRI datasets from the Human Connectome Project (HCP) reveals brain state-specific characteristics, demonstrating an inverse relationship between the global rs-fMRI signal fluctuation with the internal default-mode network (DMN) correlation. The RNN prediction method presents a unique data-driven encoding scheme to specify potential brain state differences based on the global fMRI signal fluctuation, but not solely dependent on the global variance.
Collapse
Affiliation(s)
- Filip Sobczak
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074 Tuebingen, Germany
| | - Yi He
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
- Danish Research Centre for Magnetic Resonance, 2650, Hvidovre, Denmark
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Yu
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
39
|
Coletta L, Pagani M, Whitesell JD, Harris JA, Bernhardt B, Gozzi A. Network structure of the mouse brain connectome with voxel resolution. SCIENCE ADVANCES 2020; 6:eabb7187. [PMID: 33355124 PMCID: PMC11206455 DOI: 10.1126/sciadv.abb7187] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Fine-grained descriptions of brain connectivity are required to understand how neural information is processed and relayed across spatial scales. Previous investigations of the mouse brain connectome have used discrete anatomical parcellations, limiting spatial resolution and potentially concealing network attributes critical to connectome organization. Here, we provide a voxel-level description of the network and hierarchical structure of the directed mouse connectome, unconstrained by regional partitioning. We report a number of previously unappreciated organizational principles in the mammalian brain, including a directional segregation of hub regions into neural sink and sources, and a strategic wiring of neuromodulatory nuclei as connector hubs and critical orchestrators of network communication. We also find that the mouse cortical connectome is hierarchically organized along two superimposed cortical gradients reflecting unimodal-transmodal functional processing and a modality-specific sensorimotor axis, recapitulating a phylogenetically conserved feature of higher mammals. These findings advance our understanding of the foundational wiring principles of the mammalian connectome.
Collapse
Affiliation(s)
- Ludovico Coletta
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto TN, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | | | | - Boris Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
40
|
Linke AC, Mash LE, Fong CH, Kinnear MK, Kohli JS, Wilkinson M, Tung R, Jao Keehn RJ, Carper RA, Fishman I, Müller RA. Dynamic time warping outperforms Pearson correlation in detecting atypical functional connectivity in autism spectrum disorders. Neuroimage 2020; 223:117383. [PMID: 32949710 PMCID: PMC9851773 DOI: 10.1016/j.neuroimage.2020.117383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/12/2020] [Indexed: 01/21/2023] Open
Abstract
Resting state fMRI (rsfMRI) is frequently used to study brain function, including in clinical populations. Similarity of blood-oxygen-level-dependent (BOLD) fluctuations during rsfMRI between brain regions is thought to reflect intrinsic functional connectivity (FC), potentially due to history of coactivation. To quantify similarity, studies have almost exclusively relied on Pearson correlation, which assumes linearity and can therefore underestimate FC if the hemodynamic response function differs regionally or there is BOLD signal lag between timeseries. Here we show in three cohorts of children, adolescents and adults, with and without autism spectrum disorders (ASDs), that measuring the similarity of BOLD signal fluctuations using non-linear dynamic time warping (DTW) is more robust to global signal regression (GSR), has higher test-retest reliability and is more sensitive to task-related changes in FC. Additionally, when comparing FC between individuals with ASDs and typical controls, more group differences are detected using DTW. DTW estimates are also more related to ASD symptom severity and executive function, while Pearson correlation estimates of FC are more strongly associated with respiration during rsfMRI. Together these findings suggest that non-linear methods such as DTW improve estimation of resting state FC, particularly when studying clinical populations whose hemodynamics or neurovascular coupling may be altered compared to typical controls.
Collapse
Affiliation(s)
- A C Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States.
