1
|
Weise CM, Engel A, Polyakova M, Wu Q, Mueller K, Herzig S, Jech R, Diehl-Schmid J, Riedl L, Anderl-Straub S, Kornhuber J, Fassbender K, Wiltfang J, Fliessbach K, Prudlo J, Synofzik M, Danek A, Otto M, Schroeter ML. Dissecting neural correlates of theory of mind and executive functions in behavioral variant frontotemporal dementia. Alzheimers Res Ther 2024; 16:237. [PMID: 39462381 PMCID: PMC11515257 DOI: 10.1186/s13195-024-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is characterized by profound and early deficits in social cognition (SC) and executive functions (EF). To date it remains unclear whether deficits of the respective cognitive domains are based on the degeneration of distinct brain regions. In 103 patients with a diagnosis of bvFTD (possible/probable/definite: N = 40/58/5) from the frontotemporal lobar degeneration (FTLD) consortium Germany cohort (age 62.5±9.4 years, gender 38 female/65 male) we applied multimodal structural imaging, i.e. voxel-based morphometry, cortical thickness (CTH) and networks of structural covariance via source based morphometry. We cross-sectionally investigated associations with performance in a modified Reading the Mind in the Eyes Test (RMET; reflective of theory of mind - ToM) and five different tests reflective of EF (i.e. Hamasch-Five-Point Test, semantic and phonemic Fluency, Trail Making Test, Stroop interference). Finally, we investigated the conjunction of RMET correlates with functional networks commonly associated with SC respectively ToM and EF as extracted meta-analytically within the Neurosynth database. RMET performance was mainly associated with gray matter volume (GMV) and CTH within temporal and insular cortical regions and less within the prefrontal cortex (PFC), whereas EF performance was mainly associated with prefrontal regions (GMV and CTH). Overlap of RMET and EF associations was primarily located within the insula, adjacent subcortical structures (i.e. putamen) and the dorsolateral PFC (dlPFC). These patterns were more pronounced after adjustment for the respective other cognitive domain. Corroborative results were obtained in analyses of structural covariance networks. Overlap of RMET with meta-analytically extracted functional networks commonly associated with SC, ToM and EF was again primarily located within the temporal and insular region and the dlPFC. In addition, on a meta-analytical level, strong associations were found for temporal cortical RMET correlates with SC and ToM in particular. These data indicate a temporo-frontal dissociation of bvFTD related disturbances of ToM and EF, with atrophy of the anterior temporal lobe being critically involved in ToM deficits. The consistent overlap within the insular cortex may be attributable to the multimodal and integrative role of this region in socioemotional and cognitive processing.
Collapse
Affiliation(s)
- Christopher M Weise
- Department of Neurology, Halle University Medical Center, Halle (Saale), Germany.
| | - Annerose Engel
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Maryna Polyakova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Qiong Wu
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karsten Mueller
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sabine Herzig
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Robert Jech
- Department of Neurology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
- Clinical Center for Psychiatry, Psychotherapy, Psychosomatic Medicine, Geriatrics and Neurology, kbo-Inn-Salzach-Klinikum, Wasserburg/Inn, Germany
| | - Lina Riedl
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | | | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Friedrich-Alexander-Erlangen, Erlangen, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University Hospital Homburg, Homburg, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Johannes Prudlo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University Munich, München, Germany
| | - Markus Otto
- Department of Neurology, Halle University Medical Center, Halle (Saale), Germany
| | - Matthias L Schroeter
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
2
|
Wehrle FM, Held U, Disselhoff V, Schnider B, Stöckli A, Toma M, Bucher HU, Fauchère JC, Natalucci G, Hüppi P, Borradori-Tolsa C, Liverani MC, O’Gorman RL, Latal B, Hagmann CF. Early High-Dose Erythropoietin and Cognitive Functions of School-Aged Children Born Very Preterm. JAMA Netw Open 2024; 7:e2430043. [PMID: 39254979 PMCID: PMC11388032 DOI: 10.1001/jamanetworkopen.2024.30043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/16/2024] [Indexed: 09/11/2024] Open
Abstract
Importance Children born very preterm are at risk for long-term neurodevelopmental sequelae. Prophylactic high-dose recombinant human erythropoietin (rhEpo) shortly after birth has not been shown to improve cognitive, motor, and behavioral development at 2 and 5 years. Objective To investigate whether early high-dose rhEpo is associated with better executive functions and processing speed-late-maturing cognitive functions-in school-aged children born very preterm. Design, Setting, and Participants This single-center cohort study was a prospective, observational follow-up study of a multicenter neonatal clinical trial; 365 children born very preterm (mean gestational age, 29.3 weeks [range, 26.0-31.9 weeks]) who had been enrolled in the Swiss EPO Neuroprotection Trial at birth between 2005 and 2012, and who were included in the primary outcome analyses at 2 years, were eligible to be recruited for the EpoKids study between 2017 and 2021 when they were at school age. Term-born children were additionally recruited and included in a control group. Data were analyzed between May and September 2022. Exposure Administration of rhEpo (3000 IU/kg) or placebo (saline, 0.9%) intravenously 3 times within the first 2 days of life as part of the Swiss EPO Neuroprotection Trial. Main Outcome and Measures A comprehensive neuropsychological test battery assessed executive functions and processing speed, and parents reported on their child's executive functions in everyday life to test the hypothesis that early high-dose rhEpo administration is associated with better cognitive outcomes at school age. Results In the EpoKids study, 214 children born very preterm (58.6% of 365 children in eligible cohort) were assessed at a mean age of 10.4 years (range, 6.9-13.4 years); 117 (54.7%) were boys. There was no evidence that the 117 children who had received rhEpo differed from the 97 children who had received placebo in any of the 15 executive function and processing speed tests, nor in parent-rated executive functions (estimates ranged from -0.138 to 0.084, all 95% CIs included 0). Irrespective of rhEpo or placebo allocation, children born very preterm scored lower on 11 of 15 executive function and processing speed tests than term-born peers (estimates ranged from 0.112 to 0.255, 95% CIs did not include 0). Conclusion and Relevance This study found no evidence for a positive association between prophylactic early high-dose rhEpo administration and long-term neurodevelopmental outcomes after very preterm birth. These results suggest that a comprehensive approach, including pharmacological and nonpharmacological prevention and intervention strategies, is needed to support these children's neurodevelopmental outcome.
