1
|
Huang K, Xie Y, Ran H, Hu J, He Y, Xu G, Chen G, Yu Q, Li X, Liu J, Liu H, Zhang T. Alterations of White Matter Functional Networks in Pediatric Drug-Resistant Temporal Lobe Epilepsy: A Graph Theory Analysis Study. Brain Res Bull 2025:111403. [PMID: 40412488 DOI: 10.1016/j.brainresbull.2025.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/07/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Neurological disorder can cause functional network changes in white matter (WM). However, changes in the WM functional network in children with drug-resistant temporal lobe epilepsy (DRTLE) require further clarification. Therefore, we combine graph theory with resting-state functional magnetic resonance imaging (rs-fMRI) and T1-weighted imaging (T1WI) to investigate the topological features of the WM network in children with DRTLE, discover potential biomarkers, and understand the underlying neurological mechanisms. We included 91 children (43 with DRTLE and 48 healthy controls), acquiring structural and functional MRI data to construct WM functional networks. Graph theory was applied to evaluate topological differences and their correlation with onset age, disease duration and cognitive measures. A Support Vector Machine model classified individuals with DRTLE based on WM connectivity, with accuracy validated through leave-one-out cross-validation. The global topological properties of the WM network in children with DRTLE were altered, manifesting as an imbalance between global integration and segregation Local nodal efficiency changes in the association fibers exhibited reduced information transfer and centrality at several nodes. Conversely, commissural and projection fibers displayed increased network properties. Cognitive metrics correlated with nodal disturbances. The classification model achieved 73.6% accuracy and an area under the curve (AUC) of 0.744. This indicates that the WM functional network in DRTLE presents with anomalies in the topological attributes, which are associated with cognitive impairments. The WM functional connectivity may serve as valuable indicators for clinical classification of the condition. The insights provided have augmented our understanding of the complex neurological mechanisms involved in epilepsy.
Collapse
Affiliation(s)
- Kexin Huang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou, China
| | - Yuxin Xie
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou, China; Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Haifeng Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou, China
| | - Jie Hu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yulun He
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou, China
| | - Gaoqiang Xu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou, China
| | - Guiqin Chen
- Department of Radiology, The Second Affiliated Hospital of Guizhou University of TCM, Guiyang, Guizhou, China
| | - Qiane Yu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou, China
| | - Xuhong Li
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou, China
| | - Junwei Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou, China
| | - Heng Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou, China.
| | - Tijiang Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou, China; Department of Medical Technology, Bijie Medical College, Bijie, Guizhou, China.
| |
Collapse
|
2
|
de Riedmatten I, Spencer APC, Olszowy W, Jelescu IO. Apparent Diffusion Coefficient fMRI shines light on white matter resting-state connectivity compared to BOLD. Commun Biol 2025; 8:447. [PMID: 40091123 PMCID: PMC11911413 DOI: 10.1038/s42003-025-07889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) is used to derive functional connectivity (FC) between brain regions. Typically, blood oxygen level-dependent (BOLD) contrast is used. However, BOLD's reliance on neurovascular coupling poses challenges in reflecting brain activity accurately, leading to reduced sensitivity in white matter (WM). WM BOLD signals have long been considered physiological noise, although recent evidence shows that both stimulus-evoked and resting-state WM BOLD signals resemble those in gray matter (GM), albeit smaller in amplitude. We introduce apparent diffusion coefficient fMRI (ADC-fMRI) as a promising functional contrast for GM and WM FC, capturing activity-driven neuromorphological fluctuations. Our study compares BOLD-fMRI and ADC-fMRI FC in GM and WM, showing that ADC-fMRI mirrors BOLD-fMRI connectivity in GM, while capturing more robust FC in WM. ADC-fMRI displays higher average clustering and average node strength in WM, and higher inter-subject similarity, compared to BOLD. Taken together, this suggests that ADC-fMRI is a reliable tool for exploring FC that incorporates gray and white matter nodes in a novel way.
Collapse
Affiliation(s)
- Inès de Riedmatten
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
- School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Arthur P C Spencer
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Wiktor Olszowy
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Data Science Unit, Science and Research, dsm-firmenich AG, Kaiseraugst, Switzerland
| | - Ileana O Jelescu
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Li Z, Liu J, Zheng J, Li L, Fu Y, Yang Z. White Matter-Gray Matter Correlation Analysis Based on White Matter Functional Gradient. Brain Sci 2024; 15:26. [PMID: 39851394 PMCID: PMC11763486 DOI: 10.3390/brainsci15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals of the brain's gray matter (GM) have been interpreted as representations of neural activity variations. In previous research, white matter (WM) signals, often considered noise, have also been demonstrated to reflect characteristics of functional activity and interactions among different brain regions. Recently, functional gradients have gained significant attention due to their success in characterizing the functional organization of the whole brain. However, previous studies on brain functional gradients have predominantly focused on GM, neglecting valuable functional information within WM. METHODS In this paper, we have elucidated the symmetrical nature of the functional hierarchy in the left and right brain hemispheres in healthy individuals, utilizing the principal functional gradient of the whole-brain WM while also accounting for gender differences. RESULTS Interestingly, both males and females exhibit a similar degree of asymmetry in their brain regions, albeit with distinct regional variations. Additionally, we have thoroughly examined and analyzed the distribution of functional gradient values in the spatial structure of the corpus callosum (CC) independently, revealing that a simple one-to-one correspondence between structure and function is absent. This phenomenon may be associated with the intricacy of their internal structural connectivity. CONCLUSIONS We suggest that the functional gradients within the WM regions offer a fresh perspective for investigating the structural and functional characteristics of WM and may provide insights into the regulation of neural activity between GM and WM.
Collapse
Affiliation(s)
- Zhengjie Li
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China; (Z.L.); (J.L.); (J.Z.); (Y.F.)
| | - Jiajun Liu
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China; (Z.L.); (J.L.); (J.Z.); (Y.F.)
| | - Jianhui Zheng
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China; (Z.L.); (J.L.); (J.Z.); (Y.F.)
| | - Luying Li
- Department of Radiology, Huaxi MR Research Center, West China Hospital, Sichuan University, Chengdu 610017, China;
| | - Ying Fu
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China; (Z.L.); (J.L.); (J.Z.); (Y.F.)
| | - Zhipeng Yang
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China; (Z.L.); (J.L.); (J.Z.); (Y.F.)
| |
Collapse
|
4
|
Zhong YL, Hu RY, He YZ, Li XT, Li ZC, Huang X. White Matter Function and Network Abnormalities in Patients with Diabetic Retinopathy. Diabetes Metab Syndr Obes 2024; 17:4149-4166. [PMID: 39512603 PMCID: PMC11542478 DOI: 10.2147/dmso.s492099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Background This study aims to explore changes in white matter function and network connectivity in individuals with DR. Methods This study included 46 patients with DR and 43 age- and gender-matched healthy control (HC) participants were enrolled in the study. The aim was to investigate inter-group differences in white matter (WM) function and to analyze changes in the WM network among DR patients. Results Increased degree centrality (DC) values were observed in the middle cerebellar peduncle and genu of the corpus callosum, while higher fractional amplitude of low-frequency fluctuations (fALFF) values were found in the left superior corona radiata, right anterior corona radiata, and right superior longitudinal fasciculus. Conversely, reduced regional homogeneity (ReHo) values were noted in the left posterior thalamic radiation among patients with DR compared to HC, with statistical correction applied The SVM classification accuracy for distinguishing between DR and HC patients based on WM measures indicated values of 81.52%, 80.43%, and 89.13% for DC, fALFF, and ReHo, respectively, with respective area under the curve (AUC) values of 0.87, 0.85, and 0.93. Furthermore, alterations were detected within specific brain regions including the body of corpus callosum (BCC), splenium of corpus callosum (SCC), genu of corpus callosum (GCC), left posterior thalamic radiation (PTR), right anterior corona radiata (ACR), and right posterior corona radiata (PCR) in the DR group compared to HCs, with an intra-network decrease in connectivity. Interestingly, the left superior longitudinal fasciculus (SLF) within the DR group exhibited an intra-network increase compared to the HC group. Conclusion DR exhibited abnormal white matter functional alterations, particularly affecting the fiber pathways linking the visual network to the sensory-motor network.
Collapse
Affiliation(s)
- Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Rui-Yang Hu
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Yuan-Zhi He
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xiao-Tong Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Zi-Cong Li
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
5
|
Qing P, Zhang X, Liu Q, Huang L, Xu D, Le J, Kendrick KM, Lai H, Zhao W. Structure-function coupling in white matter uncovers the hypoconnectivity in autism spectrum disorder. Mol Autism 2024; 15:43. [PMID: 39367506 PMCID: PMC11451199 DOI: 10.1186/s13229-024-00620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder associated with alterations in structural and functional coupling in gray matter. However, despite the detectability and modulation of brain signals in white matter, the structure-function coupling in white matter in autism remains less explored. METHODS In this study, we investigated structural-functional coupling in white matter (WM) regions, by integrating diffusion tensor data that contain fiber orientation information from WM tracts, with functional connectivity tensor data that reflect local functional anisotropy information. Using functional and diffusion magnetic resonance images, we analyzed a cohort of 89 ASD and 63 typically developing (TD) individuals from the Autism Brain Imaging Data Exchange II (ABIDE-II). Subsequently, the associations between structural-functional coupling in WM regions and ASD severity symptoms assessed by Autism Diagnostic Observation Schedule-2 were examined via supervised machine learning in an independent test cohort of 29 ASD individuals. Furthermore, we also compared the performance of multi-model features (i.e. structural-functional coupling) with single-model features (i.e. functional or structural models alone). RESULTS In the discovery cohort (ABIDE-II), individuals with ASD exhibited widespread reductions in structural-functional coupling in WM regions compared to TD individuals, particularly in commissural tracts (e.g. corpus callosum), association tracts (sagittal stratum), and projection tracts (e.g. internal capsule). Notably, supervised machine learning analysis in the independent test cohort revealed a significant correlation between these alterations in structural-functional coupling and ASD severity scores. Furthermore, compared to single-model features, the integration of multi-model features (i.e., structural-functional coupling) performed best in predicting ASD severity scores. CONCLUSION This work provides novel evidence for atypical structural-functional coupling in ASD in white matter regions, further refining our understanding of the critical role of WM networks in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Peng Qing
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaodong Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Linghong Huang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dan Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiao Le
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hua Lai
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
6
|
Xu L, Gao Y, Li M, Lawless R, Zhao Y, Schilling KG, Rogers BP, Anderson AW, Ding Z, Landman BA, Gore JC. Functional correlation tensors in brain white matter and the effects of normal aging. Brain Imaging Behav 2024; 18:1197-1214. [PMID: 39235695 PMCID: PMC11582213 DOI: 10.1007/s11682-024-00914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Resting state correlations between blood oxygenation level dependent (BOLD) MRI signals from voxels in white matter (WM) are demonstrably anisotropic, so that functional correlation tensors (FCT) may be used to quantify the underlying microstructure of BOLD effects in WM tracts. However, the overall spatial distribution of FCTs and their metrics in specific populations has not yet been established, and the factors that affect their precise arrangements remain unclear. Changes in WM occur with normal aging, and these may be expected to affect FCTs. We hypothesized that FCTs exhibit a characteristic spatial pattern and may show systematic changes with aging or other factors. Here we report our analyses of the FCT characteristics of fMRI images of a large cohort of 461 cognitively normal subjects (190 females, 271 males) sourced from the Open Access Series of Imaging Studies (OASIS), with age distributions of 42 y/o - 95 y/o. Group averages and statistics of FCT indices, including axial functional correlations, radial functional correlations, mean functional correlations and fractional anisotropy, were quantified in WM bundles defined by the JHU ICBM-DTI-81 WM atlas. In addition, their variations with normal aging were examined. The results revealed a dimorphic distribution of changes in FCT metrics with age, with decreases of the functional correlations in some regions and increases in others. Supplementary analysis revealed that females exhibited significant age effects on a greater number of WM areas, but the interaction between age and sex was not significant. The findings demonstrate the reproducibility of the spatial distribution of FCT metrics and reveal subtle regional changes with age.
