1
|
Zhang Y, Becker B, Kendrick KM, Zhang Q, Yao S. Self-navigating the "Island of Reil": a systematic review of real-time fMRI neurofeedback training of insula activity. Transl Psychiatry 2025; 15:170. [PMID: 40379616 PMCID: PMC12084372 DOI: 10.1038/s41398-025-03382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 04/26/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
Real-time fMRI (rtfMRI) neurofeedback (NF) is a novel noninvasive technique that permits individuals to voluntarily control brain activity. The crucial role of the insula in emotional and salience processing makes it one of the most commonly targeted regions in previous rtfMRI studies. To provide an overview of progress in the field, the present review identified 25 rtfMRI insula studies and systematically reviewed key characteristics and findings in these studies. We found that rtfMRI-based NF training is efficient for modulating insula activity and its associated behavioral/symptom-related and neural changes. Furthermore, we also observed a maintenance effect of self-regulation ability and sustained symptom improvement, which is of importance for clinical application. However, training success of insula regulation was not consistently paralleled by behavioral/symptom-related changes, suggesting a need for optimizing the NF training protocol enabling more robust training effects. Principles including inclusion of a well-designed control group/condition, statistical analyses and reporting results following common criteria and a priori determination of sample and effect sizes as well as pre-registration are also highly recommended. In summary, we believe our review will inspire and inform both basic research and therapeutic translation of rtfMRI NF training as an intervention in mental disorders particularly those with insula dysfunction.
Collapse
Affiliation(s)
- Yuan Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Ester-Nacke T, Veit R, Thomanek J, Book M, Tamble L, Beermann M, Löffler D, Salvador R, Ruffini G, Heni M, Birkenfeld AL, Plewnia C, Preissl H, Kullmann S. Repeated net-tDCS of the hypothalamus appetite-control network enhances inhibitory control and decreases sweet food intake in persons with overweight or obesity. Brain Stimul 2025; 18:863-874. [PMID: 40222666 DOI: 10.1016/j.brs.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Reduced inhibitory control is associated with obesity and neuroimaging studies indicate that diminished prefrontal cortex activity influence eating behavior and metabolism. The hypothalamus regulates energy homeostasis and is functionally connected to cortical and subcortical regions especially the frontal areas. OBJECTIVES We tested network-targeted transcranial direct current stimulation (net-tDCS) to influence the excitability of brain regions involved in appetite control. METHODS In a randomized, double-blind parallel group design, 44 adults with overweight or obesity (BMI 30.6 kg/m2, 52.3 % female) received active (anodal or cathodal) or sham 12-channel net-tDCS on the hypothalamus appetite-control network for 25 min on three consecutive days while performing a Stop-Signal-Task to measure response inhibition. Before and after stimulation, state questionnaires assessed changes in desire to eat and food craving. Directly after stimulation, participants received a breakfast buffet to evaluate ad-libitum food intake. An oral glucose tolerance test was conducted at follow-up. Resting-state functional MRI was obtained at baseline and follow-up. RESULTS The Stop-Signal Reaction Time (SSRT) was shorter in both active groups versus sham, indicating improved response inhibition. Additionally, a stronger increase in hypothalamic functional connectivity was associated with shorter SSRT. Caloric intake of sweet food was lower in the anodal group versus sham, but no main effects between groups were observed on total and macronutrient intake, food craving ratings and desire to eat. At follow-up, no differences were observed between groups on peripheral metabolism. CONCLUSION Our study suggests that modulating hypothalamic functional network connectivity patterns via net-tDCS may improve food choice and inhibitory control.
Collapse
Affiliation(s)
- Theresa Ester-Nacke
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center of Diabetes Research (DZD), Tübingen, Germany.