| | - L E Mash
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - C H Fong
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - M K Kinnear
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States
| | - J S Kohli
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - M Wilkinson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - R Tung
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States
| | - R J Jao Keehn
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States
| | - R A Carper
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - I Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - R-A Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| |
Collapse
|
41
|
Belloy ME, Billings J, Abbas A, Kashyap A, Pan WJ, Hinz R, Vanreusel V, Van Audekerke J, Van der Linden A, Keilholz SD, Verhoye M, Keliris GA. Resting Brain Fluctuations Are Intrinsically Coupled to Visual Response Dynamics. Cereb Cortex 2020; 31:1511-1522. [PMID: 33108464 PMCID: PMC7869084 DOI: 10.1093/cercor/bhaa305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023] Open
Abstract
How do intrinsic brain dynamics interact with processing of external sensory stimuli? We sought new insights using functional magnetic resonance imaging to track spatiotemporal activity patterns at the whole brain level in lightly anesthetized mice, during both resting conditions and visual stimulation trials. Our results provide evidence that quasiperiodic patterns (QPPs) are the most prominent component of mouse resting brain dynamics. These QPPs captured the temporal alignment of anticorrelation between the default mode (DMN)- and task-positive (TPN)-like networks, with global brain fluctuations, and activity in neuromodulatory nuclei of the reticular formation. Specifically, the phase of QPPs prior to stimulation could significantly stratify subsequent visual response magnitude, suggesting QPPs relate to brain state fluctuations. This is the first observation in mice that dynamics of the DMN- and TPN-like networks, and particularly their anticorrelation, capture a brain state dynamic that affects sensory processing. Interestingly, QPPs also displayed transient onset response properties during visual stimulation, which covaried with deactivations in the reticular formation. We conclude that QPPs appear to capture a brain state fluctuation that may be orchestrated through neuromodulation. Our findings provide new frontiers to understand the neural processes that shape functional brain states and modulate sensory input processing.
Collapse
Affiliation(s)
- Michaël E Belloy
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.,Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Jacob Billings
- Department of Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Anzar Abbas
- Department of Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Amrit Kashyap
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Wen-Ju Pan
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Rukun Hinz
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Verdi Vanreusel
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Johan Van Audekerke
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Annemie Van der Linden
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Shella D Keilholz
- Department of Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Marleen Verhoye
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Georgios A Keliris
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
42
|
Keilholz S, Maltbie E, Zhang X, Yousefi B, Pan WJ, Xu N, Nezafati M, LaGrow TJ, Guo Y. Relationship Between Basic Properties of BOLD Fluctuations and Calculated Metrics of Complexity in the Human Connectome Project. Front Neurosci 2020; 14:550923. [PMID: 33041756 PMCID: PMC7522447 DOI: 10.3389/fnins.2020.550923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Resting state functional MRI (rs-fMRI) creates a rich four-dimensional data set that can be analyzed in a variety of ways. As more researchers come to view the brain as a complex dynamical system, tools are increasingly being drawn from other fields to characterize the complexity of the brain's activity. However, given that the signal measured with rs-fMRI arises from the hemodynamic response to neural activity, the extent to which complexity metrics reflect neural complexity as compared to signal properties related to image quality remains unknown. To provide some insight into this question, correlation dimension, approximate entropy and Lyapunov exponent were calculated for different rs-fMRI scans from the same subject to examine their reliability. The metrics of complexity were then compared to several properties of the rs-fMRI signal from each brain area to determine if basic signal features could explain differences in the complexity metrics. Differences in complexity across brain areas were highly reliable and were closely linked to differences in the frequency profiles of the rs-fMRI signal. The spatial distributions of the complexity and frequency metrics suggest that they are both influenced by location-dependent signal properties that can obscure changes related to neural activity.
Collapse
Affiliation(s)
- Shella Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Eric Maltbie
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Xiaodi Zhang
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Behnaz Yousefi
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Wen-Ju Pan
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Nan Xu
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Maysam Nezafati
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Theodore J LaGrow
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States
| |
Collapse
|
43
|
Bolton TA, Morgenroth E, Preti MG, Van De Ville D. Tapping into Multi-Faceted Human Behavior and Psychopathology Using fMRI Brain Dynamics. Trends Neurosci 2020; 43:667-680. [DOI: 10.1016/j.tins.2020.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/24/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
|
44
|
Uddin LQ. Bring the Noise: Reconceptualizing Spontaneous Neural Activity. Trends Cogn Sci 2020; 24:734-746. [PMID: 32600967 PMCID: PMC7429348 DOI: 10.1016/j.tics.2020.06.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
Definitions of what constitutes the 'signal of interest' in neuroscience can be controversial, due in part to continuously evolving notions regarding the significance of spontaneous neural activity. This review highlights how the challenge of separating brain signal from noise has led to new conceptualizations of brain functional organization at both the micro- and macroscopic level. Recent debates in the functional neuroimaging community surrounding artifact removal processes have revived earlier discussions surrounding how to appropriately isolate and measure neuronal signals against a background of noise from various sources. Insights from electrophysiological studies and computational modeling can inform current theory and data analytic practices in human functional neuroimaging, given that signal and noise may be inextricably linked in the brain.