Collapse
Affiliation(s)
- Flavia Maria Wehrle
- Child Development Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Department of Neonatology and Intensive Care, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Ulrike Held
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Vera Disselhoff
- Department of Neonatology and Intensive Care, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Barbara Schnider
- Department of Neonatology and Intensive Care, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Alexandra Stöckli
- Department of Neonatology and Intensive Care, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Mina Toma
- Department of Neonatology and Intensive Care, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Hans Ulrich Bucher
- Newborn Research, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Jean-Claude Fauchère
- Newborn Research, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Giancarlo Natalucci
- Newborn Research, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
- Family Larsson-Rosenquist Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Petra Hüppi
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Cristina Borradori-Tolsa
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Maria Chiara Liverani
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Ruth L. O’Gorman
- University of Zurich, Zurich, Switzerland
- Center for MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Cornelia Franziska Hagmann
- Department of Neonatology and Intensive Care, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Xu P, Lin F, Alimu G, Zhang J, Jin Z, Li L. The Important Role of the Right Dorsolateral Prefrontal Cortex in Conflict Adaptation: A Combined Voxel-Based Morphometry and Continuous Theta Burst Stimulation Study. J Cogn Neurosci 2024; 36:1172-1183. [PMID: 38579250 DOI: 10.1162/jocn_a_02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Humans can flexibly adjust their executive control to resolve conflicts. Conflict adaptation and conflict resolution are crucial aspects of conflict processing. Functional neuroimaging studies have associated the dorsolateral prefrontal cortex (DLPFC) with conflict processing, but its causal role remains somewhat controversial. Moreover, the neuroanatomical basis of conflict processing has not been thoroughly examined. In this study, the Stroop task, a well-established measure of conflict, was employed to investigate (1) the neuroanatomical basis of conflict resolution and conflict adaptation with the voxel-based morphometry analysis, (2) the causal role of DLPFC in conflict processing with the application of the continuous theta burst stimulation to DLPFC. The results revealed that the Stroop effect was correlated to the gray matter volume of the precuneus, postcentral gyrus, and cerebellum, and the congruency sequence effect was correlated to the gray matter volume of superior frontal gyrus, postcentral gyrus, and lobule paracentral gyrus. These findings indicate the neuroanatomical basis of conflict resolution and adaptation. In addition, the continuous theta burst stimulation over the right DLPFC resulted in a significant reduction in the Stroop effect of RT after congruent trials compared with vertex stimulation and a significant increase in the Stroop effect of accuracy rate after incongruent trials than congruent trials, demonstrating the causal role of right DLPFC in conflict adaptation. Moreover, the DLPFC stimulation did not affect the Stroop effect of RT and accuracy rate. Overall, our study offers further insights into the neural mechanisms underlying conflict resolution and adaptation.
Collapse
Affiliation(s)
- Ping Xu
- University of Electronic Science and Technology of China
| | - Feng Lin
- University of Electronic Science and Technology of China
| | | | - Junjun Zhang
- University of Electronic Science and Technology of China
| | - Zhenlan Jin
- University of Electronic Science and Technology of China
| | - Ling Li
- University of Electronic Science and Technology of China
| |
Collapse
|
4
|
Scheliga S, Dohrn MF, Habel U, Lampert A, Rolke R, Lischka A, van den Braak N, Spehr M, Jo HG, Kellermann T. Reduced Gray Matter Volume and Cortical Thickness in Patients With Small-Fiber Neuropathy. THE JOURNAL OF PAIN 2024; 25:104457. [PMID: 38211845 DOI: 10.1016/j.jpain.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Small-fiber neuropathy (SFN) is defined by degeneration or dysfunction of peripheral sensory nerve endings. Central correlates have been identified on the level of gray matter volume (GMV) and cortical thickness (CT) changes. However, across SFN etiologies knowledge about a common structural brain signature is still lacking. Therefore, we recruited 26 SFN patients and 25 age- and sex-matched healthy controls to conduct voxel-based- and surface-based morphometry. Across all patients, we found reduced GMV in widespread frontal regions, left caudate, insula and superior parietal lobule. Surface-based morphometry analysis revealed reduced CT in the right precentral gyrus of SFN patients. In a region-based approach, patients had reduced GMV in the left caudate. Since pathogenic gain-of-function variants in voltage-gated sodium channels (Nav) have been associated with SFN pathophysiology, we explored brain morphological patterns in a homogenous subsample of patients carrying rare heterozygous missense variants. Whole brain- and region-based approaches revealed GMV reductions in the bilateral caudate for Nav variant carriers. Further research is needed to analyze the specific role of Nav variants for structural brain alterations. Together, we conclude that SFN patients have specific GMV and CT alterations, potentially forming potential new central biomarkers for this condition. Our results might help to better understand underlying or compensatory mechanisms of chronic pain perception in the future. PERSPECTIVE: This study reveals structural brain changes in small-fiber neuropathy (SFN) patients, particularly in frontal regions, caudate, insula, and parietal lobule. Notably, individuals with SFN and specific Nav variants exhibit bilateral caudate abnormalities. These findings may serve as potential central biomarkers for SFN and provide insights into chronic pain perception mechanisms.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Angelika Lampert
- Institute of Neurophysiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Annette Lischka
- Institute for Human Genetics and Genomic Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | | | - Marc Spehr
- Department of Chemosensation, RWTH Aachen University, Institute for Biology II, Aachen, Germany
| | - Han-Gue Jo
- School of Computer Information and Communication Engineering, Kunsan National University, Gunsan, South Korea
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| |
Collapse
|
5
|
Yan Y, He X, Xu Y, Peng J, Zhao F, Shao Y. Comparison between morphometry and radiomics: detecting normal brain aging based on grey matter. Front Aging Neurosci 2024; 16:1366780. [PMID: 38685908 PMCID: PMC11056505 DOI: 10.3389/fnagi.2024.1366780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Objective Voxel-based morphometry (VBM), surface-based morphometry (SBM), and radiomics are widely used in the field of neuroimage analysis, while it is still unclear that the performance comparison between traditional morphometry and emerging radiomics methods in diagnosing brain aging. In this study, we aimed to develop a VBM-SBM model and a radiomics model for brain aging based on cognitively normal (CN) individuals and compare their performance to explore both methods' strengths, weaknesses, and relationships. Methods 967 CN participants were included in this study. Subjects were classified into the middle-aged group (n = 302) and the old-aged group (n = 665) according to the age of 66. The data of 360 subjects from the Alzheimer's Disease Neuroimaging Initiative were used for training and internal test of the VBM-SBM and radiomics models, and the data of 607 subjects from the Australian Imaging, Biomarker and Lifestyle, the National Alzheimer's Coordinating Center, and the Parkinson's Progression Markers Initiative databases were used for the external tests. Logistics regression participated in the construction of both models. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were used to evaluate the two model performances. The DeLong test was used to compare the differences in AUCs between models. The Spearman correlation analysis was used to observe the correlations between age, VBM-SBM parameters, and radiomics features. Results The AUCs of the VBM-SBM model and radiomics model were 0.697 and 0.778 in the training set (p = 0.018), 0.640 and 0.789 in the internal test set (p = 0.007), 0.736 and 0.737 in the AIBL test set (p = 0.972), 0.746 and 0.838 in the NACC test set (p < 0.001), and 0.701 and 0.830 in the PPMI test set (p = 0.036). Weak correlations were observed between VBM-SBM parameters and radiomics features (p < 0.05). Conclusion The radiomics model achieved better performance than the VBM-SBM model. Radiomics provides a good option for researchers who prioritize performance and generalization, whereas VBM-SBM is more suitable for those who emphasize interpretability and clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Shao