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Julia Thomanek
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Magdalena Book
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Lukas Tamble
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Marie Beermann
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Dorina Löffler
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany; German Center of Diabetes Research (DZD), Tübingen, Germany
| | | | | | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany; German Center of Diabetes Research (DZD), Tübingen, Germany; Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, Eberhard Karls University Tübingen, Tübingen, Germany; Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany; German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University Hospital Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany; German Center of Diabetes Research (DZD), Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany; German Center of Diabetes Research (DZD), Tübingen, Germany
| |
Collapse
|
3
|
Bernat-Villena A, Pérez-Comino FJ, Becerra-Losada M, Algarra-López LS, Caracuel A, Vilar-López R. Intermittent theta burst stimulation (iTBS) and inhibitory control training for excess weight treatment: study protocol for a randomized controlled trial (InhibE). BMC Psychol 2025; 13:225. [PMID: 40065421 PMCID: PMC11895256 DOI: 10.1186/s40359-025-02556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The prevalence of excess weight has increased globally. Despite interventions include targeted goals on essential aspects such as physical activity and diet, their long-term effectiveness remains limited. Research highlights that eating behaviour is influenced by impulsive processes, especially in the context of a food-rich environment. Inhibitory control has been identified as a key factor in regulating eating behaviour. Neuroscience approaches, including inhibitory control training and non-invasive neuromodulation of brain regions such as the dorsolateral prefrontal cortex, show promise in improving eating behaviour when used in addition to conventional intervention for weight management. This parallel group, randomized, controlled trial aims to study the efficacy of neuromodulation with iTBS as an add-on to the weight loss treatment as usual (TAU: diet and exercise), alone and in combination with inhibitory control training, for excess weight treatment. METHODS AND ANALYSIS 141 people with excess weight will be randomized into three groups: combined intervention (inhibitory control training + iTBS), iTBS and sham iTBS. The three groups will receive individualized diet and physical exercise guidelines (TAU). The interventions will comprehend ten sessions along two weeks. The main outcome measure will be the Body Mass Index change. Secondary outcomes include changes in brain connectivity and activation using fMRI, cognitive measures, eating and physical exercise behaviours, anthropometric and biological measures. Assessments will be carried out before the intervention, after the intervention and 3 months after the intervention. In addition, data on the use of the health system will be collected to analyse the cost-effectiveness and the cost-utility of the intervention. DISCUSSION Findings of this study will expand the available evidence on cognitive interventions to improve eating behaviour in people with excess weight. TRIAL REGISTRATION The trial has been registered at www. CLINICALTRIALS gov under the number NCT06668077 on the 11th of February 2025 named Inhibitory Control Training and iTBS for Excess Weight Behavioral and Brain Changes (InhibE). Any relevant modification to the protocol will be reflected in the clinical trial registry in www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Andrea Bernat-Villena
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, 18070, Spain.
| | | | - Marta Becerra-Losada
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, 18070, Spain
| | | | - Alfonso Caracuel
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, 18070, Spain
| | - Raquel Vilar-López
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, 18070, Spain.
| |
Collapse
|
4
|
Klein F, Kohl SH, Lührs M, Mehler DMA, Sorger B. From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230087. [PMID: 39428887 PMCID: PMC11513164 DOI: 10.1098/rstb.2023.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback allows individuals to monitor and self-regulate their brain activity, potentially improving human brain function. Beyond the traditional electrophysiological approach using primarily electroencephalography, brain haemodynamics measured with functional magnetic resonance imaging (fMRI) and more recently, functional near-infrared spectroscopy (fNIRS) have been used (haemodynamic-based neurofeedback), particularly to improve the spatial specificity of neurofeedback. Over recent years, especially fNIRS has attracted great attention because it offers several advantages over fMRI such as increased user accessibility, cost-effectiveness and mobility-the latter being the most distinct feature of fNIRS. The next logical step would be to transfer haemodynamic-based neurofeedback protocols that have already been proven and validated by fMRI to mobile fNIRS. However, this undertaking is not always easy, especially since fNIRS novices may miss important fNIRS-specific methodological challenges. This review is aimed at researchers from different fields who seek to exploit the unique capabilities of fNIRS for neurofeedback. It carefully addresses fNIRS-specific challenges and offers suggestions for possible solutions. If the challenges raised are addressed and further developed, fNIRS could emerge as a useful neurofeedback technique with its own unique application potential-the targeted training of brain activity in real-world environments, thereby significantly expanding the scope and scalability of haemodynamic-based neurofeedback applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS—Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Simon H. Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute of Translational Psychiatry, Medical Faculty, University of Münster, Münster, Germany
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Ontiveros-Ángel P, Vega-Torres JD, Simon TB, Williams V, Inostroza-Nives Y, Alvarado-Crespo N, Gonzalez YV, Pompolius M, Katzka W, Lou J, Sharafeddin F, De la Peña I, Dong T, Gupta A, Viet CT, Febo M, Obenaus A, Nair A, Figueroa JD. Early-life obesogenic environment integrates immunometabolic and epigenetic signatures governing neuroinflammation. Brain Behav Immun Health 2024; 42:100879. [PMID: 39430879 PMCID: PMC11490928 DOI: 10.1016/j.bbih.2024.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Childhood overweight/obesity is associated with stress-related psychopathology, yet the pathways connecting childhood obesity to stress susceptibility are poorly understood. We employed a systems biology approach with 62 adolescent Lewis rats fed a Western-like high-saturated fat diet (WD, 41% kcal from fat) or a control diet (CD, 13% kcal from fat). A subset of rats underwent a 31-day model of predator exposures and social instability (PSS). Effects were assessed using behavioral tests, DTI (diffusion tensor imaging), NODDI (neurite orientation dispersion and density imaging), 16S rRNA gene sequencing for gut microbiome profiling, hippocampal microglia analysis, and targeted gene methylation. Parallel experiments on human microglia cells (HMC3) examined how palmitic acid influences cortisol-related inflammatory responses. Rats exposed to WD and PSS exhibited deficits in sociability, increased fear/anxiety-like behaviors, food consumption, and body weight. WD/PSS altered hippocampal microstructure (subiculum, CA1, dentate gyrus), and microbiome analysis showed a reduced abundance of members of the phylum Firmicutes. WD/PSS synergistically promoted neuroinflammatory changes in hippocampal microglia, linked with microbiome shifts and altered Fkbp5 expression/methylation. In HMC3, palmitate disrupted cortisol responses, affecting morphology, phagocytic markers, and cytokine release, partially mediated by FKBP5. This study identifies gene-environment interactions that influence microglia biology and may contribute to the connection between childhood obesity and stress-related psychopathology later in life.