Collapse
Affiliation(s)
- Lucina Q Uddin
- Department of Psychology, University of Miami, PO Box 248185-0751, Coral Gables, FL 33124, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
45
|
Briend F, Armstrong WP, Kraguljac NV, Keilhloz SD, Lahti AC. Aberrant static and dynamic functional patterns of frontoparietal control network in antipsychotic-naïve first-episode psychosis subjects. Hum Brain Mapp 2020; 41:2999-3008. [PMID: 32372508 PMCID: PMC7336157 DOI: 10.1002/hbm.24992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/05/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
Psychotic disorders are disabling clinical syndromes characterized by widespread alterations in cortical information processing. Disruption of frontoparietal network (FPN) connectivity has emerged as a common footprint across the psychosis spectrum. Our goal was to characterize the static and dynamic resting‐state functional connectivity (FC) of the FPN in antipsychotic‐naïve first‐episode psychosis (FEP) subjects. We compared the static FC of the FPN in 40 FEP and 40 healthy control (HC) subjects, matched on age, sex, and socioeconomic status. To study the dynamic FC, we measured quasiperiodic patterns (QPPs) that consist of infraslow spatioemporal patterns embedded in the blood oxygen level‐dependent signal that repeats over time, exhibiting alternation of high and low activity. Relative to HC, we found functional hypoconnectivity between the right middle frontal gyrus and the right middle temporal gyrus, as well as the left inferior temporal gyrus and the left inferior parietal gyrus in FEP (p < .05, false discovery rate corrected). The correlation of the QPP with all functional scans was significantly stronger for FEP compared to HC, suggesting a greater impact of the QPPs to intrinsic brain activity in psychotic population. Regressing the QPP from the functional scans erased all significant group differences in static FC, suggesting that abnormal connectivity in FEP could result from altered QPP. Our study supports that alterations of cortical information processing are not a function of psychotic chronicity or antipsychotic medication exposure and may be regarded as trait specific. In addition, static connectivity abnormality may be partly related to altered brain network temporal dynamics.
Collapse
Affiliation(s)
- Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William P Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shella D Keilhloz
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
46
|
Disambiguating the role of blood flow and global signal with partial information decomposition. Neuroimage 2020; 213:116699. [PMID: 32179104 DOI: 10.1016/j.neuroimage.2020.116699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022] Open
Abstract
Global signal (GS) is an ubiquitous construct in resting state functional magnetic resonance imaging (rs-fMRI), associated to nuisance, but containing by definition most of the neuronal signal. Global signal regression (GSR) effectively removes the impact of physiological noise and other artifacts, but at the same time it alters correlational patterns in unpredicted ways. Performing GSR taking into account the underlying physiology (mainly the blood arrival time) has been proven to be beneficial. From these observations we aimed to: 1) characterize the effect of GSR on network-level functional connectivity in a large dataset; 2) assess the complementary role of global signal and vessels; and 3) use the framework of partial information decomposition to further look into the joint dynamics of the global signal and vessels, and their respective influence on the dynamics of cortical areas. We observe that GSR affects intrinsic connectivity networks in the connectome in a non-uniform way. Furthermore, by estimating the predictive information of blood flow and the global signal using partial information decomposition, we observe that both signals are present in different amounts across intrinsic connectivity networks. Simulations showed that differences in blood arrival time can largely explain this phenomenon, while using hemodynamic and calcium mouse recordings we were able to confirm the presence of vascular effects, as calcium recordings lack hemodynamic information. With these results we confirm network-specific effects of GSR and the importance of taking blood flow into account for improving de-noising methods. Additionally, and beyond the mere issue of data denoising, we quantify the diverse and complementary effect of global and vessel BOLD signals on the dynamics of cortical areas.
Collapse
|
47
|
Zhou J, Lo OY, Halko MA, Harrison R, Lipsitz LA, Manor B. The functional implications and modifiability of resting-state brain network complexity in older adults. Neurosci Lett 2020; 720:134775. [PMID: 31972253 DOI: 10.1016/j.neulet.2020.134775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
The dynamics of the resting-state activity in brain functional networks are complex, containing meaningful patterns over multiple temporal scales. Such physiologic complexity is often diminished in older adults. Here we aim to examine if the resting-state complexity within functional brain networks is sensitive to functional status in older adults and if repeated exposure to transcranial direct current stimulation (tDCS) would modulate such complexity. Twelve older adults with slow gait and mild-to-moderate executive dysfunction and 12 age- and sex-matched controls completed a baseline resting-state fMRI (rs-fMRI). Ten participants in the functionally-limited group then completed ten 20-minute sessions of real (n = 6) or sham (n = 4) tDCS targeting the left prefrontal cortex over a two-week period as well as a follow-up rs-fMRI. The resting-state complexity associated with seven functional networks was quantified by averaging the multiscale entropy (MSE) of the blood oxygen level-dependent (BOLD) time-series for all voxels within each network. Compared to controls, functionally-limited group exhibited lower complexity in the motor, ventral attention, limbic, executive and default mode networks (F > 6.3, p < 0.02). Within this group, those who received tDCS exhibited greater complexity within the ventral, executive and limbic networks (p < 0.04) post intervention as compared to baseline, while no significant changes in sham group was observed. This study provides preliminary evidence that older adults with functional limitations had diminished complexity of resting-state brain network activity and repeated exposure to tDCS may increase that resting-state complexity, warranting future studies to establish such complexity as a marker of brain health in older adults.