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Wang X, Huang Y, Chen L, Mai J, Fang D, Mo T, Qi X, Zeng H. A Potential Mechanism of Neurological Impairment in Children With Infantile Spasm: Based on Microanatomic Structure Analysis Employing Voxel-Based Morphometry and Surface-Based Morphometry. Pediatr Neurol 2024; 153:116-124. [PMID: 38367486 DOI: 10.1016/j.pediatrneurol.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/09/2023] [Accepted: 12/11/2023] [Indexed: 02/19/2024]
Abstract
BACKGROUND Infantile epileptic spasms syndrome (IESS) would accompany with severe neurological impairment. Our study aimed to explore the potential mechanism by employing voxel-based and surface-based morphometry to detect brain microwould accompany with severe neurological impairment. Our study aimed to explore the potential mechanism by employing voxel-based and surface-based morphometry to detect brain microanatomic structure alteration. METHODS The IESS group had 21 males and 13 females (mean age: 17.7 ± 15.6 months), whereas the healthy controls group had 22 males and 10 females (mean age: 29.4 ± 18.7 months). High-resolution 3D T1WI was performed. Computational Anatomy Toolbox implemented in Statistical Parametric Mapping 12 was used to measure the gray matter and white matter volume, and the cortical thickness separately. Independent sample t test was used to assess between-group differences. IESS group was assessed using the Bayley Scales of Infant Development. RESULTS The IESS group showed a significantly decreased volume of gray matter in right middle temporal gyrus, inferior temporal gyrus, superior temporal gyrus, right fusiform, and bilateral precuneus (P < 0.001). There were no significant between-group differences with respect to white matter volume or cortical thickness (P > 0.001). The results of Bayley Scales of Infant Development showed that the Mental Development Index (MDI) and Psychomotor Development Index scores of children with IESS were almost concentrated in the range of <70. MDI score showed a positive correlation with gray matter reduction area in IESS group. CONCLUSION Children with IESS had impaired cognitive and delayed motor development. And the decreased gray matter in the right temporal lobe, fusiform, and bilateral precuneus could be the potential anatomic basis for impaired function, such as hearing, visual, and language.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yuchun Huang
- Department of Radiology, Longhua District Shenzhen People's Hospital, Shenzhen, China
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Jiahui Mai
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Diangang Fang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xinxin Qi
- China Medical University, Shenyang, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Langensee L, Spotorno N, Mårtensson J. Beyond the language network: Associations between reading, receptive vocabulary, and grey matter volume in 10-year-olds. Neuropsychologia 2023; 191:108719. [PMID: 37939873 DOI: 10.1016/j.neuropsychologia.2023.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Most research on the neurostructural basis of language abilities in children stems from small samples and surface-based measures. To complement and expand the existent knowledge, we investigated associations between grey matter volume and language performance in a large sample of 9-to-11-year-old children, using data from the Adolescent Brain Cognitive Development (ABCD) Study (N = 1865) and an alternative measure of grey matter morphology. We estimated whole-brain grey matter volume for one half of the sample (N = 939) and tested for correlations with scores on a picture vocabulary and a letter and word reading test, with and without factoring in general intelligence and total grey matter volume as additional covariates. The initial analyses yielded correlations between grey matter in the right occipital fusiform gyrus, the right lingual gyrus, and the cerebellum for both vocabulary and reading. Employing the significant clusters from the first analyses as regions of interest in the second half of the cohort (N = 926) in correlational and multiple regression analyses suggests the cluster in the right occipital fusiform and lingual gyri to be most robust. Overall, the amount of variance explained by grey matter volume is limited and factoring in additional covariates paints an inconsistent picture. The present findings reinforce existent doubt with respect to explaining individual differences in reading and vocabulary performance based on unique contributions of macrostructural brain features.
Collapse
Affiliation(s)
- Lara Langensee
- Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | | |
Collapse
|
8
|
Veerareddy A, Fang H, Safari N, Xu P, Krueger F. Cognitive empathy mediates the relationship between gray matter volume size of dorsomedial prefrontal cortex and social network size: A voxel-based morphometry study. Cortex 2023; 169:279-289. [PMID: 37972460 DOI: 10.1016/j.cortex.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
Social networks are an important factor in developing and maintaining social relationships. The social brain network comprises brain regions that differ in terms of their location, structure, and functioning, and these differences tend to vary among individuals with different social network sizes. However, it remains unknown how social cognitive abilities such as empathy can affect social network size. The goal of our study was to examine the relationship between brain regions in the social brain network, empathy, and individual social network size by using the Social Network Index, which measures social network diversity, size, and complexity by assessing 12 different types of relationships. We performed voxel-based morphometry and mediation analyses using data from questionnaires and structural magnetic resonance imaging data in a sample of 204 young adults. Our findings showed that the gray matter volume of the dorsomedial prefrontal cortex (dmPFC) was inversely associated with social network size and cognitive empathy mediated this association, suggesting that decreased gray matter volume in the dmPFC is associated with greater utilization of cognitive empathy, which, in turn, seems to increase social network size. A potential mechanism explaining this inverse relationship could be cognitive pruning, a phenomenon that occurs in the brain between early adolescence and adulthood, but future longitudinal studies are needed. In conclusion, our findings provide information about the neurocognitive mechanisms involved in the formation and maintenance of social networks.
Collapse
Affiliation(s)
| | - Huihua Fang
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China; Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Nooshin Safari
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, USA; Department of Psychology, University of Mannheim, Mannheim, Germany
| |
Collapse
|
9
|
Yan J, Li W, Zhang T, Zhang J, Jin Z, Li L. Structural and functional neural substrates underlying the concreteness effect. Brain Struct Funct 2023; 228:1493-1510. [PMID: 37389616 DOI: 10.1007/s00429-023-02668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
The concreteness effect refers to the advantage in speed and accuracy of processing concrete words over abstract words. Previous studies have shown that the processing of the two types of words is mediated by distinct neural mechanisms, but these studies were mainly conducted with task-based functional magnetic resonance imaging. This study investigates the associations between the concreteness effect and grey matter volume (GMV) of brain regions as well as resting-state functional connectivity (rsFC) of these identified regions. The results show that the GMV of left inferior frontal gyrus (IFG), right middle temporal gyrus (MTG), right supplementary motor area and right anterior cingulate cortex (ACC) negatively correlates with the concreteness effect. The rsFC of the left IFG, the right MTG and the right ACC with the nodes, mainly in default mode network, frontoparietal network and dorsal attention network positively correlates with the concreteness effect. The GMV and rsFC jointly and respectively predict the concreteness effect in individuals. In conclusion, stronger connectivity amongst functional networks and higher coherent engagement of the right hemisphere predict a greater difference in the verbal memory of abstract and concrete words.