Collapse
Affiliation(s)
- Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Wang L, Xu H, Song Z, Wang H, Hu W, Gao Y, Zhang Z, Jiang J. fMRI signals in white matter rewire gray matter community organization. Neuroimage 2024; 297:120763. [PMID: 39084280 DOI: 10.1016/j.neuroimage.2024.120763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
Human brain gray matter (GM) has usually been clustered into multiple functional networks. The white matter (WM) fiber bundles are known to interconnect these networks simultaneously, engaging in numerous cognitive functions. However, the exact interconnections between GM and WM are still unclear, whether functional signals in WM rewires GM community organization remains to be explored. In this study, we divided brain functional connections into three types by using edge-centric method, including intra-GM, intra-WM and GM-WM connections, and calculated the edge community evaluation indexes for quantifying GM community engagement. The results showed that the involvement of WM significantly enhanced community entropy in the heteromodal system, while the sensory-attention system remained barely changed. In addition, delta community entropy showed a significant correlation with clinical cognitive scale. Our results suggested that WM rewired GM community organization, enhancing the community engagement of brain regions in the heteromodal system. This involvement was observed to be disrupted in disease groups. Our study revealed that considering the functional signals of GM and WM simultaneously could better understand the brain's functional organization.
Collapse
Affiliation(s)
- Luyao Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huanyu Xu
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Ziyan Song
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huanxin Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenjing Hu
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yiwen Gao
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Wang Y, Wang H, Hu S, Nguchu BA, Zhang D, Chen S, Ji Y, Qiu B, Wang X. Sub-bundle based analysis reveals the role of human optic radiation in visual working memory. Hum Brain Mapp 2024; 45:e26800. [PMID: 39093044 PMCID: PMC11295295 DOI: 10.1002/hbm.26800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
White matter (WM) functional activity has been reliably detected through functional magnetic resonance imaging (fMRI). Previous studies have primarily examined WM bundles as unified entities, thereby obscuring the functional heterogeneity inherent within these bundles. Here, for the first time, we investigate the function of sub-bundles of a prototypical visual WM tract-the optic radiation (OR). We use the 7T retinotopy dataset from the Human Connectome Project (HCP) to reconstruct OR and further subdivide the OR into sub-bundles based on the fiber's termination in the primary visual cortex (V1). The population receptive field (pRF) model is then applied to evaluate the retinotopic properties of these sub-bundles, and the consistency of the pRF properties of sub-bundles with those of V1 subfields is evaluated. Furthermore, we utilize the HCP working memory dataset to evaluate the activations of the foveal and peripheral OR sub-bundles, along with LGN and V1 subfields, during 0-back and 2-back tasks. We then evaluate differences in 2bk-0bk contrast between foveal and peripheral sub-bundles (or subfields), and further examine potential relationships between 2bk-0bk contrast and 2-back task d-prime. The results show that the pRF properties of OR sub-bundles exhibit standard retinotopic properties and are typically similar to the properties of V1 subfields. Notably, activations during the 2-back task consistently surpass those under the 0-back task across foveal and peripheral OR sub-bundles, as well as LGN and V1 subfields. The foveal V1 displays significantly higher 2bk-0bk contrast than peripheral V1. The 2-back task d-prime shows strong correlations with 2bk-0bk contrast for foveal and peripheral OR fibers. These findings demonstrate that the blood oxygen level-dependent (BOLD) signals of OR sub-bundles encode high-fidelity visual information, underscoring the feasibility of assessing WM functional activity at the sub-bundle level. Additionally, the study highlights the role of OR in the top-down processes of visual working memory beyond the bottom-up processes for visual information transmission. Conclusively, this study innovatively proposes a novel paradigm for analyzing WM fiber tracts at the individual sub-bundle level and expands understanding of OR function.
Collapse
Affiliation(s)
- Yanming Wang
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Huan Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Sheng Hu
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Benedictor Alexander Nguchu
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Du Zhang
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Shishuo Chen
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Yang Ji
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Bensheng Qiu
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
- Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
| | - Xiaoxiao Wang
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
9
|
Ran H, Chen G, Ran C, He Y, Xie Y, Yu Q, Liu J, Hu J, Zhang T. Altered White-Matter Functional Network in Children with Idiopathic Generalized Epilepsy. Acad Radiol 2024; 31:2930-2941. [PMID: 38350813 DOI: 10.1016/j.acra.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024]
Abstract
RATIONALE AND OBJECTIVES The white matter (WM) functional network changes offers insights into the potential pathological mechanisms of certain diseases, the alterations of WM functional network in idiopathic generalized epilepsy (IGE) remain unclear. We aimed to explore the topological characteristics changes of WM functional network in childhood IGE using resting-state functional Magnetic resonance imaging (MRI) and T1-weighted images. METHODS A total of 84 children (42 IGE and 42 matched healthy controls) were included in this study. Functional and structural MRI data were acquired to construct a WM functional network. Group differences in the global and regional topological characteristics were assessed by graph theory and the correlations with clinical and neuropsychological scores were analyzed. A support vector machine algorithm model was employed to classify individuals with IGE using WM functional connectivity as features, and the model's accuracy was evaluated using leave-one-out cross-validation. RESULTS In IGE group, at the network level, the WM functional network exhibited increased assortativity; at the nodal level, 17 nodes presented nodal disturbances in WM functional network, and nodal disturbances of 11 nodes were correlated with cognitive performance scores, disease duration and age of onset. The classification model achieved the 72.6% accuracy, 0.746 area under the curve, 69.1% sensitivity, 76.2% specificity. CONCLUSION Our study demonstrated that the WM functional network topological properties changes in childhood IGE, which were associated with cognitive function, and WM functional network may help clinical classification for childhood IGE. These findings provide novel information for understanding the pathogenesis of IGE and suggest that the WM function network might be qualified as potential biomarkers.
Collapse
Affiliation(s)
- Haifeng Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Guiqin Chen
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Chunyan Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Yulun He
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Yuxin Xie
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Qiane Yu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Junwei Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Jie Hu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China; Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tijiang Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China.
| |
Collapse
|
10
|
Freedberg MV. The balance of hippocampal and caudate network functional connectivity is associated with episodic memory performance and its decline across adulthood. Neuropsychologia 2023; 191:108723. [PMID: 37923122 DOI: 10.1016/j.neuropsychologia.2023.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The hippocampal and caudate networks interact to support episodic memory, but the relationship between hippocampal and caudate connectivity strength and episodic memory is unclear. In general, cognition is optimally supported when connectivity within a functional network dominates connectivity from other networks. For example, episodic memory may be optimally supported when the hippocampal and caudate networks express this pattern of connectivity, consistent with research showing that the two networks are organized competitively. Alternatively, episodic memory may be optimally supported when connectivity in both networks is more balanced, consistent with fMRI reports showing cooperation between networks. Using cross-sectional behavioral and resting state fMRI data from a diverse sample (N = 347; Ages 18-85), I tested the hypothesis that reduced hippocampal and caudate network dominance would be associated with reduced episodic memory across individuals and age. Consistent with this hypothesis, lower caudate network dominance in bilateral thalamic regions was associated with worse episodic memory regardless of age. Age-related differences in caudate network dominance in the pallidum and putamen were also associated with worse episodic memory performance, but through their shared variance with age. I found no evidence that network dominance was related to processing speed or executive function, or that hippocampal network dominance was relate to episodic memory performance. These results show that ongoing biological dynamics between the hippocampal and caudate networks throughout adulthood are related to episodic memory performance and support a growing literature specifying the role of the caudate network in episodic memory.
Collapse
Affiliation(s)
- Michael V Freedberg
- The University of Texas, Department of Kinesiology and Health Education, Austin, TX, 78712, USA; The University of Texas, Institute for Neuroscience, Austin, TX, 78712, USA.
| |
Collapse
|
11
|
Zhao R, Wang P, Liu L, Zhang F, Hu P, Wen J, Li H, Biswal BB. Whole-brain structure-function coupling abnormalities in mild cognitive impairment: a study combining amplitude of low-frequency fluctuations and voxel-based morphometry. Front Neurosci 2023; 17:1236221. [PMID: 37583417 PMCID: PMC10424122 DOI: 10.3389/fnins.2023.1236221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Alzheimer's disease (AD), one of the leading diseases of the nervous system, is accompanied by symptoms such as loss of memory, thinking and language skills. Both mild cognitive impairment (MCI) and very mild cognitive impairment (VMCI) are the transitional pathological stages between normal aging and AD. While the changes in whole-brain structural and functional information have been extensively investigated in AD, The impaired structure-function coupling remains unknown. The current study employed the OASIS-3 dataset, which includes 53 MCI, 90 VMCI, and 100 Age-, gender-, and education-matched normal controls (NC). Several structural and functional parameters, such as the amplitude of low-frequency fluctuations (ALFF), voxel-based morphometry (VBM), and The ALFF/VBM ratio, were used To estimate The whole-brain neuroimaging changes In MCI, VMCI, and NC. As disease symptoms became more severe, these regions, distributed in the frontal-inf-orb, putamen, and paracentral lobule in the white matter (WM), exhibited progressively increasing ALFF (ALFFNC < ALFFVMCI < ALFFMCI), which was similar to the tendency for The cerebellum and putamen in the gray matter (GM). Additionally, as symptoms worsened in AD, the cuneus/frontal lobe in the WM and the parahippocampal gyrus/hippocampus in the GM showed progressively decreasing structure-function coupling. As the typical focal areas in AD, The parahippocampal gyrus and hippocampus showed significant positive correlations with the severity of cognitive impairment, suggesting the important applications of the ALFF/VBM ratio in brain disorders. On the other hand, these findings from WM functional signals provided a novel perspective for understanding the pathophysiological mechanisms involved In cognitive decline in AD.