Collapse
Affiliation(s)
- Perla Ontiveros-Ángel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Julio David Vega-Torres
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Timothy B. Simon
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Vivianna Williams
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Yaritza Inostroza-Nives
- Department of Biochemistry and Pharmacology, San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Nashareth Alvarado-Crespo
- Department of Biochemistry and Pharmacology, San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Yarimar Vega Gonzalez
- Department of Biochemistry and Pharmacology, San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Marjory Pompolius
- Translational Research Imaging Laboratory, Department of Psychiatry, Department of Neuroscience, College of Medicine, University of Florida Health, Gainesville, FL, USA
| | - William Katzka
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA Microbiome Center, University of California, Los Angeles, CA, USA
| | - John Lou
- Loma Linda University Health School of Behavioral Health, Loma Linda, CA, USA
| | - Fransua Sharafeddin
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Ike De la Peña
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, USA
| | - Tien Dong
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA Microbiome Center, University of California, Los Angeles, CA, USA
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA Microbiome Center, University of California, Los Angeles, CA, USA
| | - Chi T. Viet
- Department of Oral & Maxillofacial Surgery, Loma Linda University Health School of Dentistry, Loma Linda, CA, USA
| | - Marcelo Febo
- Translational Research Imaging Laboratory, Department of Psychiatry, Department of Neuroscience, College of Medicine, University of Florida Health, Gainesville, FL, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Aarti Nair
- Department of Psychology, Loma Linda University, Loma Linda, CA, USA
| | - Johnny D. Figueroa
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
6
|
Aydin BN, Stinson EJ, Travis KT, Krakoff J, Rodzevik T, Chang DC, Gluck ME. Reduced plasma interleukin-6 concentration after transcranial direct current stimulation to the prefrontal cortex. Behav Brain Res 2024; 474:115201. [PMID: 39151649 PMCID: PMC11401619 DOI: 10.1016/j.bbr.2024.115201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Transcranial direct stimulation (tDCS) targeted to the dorsolateral prefrontal cortex (DLPFC) reduces food intake and hunger, but its effects on circulating factors are unclear. We assessed the effect of repeated administration of tDCS to the left DLPFC (L-DLPFC) on concentrations of pro/anti-inflammatory and appetitive hormone concentrations. MATERIALS AND METHODS Twenty-nine healthy adults with obesity (12 M; 42±11 y; BMI=39±8 kg/m2) received 3 consecutive inpatient sessions of either anodal or sham tDCS targeted to the L-DLPFC during a period of ad libitum food intake. Fasting plasma concentrations of IL-6, orexin, cortisol, TNF-α, IL-1β, ghrelin, PYY, and GLP-1 were measured before the initial and after the final tDCS sessions. RESULTS IL-6 (β=-0.92 pg/ml p=0.03) decreased in the anodal group compared with sham, even after adjusting for kcal intake; there were no changes in other hormones. Mean kcal intake was associated with higher IL-1β and ghrelin concentrations after the ad libitum period (β=0.00018 pg/ml/kcal, p=0.03; β=0.00011 pg/ml/kcal, p=0.02; respectively), but not differ by intervention groups. CONCLUSIONS IL-6 concentrations were reduced following anodal tDCS to the L-DLPFC independent of ad libitum intake. IL-6 concentrations reflect the inflammatory state of adiposity and may affect eating behavior and weight gain. These findings provide evidence of therapeutic benefit of tDCS.
Collapse
Affiliation(s)
- Beyza N Aydin
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Emma J Stinson
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Katherine T Travis
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Theresa Rodzevik
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Douglas C Chang
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Marci E Gluck
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States.
| |
Collapse
|
7
|
Krause F, Linden DEJ, Hermans EJ. Getting stress-related disorders under control: the untapped potential of neurofeedback. Trends Neurosci 2024; 47:766-776. [PMID: 39261131 DOI: 10.1016/j.tins.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Stress-related disorders are among the biggest global health challenges. Despite significant progress in understanding their neurocognitive basis, the promise of applying insights from fundamental research to prevention and treatment remains largely unfulfilled. We argue that neurofeedback - a method for training voluntary control over brain activity - has the potential to fill this translational gap. We provide a contemporary perspective on neurofeedback as endogenous neuromodulation that can target complex brain network dynamics, is transferable to real-world scenarios outside a laboratory or treatment facility, can be trained prospectively, and is individually adaptable. This makes neurofeedback a prime candidate for a personalized preventive neuroscience-based intervention strategy that focuses on the ecological momentary neuromodulation of stress-related brain networks in response to actual stressors in real life.