Collapse
Affiliation(s)
- Jing Yan
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- School of Foreign Languages, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wenjuan Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tingting Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Taing AS, Mundy ME, Ponsford JL, Spitz G. Traumatic brain injury alters the relationship between brain structure and episodic memory. Brain Behav 2023; 13:e3012. [PMID: 37132290 PMCID: PMC10275516 DOI: 10.1002/brb3.3012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Focal and diffuse pathology resulting from traumatic brain injury (TBI) often disrupts brain circuitry that is critical for episodic memory, including medial temporal lobe and prefrontal regions. Prior studies have focused on unitary accounts of temporal lobe function, associating verbally learned material and brain morphology. Medial temporal lobe structures, however, are domain-sensitive, preferentially supporting different visual stimuli. There has been little consideration of whether TBI preferentially disrupts the type of visually learned material and its association with cortical morphology following injury. Here, we investigated whether (1) episodic memory deficits differ according to the stimulus type, and (2) the pattern in memory performance can be linked to changes in cortical thickness. METHODS Forty-three individuals with moderate-severe TBI and 38 demographically similar healthy controls completed a recognition task in which memory was assessed for three categories of stimuli: faces, scenes, and animals. The association between episodic memory accuracy on this task and cortical thickness was subsequently examined within and between groups. RESULTS Our behavioral results support the notion of category-specific impairments: the TBI group had significantly impaired accuracy for memory for faces and scenes, but not animals. Moreover, the association between cortical thickness and behavioral performance was only significant for faces between groups. CONCLUSION Taken together, these behavioral and structural findings provide support for an emergent memory account, and highlight that cortical thickness differentially affects episodic memory for specific categories of stimuli.
Collapse
Affiliation(s)
- Abbie S. Taing
- School of Psychological Sciences, Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Epworth Rehabilitation Research CentreRichmondVictoriaAustralia
| | - Matthew E. Mundy
- Faculty of Health and EducationTorrens UniversityMelbourneVictoriaAustralia
| | - Jennie L. Ponsford
- School of Psychological Sciences, Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Epworth Rehabilitation Research CentreRichmondVictoriaAustralia
| | - Gershon Spitz
- School of Psychological Sciences, Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Epworth Rehabilitation Research CentreRichmondVictoriaAustralia
| |
Collapse
|
11
|
Richter A, Soch J, Kizilirmak JM, Fischer L, Schütze H, Assmann A, Behnisch G, Feldhoff H, Knopf L, Raschick M, Schult A, Seidenbecher CI, Yakupov R, Düzel E, Schott BH. Single‐value scores of memory‐related brain activity reflect dissociable neuropsychological and anatomical signatures of neurocognitive aging. Hum Brain Mapp 2023; 44:3283-3301. [PMID: 36972323 PMCID: PMC10171506 DOI: 10.1002/hbm.26281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Memory-related functional magnetic resonance imaging (fMRI) activations show age-related differences across multiple brain regions that can be captured in summary statistics like single-value scores. Recently, we described two single-value scores reflecting deviations from prototypical whole-brain fMRI activity of young adults during novelty processing and successful encoding. Here, we investigate the brain-behavior associations of these scores with age-related neurocognitive changes in 153 healthy middle-aged and older adults. All scores were associated with episodic recall performance. The memory network scores, but not the novelty network scores, additionally correlated with medial temporal gray matter and other neuropsychological measures including flexibility. Our results thus suggest that novelty-network-based fMRI scores show high brain-behavior associations with episodic memory and that encoding-network-based fMRI scores additionally capture individual differences in other aging-related functions. More generally, our results suggest that single-value scores of memory-related fMRI provide a comprehensive measure of individual differences in network dysfunction that may contribute to age-related cognitive decline.
Collapse
|
12
|
Lee MM, Drury BC, McGrath LM, Stoodley CJ. Shared grey matter correlates of reading and attention. BRAIN AND LANGUAGE 2023; 237:105230. [PMID: 36731345 PMCID: PMC10153583 DOI: 10.1016/j.bandl.2023.105230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 05/04/2023]
Abstract
Disorders of reading (developmental dyslexia) and attention (ADHD) have a high rate of comorbidity (25-40%), yet little is known about the neural underpinnings of this phenomenon. The current study investigated the shared and unique neural correlates of reading and attention in 330 typically developing children ages 8-18 from the Philadelphia Neurodevelopmental Cohort. Multiple regression analyses were used to identify regions of the brain where grey matter (GM) volume was associated with reading or attention scores (p < 0.001, cluster FDR p < 0.05). Better attention scores correlated with increased GM in the precuneus and higher reading scores were associated with greater thalamic GM. An exploratory conjunction analysis (p < 0.05, k > 239) found that GM in the caudate and precuneus correlated with both reading and attention scores. These results are consistent with a recent meta-analysis which identified GM reductions in the caudate in both dyslexia and ADHD and reveal potential shared neural correlates of reading and attention.
Collapse
Affiliation(s)
- Marissa M Lee
- Department of Psychology, American University, United States; Department of Neuroscience, American University, United States
| | - Brianne C Drury
- Undergraduate Program in Neuroscience, American University, United States
| | | | - Catherine J Stoodley
- Department of Psychology, American University, United States; Department of Neuroscience, American University, United States.
| |
Collapse
|
13
|
Nicolaisen-Sobesky E, Mihalik A, Kharabian-Masouleh S, Ferreira FS, Hoffstaedter F, Schwender H, Maleki Balajoo S, Valk SL, Eickhoff SB, Yeo BTT, Mourao-Miranda J, Genon S. A cross-cohort replicable and heritable latent dimension linking behaviour to multi-featured brain structure. Commun Biol 2022; 5:1297. [PMID: 36435870 PMCID: PMC9701210 DOI: 10.1038/s42003-022-04244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Identifying associations between interindividual variability in brain structure and behaviour requires large cohorts, multivariate methods, out-of-sample validation and, ideally, out-of-cohort replication. Moreover, the influence of nature vs nurture on brain-behaviour associations should be analysed. We analysed associations between brain structure (grey matter volume, cortical thickness, and surface area) and behaviour (spanning cognition, emotion, and alertness) using regularized canonical correlation analysis and a machine learning framework that tests the generalisability and stability of such associations. The replicability of brain-behaviour associations was assessed in two large, independent cohorts. The load of genetic factors on these associations was analysed with heritability and genetic correlation. We found one heritable and replicable latent dimension linking cognitive-control/executive-functions and positive affect to brain structural variability in areas typically associated with higher cognitive functions, and with areas typically associated with sensorimotor functions. These results revealed a major axis of interindividual behavioural variability linking to a whole-brain structural pattern.