Collapse
Affiliation(s)
- Rong Zhao
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Pan Wang
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Liu
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Fanyu Zhang
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Hu
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaping Wen
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongyi Li
- The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Bharat B. Biswal
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
12
|
Huang Y, Wei PH, Xu L, Chen D, Yang Y, Song W, Yi Y, Jia X, Wu G, Fan Q, Cui Z, Zhao G. Intracranial electrophysiological and structural basis of BOLD functional connectivity in human brain white matter. Nat Commun 2023; 14:3414. [PMID: 37296147 PMCID: PMC10256794 DOI: 10.1038/s41467-023-39067-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
While functional MRI (fMRI) studies have mainly focused on gray matter, recent studies have consistently found that blood-oxygenation-level-dependent (BOLD) signals can be reliably detected in white matter, and functional connectivity (FC) has been organized into distributed networks in white matter. Nevertheless, it remains unclear whether this white matter FC reflects underlying electrophysiological synchronization. To address this question, we employ intracranial stereotactic-electroencephalography (SEEG) and resting-state fMRI data from a group of 16 patients with drug-resistant epilepsy. We find that BOLD FC is correlated with SEEG FC in white matter, and this result is consistent across a wide range of frequency bands for each participant. By including diffusion spectrum imaging data, we also find that white matter FC from both SEEG and fMRI are correlated with white matter structural connectivity, suggesting that anatomical fiber tracts underlie the functional synchronization in white matter. These results provide evidence for the electrophysiological and structural basis of white matter BOLD FC, which could be a potential biomarker for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Yali Huang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Longzhou Xu
- Chinese Institute for Brain Research, Beijing, 102206, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Desheng Chen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Wenkai Song
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yangyang Yi
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Xiaoli Jia
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Guowei Wu
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Qingchen Fan
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases, Beijing, 100053, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China.
| |
Collapse
|
13
|
Wang H, Wang X, Wang Y, Zhang D, Yang Y, Zhou Y, Qiu B, Zhang P. White matter BOLD signals at 7 Tesla reveal visual field maps in optic radiation and vertical occipital fasciculus. Neuroimage 2023; 269:119916. [PMID: 36736638 DOI: 10.1016/j.neuroimage.2023.119916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
There is growing evidence that blood-oxygen-level-dependent (BOLD) activity in the white matter (WM) can be detected by functional magnetic resonance imaging (fMRI). However, the functional relevance and significance of WM BOLD signals remain controversial. Here we investigated whether 7T BOLD fMRI can reveal fine-scale functional organizations of a WM bundle. Population receptive field (pRF) analyses of the 7T retinotopy dataset from the Human Connectome Project revealed clear contralateral retinotopic organizations of two visual WM bundles: the optic radiation (OR) and the vertical occipital fasciculus (VOF). The retinotopic maps of OR are highly consistent with post-mortem dissections and diffusion tractographies, while the VOF maps are compatible with the dorsal and ventral visual areas connected by the WM. Similar to the grey matter (GM) visual areas, both WM bundles show over-representations of the central visual field and increasing pRF size with eccentricity. Hemodynamic response functions of visual WM were slower and wider compared with those of GM areas. These findings clearly demonstrate that WM BOLD at 7 Tesla is closely coupled with neural activity related to axons, encoding highly specific information that can be used to characterize fine-scale functional organizations of a WM bundle.
Collapse
Affiliation(s)
- Huan Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxiao Wang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yanming Wang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Du Zhang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifeng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; School of Ophthalmology and Optometry and Eye hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.; University of Chinese Academy of Sciences, Beijing 100049, China..
| |
Collapse
|
14
|
Altered white matter functional network in nicotine addiction. Psychiatry Res 2023; 321:115073. [PMID: 36716553 DOI: 10.1016/j.psychres.2023.115073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Nicotine addiction is a neuropsychiatric disorder with dysfunction in cortices as well as white matter (WM). The nature of the functional alterations in WM remains unclear. The small-world model can well characterize the structure and function of the human brain. In this study, we utilized the small-world model to compare the WM functional connectivity between 62 nicotine addiction participants (called the discovery sample) and 66 matched healthy controls (called the control sample). We also recruited an independent sample comprising 32 nicotine addicts (called the validation sample) for clinical application. The WM functional network data at the network level showed that the nicotine addiction group revealed decreased small-worldness index (σ) and normalized clustering coefficient (γ) compared with healthy controls. For clinical application, the small-world topology of WM functional connectivity could distinguish nicotine addicts from healthy controls (classification accuracy=0.59323, p = 0.0464). We trained abnormal small-world properties on the discovery sample to identify the severity of nicotine addiction, and the identification was successfully applied to the validation sample (classification accuracy=0.65625, p = 0.0106). Our neuroimaging findings provide direct evidence for WM functional changes in nicotine addiction and suggest that the small-world properties of WM function could be qualified as potential biomarkers in nicotine addiction.
Collapse
|
15
|
Gao Y, Lawless RD, Li M, Zhao Y, Schilling KG, Xu L, Shafer AT, Beason-Held LL, Resnick SM, Rogers BP, Ding Z, Anderson AW, Landman BA, Gore JC, Alzheimer’s Disease Neuroimaging Initiative. Automatic Preprocessing Pipeline for White Matter Functional Analyses of Large-Scale Databases. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12464:124640U. [PMID: 37600506 PMCID: PMC10437151 DOI: 10.1117/12.2653132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Recently, increasing evidence suggests that fMRI signals in white matter (WM), conventionally ignored as nuisance, are robustly detectable using appropriate processing methods and are related to neural activity, while changes in WM with aging and degeneration are also well documented. These findings suggest variations in patterns of BOLD signals in WM should be investigated. However, existing fMRI analysis tools, which were designed for processing gray matter signals, are not well suited for large-scale processing of WM signals in fMRI data. We developed an automatic pipeline for high-performance preprocessing of fMRI images with emphasis on quantifying changes in BOLD signals in WM in an aging population. At the image processing level, the pipeline integrated existing software modules with fine parameter tunings and modifications to better extract weaker WM signals. The preprocessing results primarily included whole-brain time-courses, functional connectivity, maps and tissue masks in a common space. At the job execution level, this pipeline exploited a local XNAT to store datasets and results, while using DAX tool to automatic distribute batch jobs that run on high-performance computing clusters. Through the pipeline, 5,034 fMRI/T1 scans were preprocessed. The intraclass correlation coefficient (ICC) of test-retest experiment based on the preprocessed data is 0.52 - 0.86 (N=1000), indicating a high reliability of our pipeline, comparable to previously reported ICC in gray matter experiments. This preprocessing pipeline highly facilitates our future analyses on WM functional alterations in aging and may be of benefit to a larger community interested in WM fMRI studies.
Collapse
Affiliation(s)
- Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard D Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Andrea T Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
16
|
Hadi Z, Mahmud M, Pondeca Y, Calzolari E, Chepisheva M, Smith RM, Rust HM, Sharp DJ, Seemungal BM. The human brain networks mediating the vestibular sensation of self-motion. J Neurol Sci 2022; 443:120458. [PMID: 36332321 DOI: 10.1016/j.jns.2022.120458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Vestibular Agnosia - where peripheral vestibular activation triggers the usual reflex nystagmus response but with attenuated or no self-motion perception - is found in brain disease with disrupted cortical network functioning, e.g. traumatic brain injury (TBI) or neurodegeneration (Parkinson's Disease). Patients with acute focal hemispheric lesions (e.g. stroke) do not manifest vestibular agnosia. Thus, brain network mapping techniques, e.g. resting state functional MRI (rsfMRI), are needed to interrogate functional brain networks mediating vestibular agnosia. Hence, we prospectively recruited 39 acute TBI patients with preserved peripheral vestibular function and obtained self-motion perceptual thresholds during passive yaw rotations in the dark and additionally acquired whole-brain rsfMRI in the acute phase. Following quality-control checks, 26 patient scans were analyzed. Using self-motion perceptual thresholds from a matched healthy control group, 11 acute TBI patients were classified as having vestibular agnosia versus 15 with normal self-motion perception thresholds. Using independent component analysis on the rsfMRI data, we found altered functional connectivity in bilateral lingual gyrus and temporo-occipital fusiform cortex in the vestibular agnosia patients. Moreover, regions of interest analyses showed both inter-hemispheric and intra-hemispheric network disruption in vestibular agnosia. In conclusion, our results show that vestibular agnosia is mediated by bilateral anterior and posterior network dysfunction and reveal the distributed brain mechanisms mediating vestibular self-motion perception.
Collapse
Affiliation(s)
- Zaeem Hadi
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK.
| | - Mohammad Mahmud
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK
| | - Yuscah Pondeca
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK
| | - Elena Calzolari
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK
| | - Mariya Chepisheva
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK
| | - Rebecca M Smith
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK
| | - Heiko M Rust
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK; Neurology, Universitätsspital Basel, Basel, Switzerland
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, UK
| | - Barry M Seemungal
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK.
| |
Collapse
|
17
|
Meng L, Wang H, Zou T, Wang X, Chen H, Xie F, Li R. Attenuated brain white matter functional network interactions in Parkinson's disease. Hum Brain Mapp 2022; 43:4567-4579. [PMID: 35674466 PMCID: PMC9491278 DOI: 10.1002/hbm.25973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 01/21/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by extensive structural abnormalities in cortical and subcortical brain areas. However, an association between changes in the functional networks in brain white matter (BWM) and Parkinson's symptoms remains unclear. With confirming evidence that resting-state functional magnetic resonance imaging (rs-fMRI) of BWM signals can effectively describe neuronal activity, this study investigated the interactions among BWM functional networks in PD relative to healthy controls (HC). Sixty-eight patients with PD and sixty-three HC underwent rs-fMRI. Twelve BWM functional networks were identified by K-means clustering algorithm, which were further classified as deep, middle, and superficial layers. Network-level interactions were examined via coefficient Granger causality analysis. Compared with the HC, the patients with PD displayed significantly weaker functional interaction strength within the BWM networks, particularly excitatory influences from the superficial to deep networks. The patients also showed significantly weaker inhibitory influences from the deep to superficial networks. Additionally, the sum of the absolutely positive/negative regression coefficients of the tri-layered networks in the patients was lower relative to HC (p < .05, corrected for false discovery rate). Moreover, we found the functional interactions involving the deep BWM networks negatively correlated with part III of the Unified Parkinson's Disease Rating Scales and Hamilton Depression Scales. Taken together, we demonstrated attenuated BWM interactions in PD and these abnormalities were associated with clinical motor and nonmotor symptoms. These findings may aid understanding of the neuropathology of PD and its progression throughout the nervous system from the perspective of BWM function.
Collapse
Affiliation(s)
- Li Meng
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hongyu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Fangfang Xie
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| |
Collapse
|
18
|
Kirby ED, Frizzell TO, Grajauskas LA, Song X, Gawryluk JR, Lakhani B, Boyd L, D'Arcy RCN. Increased myelination plays a central role in white matter neuroplasticity. Neuroimage 2022; 263:119644. [PMID: 36170952 DOI: 10.1016/j.neuroimage.2022.119644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
White matter (WM) neuroplasticity in the human brain has been tracked non-invasively using advanced magnetic resonance imaging techniques, with increasing evidence for improved axonal transmission efficiency as a central mechanism. The current study is the culmination of a series of studies, which characterized the structure-function relationship of WM transmission efficiency in the cortico-spinal tract (CST) during motor learning. Here, we test the hypothesis that increased transmission efficiency is linked directly to increased myelination using myelin water imaging (MWI). MWI was used to evaluate neuroplasticity-related improvements in the CST. The MWI findings were then compared to diffusion tensor imaging (DTI) results, with the secondary hypothesis that radial diffusivity (RD) would have a stronger relationship than axial diffusivity (AD) if the changes were due to increased myelination. Both MWI and RD data showed the predicted pattern of significant results, strongly supporting that increased myelination plays a central role in WM neuroplasticity.