Collapse
Affiliation(s)
- Florian Krause
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands.
| | - David E J Linden
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Erno J Hermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Godet A, Serrand Y, Léger B, Moirand R, Bannier E, Val-Laillet D, Coquery N. Functional near-infrared spectroscopy-based neurofeedback training targeting the dorsolateral prefrontal cortex induces changes in cortico-striatal functional connectivity. Sci Rep 2024; 14:20025. [PMID: 39198481 PMCID: PMC11358514 DOI: 10.1038/s41598-024-69863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Due to its central role in cognitive control, the dorso-lateral prefrontal cortex (dlPFC) has been the target of multiple brain modulation studies. In the context of the present pilot study, the dlPFC was the target of eight repeated neurofeedback (NF) sessions with functional near infrared spectroscopy (fNIRS) to assess the brain responses during NF and with functional and resting state magnetic resonance imaging (task-based fMRI and rsMRI) scanning. Fifteen healthy participants were recruited. Cognitive task fMRI and rsMRI were performed during the 1st and the 8th NF sessions. During NF, our data revealed an increased activity in the dlPFC as well as in brain regions involved in cognitive control and self-regulation learning (pFWE < 0.05). Changes in functional connectivity between the 1st and the 8th session revealed increased connectivity between the posterior cingulate cortex and the dlPFC, and between the posterior cingulate cortex and the dorsal striatum (pFWE < 0.05). Decreased left dlPFC-left insula connectivity was also observed. Behavioural results revealed a significant effect of hunger and motivation on the participant control feeling and a lower control feeling when participants did not identify an effective mental strategy, providing new insights on the effects of behavioural factors that may affect the NF learning.
Collapse
Affiliation(s)
- A Godet
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - Y Serrand
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - B Léger
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - R Moirand
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
- Unité d'Addictologie, CHU Rennes, Rennes, France
| | - E Bannier
- Inria, CRNS, Inserm, IRISA UMR 6074, Empenn U1228, Univ Rennes, Rennes, France.
- Radiology Department, CHU Rennes, Rennes, France.
| | - D Val-Laillet
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France.
| | - N Coquery
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| |
Collapse
|
9
|
Yang X, Zeng Y, Jiao G, Gan X, Linden D, Hernaus D, Zhu C, Li K, Yao D, Yao S, Jiang Y, Becker B. A brief real-time fNIRS-informed neurofeedback training of the prefrontal cortex changes brain activity and connectivity during subsequent working memory challenge. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110968. [PMID: 38354898 DOI: 10.1016/j.pnpbp.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/06/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.
Collapse
Affiliation(s)
- Xi Yang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Yixu Zeng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - David Linden
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Keshuang Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihan Jiang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China.
| | - Benjamin Becker
- The University of Hong Kong, State Key Laboratory of Brain and Cognitive Sciences, Hong Kong, China; The University of Hong Kong, Department of Psychology, Hong Kong, China.
| |
Collapse
|
10
|
Ester-Nacke T, Berti K, Veit R, Dannecker C, Salvador R, Ruffini G, Heni M, Birkenfeld AL, Plewnia C, Preissl H, Kullmann S. Network-targeted transcranial direct current stimulation of the hypothalamus appetite-control network: a feasibility study. Sci Rep 2024; 14:11341. [PMID: 38762574 PMCID: PMC11102513 DOI: 10.1038/s41598-024-61852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
The hypothalamus is the key regulator for energy homeostasis and is functionally connected to striatal and cortical regions vital for the inhibitory control of appetite. Hence, the ability to non-invasively modulate the hypothalamus network could open new ways for the treatment of metabolic diseases. Here, we tested a novel method for network-targeted transcranial direct current stimulation (net-tDCS) to influence the excitability of brain regions involved in the control of appetite. Based on the resting-state functional connectivity map of the hypothalamus, a 12-channel net-tDCS protocol was generated (Neuroelectrics Starstim system), which included anodal, cathodal and sham stimulation. Ten participants with overweight or obesity were enrolled in a sham-controlled, crossover study. During stimulation or sham control, participants completed a stop-signal task to measure inhibitory control. Overall, stimulation was well tolerated. Anodal net-tDCS resulted in faster stop signal reaction time (SSRT) compared to sham (p = 0.039) and cathodal net-tDCS (p = 0.042). Baseline functional connectivity of the target network correlated with SSRT after anodal compared to sham stimulation (p = 0.016). These preliminary data indicate that modulating hypothalamus functional network connectivity via net-tDCS may result in improved inhibitory control. Further studies need to evaluate the effects on eating behavior and metabolism.