Collapse
Affiliation(s)
- Eliana Nicolaisen-Sobesky
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Agoston Mihalik
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Shahrzad Kharabian-Masouleh
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabio S Ferreira
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Somayeh Maleki Balajoo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Research Group "Cognitive Neurogenetics", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Centre for Translational MR Research, Centre for Sleep & Cognition, N.1 Institute for Health, Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Janaina Mourao-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
14
|
Jin Z, Jin DG, Xiao M, Ding A, Tian J, Zhang J, Li L. Structural and functional MRI evidence for significant contribution of precentral gyrus to flexible oculomotor control: evidence from the antisaccade task. Brain Struct Funct 2022; 227:2623-2632. [PMID: 36048283 PMCID: PMC9618498 DOI: 10.1007/s00429-022-02557-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Antisaccade task requires inhibition of a prepotent prosaccade to a peripheral target and initiation of a saccade to the opposite location, and, therefore, is used as a tool to investigate behavioral adjustment. The frontal and parietal cortices are both known for their activation during saccade generation, but it is unclear whether their neuroanatomical characteristics also contribute to antisaccades. Here, we took antisaccade cost (antisaccade latency minus prosaccade latency) as an index for additional time for generating antisaccades. Fifty-eight participants conducted pro and antisaccade tasks outside the magnetic resonance imaging (MRI) scanner and their structural MRI (sMRI) data were also collected to explore brain regions neuroanatomically related to antisaccade cost. Then, twelve participants performed saccade tasks in the scanner and their task-state functional MRI (fMRI) data were collected to verify the activation of structurally identified brain regions during the saccade generation. Voxel-based morphometry (VBM) results revealed that gray matter volume (GMV) of the left precentral gyrus and the left insula were positively correlated with the antisaccade cost, which was validated by the prediction analysis. Brain activation results showed the activation of the precentral during both pro and antisaccade execution period, but not the insula. Our results suggest that precentral gyrus and insula play vital roles to antisaccade cost, but possibly in different ways. The insula, a key node of the salience network, possibly regulates the saliency processing of the target, while the precentral gyrus possibly mediates the generation of saccades. Our study especially highlights an outstanding role of the precentral gyrus in flexible oculomotor control.
Collapse
Affiliation(s)
- Zhenlan Jin
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Dong-Gang Jin
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Xiao
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Aolin Ding
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jing Tian
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
15
|
Xie K, Jin Z, Jin DG, Zhang J, Li L. Shared and distinct structure-function substrates of heterogenous distractor suppression ability between high and low working memory capacity individuals. Neuroimage 2022; 260:119483. [PMID: 35842098 DOI: 10.1016/j.neuroimage.2022.119483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
Salient stimuli can capture attention in a bottom-up manner; however, this attentional capture can be suppressed in a top-down manner. It has been shown that individuals with high working memory capacity (WMC) can suppress salient‑but-irrelevant distractors better than those with low WMC; however, neural substrates underlying this difference remain unclear. To examine this, participants with high or low WMC (high-/low-WMC, n = 44/44) performed a visual search task wherein a color singleton item served as a salient distractor, and underwent structural and resting-state functional magnetic resonance imaging scans. Behaviorally, the color singleton distractor generally reduced the reaction time (RT). This RT benefit (ΔRT) was higher in the high-WMC group relative to the low-WMC group, indicating the superior distractor suppression ability of the high-WMC group. Moreover, leveraging voxel-based morphometry analysis, gray matter morphology (volume and deformation) in the ventral attention network (VAN) was found to show the same, positive associations with ΔRT in both WMC groups. However, correlations of the opposite sign were found between ΔRT and gray matter morphology in the frontoparietal (FPN)/default mode network (DMN) in the two WMC groups. Furthermore, resting-state functional connectivity analysis centering on regions with a structural-behavioral relationship found that connections between the left orbital and right superior frontal gyrus (hubs of DMN and VAN, respectively) was correlated with ΔRT in the high-WMC group (but not in the low-WMC group). Collectively, our work present shared and distinct neuroanatomical substrates of distractor suppression in high- and low-WMC individuals. Furthermore, intrinsic connectivity of the brain network hubs in high-WMC individuals may account for their superior ability in suppressing salient distractors.
Collapse
Affiliation(s)
- Ke Xie
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Dong-Gang Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
16
|
Li K, Qu H, Ma M, Xia C, Cai M, Han F, Zhang Q, Gu X, Ma Q. Correlation Between Brain Structure Atrophy and Plasma Amyloid-β and Phosphorylated Tau in Patients With Alzheimer’s Disease and Amnestic Mild Cognitive Impairment Explored by Surface-Based Morphometry. Front Aging Neurosci 2022; 14:816043. [PMID: 35547625 PMCID: PMC9083065 DOI: 10.3389/fnagi.2022.816043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
ObjectiveTo investigate the changes in the cortical thickness of the region of interest (ROI) and plasma Aβ40, Aβ42, and phosphorylated Tau (P-Tau) concentrations in patients with Alzheimer’s disease (AD) and amnestic mild cognitive impairment (aMCI) as the disease progressed with surface-based morphometry (SBM), to analyze the correlation between ROI cortical thickness and measured plasma indexes and neuropsychological scales, and to explore the clinical value of ROI cortical thickness combined with plasma Aβ40, Aβ42, and P-Tau in the early recognition and diagnosis of AD.MethodsThis study enrolled 33 patients with AD, 48 patients with aMCI, and 33 healthy controls (normal control, NC). Concentration changes in plasma Aβ42, Aβ40, and P-Tau collected in each group were analyzed. Meanwhile, the whole brain T1 structure images (T1WI-3D-MPRAGE) of each group of patients were collected, and T1 image in AD-aMCI, AD-NC, and aMCI-NC group were analyzed and processed by SBM technology to obtain brain regions with statistical differences as clusters, and the cortical thickness of each cluster was extracted. Multivariate ordered logistic regression analysis was used to screen out the measured plasma indexes and the indexes with independent risk factors in the cortical thickness of each cluster. Three comparative receiver operating characteristic (ROC) curves of AD-aMCI, AD-NC, and aMCI-NC groups were plotted, respectively, to explore the diagnostic value of multi-factor combined prediction for cognitive impairment. The relationship between cortical thickness and plasma indexes, and between cortical thickness and Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores were clarified by Pearson correlation analysis.ResultsPlasma Aβ40, Aβ42, and P-Tau proteins in the NC, aMCI, and AD groups increased with the progression of AD (P < 0.01); cortical thickness reductions in the AD-aMCI groups and AD-NC groups mainly involved the bilateral superior temporal gyrus, transverse temporal gyrus, superior marginal gyrus, insula, right entorhinal cortex, right fusiform gyrus, and cingulate gyrus. However, there were no statistical significances in cortical thickness reductions in the aMCI and NC groups. The cortical thickness of the ROI was negatively correlated with plasma Aβ40, Aβ42, and P-Tau concentrations (P < 0.05), and the cortical thickness of the ROI was positively correlated with MMSE and MoCA scores. Independent risk factors such as Aβ40, Aβ42, P-Tau, and AD-NC cluster 1R (right superior temporal gyrus, temporal pole, entorhinal cortex, transverse temporal gyrus, fusiform gyrus, superior marginal gyrus, middle temporal gyrus, and inferior temporal gyrus) were combined to plot ROC curves. The diagnostic efficiency of plasma indexes was higher than that of cortical thickness indexes, the diagnostic efficiency of ROC curves after the combination of cortical thickness and plasma indexes was higher than that of cortical thickness or plasma indexes alone.ConclusionPlasma Aβ40, Aβ42, and P-Tau may be potential biomarkers for early prediction of AD. As the disease progressed, AD patients developed cortical atrophy characterized by atrophy of the medial temporal lobe. The combined prediction of these region and plasma Aβ40, Aβ42, and P-Tau had a higher diagnostic value than single-factor prediction for cognitive decline.