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNET, Health and Technology District, Vancouver, Canada; Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, Canada
| | - Tory O Frizzell
- BrainNET, Health and Technology District, Vancouver, Canada; Faculty of Applied Sciences, Simon Fraser University, Burnaby, Canada
| | - Lukas A Grajauskas
- Department of Biomedical, Physiology, and Kinesiology, Simon Fraser University, Burnaby, Canada; Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Xiaowei Song
- Department of Biomedical, Physiology, and Kinesiology, Simon Fraser University, Burnaby, Canada; Department of Research and Evaluation Services and Surrey Memorial Hospital, Fraser Health Authority, Surrey, Canada
| | - Jodie R Gawryluk
- Department of Psychology, University of Victoria, Victoria, Canada
| | - Bimal Lakhani
- BrainNET, Health and Technology District, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Lara Boyd
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Ryan C N D'Arcy
- BrainNET, Health and Technology District, Vancouver, Canada; Faculty of Applied Sciences, Simon Fraser University, Burnaby, Canada; Department of Research and Evaluation Services and Surrey Memorial Hospital, Fraser Health Authority, Surrey, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
19
|
Zhao Y, Gao Y, Zu Z, Li M, Schilling KG, Anderson AW, Ding Z, Gore JC. Detection of functional activity in brain white matter using fiber architecture informed synchrony mapping. Neuroimage 2022; 258:119399. [PMID: 35724855 PMCID: PMC9388229 DOI: 10.1016/j.neuroimage.2022.119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/12/2023] Open
Abstract
A general linear model is widely used for analyzing fMRI data, in which the blood oxygenation-level dependent (BOLD) signals in gray matter (GM) evoked in response to neural stimulation are modeled by convolving the time course of the expected neural activity with a canonical hemodynamic response function (HRF) obtained a priori. The maps of brain activity produced reflect the magnitude of local BOLD responses. However, detecting BOLD signals in white matter (WM) is more challenging as the BOLD signals are weaker and the HRF is different, and may vary more across the brain. Here we propose a model-free approach to detect changes in BOLD signals in WM by measuring task-evoked increases of BOLD signal synchrony in WM fibers. The proposed approach relies on a simple assumption that, in response to a functional task, BOLD signals in relevant fibers are modulated by stimulus-evoked neural activity and thereby show greater synchrony than when measured in a resting state, even if their magnitudes do not change substantially. This approach is implemented in two technical stages. First, for each voxel a fiber-architecture-informed spatial window is created with orientation distribution functions constructed from diffusion imaging data. This provides the basis for defining neighborhoods in WM that share similar local fiber architectures. Second, a modified principal component analysis (PCA) is used to estimate the synchrony of BOLD signals in each spatial window. The proposed approach is validated using a 3T fMRI dataset from the Human Connectome Project (HCP) at a group level. The results demonstrate that neural activity can be reliably detected as increases in fMRI signal synchrony within WM fibers that are engaged in a task with high sensitivities and reproducibility.
Collapse
Affiliation(s)
- Yu Zhao
- Vanderbilt University Institute of Imaging Science, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States.
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, United States,Department of Biomedical Engineering, Vanderbilt University, United States
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, United States,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, United States,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States
| | - Kurt G. Schilling
- Vanderbilt University Institute of Imaging Science, United States,Department of Biomedical Engineering, Vanderbilt University, United States
| | - Adam W. Anderson
- Vanderbilt University Institute of Imaging Science, United States,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States,Department of Biomedical Engineering, Vanderbilt University, United States
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, United States; Department of Biomedical Engineering, Vanderbilt University, United States; Department of Electrical and Computer Engineering, Vanderbilt University, United States.
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, United States,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States,Department of Biomedical Engineering, Vanderbilt University, United States,Department of Molecular Physiology and Biophysics, Vanderbilt University, United States,Department of Physics and Astronomy, Vanderbilt University, United States
| |
Collapse
|
20
|
Li J, Li J, Huang P, Huang LN, Ding QG, Zhan L, Li M, Zhang J, Zhang H, Cheng L, Li H, Liu DQ, Zhou HY, Jia XZ. Increased functional connectivity of white-matter in myotonic dystrophy type 1. Front Neurosci 2022; 16:953742. [PMID: 35979335 PMCID: PMC9377538 DOI: 10.3389/fnins.2022.953742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is the most common and dominant inherited neuromuscular dystrophy disease in adults, involving multiple organs, including the brain. Although structural measurements showed that DM1 is predominantly associated with white-matter damage, they failed to reveal the dysfunction of the white-matter. Recent studies have demonstrated that the functional activity of white-matter is of great significance and has given us insights into revealing the mechanisms of brain disorders. Materials and methods Using resting-state fMRI data, we adopted a clustering analysis to identify the white-matter functional networks and calculated functional connectivity between these networks in 16 DM1 patients and 18 healthy controls (HCs). A two-sample t-test was conducted between the two groups. Partial correlation analyzes were performed between the altered white-matter FC and clinical MMSE or HAMD scores. Results We identified 13 white-matter functional networks by clustering analysis. These white-matter functional networks can be divided into a three-layer network (superficial, middle, and deep) according to their spatial distribution. Compared to HCs, DM1 patients showed increased FC within intra-layer white-matter and inter-layer white-matter networks. For intra-layer networks, the increased FC was mainly located in the inferior longitudinal fasciculus, prefrontal cortex, and corpus callosum networks. For inter-layer networks, the increased FC of DM1 patients is mainly located in the superior corona radiata and deep networks. Conclusion Results demonstrated the abnormalities of white-matter functional connectivity in DM1 located in both intra-layer and inter-layer white-matter networks and suggested that the pathophysiology mechanism of DM1 may be related to the white-matter functional dysconnectivity. Furthermore, it may facilitate the treatment development of DM1.
Collapse
Affiliation(s)
- Jing Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jie Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Pei Huang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Na Huang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Qing-Guo Ding
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiaxi Zhang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum, Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Dong-Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Hai-Yan Zhou
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Ze Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
21
|
Latency structure of BOLD signals within white matter in resting-state fMRI. Magn Reson Imaging 2022; 89:58-69. [PMID: 34999161 PMCID: PMC9851671 DOI: 10.1016/j.mri.2021.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Previous studies have demonstrated that BOLD signals in gray matter in resting-state functional MRI (RSfMRI) have variable time lags, representing apparent propagations of fMRI BOLD signals in gray matter. We complemented existing findings and explored the corresponding variations of signal latencies in white matter. METHODS We used data from the Brain Genomics Superstruct Project, consisting of 1412 subjects (both sexes included) and divided the dataset into ten equal groups to study both the patterns and reproducibility of latency estimates within white matter. We constructed latency matrices by computing cross-covariances between voxel pairs. We also applied a clustering analysis to identify functional networks within white matter, based on which latency analysis was also performed to investigate lead/lag relationship at network level. A dataset consisting of various sensory states (eyes closed, eyes open and eyes open with fixation) was also included to examine the relationship between latency structure and different states. RESULTS Projections of voxel latencies from the latency matrices were highly correlated (average Pearson correlation coefficient = 0.89) across the subgroups, confirming the reproducibility and structure of signal lags in white matter. Analysis of latencies within and between networks revealed a similar pattern of inter- and intra-network communication to that reported for gray matter. Moreover, a dominant direction, from inferior to superior regions, of BOLD signal propagation was revealed by higher resolution clustering. The variations of lag structure within white matter are associated with different sensory states. CONCLUSIONS These findings provide additional insight into the character and roles of white matter BOLD signals in brain functions.
Collapse
|
22
|
Jiang Y, Yao D, Zhou J, Tan Y, Huang H, Wang M, Chang X, Duan M, Luo C. Characteristics of disrupted topological organization in white matter functional connectome in schizophrenia. Psychol Med 2022; 52:1333-1343. [PMID: 32880241 DOI: 10.1017/s0033291720003141] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neuroimaging characteristics have demonstrated disrupted functional organization in schizophrenia (SZ), involving large-scale networks within grey matter (GM). However, previous studies have ignored the role of white matter (WM) in supporting brain function. METHODS Using resting-state functional MRI and graph theoretical approaches, we investigated global topological disruptions of large-scale WM and GM networks in 93 SZ patients and 122 controls. Six global properties [clustering coefficient (Cp), shortest path length (Lp), local efficiency (Eloc), small-worldness (σ), hierarchy (β) and synchronization (S) and three nodal metrics [nodal degree (Knodal), nodal efficiency (Enodal) and nodal betweenness (Bnodal)] were utilized to quantify the topological organization in both WM and GM networks. RESULTS At the network level, both WM and GM networks exhibited reductions in Eloc, Cp and S in SZ. The SZ group showed reduced σ and β only for the WM network. Furthermore, the Cp, Eloc and S of the WM network were negatively correlated with negative symptoms in SZ. At the nodal level, the SZ showed nodal disturbances in the corpus callosum, optic radiation, posterior corona radiata and tempo-occipital WM tracts. For GM, the SZ manifested increased nodal centralities in frontoparietal regions and decreased nodal centralities in temporal regions. CONCLUSIONS These findings provide the first evidence for abnormal global topological properties in SZ from the perspective of a substantial whole brain, including GM and WM. Nodal centralities enhance GM areas, along with a reduction in adjacent WM, suggest that WM functional alterations may be compensated for adjacent GM impairments in SZ.
Collapse
Affiliation(s)
- Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, P. R. China
| | - Jingyu Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yue Tan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - MeiLin Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Department of Psychiatry, Chengdu Mental Health Center, Chengdu, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| |
Collapse
|
23
|
Costantini I, Deriche R, Deslauriers-Gauthier S. An Anisotropic 4D Filtering Approach to Recover Brain Activation From Paradigm-Free Functional MRI Data. FRONTIERS IN NEUROIMAGING 2022; 1:815423. [PMID: 37555185 PMCID: PMC10406250 DOI: 10.3389/fnimg.2022.815423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/11/2022] [Indexed: 08/10/2023]
Abstract
CONTEXT Functional Magnetic Resonance Imaging (fMRI) is a non-invasive imaging technique that provides an indirect view into brain activity via the blood oxygen level dependent (BOLD) response. In particular, resting-state fMRI poses challenges to the recovery of brain activity without prior knowledge on the experimental paradigm, as it is the case for task fMRI. Conventional methods to infer brain activity from the fMRI signals, for example, the general linear model (GLM), require the knowledge of the experimental paradigm to define regressors and estimate the contribution of each voxel's time course to the task. To overcome this limitation, approaches to deconvolve the BOLD response and recover the underlying neural activations without a priori information on the task have been proposed. State-of-the-art techniques, and in particular the total activation (TA), formulate the deconvolution as an optimization problem with decoupled spatial and temporal regularization and an optimization strategy that alternates between the constraints. APPROACH In this work, we propose a paradigm-free regularization algorithm named Anisotropic 4D-fMRI (A4D-fMRI) that is applied on the 4D fMRI image, acting simultaneously in the 3D space and 1D time dimensions. Based on the idea that large image variations should be preserved as they occur during brain activations, whereas small variations considered as noise should be removed, the A4D-fMRI applies an anisotropic regularization, thus recovering the location and the duration of brain activations. RESULTS Using the experimental paradigm as ground truth, the A4D-fMRI is validated on synthetic and real task-fMRI data from 51 subjects, and its performance is compared to the TA. Results show higher correlations of the recovered time courses with the ground truth compared to the TA and lower computational times. In addition, we show that the A4D-fMRI recovers activity that agrees with the GLM, without requiring or using any knowledge of the experimental paradigm.