Collapse
Affiliation(s)
- Theresa Ester-Nacke
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
| | - Katharina Berti
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Corinna Dannecker
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | | | | | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, German Center for Mental Health (DZPG), Neurophysiology and Interventional Neuropsychiatry, University Hospital Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| |
Collapse
|
11
|
Zotev V, McQuaid JR, Robertson-Benta CR, Hittson AK, Wick TV, Ling JM, van der Horn HJ, Mayer AR. Validation of real-time fMRI neurofeedback procedure for cognitive training using counterbalanced active-sham study design. Neuroimage 2024; 290:120575. [PMID: 38479461 PMCID: PMC11060147 DOI: 10.1016/j.neuroimage.2024.120575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Investigation of neural mechanisms of real-time functional MRI neurofeedback (rtfMRI-nf) training requires an efficient study control approach. A common rtfMRI-nf study design involves an experimental group, receiving active rtfMRI-nf, and a control group, provided with sham rtfMRI-nf. We report the first study in which rtfMRI-nf procedure is controlled through counterbalancing training runs with active and sham rtfMRI-nf for each participant. Healthy volunteers (n = 18) used rtfMRI-nf to upregulate fMRI activity of an individually defined target region in the left dorsolateral prefrontal cortex (DLPFC) while performing tasks that involved mental generation of a random numerical sequence and serial summation of numbers in the sequence. Sham rtfMRI-nf was provided based on fMRI activity of a different brain region, not involved in these tasks. The experimental procedure included two training runs with the active rtfMRI-nf and two runs with the sham rtfMRI-nf, in a randomized order. The participants achieved significantly higher fMRI activation of the left DLPFC target region during the active rtfMRI-nf conditions compared to the sham rtfMRI-nf conditions. fMRI functional connectivity of the left DLPFC target region with the nodes of the central executive network was significantly enhanced during the active rtfMRI-nf conditions relative to the sham conditions. fMRI connectivity of the target region with the nodes of the default mode network was similarly enhanced. fMRI connectivity changes between the active and sham conditions exhibited meaningful associations with individual performance measures on the Working Memory Multimodal Attention Task, the Approach-Avoidance Task, and the Trail Making Test. Our results demonstrate that the counterbalanced active-sham study design can be efficiently used to investigate mechanisms of active rtfMRI-nf in direct comparison to those of sham rtfMRI-nf. Further studies with larger group sizes are needed to confirm the reported findings and evaluate clinical utility of this study control approach.
Collapse
Affiliation(s)
- Vadim Zotev
- The Mind Research Network/LBRI, Albuquerque, NM, USA.
| | | | | | - Anne K Hittson
- The Mind Research Network/LBRI, Albuquerque, NM, USA; Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| | - Tracey V Wick
- The Mind Research Network/LBRI, Albuquerque, NM, USA
| | - Josef M Ling
- The Mind Research Network/LBRI, Albuquerque, NM, USA
| | | | - Andrew R Mayer
- The Mind Research Network/LBRI, Albuquerque, NM, USA; Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
12
|
Pereira DJ, Morais S, Sayal A, Pereira J, Meneses S, Areias G, Direito B, Macedo A, Castelo-Branco M. Neurofeedback training of executive function in autism spectrum disorder: distinct effects on brain activity levels and compensatory connectivity changes. J Neurodev Disord 2024; 16:14. [PMID: 38605323 PMCID: PMC11008042 DOI: 10.1186/s11689-024-09531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Deficits in executive function (EF) are consistently reported in autism spectrum disorders (ASD). Tailored cognitive training tools, such as neurofeedback, focused on executive function enhancement might have a significant impact on the daily life functioning of individuals with ASD. We report the first real-time fMRI neurofeedback (rt-fMRI NF) study targeting the left dorsolateral prefrontal cortex (DLPFC) in ASD. METHODS Thirteen individuals with autism without intellectual disability and seventeen neurotypical individuals completed a rt-fMRI working memory NF paradigm, consisting of subvocal backward recitation of self-generated numeric sequences. We performed a region-of-interest analysis of the DLPFC, whole-brain comparisons between groups and, DLPFC-based functional connectivity. RESULTS The ASD and control groups were able to modulate DLPFC activity in 84% and 98% of the runs. Activity in the target region was persistently lower in the ASD group, particularly in runs without neurofeedback. Moreover, the ASD group showed lower activity in premotor/motor areas during pre-neurofeedback run than controls, but not in transfer runs, where it was seemingly balanced by higher connectivity between the DLPFC and the motor cortex. Group comparison in the transfer run also showed significant differences in DLPFC-based connectivity between groups, including higher connectivity with areas integrated into the multidemand network (MDN) and the visual cortex. CONCLUSIONS Neurofeedback seems to induce a higher between-group similarity of the whole-brain activity levels (including the target ROI) which might be promoted by changes in connectivity between the DLPFC and both high and low-level areas, including motor, visual and MDN regions.