Collapse
Affiliation(s)
- Kaidi Li
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hang Qu
- Department of Imaging, Yangzhou First People’s Hospital, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Mingyi Ma
- Department of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Chenyu Xia
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ming Cai
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Fang Han
- Department of Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Qing Zhang
- Department of Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xinyi Gu
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Qiang Ma
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Qiang Ma,
| |
Collapse
|
17
|
Gonzalez-Gomez R, Rodríguez-Villagra OA, Schulte M, Torralva T, Ibáñez A, Huepe D, Fittipaldi S. Neurocognitive factorial structure of executive functions: Evidence from neurotypicals and frontotemporal dementia. Cortex 2021; 145:79-96. [PMID: 34689034 PMCID: PMC11168581 DOI: 10.1016/j.cortex.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/01/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
The latent structure of executive functions (EFs) remains controversial. Confirmatory factorial analysis (CFA) has provided support for both multidimensional (assumes EFs to be functionally separable but related components) and bifactor (proposes all components are nested within a common factor) models. However, these CFA models have never been compared in patient samples, nor regarding their neuroanatomical correlates. Here, we systematically contrast both approaches in neurotypicals and in a neurodegenerative lesion model (patients with the behavioral variant frontotemporal dementia, bvFTD), characterized by executive deficits associated with frontal neurodegeneration. First, CFA was used to test the models' fit in a sample of 341 neurotypicals and 29 bvFTD patients based on performance in an executive frontal screening battery which assesses working memory, motor inhibition, verbal inhibition, and abstraction capacity. Second, we compared EFs factor and observed scores between patients and matched controls. Finally, we used voxel-based morphometry (VBM) to compare the grey matter correlates of factor and observed scores. CFA results showed that both models fit the data well. The multidimensional model, however, was more sensitive than the bifactor model and the observed scores to detect EFs impairments in bvFTD patients. VBM results for the multidimensional model revealed common and unique grey matter correlates for EFs components across prefrontal-insular, posterior, and temporal cortices. Regarding the bifactor model, only the common factor was associated with prefrontal-insular hubs. Observed scores presented scant, non-frontal grey matter associations. Converging behavioral and neuroanatomical evidence from healthy populations and a neurodegenerative model of EFs supports an underlying multidimensional structure.
Collapse
Affiliation(s)
- Raul Gonzalez-Gomez
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Odir Antonio Rodríguez-Villagra
- Institute for Psychological Research, University of Costa Rica, Sabanilla, Costa Rica; Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica
| | - Michael Schulte
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Teresa Torralva
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Global Brain Health Institute, University of California San Francisco (UCSF), US and Trinity College Dublin (TCD), Ireland
| | - David Huepe
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile.
| | - Sol Fittipaldi
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
18
|
Assari S. Cingulo-opercular and Cingulo-parietal Brain Networks Functional Connectivity in Pre-adolescents: Multiplicative Effects of Race, Ethnicity, and Parental Education. ACTA ACUST UNITED AC 2021; 6:76-99. [PMID: 34734154 DOI: 10.22158/rhs.v6n2p76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction A growing body of research has shown a diminished association between socioeconomic status (SES) indicators and a wide range of neuroimaging indicators for racial and ethnic minorities compared to majority groups. However, less is known about these effects for resting-state functional connectivity between various brain networks. Purpose This study investigated racial and ethnic variation in the correlation between parental education and resting-state functional connectivity between the cingulo-opercular (CO) and cingulo-parietal (CP) networks in children. Methods This cross-sectional study used data from the Adolescent Brain Cognitive Development (ABCD) study; we analyzed the resting-state functional Magnetic Resonance Imaging (rsfMRI) data of 8,464 American pre-adolescents between the ages of 9 and 10. The main outcome measured was resting-state functional connectivity between the CO and CP networks calculated using rsfMRI. The independent variable was parental education, which was treated as a nominal variable. Age, sex, and family marital status were the study covariates. Race and ethnicity were the moderators. Mixed-effects regression models were used for data analysis, with and without interaction terms between parental education and race and ethnicity. Results Higher parental education was associated with higher resting-state functional connectivity between the CO and CP networks. Race and ethnicity both showed statistically significant interactions with parental education on children's resting-state functional connectivity between CO and CP networks, suggesting that the correlation between parental education and the resting-state functional connectivity was significantly weaker for Black and Hispanic pre-adolescents compared to White and non-Hispanic pre-adolescents. Conclusions In line with the Minorities' Diminished Returns theory, the association between parental education and pre-adolescents resting-state functional connectivity between CO and CP networks may be weaker in Black and Hispanic children than in White and non-Hispanic children. The weaker link between parental education and brain functional connectivity for Blacks and Hispanics than for Whites and non-Hispanics may reflect racism, racialization, and social stratification that collectively minimize the returns of SES indicators, such as parental education for non-Whites, who become others in the US.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA.,Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA.,Marginalization-related Diminished Returns (MDRs) Research Center, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
19
|
Hoagey DA, Lazarus LTT, Rodrigue KM, Kennedy KM. The effect of vascular health factors on white matter microstructure mediates age-related differences in executive function performance. Cortex 2021; 141:403-420. [PMID: 34130048 PMCID: PMC8319097 DOI: 10.1016/j.cortex.2021.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 01/03/2023]
Abstract
Even within healthy aging, vascular risk factors can detrimentally influence cognition, with executive functions (EF) particularly vulnerable. Fronto-parietal white matter (WM) connectivity in part, supports EF and may be particularly sensitive to vascular risk. Here, we utilized structural equation modeling in 184 healthy adults (aged 20-94 years of age) to test the hypotheses that: 1) fronto-parietal WM microstructure mediates age effects on EF; 2) higher blood pressure (BP) and white matter hyperintensity (WMH) burden influences this association. All participants underwent comprehensive cognitive and neuropsychological testing including tests of processing speed, executive function (with a focus on tasks that require switching and inhibition) and completed an MRI scanning session that included FLAIR imaging for semi-automated quantification of white matter hyperintensity burden and diffusion-weighted imaging for tractography. Structural equation models were specified with age (as a continuous variable) and blood pressure predicting within-tract WMH burden and fractional anisotropy predicting executive function and processing speed. Results indicated that fronto-parietal white matter of the genu of the corpus collosum, superior longitudinal fasciculus, and the inferior frontal occipital fasciculus (but not cortico-spinal tract) mediated the association between age and EF. Additionally, increased systolic blood pressure and white matter hyperintensity burden within these white matter tracts contribute to worsening white matter health and are important factors underlying age-brain-behavior associations. These findings suggest that aging brings about increases in both BP and WMH burden, which may be involved in the degradation of white matter connectivity and in turn, negatively impact executive functions as we age.