Collapse
|
24
|
Ma L, Liu M, Xue K, Ye C, Man W, Cheng M, Liu Z, Zhu D, Liu F, Wang J. Abnormal regional spontaneous brain activities in white matter in patients with autism spectrum disorder. Neuroscience 2022; 490:1-10. [PMID: 35218886 DOI: 10.1016/j.neuroscience.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/01/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
Previous studies have demonstrated patients with autism spectrum disorder (ASD) are accompanied by alterations of spontaneous brain activity in gray matter. However, whether the alterations of spontaneous brain activity exist in white matter remains largely unclear. In this study, 88 ASD patients and 87 typical controls (TCs) were included and regional homogeneity (ReHo) was calculated to characterize spontaneous brain activity in white matter. Voxel-wise two-sample t-tests were performed to investigate ReHo alterations, and cluster-level analyses were conducted to examine structural-functional coupling changes. Compared with TCs, the ASD group showed significantly decreased ReHo in the left superior corona radiata and left posterior limb of internal capsule, and decreased ReHo in the left anterior corona radiata with a trend level of significance. In addition, significantly weaker structural-functional coupling was observed in the left superior corona radiata and left posterior limb of internal capsule in ASD patients. Taken together, these findings highlighted abnormalities of white matter's regional spontaneous brain activity in ASD, which may provide new insights into the pathophysiological mechanisms of this disorder.
Collapse
Affiliation(s)
- Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Caihua Ye
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Weiqi Man
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Cheng
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhixuan Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Radiology, Tianjin Medical University General Hospital Airport Hospital, Tianjin 300308, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
25
|
Li J, Wu GR, Li B, Fan F, Zhao X, Meng Y, Zhong P, Yang S, Biswal BB, Chen H, Liao W. Transcriptomic and macroscopic architectures of intersubject functional variability in human brain white-matter. Commun Biol 2021; 4:1417. [PMID: 34931033 PMCID: PMC8688465 DOI: 10.1038/s42003-021-02952-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Intersubject variability is a fundamental characteristic of brain organizations, and not just "noise". Although intrinsic functional connectivity (FC) is unique to each individual and varies across brain gray-matter, the underlying mechanisms of intersubject functional variability in white-matter (WM) remain unknown. This study identified WMFC variabilities and determined the genetic basis and macroscale imaging in 45 healthy subjects. The functional localization pattern of intersubject variability across WM is heterogeneous, with most variability observed in the heteromodal cortex. The variabilities of heteromodal regions in expression profiles of genes are related to neuronal cells, involved in synapse-related and glutamic pathways, and associated with psychiatric disorders. In contrast, genes overexpressed in unimodal regions are mostly expressed in glial cells and were related to neurological diseases. Macroscopic variability recapitulates the functional and structural specializations and behavioral phenotypes. Together, our results provide clues to intersubject variabilities of the WMFC with convergent transcriptomic and cellular signatures, which relate to macroscale brain specialization.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, 400715, P.R. China
| | - Bing Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Feiyang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Xiaopeng Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Peng Zhong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07103, USA
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| |
Collapse
|
26
|
Power spectra reveal distinct BOLD resting-state time courses in white matter. Proc Natl Acad Sci U S A 2021; 118:2103104118. [PMID: 34716261 DOI: 10.1073/pnas.2103104118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Accurate characterization of the time courses of blood-oxygen-level-dependent (BOLD) signal changes is crucial for the analysis and interpretation of functional MRI data. While several studies have shown that white matter (WM) exhibits distinct BOLD responses evoked by tasks, there have been no comprehensive investigations into the time courses of spontaneous signal fluctuations in WM. We measured the power spectra of the resting-state time courses in a set of regions within WM identified as showing synchronous signals using independent components analysis. In each component, a clear separation between voxels into two categories was evident, based on their power spectra: one group exhibited a single peak, and the other had an additional peak at a higher frequency. Their groupings are location specific, and their distributions reflect unique neurovascular and anatomical configurations. Importantly, the two categories of voxels differed in their engagement in functional integration, revealed by differences in the number of interregional connections based on the two categories separately. Taken together, these findings suggest WM signals are heterogeneous in nature and depend on local structural-vascular-functional associations.
Collapse
|
27
|
Abramian D, Larsson M, Eklund A, Aganj I, Westin CF, Behjat H. Diffusion-informed spatial smoothing of fMRI data in white matter using spectral graph filters. Neuroimage 2021; 237:118095. [PMID: 34000402 PMCID: PMC8356807 DOI: 10.1016/j.neuroimage.2021.118095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/07/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Brain activation mapping using functional magnetic resonance imaging (fMRI) has been extensively studied in brain gray matter (GM), whereas in large disregarded for probing white matter (WM). This unbalanced treatment has been in part due to controversies in relation to the nature of the blood oxygenation level-dependent (BOLD) contrast in WM and its detectability. However, an accumulating body of studies has provided solid evidence of the functional significance of the BOLD signal in WM and has revealed that it exhibits anisotropic spatio-temporal correlations and structure-specific fluctuations concomitant with those of the cortical BOLD signal. In this work, we present an anisotropic spatial filtering scheme for smoothing fMRI data in WM that accounts for known spatial constraints on the BOLD signal in WM. In particular, the spatial correlation structure of the BOLD signal in WM is highly anisotropic and closely linked to local axonal structure in terms of shape and orientation, suggesting that isotropic Gaussian filters conventionally used for smoothing fMRI data are inadequate for denoising the BOLD signal in WM. The fundamental element in the proposed method is a graph-based description of WM that encodes the underlying anisotropy observed across WM, derived from diffusion-weighted MRI data. Based on this representation, and leveraging graph signal processing principles, we design subject-specific spatial filters that adapt to a subject's unique WM structure at each position in the WM that they are applied at. We use the proposed filters to spatially smooth fMRI data in WM, as an alternative to the conventional practice of using isotropic Gaussian filters. We test the proposed filtering approach on two sets of simulated phantoms, showcasing its greater sensitivity and specificity for the detection of slender anisotropic activations, compared to that achieved with isotropic Gaussian filters. We also present WM activation mapping results on the Human Connectome Project's 100-unrelated subject dataset, across seven functional tasks, showing that the proposed method enables the detection of streamline-like activations within axonal bundles.
Collapse
Affiliation(s)
- David Abramian
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Martin Larsson
- Centre of Mathematical Sciences, Lund University, Lund, Sweden
| | - Anders Eklund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden; Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Iman Aganj
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hamid Behjat
- Department of Biomedical Engineering, Lund University, Lund, Sweden; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
28
|
Li G, Jiang S, Paraskevopoulou SE, Chai G, Wei Z, Liu S, Wang M, Xu Y, Fan Z, Wu Z, Chen L, Zhang D, Zhu X. Detection of human white matter activation and evaluation of its function in movement decoding using stereo-electroencephalography (SEEG). J Neural Eng 2021; 18. [PMID: 34284361 DOI: 10.1088/1741-2552/ac160e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022]
Abstract
Objective. White matter tissue takes up approximately 50% of the human brain volume and it is widely known as a messenger conducting information between areas of the central nervous system. However, the characteristics of white matter neural activity and whether white matter neural recordings can contribute to movement decoding are often ignored and still remain largely unknown. In this work, we make quantitative analyses to investigate these two important questions using invasive neural recordings.Approach. We recorded stereo-electroencephalography (SEEG) data from 32 human subjects during a visually-cued motor task, where SEEG recordings can tap into gray and white matter electrical activity simultaneously. Using the proximal tissue density method, we identified the location (i.e. gray or white matter) of each SEEG contact. Focusing on alpha oscillatory and high gamma activities, we compared the activation patterns between gray matter and white matter. Then, we evaluated the performance of such white matter activation in movement decoding.Main results. The results show that white matter also presents activation under the task, in a similar way with the gray matter but at a significantly lower amplitude. Additionally, this work also demonstrates that combing white matter neural activities together with that of gray matter significantly promotes the movement decoding accuracy than using gray matter signals only.Significance. Taking advantage of SEEG recordings from a large number of subjects, we reveal the response characteristics of white matter neural signals under the task and demonstrate its enhancing function in movement decoding. This study highlights the importance of taking white matter activities into consideration in further scientific research and translational applications.
Collapse
Affiliation(s)
- Guangye Li
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,These authors contributed to this paper equally and should be considered as co-first authors
| | - Shize Jiang
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,These authors contributed to this paper equally and should be considered as co-first authors
| | - Sivylla E Paraskevopoulou
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, United States of America.,These authors contributed to this paper equally and should be considered as co-first authors
| | - Guohong Chai
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zixuan Wei
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Meng Wang
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yang Xu
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhen Fan
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zehan Wu
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Liang Chen
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Dingguo Zhang
- Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Xu Q, Weng Y, Liu C, Qiu L, Yang Y, Zhou Y, Wang F, Lu G, Zhang LJ, Qi R. Distributed Functional Connectome of White Matter in Patients With Functional Dyspepsia. Front Hum Neurosci 2021; 15:589578. [PMID: 33935665 PMCID: PMC8085333 DOI: 10.3389/fnhum.2021.589578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose: We aimed to find out the distributed functional connectome of white matter in patients with functional dyspepsia (FD). Methods: 20 patients with FD and 24 age- and gender-matched healthy controls were included into the study. The functional connectome of white matter and graph theory were used to these participants. Two-sample t-test was used for the detection the abnormal graph properties in FD. Pearson correlation was used for the relationship between properties and the clinical and neuropshychological information. Results: Patients with FD and healthy controls showed small-world properties in functional connectome of white matter. Compared with healthy controls, the FD group showed decreased global properties (Cp, S, Eglobal, and Elocal). Four pairs of fiber bundles that are connected to the frontal lobe, insula, and thalamus were affected in the FD group. Duration and Pittsburgh Sleep Quality Index positively correlated with the betweenness centrality of white matter regions of interest. Conclusion: FD patients turned to a non-optimized functional organization of WM brain network. Frontal lobe, insula, and thalamus were key regions in brain information exchange of FD. It provided some novel imaging evidences for the mechanism of FD.