Collapse
Affiliation(s)
- Daniela Jardim Pereira
- Neurorradiology Functional Area, Imaging Department, Coimbra Hospital and University Center, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Morais
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Siemens Healthineers Portugal, Lisboa, Portugal
| | - João Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Sofia Meneses
- Psychology Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Graça Areias
- Psychology Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Bruno Direito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- IATV-Instituto do Ambiente, Tecnologia e Vida (IATV), Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Siemens Healthineers Portugal, Lisboa, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Gerosa M, Canessa N, Morawetz C, Mattavelli G. Cognitive reappraisal of food craving and emotions: a coordinate-based meta-analysis of fMRI studies. Soc Cogn Affect Neurosci 2024; 19:nsad077. [PMID: 38113382 PMCID: PMC10868133 DOI: 10.1093/scan/nsad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
Growing evidence supports the effectiveness of cognitive reappraisal in down-regulating food desire. Still, the neural bases of food craving down-regulation via reappraisal, as well as their degree of overlap vs specificity compared with emotion down-regulation, remain unclear. We addressed this gap through activation likelihood estimation meta-analyses of neuroimaging studies on the neural bases of (i) food craving down-regulation and (ii) emotion down-regulation, alongside conjunction and subtraction analyses among the resulting maps. Exploratory meta-analyses on activations related to food viewing compared with active regulation and up-regulation of food craving have also been performed. Food and emotion down-regulation via reappraisal consistently engaged overlapping activations in dorsolateral and ventrolateral prefrontal, posterior parietal, pre-supplementary motor and lateral posterior temporal cortices, mainly in the left hemisphere. Its distinctive association with the right anterior/posterior insula and left inferior frontal gyrus suggests that food craving down-regulation entails a more extensive integration of interoceptive information about bodily states and greater inhibitory control over the appetitive urge towards food compared with emotion down-regulation. This evidence is suggestive of unique interoceptive and motivational components elicited by food craving reappraisal, associated with distinctive patterns of fronto-insular activity. These results might inform theoretical models of food craving regulation and prompt novel therapeutic interventions for obesity and eating disorders.
Collapse
Affiliation(s)
- Marta Gerosa
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, Pavia 27100, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - Nicola Canessa
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, Pavia 27100, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Pavia 27100, Italy
| | - Carmen Morawetz
- Department of Psychology, University of Innsbruck, Innsbruck 6020, Austria
| | - Giulia Mattavelli
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, Pavia 27100, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Pavia 27100, Italy
| |
Collapse
|
14
|
Rösch SA, Schmidt R, Wimmer J, Lührs M, Ehlis AC, Hilbert A. Mechanisms underlying fNIRS-neurofeedback over the prefrontal cortex for participants with binge-eating disorder. Clin Neurophysiol 2023; 156:57-68. [PMID: 37871494 DOI: 10.1016/j.clinph.2023.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE Despite the increasing popularity of neurofeedback (NF), aiming at voluntary modulation of dysfunctional prefrontal cortex (PFC) signals in the treatment of binge-eating disorder (BED) and/or overweight, mechanisms remain poorly understood. METHODS Based on a randomized-controlled trial offering 12 food-specific real-time functional near-infrared spectroscopy (rtfNIRS)-NF sessions to participants with BED (n = 22), this preregistered study examined (1) online regulation success as predictor for offline regulation success, defined by PFC signals during regulation versus watch, and subjective regulation success, and (2) changes in loss of control (LOC) eating after vs. before and across 12 rtfNIRS-NF-sessions. RESULTS Higher online regulation success expectedly predicted better subjective, but worse offline regulation success. LOC eating decreased after vs. before, but not over rtfNIRS-NF-sessions, and was not associated with subjective or offline regulation success. CONCLUSIONS The association between online and subjective regulation success confirmed the presumed mechanism of operant conditioning underlying rtfNIRS-NF-learning. The contrary association between online and offline regulation indicated differential PFC involvement upon subtraction of automatic food-specific responses from regulation signals for offline success. Decreased LOC eating after food-specific rtfNIRS-NF-sessions suggested the potential of NF in BED treatment. SIGNIFICANCE Results may guide the optimization of future NF studies in larger samples with BED.