Collapse
Affiliation(s)
- David A Hoagey
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Center for Vital Longevity, Dallas, TX, USA
| | - Linh T T Lazarus
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Karen M Rodrigue
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Center for Vital Longevity, Dallas, TX, USA
| | - Kristen M Kennedy
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Center for Vital Longevity, Dallas, TX, USA.
| |
Collapse
|
20
|
Tani K, Tanaka S. Neuroanatomical correlates of the perception of body axis orientation during body tilt: a voxel-based morphometry study. Sci Rep 2021; 11:14659. [PMID: 34282178 PMCID: PMC8289860 DOI: 10.1038/s41598-021-93961-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Accurate perception of the orientations of the body axis and gravity is essential for actions. The ability to perceive these orientations during head and body tilt varies across individuals, and its underlying neural basis is unknown. To address this, we investigated the association between inter-individual differences in local gray matter (GM) volume and inter-individual differences in the ability to estimate the directions of body longitudinal axis or gravity during whole-body tilt using voxel-based morphometry (VBM) analysis in 50 healthy adults (20–46 years, 25 men and 25 women). Although no anatomical regions were identified relating to performance requiring estimates of gravitational direction, we found a significant correlation between the GM volume in the right middle occipital gyrus and the ability to estimate the body axis orientation. This finding provides the first evidence on neuroanatomical substrates of the perception of body axis orientation during body tilt.
Collapse
Affiliation(s)
- Keisuke Tani
- Laboratory of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan. .,Faculty of Psychology, Otemon Gakuin University, 2-1-15 Nishi-Ai , Ibaraki, Osaka, 567-8502, Japan.
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
21
|
An fMRI Investigation into the Effects of Ketogenic Medium-Chain Triglycerides on Cognitive Function in Elderly Adults: A Pilot Study. Nutrients 2021; 13:nu13072134. [PMID: 34206642 PMCID: PMC8308254 DOI: 10.3390/nu13072134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
Evidence suggests that oral intake of medium-chain triglycerides (MCTs), which promote the production of ketone bodies, may improve cognitive functions in elderly people; however, the underlying brain mechanisms remain elusive. We tested the hypothesis that cognitive improvement accompanies physiological changes in the brain and reflects the use of ketone bodies as an extra energy source. To this end, by using functional magnetic resonance imaging, cerebral blood oxygenation level-dependent (BOLD) signals were measured while 20 healthy elderly subjects (14 females and 6 males; mean age: 65.7 ± 3.9 years) were engaged in executive function tasks (N-back and Go-Nogo) after ingesting a single MCT meal (Ketonformula®) or placebo meal in a randomized, double-blind placebo-controlled design (UMIN000031539). Morphological characteristics of the brain were also examined in relation to the effects of an MCT meal. The MCT meal improved N-back task performance, and this was prominent in subjects who had reduced grey matter volume in the dorsolateral prefrontal cortex (DLPFC), a region known to promote executive functions. When the participants were dichotomized into high/low level groups of global cognitive function at baseline, the high group showed improved N-back task performance, while the low group showed improved Go-Nogo task performance. This was accompanied by decreased BOLD signals in the DLPFC, indicative of the consumption of ketone bodies as an extra energy source.
Collapse
|
22
|
Zhao Q, Sullivan EV, Műller‐Oehring EM, Honnorat N, Adeli E, Podhajsky S, Baker FC, Colrain IM, Prouty D, Tapert SF, Brown SA, Meloy MJ, Brumback T, Nagel BJ, Morales AM, Clark DB, Luna B, De Bellis MD, Voyvodic JT, Nooner KB, Pfefferbaum A, Pohl KM. Adolescent alcohol use disrupts functional neurodevelopment in sensation seeking girls. Addict Biol 2021; 26:e12914. [PMID: 32428984 DOI: 10.1111/adb.12914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/20/2020] [Accepted: 04/17/2020] [Indexed: 01/11/2023]
Abstract
Exogenous causes, such as alcohol use, and endogenous factors, such as temperament and sex, can modulate developmental trajectories of adolescent neurofunctional maturation. We examined how these factors affect sexual dimorphism in brain functional networks in youth drinking below diagnostic threshold for alcohol use disorder (AUD). Based on the 3-year, annually acquired, longitudinal resting-state functional magnetic resonance imaging (MRI) data of 526 adolescents (12-21 years at baseline) from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) cohort, developmental trajectories of 23 intrinsic functional networks (IFNs) were analyzed for (1) sexual dimorphism in 259 participants who were no-to-low drinkers throughout this period; (2) sex-alcohol interactions in two age- and sex-matched NCANDA subgroups (N = 76 each), half no-to-low, and half moderate-to-heavy drinkers; and (3) moderating effects of gender-specific alcohol dose effects and a multifactorial impulsivity measure on IFN connectivity in all NCANDA participants. Results showed that sex differences in no-to-low drinkers diminished with age in the inferior-occipital network, yet girls had weaker within-network connectivity than boys in six other networks. Effects of adolescent alcohol use were more pronounced in girls than boys in three IFNs. In particular, girls showed greater within-network connectivity in two motor networks with more alcohol consumption, and these effects were mediated by sensation-seeking only in girls. Our results implied that drinking might attenuate the naturally diminishing sexual differences by disrupting the maturation of network efficiency more severely in girls. The sex-alcohol-dose effect might explain why women are at higher risk of alcohol-related health and psychosocial consequences than men.
Collapse
Affiliation(s)
- Qingyu Zhao
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine Stanford CA USA
| | - Edith V. Sullivan
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine Stanford CA USA
| | - Eva M. Műller‐Oehring
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine Stanford CA USA
- Center for Health Sciences SRI International Menlo Park CA USA
| | | | - Ehsan Adeli
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine Stanford CA USA
| | - Simon Podhajsky
- Center for Health Sciences SRI International Menlo Park CA USA
| | - Fiona C. Baker
- Center for Health Sciences SRI International Menlo Park CA USA
| | - Ian M. Colrain
- Center for Health Sciences SRI International Menlo Park CA USA
| | - Devin Prouty
- Center for Health Sciences SRI International Menlo Park CA USA
| | - Susan F. Tapert
- Department of Psychiatry University of California San Diego CA USA
| | - Sandra A. Brown
- Department of Psychiatry University of California San Diego CA USA
- Department of Psychology University of California San Diego CA USA
| | - Mary J. Meloy
- Department of Psychiatry University of California San Diego CA USA
| | - Ty Brumback
- Department of Psychological Science Northern Kentucky University Highland Heights KY USA
| | - Bonnie J. Nagel
- Departments of Psychiatry and Behavioral Neuroscience Oregon Health & Sciences University Portland OR USA
| | - Angelica M. Morales
- Departments of Psychiatry and Behavioral Neuroscience Oregon Health & Sciences University Portland OR USA
| | - Duncan B. Clark
- Department of Psychiatry University of Pittsburgh Pittsburgh PA USA
| | - Beatriz Luna
- Department of Psychiatry University of Pittsburgh Pittsburgh PA USA
| | - Michael D. De Bellis
- Department of Psychiatry & Behavioral Sciences Duke University School of Medicine Durham NC USA
| | - James T. Voyvodic
- Department of Radiology Duke University School of Medicine Durham NC USA
| | - Kate B. Nooner
- Department of Psychology University of North Carolina Wilmington Wilmington NC USA
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine Stanford CA USA
- Center for Health Sciences SRI International Menlo Park CA USA
| | - Kilian M. Pohl
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine Stanford CA USA
- Center for Health Sciences SRI International Menlo Park CA USA
| |
Collapse
|
23
|
Haynes L, Ip A, Cho IYK, Dimond D, Rohr CS, Bagshawe M, Dewey D, Lebel C, Bray S. Grey and white matter volumes in early childhood: A comparison of voxel-based morphometry pipelines. Dev Cogn Neurosci 2020; 46:100875. [PMID: 33166899 PMCID: PMC7652784 DOI: 10.1016/j.dcn.2020.100875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/10/2020] [Accepted: 10/21/2020] [Indexed: 10/30/2022] Open
Abstract
Early childhood is an important period of sensory, motor, cognitive and socio-emotional maturation, yet relatively little is known about the brain changes specific to this period. Voxel-based morphometry (VBM) is a technique to estimate regional brain volumes from magnetic resonance (MR) images. The default VBM processing pipeline can be customized to increase accuracy of segmentation and normalization, yet the impact of customizations on analyses in young children are not clear. Here, we assessed the impact of different preprocessing steps on T1-weighted MR images from typically developing children in two separate cohorts. Data were processed with the Computational Anatomy Toolbox (CAT12), using seven different VBM pipelines with distinct combinations of tissue probability maps (TPMs) and DARTEL templates created using the Template-O-Matic, and CerebroMatic. The first cohort comprised female children aged 3.9-7.9 years (N = 62) and the second included boys and girls aged 2.7-8 years (N = 74). We found that pipelines differed significantly in their tendency to classify voxels as grey or white matter and the conclusions about some age effects were pipeline-dependent. Our study helps to both understand age-associations in grey and white matter volume across early childhood and elucidate the impact of VBM customization on brain volumes in this age range.