Collapse
Affiliation(s)
- Qiang Xu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chang Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lianli Qiu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yulin Yang
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifei Zhou
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fangyu Wang
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangming Lu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Salvalaggio A, Pini L, De Filippo De Grazia M, Thiebaut De Schotten M, Zorzi M, Corbetta M. Reply: Lesion network mapping: where do we go from here? Brain 2021; 144:e6. [PMID: 33212502 PMCID: PMC7880667 DOI: 10.1093/brain/awaa351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alessandro Salvalaggio
- Clinica Neurologica, Department of Neuroscience, University of Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Italy
| | - Lorenzo Pini
- Padova Neuroscience Center (PNC), University of Padova, Italy
| | | | - Michel Thiebaut De Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Marco Zorzi
- IRCCS San Camillo Hospital, Venice, Italy
- Department of General Psychology, University of Padova, Italy
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Italy
- Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
- Department of Neurology, Radiology, Neuroscience Washington University School of Medicine, St.Louis, MO, USA
| |
Collapse
|
31
|
Li J, Chen H, Fan F, Qiu J, Du L, Xiao J, Duan X, Chen H, Liao W. White-matter functional topology: a neuromarker for classification and prediction in unmedicated depression. Transl Psychiatry 2020; 10:365. [PMID: 33127899 PMCID: PMC7603321 DOI: 10.1038/s41398-020-01053-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 02/03/2023] Open
Abstract
Aberrant topological organization of brain connectomes underlies pathological mechanisms in major depressive disorder (MDD). However, accumulating evidence has only focused on functional organization in brain gray-matter, ignoring functional information in white-matter (WM) that has been confirmed to have reliable and stable topological organizations. The present study aimed to characterize the functional pattern disruptions of MDD from a new perspective-WM functional connectome topological organization. A case-control, cross-sectional resting-state functional magnetic resonance imaging study was conducted on both discovery [91 unmedicated MDD patients, and 225 healthy controls (HCs)], and replication samples (34 unmedicated MDD patients, and 25 HCs). The WM functional networks were constructed in 128 anatomical regions, and their global topological properties (e.g., small-worldness) were analyzed using graph theory-based approaches. At the system-level, ubiquitous small-worldness architecture and local information-processing capacity were detectable in unmedicated MDD patients but were less salient than in HCs, implying a shift toward randomization in MDD WM functional connectomes. Consistent results were replicated in an independent sample. For clinical applications, small-world topology of WM functional connectome showed a predictive effect on disease severity (Hamilton Depression Rating Scale) in discovery sample (r = 0.34, p = 0.001). Furthermore, the topologically-based classification model could be generalized to discriminate MDD patients from HCs in replication sample (accuracy, 76%; sensitivity, 74%; specificity, 80%). Our results highlight a reproducible topologically shifted WM functional connectome structure and provide possible clinical applications involving an optimal small-world topology as a potential neuromarker for the classification and prediction of MDD patients.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Heng Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- School of Medicine, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Feiyang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Lian Du
- Department of PsyCiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
32
|
Li M, Ding Z, Gore JC. Identification of White Matter Networks Engaged in Object (Face) Recognition Showing Differential Responses to Modulated Stimulus Strength. Cereb Cortex Commun 2020; 1:tgaa067. [PMID: 33134929 PMCID: PMC7580301 DOI: 10.1093/texcom/tgaa067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
Blood-oxygenation-level-dependent (BOLD) signals in magnetic resonance imaging indirectly reflect neural activity in cortex, but they are also detectable in white matter (WM). BOLD signals in WM exhibit strong correlations with those in gray matter (GM) in a resting state, but their interpretation and relationship to GM activity in a task are unclear. We performed a parametric visual object recognition task designed to modulate the BOLD signal response in GM regions engaged in higher order visual processing, and measured corresponding changes in specific WM tracts. Human faces embedded in different levels of random noise have previously been shown to produce graded changes in BOLD activation in for example, the fusiform gyrus, as well as in electrophysiological (N170) evoked potentials. The magnitudes of BOLD responses in both GM regions and selected WM tracts varied monotonically with the stimulus strength (noise level). In addition, the magnitudes and temporal profiles of signals in GM and WM regions involved in the task coupled strongly across different task parameters. These findings reveal the network of WM tracts engaged in object (face) recognition and confirm that WM BOLD signals may be directly affected by neural activity in GM regions to which they connect.
Collapse
Affiliation(s)
- Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232-2310, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232-2310, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232-2310, USA
| |
Collapse
|
33
|
Kinany N, Pirondini E, Micera S, Van De Ville D. Dynamic Functional Connectivity of Resting-State Spinal Cord fMRI Reveals Fine-Grained Intrinsic Architecture. Neuron 2020; 108:424-435.e4. [PMID: 32910894 DOI: 10.1016/j.neuron.2020.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022]
Abstract
The neuroimaging community has shown tremendous interest in exploring the brain's spontaneous activity using functional magnetic resonance imaging (fMRI). On the contrary, the spinal cord has been largely overlooked despite its pivotal role in processing sensorimotor signals. Only a handful of studies have probed the organization of spinal resting-state fluctuations, always using static measures of connectivity. Many innovative approaches have emerged for analyzing dynamics of brain fMRI, but they have not yet been applied to the spinal cord, although they could help disentangle its functional architecture. Here, we leverage a dynamic connectivity method based on the clustering of hemodynamic-informed transients to unravel the rich dynamic organization of spinal resting-state signals. We test this approach in 19 healthy subjects, uncovering fine-grained spinal components and highlighting their neuroanatomical and physiological nature. We provide a versatile tool, the spinal innovation-driven co-activation patterns (SpiCiCAP) framework, to characterize spinal circuits during rest and task, as well as their disruption in neurological disorders.
Collapse
Affiliation(s)
- Nawal Kinany
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Elvira Pirondini
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pontedera, Italy.
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
34
|
Wang T, Wilkes DM, Li M, Wu X, Gore JC, Ding Z. Hemodynamic Response Function in Brain White Matter in a Resting State. Cereb Cortex Commun 2020; 1:tgaa056. [PMID: 33073237 PMCID: PMC7552822 DOI: 10.1093/texcom/tgaa056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/14/2022] Open
Abstract
The hemodynamic response function (HRF) characterizes temporal variations of blood oxygenation level-dependent (BOLD) signals. Although a variety of HRF models have been proposed for gray matter responses to functional demands, few studies have investigated HRF profiles in white matter particularly under resting conditions. In the present work we quantified the nature of the HRFs that are embedded in resting state BOLD signals in white matter, and which modulate the temporal fluctuations of baseline signals. We demonstrate that resting state HRFs in white matter could be derived by referencing to intrinsic avalanches in gray matter activities, and the derived white matter HRFs had reduced peak amplitudes and delayed peak times as compared with those in gray matter. Distributions of the time delays and correlation profiles in white matter depend on gray matter activities as well as white matter tract distributions, indicating that resting state BOLD signals in white matter encode neural activities associated with those of gray matter. This is the first investigation of derivations and characterizations of resting state HRFs in white matter and their relations to gray matter activities. Findings from this work have important implications for analysis of BOLD signals in the brain.
Collapse
Affiliation(s)
- Ting Wang
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | - D Mitchell Wilkes
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Muwei Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xi Wu
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Zhaohua Ding
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
35
|
Huang Y, Yang Y, Hao L, Hu X, Wang P, Ding Z, Gao JH, Gore JC. Detection of functional networks within white matter using independent component analysis. Neuroimage 2020; 222:117278. [PMID: 32835817 PMCID: PMC7736513 DOI: 10.1016/j.neuroimage.2020.117278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/02/2022] Open
Abstract
Spontaneous fluctuations in MRI signals from gray matter (GM) in the brain are interpreted as originating from variations in neural activity, and their inter-regional correlations may be analyzed to reveal functional connectivity. However, most studies of intrinsic neuronal activity have ignored the spontaneous fluctuations that also arise in white matter (WM). In this work, we explore spontaneous fluctuations in resting state MRI signals in WM based on spatial independent component analyses (ICA), a data-driven approach that separates signals into independent sources without making specific modeling assumptions. ICA has become widely accepted as a valuable approach for identifying functional connectivity within cortex but has been rarely applied to derive equivalent structures within WM. Here, BOLD signal changes in WM of a group of subjects performing motor tasks were first detected using ICA, and a spatial component whose time course was consistent with the task was found, demonstrating the analysis is sensitive to evoked BOLD signals in WM. Secondly, multiple spatial components were derived by applying ICA to identify those voxels in WM whose MRI signals showed similar temporal behaviors in a resting state. These functionally-related structures are grossly symmetric and coincide with corresponding tracts identified from diffusion MRI. Finally, functional connectivity was quantified by calculating correlations between pairs of structures to explore the synchronicity of resting state BOLD signals across WM regions, and the experimental results revealed that there exist two distinct groupings of functional correlations in WM tracts at rest. Our study provides further insights into the nature of activation patterns, functional responses and connectivity in WM, and support previous suggestions that BOLD signals in WM show similarities with cortical activations and are characterized by distinct underlying structures in tasks and at rest.
Collapse
Affiliation(s)
- Yali Huang
- College of Electronics and Information Engineering, Hebei University, Baoding 071002, China
| | - Yang Yang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lei Hao
- College of Electronics and Information Engineering, Hebei University, Baoding 071002, China
| | - Xuefang Hu
- College of Electronics and Information Engineering, Hebei University, Baoding 071002, China
| | - Peiguang Wang
- College of Electronics and Information Engineering, Hebei University, Baoding 071002, China; College of Mathematics and Information Science, Hebei University, Baoding 071002, China.
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, United States; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, United States
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China; McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, United States; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
36
|
Brain connections derived from diffusion MRI tractography can be highly anatomically accurate-if we know where white matter pathways start, where they end, and where they do not go. Brain Struct Funct 2020; 225:2387-2402. [PMID: 32816112 DOI: 10.1007/s00429-020-02129-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections.
Collapse
|
37
|
Wang X, Lu F, Duan X, Han S, Guo X, Yang M, Zhang Y, Xiao J, Sheng W, Zhao J, Chen H. Frontal white matter abnormalities reveal the pathological basis underlying negative symptoms in antipsychotic-naïve, first-episode patients with adolescent-onset schizophrenia: Evidence from multimodal brain imaging. Schizophr Res 2020; 222:258-266. [PMID: 32461088 DOI: 10.1016/j.schres.2020.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/20/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022]
Abstract
A major challenge in schizophrenia is to uncover the pathophysiological basis of its negative symptoms. Recent neuroimaging studies revealed that disrupted structural properties of frontal white matter (FWM) are associated with the negative symptoms of schizophrenia. However, there is little direct functional evidence of FWM for negative symptoms in schizophrenia. To address this issue, we combined resting-state connectome-wide functional connectivity (FC) and diffusion tensor imaging tractography to investigate the alteration of FWM underlying the negative symptoms in 39 drug-naive patients with adolescent-onset schizophrenia (AOS) and 31 age- and sex- matched healthy controls (HCs). Results revealed that the intrinsic FC and structural properties (fraction anisotropy and fibers) of the left FWM correspond to individual negative symptoms in AOS. Moreover, the serotonin network (raphe nuclei, anterior and posterior cingulate cortices, and prefrontal and inferior parietal cortices) and FWM-cingulum network were found to contributed to the negative symptom severity in AOS. Furthermore, the patients showed abnormal functional and structural connectivities between the interhemispheric FWM compared with HCs. Importantly, the decreased fiber counts between the interhemispheric FWM were inversely correlated with the negative symptoms in AOS. Our findings demonstrated the association between FWM and negative symptoms, and offered initial evidence by using WM connectome to uncover WM functional information in schizophrenia.