Collapse
Affiliation(s)
- Sarah A Rösch
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Stephanstrasse 9a, 04103 Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany.
| | - Ricarda Schmidt
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Stephanstrasse 9a, 04103 Leipzig, Germany
| | - Jytte Wimmer
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Stephanstrasse 9a, 04103 Leipzig, Germany
| | - Michael Lührs
- Brain Innovation B.V, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany
| | - Anja Hilbert
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Stephanstrasse 9a, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Schultes B, Ernst B, Hallschmid M, Bueter M, Meyhöfer SM. The 'Behavioral Balance Model': A new perspective on the aetiology and therapy of obesity. Diabetes Obes Metab 2023; 25:3444-3452. [PMID: 37694802 DOI: 10.1111/dom.15271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Obesity is a debilitating disease of global proportions that necessitates refined, concept-driven therapeutic approaches. Policy makers, the public and even health care professionals, but also individuals with obesity harbour many misconceptions regarding this disease, which leads to prejudice, negative attitudes, stigmatization, discrimination, self-blame, and failure to provide and finance adequate medical care. Decades of intensive, successful scientific research on obesity have only had a very limited effect on this predicament. We propose a science-based, easy-to-understand conceptual model that synthesizes the complex pathogenesis of obesity including biological, psychological, social, economic and environmental aspects with the aim to explain and communicate better the nature of obesity and currently available therapeutic modalities. According to our integrative 'Behavioral Balance Model', 'top-down cognitive control' strategies are implemented (often with limited success) to counterbalance the increased 'bottom-up drive' to gain weight, which is triggered by biological, psycho-social and environmental mechanisms in people with obesity. Besides offering a deeper understanding of obesity, the model also highlights why there is a strong need for multimodal therapeutic approaches that may not only increase top-down control but also reduce a pathologically increased bottom-up drive.
Collapse
Affiliation(s)
- Bernd Schultes
- Metabolic Center St. Gallen, friendlyDocs Ltd, St. Gallen, Switzerland
| | - Barbara Ernst
- Metabolic Center St. Gallen, friendlyDocs Ltd, St. Gallen, Switzerland
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Marco Bueter
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- Department of Surgery, Spital Männedorf, Männedorf, Switzerland
| | - Sebastian M Meyhöfer
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
Rösch SA, Schmidt R, Hilbert A. Predictors of neurofeedback treatment outcome in binge-eating disorder: An exploratory study. Int J Eat Disord 2023; 56:2283-2294. [PMID: 37737523 DOI: 10.1002/eat.24062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE Knowledge on predictors for treatment response to psychotherapy in binge-eating disorder (BED) is mixed and not yet available for increasingly popular neurofeedback (NF) treatment targeting self-regulation of aberrant brain activity. This study examined eating disorder- and psychopathology-related predictors for NF treatment success in BED. METHOD Patients with BED (N = 78) were randomized to 12 sessions of real-time functional near-infrared spectroscopy (rtfNIRS)-NF, targeting individual prefrontal cortex signal up-regulation, electroencephalography (EEG)-NF, targeting down-regulation of fronto-central beta activity, or waitlist (WL). The few studies assessing predictors for clinical outcomes after NF and evidenced predictors for psychotherapy guided the selection of baseline eating disorder-related predictors, including objective binge-eating (OBE) frequency, eating disorder psychopathology (EDP), food cravings, and body mass index (BMI), and general psychopathology-related predictors, including depressive and anxiety symptoms, impulsivity, emotion dysregulation, and self-efficacy. These questionnaire-based or objectively assessed (BMI) predictors were regressed on outcomes OBE frequency and EDP as key features of BED at post-treatment (t1) and 6-month follow-up (t2) in preregistered generalized mixed models (https://osf.io/4aktp). RESULTS Higher EDP, food cravings, and BMI predicted worse outcomes across all groups at t1 and t2. General psychopathology-related predictors did not predict outcomes at t1 and t2. Explorative analyses indicated that lower OBE frequency and higher self-efficacy predicted lower OBE frequency, and lower EDP predicted lower EDP after the waiting period in WL. DISCUSSION Consistent with findings for psychotherapy, higher eating disorder-related predictors were associated with higher EDP and OBE frequency. The specificity of psychopathological predictors for NF treatment success warrants further examination. PUBLIC SIGNIFICANCE This exploratory study firstly assessed eating disorder- and psychopathology-related predictors for neurofeedback treatment outcome in binge-eating disorder and overweight. Findings showed an association between higher eating disorder symptoms and worse neurofeedback outcomes, indicating special needs to be considered in neurofeedback treatment for patients with a higher binge-eating disorder symptom burden. In general, outcomes and assignment to neurofeedback treatment may be improved upon consideration of baseline psychological variables.