Collapse
Affiliation(s)
- Logan Haynes
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Amanda Ip
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Ivy Y K Cho
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Dennis Dimond
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Christiane S Rohr
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Mercedes Bagshawe
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Deborah Dewey
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Canada; Owerko Centre, University of Calgary, Calgary, Canada
| | - Catherine Lebel
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Signe Bray
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| |
Collapse
|
24
|
Kwan LY, Eaton DL, Andersen SL, Dow-Edwards D, Levin ED, Talpos J, Vorhees CV, Li AA. This is your teen brain on drugs: In search of biological factors unique to dependence toxicity in adolescence. Neurotoxicol Teratol 2020; 81:106916. [DOI: 10.1016/j.ntt.2020.106916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
|
25
|
Xie K, Jin Z, Ni X, Zhang J, Li L. Distinct neural substrates underlying target facilitation and distractor suppression: A combined voxel-based morphometry and resting-state functional connectivity study. Neuroimage 2020; 221:117149. [PMID: 32659355 DOI: 10.1016/j.neuroimage.2020.117149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022] Open
Abstract
Selective attention, the ability to filter relevant from a sea of sensory information, relies on the prioritization of goal-relevant information (target facilitation) and the suppression of goal-irrelevant information (distractor suppression). Although several lines of evidence have shown that target facilitation and distractor suppression were mediated by distinct mechanisms, the underlying neural substrates remain unclear. To address this question, we acquired structural and resting-state magnetic resonance imaging scans, as well as behavioral data from a modified Posner cueing task. Specifically, the location of a target (Target Cue, TC) and a distractor (Distractor Cue, DC) was either cued in advance to separately trigger target facilitation and distractor suppression, or no predictive information was provided, serving as a baseline. We combined voxel-based morphometry (VBM) and resting-state functional connectivity (rsFC) analyses to explore the neural correlates of behavioral benefits, yielding the following results. First, behavioral data showed faster responses to TC and DC conditions compared to baseline, the benefits of which were named TC-benefit and DC-benefit. Second, the VBM analysis revealed that the gray matter volume (GMV) in the superior frontal (SFG) and postcentral gyrus inversely correlated with individual TC-benefit, while the GMV in the superior parietal lobe, middle frontal gyrus, and angular gyrus inversely correlated with individual DC-benefit, indicating that target facilitation and distractor suppression was associated with the GMV of distinct and distributed regions in the frontoparietal cortex. Third, the rsFC analysis with the SFG as a seed region further found distinct patterns of rsFC for target facilitation and distractor suppression. Specifically, individual TC-benefit were positively correlated with distributed connections between the SFG and brain regions, mainly within the ventral attention and somato-motor network; but individual DC-benefit were positively correlated with centralized connections between the SFG and brain regions, mainly within the frontoparietal, dorsal attention and ventral attention network. Finally, a multiple linear regression analysis showed that the GMV and rsFC could jointly explain individual differences in TC- and DC-benefit. Taken together, these results provided neural evidence for different structural and functional substrates underlying target facilitation and distractor suppression.
Collapse
Affiliation(s)
- Ke Xie
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Xuejin Ni
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
26
|
Assmann A, Richter A, Schütze H, Soch J, Barman A, Behnisch G, Knopf L, Raschick M, Schult A, Wüstenberg T, Behr J, Düzel E, Seidenbecher CI, Schott BH. Neurocan genome-wide psychiatric risk variant affects explicit memory performance and hippocampal function in healthy humans. Eur J Neurosci 2020; 53:3942-3959. [PMID: 32583466 DOI: 10.1111/ejn.14872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
Alterations of the brain extracellular matrix (ECM) can perturb the structure and function of brain networks like the hippocampus, a key region in human memory that is commonly affected in psychiatric disorders. Here, we investigated the potential effects of a genome-wide psychiatric risk variant in the NCAN gene encoding the ECM proteoglycan neurocan (rs1064395) on memory performance, hippocampal function and cortical morphology in young, healthy volunteers. We assessed verbal memory performance in two cohorts (N = 572, 302) and found reduced recall performance in risk allele (A) carriers across both cohorts. In 117 participants, we performed functional magnetic resonance imaging using a novelty-encoding task with visual scenes. Risk allele carriers showed higher false alarm rates during recognition, accompanied by inefficiently increased left hippocampal activation. To assess effects of rs1064395 on brain morphology, we performed voxel-based morphometry in 420 participants from four independent cohorts and found lower grey matter density in the ventrolateral and rostral prefrontal cortex of risk allele carriers. In silico eQTL analysis revealed that rs1064395 SNP is linked not only to increased prefrontal expression of the NCAN gene itself, but also of the neighbouring HAPLN4 gene, suggesting a more complex effect of the SNP on ECM composition. Our results suggest that the NCAN rs1064395 A allele is associated with lower hippocampus-dependent memory function, variation of prefrontal cortex structure and ECM composition. Considering the well-documented hippocampal and prefrontal dysfunction in bipolar disorder and schizophrenia, our results may reflect an intermediate phenotype by which NCAN rs1064395 contributes to disease risk.
Collapse
Affiliation(s)
- Anne Assmann
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany
| | - Joram Soch
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Bernstein Center for Computational Neuroscience, Humboldt University, Berlin, Germany
| | | | | | - Lea Knopf
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Matthias Raschick
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany.,Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Joachim Behr
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Medical School Brandenburg, Neuruppin, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Germany
| |
Collapse
|