Collapse
Affiliation(s)
- Xiao Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Shaoqiang Han
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Mi Yang
- Department of Stomatology, The Fourth People's Hospital of Chengdu, Chengdu 610036, PR China
| | - Yan Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, PR China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jingping Zhao
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
38
|
Bu X, Liang K, Lin Q, Gao Y, Qian A, Chen H, Chen W, Wang M, Yang C, Huang X. Exploring white matter functional networks in children with attention-deficit/hyperactivity disorder. Brain Commun 2020; 2:fcaa113. [PMID: 33215081 PMCID: PMC7660033 DOI: 10.1093/braincomms/fcaa113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/05/2023] Open
Abstract
Attention-deficit/hyperactivity disorder has been identified to involve the impairment of large-scale functional networks within grey matter, and recent studies have suggested that white matter, which also encodes neural activity, can manifest intrinsic functional organization similar to that of grey matter. However, the alterations in white matter functional networks in attention-deficit/hyperactivity disorder remain unknown. We recruited a total of 99 children, including 66 drug-naive patients and 33 typically developing controls aged from 6 to 14, to characterize the alterations in functional networks within white matter in drug-naive children with attention-deficit/hyperactivity disorder. Using clustering analysis, resting-state functional MRI data in the white matter were parsed into different networks. Intrinsic activity within each network and connectivity between networks and the associations between network activity strength and clinical symptoms were assessed. We identified eight distinct white matter functional networks: the default mode network, the somatomotor network, the dorsal attention network, the ventral attention network, the visual network, the deep frontoparietal network, the deep frontal network and the inferior corticospinal-posterior cerebellum network. The default mode, somatomotor, dorsal attention and ventral attention networks showed lower spontaneous neural activity in patients. In particular, the default mode network and the somatomotor network largely showed higher connectivity with other networks, which correlated with more severe hyperactive behaviour, while the dorsal and ventral attention networks mainly had lower connectivity with other networks, which correlated with poor attention performance. In conclusion, there are two distinct patterns of white matter functional networks in children with attention-deficit/hyperactivity disorder, with one being the hyperactivity-related hot networks including default mode network and somatomotor network and the other being inattention-related cold networks including dorsal attention and ventral attention network. These results extended upon our understanding of brain functional networks in attention-deficit/hyperactivity disorder from the perspective of white matter dysfunction.
Collapse
Affiliation(s)
- Xuan Bu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Kaili Liang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxia Lin
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Andan Qian
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Hong Chen
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Wanying Chen
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
39
|
Li J, Biswal BB, Meng Y, Yang S, Duan X, Cui Q, Chen H, Liao W. A neuromarker of individual general fluid intelligence from the white-matter functional connectome. Transl Psychiatry 2020; 10:147. [PMID: 32404889 PMCID: PMC7220913 DOI: 10.1038/s41398-020-0829-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroimaging studies have uncovered the neural roots of individual differences in human general fluid intelligence (Gf). Gf is characterized by the function of specific neural circuits in brain gray-matter; however, the association between Gf and neural function in brain white-matter (WM) remains unclear. Given reliable detection of blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals in WM, we used a functional, rather than an anatomical, neuromarker in WM to identify individual Gf. We collected longitudinal BOLD-fMRI data (in total three times, ~11 months between time 1 and time 2, and ~29 months between time 1 and time 3) in normal volunteers at rest, and identified WM functional connectomes that predicted the individual Gf at time 1 (n = 326). From internal validation analyses, we demonstrated that the constructed predictive model at time 1 predicted an individual's Gf from WM functional connectomes at time 2 (time 1 ∩ time 2: n = 105) and further at time 3 (time 1 ∩ time 3: n = 83). From external validation analyses, we demonstrated that the predictive model from time 1 was generalized to unseen individuals from another center (n = 53). From anatomical aspects, WM functional connectivity showing high predictive power predominantly included the superior longitudinal fasciculus system, deep frontal WM, and ventral frontoparietal tracts. These results thus demonstrated that WM functional connectomes offer a novel applicable neuromarker of Gf and supplement the gray-matter connectomes to explore brain-behavior relationships.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Qian Cui
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- School of Public Administration, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| |
Collapse
|
40
|
Lin H, Sun Y, Li M, Zhan Y, Lin L, Ding Z, Han Y. Sex modulates the apolipoprotein E ε4 effect on white matter and cortical functional connectivity in individuals with amnestic mild cognitive impairment. Eur J Neurol 2020; 27:1415-1421. [PMID: 32304148 DOI: 10.1111/ene.14226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Recent studies from the Alzheimer's Disease Neuroimaging Initiative show that, in the USA, 75% of patients with Alzheimer's disease are female. To date, there have rarely been any attempts to analyze data by sex or gender, which limits the potential for discovering the effects of sex or gender on disease. Little evidence is available regarding the effect of gender and apolipoprotein E (APOE) ε4 on white matter (WM) connection from the functional perspective due to the lack of appropriate techniques for detecting blood-oxygen-level-dependent signals in WM. METHODS We took advantage of a new framework known as functional tensor imaging to investigate the effect of sex and APOEε4 on WM cortical functional connectivity throughout the brain. RESULTS In a group of female patients with amnestic mild cognitive impairment, we found a significantly reduced functional connectivity in the left posterior limb of the internal capsule, left superior fronto-occipital fasciculus, bilateral temporopolar area and right somatosensory association cortex in APOEε4 carriers in contrast to non-carriers. We also found a significant APOEε4 by sex interaction effect on the right somatosensory association cortex, left temporopolar area and left superior temporal gyrus. The clinical Montreal Cognitive Assessment score was significantly negatively associated with the right somatosensory association cortex with APOEε4 by sex interaction in males. CONCLUSIONS These results indicate that increased APOE-related risk in women may be associated with decreased activity in both gray matter and WM in patients with amnestic mild cognitive impairment compared with men. The finding suggests accounting for sex differences in neuroimaging biomarkers, diagnostics and treatment strategy.
Collapse
Affiliation(s)
- H Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Y Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - M Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Y Zhan
- School of Mechanical, Electrical and Information Engineering, Shandong University, Jinan, China
| | - L Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Z Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Y Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
41
|
Concomitant modulation of BOLD responses in white matter pathways and cortex. Neuroimage 2020; 216:116791. [PMID: 32330682 DOI: 10.1016/j.neuroimage.2020.116791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/03/2023] Open
Abstract
In response to a flickering visual stimulus, the BOLD response in primary visual cortex varies with the flickering frequency and is maximal when it is close to 8Hz. In previous studies we demonstrated that BOLD signals in specific white matter (WM) pathways covary with the alternations between stimulus conditions in a block design in similar manner to gray matter (GM) regions. Here we investigated whether WM tracts show varying responses to changes in flicker frequency and are modulated in the same manner as cortical areas. We used a Fourier analysis of BOLD signals to measure the signal amplitude and phase at the fundamental frequency of a block-design task in which flickering visual stimuli alternated with blank presentations, avoiding the assumption of any specific hemodynamic response function. The BOLD responses in WM pathways and the primary visual cortex were evaluated for flicker frequencies varying between 2 and 14Hz. The variations with frequency of BOLD signals in specific WM tracts followed closely those in primary visual cortex, suggesting that variations in cortical activation are directly coupled to corresponding BOLD signals in connected WM tracts. Statistically significant differences in the timings of BOLD responses were also measured between visual cortex and specific WM bundles. These results confirm that when cortical BOLD responses are modulated by selecting different task parameters, relevant WM tracts exhibit corresponding BOLD signals that are also affected.
Collapse
|
42
|
Tarun A, Behjat H, Bolton T, Abramian D, Van De Ville D. Structural mediation of human brain activity revealed by white-matter interpolation of fMRI. Neuroimage 2020; 213:116718. [PMID: 32184188 DOI: 10.1016/j.neuroimage.2020.116718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Understanding how the anatomy of the human brain constrains and influences the formation of large-scale functional networks remains a fundamental question in neuroscience. Here, given measured brain activity in gray matter, we interpolate these functional signals into the white matter on a structurally-informed high-resolution voxel-level brain grid. The interpolated volumes reflect the underlying anatomical information, revealing white matter structures that mediate the interaction between temporally coherent gray matter regions. Functional connectivity analyses of the interpolated volumes reveal an enriched picture of the default mode network (DMN) and its subcomponents, including the different white matter bundles that are implicated in their formation, thus extending currently known spatial patterns that are limited within the gray matter only. These subcomponents have distinct structure-function patterns, each of which are differentially observed during tasks, demonstrating plausible structural mechanisms for functional switching between task-positive and -negative components. This work opens new avenues for the integration of brain structure and function, and demonstrates the collective mediation of white matter pathways across short and long-distance functional connections.
Collapse
Affiliation(s)
- Anjali Tarun
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, 1202, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1202, Switzerland.
| | - Hamid Behjat
- Center for Medical Image Science and Visualization, University of Linköping, Linköping, 58183, Sweden
| | - Thomas Bolton
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, 1202, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1202, Switzerland
| | - David Abramian
- Department of Biomedical Engineering, University of Linköping, Linköping, 58183, Sweden; Department of Biomedical Engineering, Lund University, Lund, 22100, Sweden
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, 1202, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1202, Switzerland
| |
Collapse
|
43
|
Sex differences in resting state network (RSN) functional connections with mild cognitive impairment (MCI) progression. Neurosci Lett 2020; 724:134891. [PMID: 32145308 DOI: 10.1016/j.neulet.2020.134891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 03/03/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Sex plays an important role in many diseases. The purpose of current study is to explore whether there are different lesion patterns in the RSN functional connections between males and females with MCI progression, and identify the differences in brain network changes due to sex. METHODS Resting state fMRI data included 37 normal controls (NC), 39 early MCI (EMCI) patients and 37 late MCI (LMCI) patients were collected, and network model based on graph theory was performed to compare the differences of brain network at different stages caused by sex from three aspects: functional connectivity between ROIs, intra-functional connectivity within RSN and inter-functional connectivity between RSN and white matter (WM). RESULTS Sex plays a role in the changes of RSN functional connectivity, including the default mode network (DMN), the sensory-motor network (SMN), the dorsal attention network (DAN) and the executive control network (CON). The female SMN is more vulnerable and the damage of functional connectivity between DAN and WM is more serious. CONCLUSIONS There are different lesion patterns in the RSN functional connections between males and females in the progression of MCI, which suggests that we should take full account of sex differences when conducting MCI progress studies and developing more effective biomarkers to promote the progress of cognitive impairment and dementia.
Collapse
|
44
|
Wang P, Meng C, Yuan R, Wang J, Yang H, Zhang T, Zaborszky L, Alvarez TL, Liao W, Luo C, Chen H, Biswal BB. The Organization of the Human Corpus Callosum Estimated by Intrinsic Functional Connectivity with White-Matter Functional Networks. Cereb Cortex 2020; 30:3313-3324. [PMID: 32080708 DOI: 10.1093/cercor/bhz311] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
The corpus callosum is the commissural bridge of white-matter bundles important for the human brain functions. Previous studies have analyzed the structural links between cortical gray-matter networks and subregions of corpus callosum. While meaningful white-matter functional networks (WM-FNs) were recently reported, how these networks functionally link with distinct subregions of corpus callosum remained unknown. The current study used resting-state functional magnetic resonance imaging of the Human Connectome Project test–retest data to identify 10 cerebral WM-FNs in 119 healthy subjects and then parcellated the corpus callosum into distinct subregions based on the functional connectivity between each callosal voxel and above networks. Our results demonstrated the reproducible identification of WM-FNs and their links with known gray-matter functional networks across two runs. Furthermore, we identified reliably parcellated subregions of the corpus callosum, which might be involved in primary and higher order functional systems by functionally connecting with WM-FNs. The current study extended our knowledge about the white-matter functional signals to the intrinsic functional organization of human corpus callosum, which could help researchers understand the neural substrates underlying normal interhemispheric functional connectivity as well as dysfunctions in various mental disorders.