Collapse
Affiliation(s)
- Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - On-Yee Lo
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mark A Halko
- Harvard Medical School, Boston, MA, United States; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Rachel Harrison
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - Lewis A Lipsitz
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Gutierrez-Barragan D, Basson MA, Panzeri S, Gozzi A. Infraslow State Fluctuations Govern Spontaneous fMRI Network Dynamics. Curr Biol 2019; 29:2295-2306.e5. [PMID: 31303490 PMCID: PMC6657681 DOI: 10.1016/j.cub.2019.06.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/19/2019] [Accepted: 06/07/2019] [Indexed: 01/11/2023]
Abstract
Spontaneous brain activity as assessed with resting-state fMRI exhibits rich spatiotemporal structure. However, the principles by which brain-wide patterns of spontaneous fMRI activity reconfigure and interact with each other remain unclear. We used a framewise clustering approach to map spatiotemporal dynamics of spontaneous fMRI activity with voxel resolution in the resting mouse brain. We show that brain-wide patterns of fMRI co-activation can be reliably mapped at the group and subject level, defining a restricted set of recurring brain states characterized by rich network structure. Importantly, we document that the identified fMRI states exhibit contrasting patterns of functional activity and coupled infraslow network dynamics, with each network state occurring at specific phases of global fMRI signal fluctuations. Finally, we show that autism-associated genetic alterations entail the engagement of atypical functional states and altered infraslow network dynamics. Our results reveal a novel set of fundamental principles guiding the spatiotemporal organization of resting-state fMRI activity and its disruption in brain disorders.
Collapse
Affiliation(s)
- Daniel Gutierrez-Barragan
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UniTn, 38068 Rovereto (TN), Italy; Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto (TN), Italy; Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UniTn, 38068 Rovereto (TN), Italy
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 9RT, UK
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UniTn, 38068 Rovereto (TN), Italy.
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UniTn, 38068 Rovereto (TN), Italy.
| |
Collapse
|
49
|
Smith DM, Zhao Y, Keilholz SD, Schumacher EH. Investigating the Intersession Reliability of Dynamic Brain-State Properties. Brain Connect 2019; 8:255-267. [PMID: 29924644 DOI: 10.1089/brain.2017.0571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cognition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indicated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states. Changes in the brain-state properties across the course of the scan were investigated as well. The results demonstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reliability, and thus, these patterns of brain activation may hold promise for individual-difference research.
Collapse
Affiliation(s)
- Derek M Smith
- 1 School of Psychology, Georgia Institute of Technology , Atlanta, Georgia
| | - Yrian Zhao
- 2 Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | - Shella D Keilholz
- 2 Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | - Eric H Schumacher
- 1 School of Psychology, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
50
|
Abstract
Global signal regression is a controversial processing step for resting-state functional magnetic resonance imaging, partly because the source of the global blood oxygen level-dependent (BOLD) signal remains unclear. On the one hand, nuisance factors such as motion can readily introduce coherent BOLD changes across the whole brain. On the other hand, the global signal has been linked to neural activity and vigilance levels, suggesting that it contains important neurophysiological information and should not be discarded. Any widespread pattern of coordinated activity is likely to contribute appreciably to the global signal. Such patterns may include large-scale quasiperiodic spatiotemporal patterns, known also to be tied to performance on vigilance tasks. This uncertainty surrounding the separability of the global BOLD signal from concurrent neurological processes motivated an examination of the global BOLD signal's spatial distribution. The results clarify that although the global signal collects information from all tissue classes, a diverse subset of the BOLD signal's independent components contribute the most to the global signal. Further, the timing of each network's contribution to the global signal is not consistent across volunteers, confirming the independence of a constituent process that comprises the global signal.
Collapse
Affiliation(s)
- Jacob Billings
- 1 Program in Neuroscience, Graduate Division of Biological and Biomedical Sciences, Emory University , Atlanta, Georgia
| | - Shella Keilholz
- 1 Program in Neuroscience, Graduate Division of Biological and Biomedical Sciences, Emory University , Atlanta, Georgia .,2 Department of Biomedical Engineering, Emory/Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|