Collapse
Affiliation(s)
- Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Rui Yuan
- Department of Psychiatry, Stanford University, Palo Alto, CA 94305, USA
| | - Jianlin Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tao Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Tara L Alvarez
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
45
|
Li J, Biswal BB, Wang P, Duan X, Cui Q, Chen H, Liao W. Exploring the functional connectome in white matter. Hum Brain Mapp 2019; 40:4331-4344. [PMID: 31276262 PMCID: PMC6865787 DOI: 10.1002/hbm.24705] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 02/03/2023] Open
Abstract
A major challenge in neuroscience is understanding how brain function emerges from the connectome. Most current methods have focused on quantifying functional connectomes in gray-matter (GM) signals obtained from functional magnetic resonance imaging (fMRI), while signals from white-matter (WM) have generally been excluded as noise. In this study, we derived a functional connectome from WM resting-state blood-oxygen-level-dependent (BOLD)-fMRI signals from a large cohort (n = 488). The WM functional connectome exhibited weak small-world topology and nonrandom modularity. We also found a long-term (i.e., over 10 months) topological reliability, with topological reproducibility within different brain parcellation strategies, spatial distance effect, global and cerebrospinal fluid signals regression or not. Furthermore, the small-worldness was positively correlated with individuals' intelligence values (r = .17, pcorrected = .0009). The current findings offer initial evidence using WM connectome and present additional measures by which to uncover WM functional information in both healthy individuals and in cases of clinical disease.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew Jersey
| | - Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Qian Cui
- School of Public AdministrationUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
46
|
Faragó P, Tóth E, Kocsis K, Kincses B, Veréb D, Király A, Bozsik B, Tajti J, Párdutz Á, Szok D, Vécsei L, Szabó N, Kincses ZT. Altered Resting State Functional Activity and Microstructure of the White Matter in Migraine With Aura. Front Neurol 2019; 10:1039. [PMID: 31632336 PMCID: PMC6779833 DOI: 10.3389/fneur.2019.01039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/13/2019] [Indexed: 01/18/2023] Open
Abstract
Introduction: Brain structure and function were reported to be altered in migraine. Importantly our earlier results showed that white matter diffusion abnormalities and resting state functional activity were affected differently in the two subtypes of the disease, migraine with and without aura. Resting fluctuation of the BOLD signal in the white matter was reported recently. The question arising whether the white matter activity, that is strongly coupled with gray matter activity is also perturbed differentially in the two subtypes of the disease and if so, is it related to the microstructural alterations of the white matter. Methods: Resting state fMRI, 60 directional DTI images and high-resolution T1 images were obtained from 51 migraine patients and 32 healthy volunteers. The images were pre-processed and the white matter was extracted. Independent component analysis was performed to obtain white matter functional networks. The differential expression of the white matter functional networks in the two subtypes of the disease was investigated with dual-regression approach. The Fourier spectrum of the resting fMRI fluctuations were compared between groups. Voxel-wise correlation was calculated between the resting state functional activity fluctuations and white matter microstructural measures. Results: Three white matter networks were identified that were expressed differently in migraine with and without aura. Migraineurs with aura showed increased functional connectivity and amplitude of BOLD fluctuation. Fractional anisotropy and radial diffusivity showed strong correlation with the expression of the frontal white matter network in patients with aura. Discussion: Our study is the first to describe changes in white matter resting state functional activity in migraine with aura, showing correlation with the underlying microstructure. Functional and structural differences between disease subtypes suggest at least partially different pathomechanism, which may necessitate handling of these subtypes as separate entities in further studies.
Collapse
Affiliation(s)
- Péter Faragó
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary.,Central European Institute of Technology, Brno, Czechia
| | - Eszter Tóth
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Krisztián Kocsis
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Dániel Veréb
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - András Király
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary.,Central European Institute of Technology, Brno, Czechia
| | - Bence Bozsik
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE, Neuroscience Research Group, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary.,Central European Institute of Technology, Brno, Czechia
| | - Zsigmond Tamás Kincses
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary.,Department of Radiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
47
|
Zhao J, Ding X, Du Y, Wang X, Men G. Functional connectivity between white matter and gray matter based on fMRI for Alzheimer's disease classification. Brain Behav 2019; 9:e01407. [PMID: 31512413 PMCID: PMC6790327 DOI: 10.1002/brb3.1407] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/02/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a chronic neurodegenerative disease that generally starts slowly and leads to deterioration over time. Finding biomarkers more effective to predict AD transition is important for clinical medicine. And current research indicated that the lesion regions occur in both gray matter (GM) and white matter (WM). METHODS This paper extracted BOLD time series from WM and GM, combined WM and GM together for analysis, constructed functional connectivity (FC) of static (sWGFC) and dynamic (dWGFC) between WM and GM, as well as static (sGFC) and dynamic (dGFC) FC within GM in order to evaluate the methods and areas most useful as feature sets for distinguishing NC from AD. These features will be evaluated using support vector machine (SVM) classifiers. RESULTS The FC constructed by WM BOLD time series based on fMRI showed widely differences between the AD group and NC group. In terms of the results of the classification, the performance of feature subsets selected from sWGFC was better than sGFC, and the performance of feature subsets selected from dWGFC was better than dGFC. Overall, the feature subsets selected from dWGFC was the best. CONCLUSION These results indicated that there is a wide range of disconnection between WM and GM in AD, and association between WM and GM based on fMRI only is an effective strategy, and the FC between WM and GM could be a potential biomarker in the process of cognitive impairment and AD.
Collapse
Affiliation(s)
- Jie Zhao
- College of Electronic and Information Engineering, Hebei University, Baoding, China.,Research Center of Machine Vision Engineering & Technology of Hebei Province, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding, China
| | - Xuetong Ding
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Yuhang Du
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Xuehu Wang
- College of Electronic and Information Engineering, Hebei University, Baoding, China.,Research Center of Machine Vision Engineering & Technology of Hebei Province, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding, China
| | - Guozun Men
- School of Economics, Hebei University, Baoding, China
| |
Collapse
|
48
|
Gore JC, Li M, Gao Y, Wu TL, Schilling KG, Huang Y, Mishra A, Newton AT, Rogers BP, Chen LM, Anderson AW, Ding Z. Functional MRI and resting state connectivity in white matter - a mini-review. Magn Reson Imaging 2019; 63:1-11. [PMID: 31376477 DOI: 10.1016/j.mri.2019.07.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
Functional MRI (fMRI) signals are robustly detectable in white matter (WM) but they have been largely ignored in the fMRI literature. Their nature, interpretation, and relevance as potential indicators of brain function remain under explored and even controversial. Blood oxygenation level dependent (BOLD) contrast has for over 25 years been exploited for detecting localized neural activity in the cortex using fMRI. While BOLD signals have been reliably detected in grey matter (GM) in a very large number of studies, such signals have rarely been reported from WM. However, it is clear from our own and other studies that although BOLD effects are weaker in WM, using appropriate detection and analysis methods they are robustly detectable both in response to stimuli and in a resting state. BOLD fluctuations in a resting state exhibit similar temporal and spectral profiles in both GM and WM, and their relative low frequency (0.01-0.1 Hz) signal powers are comparable. They also vary with baseline neural activity e.g. as induced by different levels of anesthesia, and alter in response to a stimulus. In previous work we reported that BOLD signals in WM in a resting state exhibit anisotropic temporal correlations with neighboring voxels. On the basis of these findings, we derived functional correlation tensors that quantify the correlational anisotropy in WM BOLD signals. We found that, along many WM tracts, the directional preferences of these functional correlation tensors in a resting state are grossly consistent with those revealed by diffusion tensors, and that external stimuli tend to enhance visualization of specific and relevant fiber pathways. These findings support the proposition that variations in WM BOLD signals represent tract-specific responses to neural activity. We have more recently shown that sensory stimulations induce explicit BOLD responses along parts of the projection fiber pathways, and that task-related BOLD changes in WM occur synchronously with the temporal pattern of stimuli. WM tracts also show a transient signal response following short stimuli analogous to but different from the hemodynamic response function (HRF) characteristic of GM. Thus there is converging and compelling evidence that WM exhibits both resting state fluctuations and stimulus-evoked BOLD signals very similar (albeit weaker) to those in GM. A number of studies from other laboratories have also reported reliable observations of WM activations. Detection of BOLD signals in WM has been enhanced by using specialized tasks or modified data analysis methods. In this mini-review we report summaries of some of our recent studies that provide evidence that BOLD signals in WM are related to brain functional activity and deserve greater attention by the neuroimaging community.
Collapse
Affiliation(s)
- John C Gore
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America; Department of Molecular Physiology and Biophysics, Vanderbilt University, United States of America; Department of Physics and Astronomy, Vanderbilt University, United States of America.
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America
| | - Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Yali Huang
- Vanderbilt University Institute of Imaging Science, United States of America
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, United States of America
| | - Allen T Newton
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Electrical Engineering and Computer Science, Vanderbilt University, United States of America
| |
Collapse
|
49
|
Li W, Li G, Ji B, Zhang Q, Qiu J. Neuroanatomical Correlates of Creativity: Evidence From Voxel-Based Morphometry. Front Psychol 2019; 10:155. [PMID: 30778319 PMCID: PMC6369357 DOI: 10.3389/fpsyg.2019.00155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
Creativity was a special cognitive capacity which was crucial to human survival and prosperity. Remote associates test (RAT), identifying the relationships among remote ideas, was one of the most frequently used methods of measuring creativity. However, the structural characteristics associated with RAT remains unclear. In the present study, the relationship between gray matter density (GMD)/white matter density (WMD) and RAT was explored using voxel-based morphometry (VBM) in a larger healthy college student sample (144 women and 117 men). Results showed that the score of RAT was significantly positively related with the GMD in the right anterior superior temporal gyrus (aSTG) and negatively correlated with the GMD in the right dorsal anterior cingulate cortex (dACC). Meanwhile, results also showed that the score of RAT was significantly positively related with the WMD in the right dACC and negatively correlated with the WMD in the left inferior frontal gyrus (IFG). These findings indicate that individual creativity, as measured by the RAT, was mainly related to the regional gray /white matter density of brain regions in the aSTG, dACC and IFG, which might have been involved in the forming of novel combinations, breaking of mental set, monitoring of conflict and semantic integration.
Collapse
Affiliation(s)
- Wenfu Li
- School of Mental Health, Jining Medical University, Jining, China
| | - Gongying Li
- School of Mental Health, Jining Medical University, Jining, China
| | - Bingyuan Ji
- School of Mental Health, Jining Medical University, Jining, China
| | - Qinglin Zhang
- School of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| |
Collapse
|