Collapse
Affiliation(s)
- Sarah A Rösch
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Ricarda Schmidt
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| | - Anja Hilbert
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
17
|
Wimmer J, Rösch SA, Schmidt R, Hilbert A. Neurofeedback strategies in binge-eating disorder as predictors of EEG-neurofeedback regulation success. Front Hum Neurosci 2023; 17:1234085. [PMID: 38021247 PMCID: PMC10645064 DOI: 10.3389/fnhum.2023.1234085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Treatment options such as neurofeedback (NF) that directly target the link between aberrant brain activity patterns and dysfunctional eating behaviors in binge-eating disorder (BED) are emerging. However, virtually nothing is known about mental strategies used to modulate food-specific brain activity and the associated brain-based or subjective success of specific strategies. This study firstly investigated the use of mental strategies in response to individually appetitive food cues in adults with BED and overweight or obesity based on a randomized-controlled trial providing electroencephalography (EEG)- or real-time functional near-infrared spectroscopy (rtfNIRS)-NF to BED. Methods Strategy reports written by participants were classified with qualitative content analysis. Additionally, the mental strategies employed by the N = 23 patients who received EEG-NF targeting the reduction of fronto-central high beta activity were analyzed quantitatively through their link with subjective and EEG-NF regulation success. Results The following eight categories, ordered by frequency in descending order, were found: "Behavior," "Imagination," "Emotion," "Distraction," "Thought," "Concentration," "Self-Talk" and "No Strategy." Linear mixed models revealed "Imagination," "Behavior," and "Thought" strategies as positive predictors of EEG-NF regulation success (defined as high beta activity during regulation beneath the baseline), and "Concentration" as a negative predictor of subjective (i.e., self-reported) NF regulation success. Discussion In conclusion, our study offers a classification system that may be used in future studies assessing strategy use for regulating food-related responses in patients with BED and associated overweight/obesity, providing valuable information on potential benefits of specific strategies and transferability to situations outside the NF treatment.
Collapse
Affiliation(s)
- Jytte Wimmer
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| | - Sarah Alica Rösch
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Ricarda Schmidt
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| | - Anja Hilbert
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
18
|
Pamplona GSP, Heldner J, Langner R, Koush Y, Michels L, Ionta S, Salmon CEG, Scharnowski F. Preliminary findings on long-term effects of fMRI neurofeedback training on functional networks involved in sustained attention. Brain Behav 2023; 13:e3217. [PMID: 37594145 PMCID: PMC10570501 DOI: 10.1002/brb3.3217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
INTRODUCTION Neurofeedback based on functional magnetic resonance imaging allows for learning voluntary control over one's own brain activity, aiming to enhance cognition and clinical symptoms. We previously reported improved sustained attention temporarily by training healthy participants to up-regulate the differential activity of the sustained attention network minus the default mode network (DMN). However, the long-term brain and behavioral effects of this training have not yet been studied. In general, despite their relevance, long-term learning effects of neurofeedback training remain under-explored. METHODS Here, we complement our previously reported results by evaluating the neurofeedback training effects on functional networks involved in sustained attention and by assessing behavioral and brain measures before, after, and 2 months after training. The behavioral measures include task as well as questionnaire scores, and the brain measures include activity and connectivity during self-regulation runs without feedback (i.e., transfer runs) and during resting-state runs from 15 healthy individuals. RESULTS Neurally, we found that participants maintained their ability to control the differential activity during follow-up sessions. Further, exploratory analyses showed that the training increased the functional connectivity between the DMN and the occipital gyrus, which was maintained during follow-up transfer runs but not during follow-up resting-state runs. Behaviorally, we found that enhanced sustained attention right after training returned to baseline level during follow-up. CONCLUSION The discrepancy between lasting regulation-related brain changes but transient behavioral and resting-state effects raises the question of how neural changes induced by neurofeedback training translate to potential behavioral improvements. Since neurofeedback directly targets brain measures to indirectly improve behavior in the long term, a better understanding of the brain-behavior associations during and after neurofeedback training is needed to develop its full potential as a promising scientific and clinical tool.
Collapse
Affiliation(s)
- Gustavo Santo Pedro Pamplona
- Sensory‐Motor Laboratory (SeMoLa), Jules‐Gonin Eye Hospital/Fondation Asile des AveuglesDepartment of Ophthalmology/University of LausanneLausanneSwitzerland
- InBrain Lab, Department of PhysicsUniversity of Sao PauloRibeirao PretoBrazil
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of ZurichZurichSwitzerland
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Jennifer Heldner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of ZurichZurichSwitzerland
| | - Robert Langner
- Institute of Systems NeuroscienceHeinrich Heine University DusseldorfDusseldorfGermany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM‐7)Research Centre JulichJulichGermany
| | - Yury Koush
- Department of Radiology and Biomedical Imaging, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Lars Michels
- Department of NeuroradiologyUniversity Hospital ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and Swiss Federal Institute of TechnologyZurichSwitzerland
| | - Silvio Ionta
- Sensory‐Motor Laboratory (SeMoLa), Jules‐Gonin Eye Hospital/Fondation Asile des AveuglesDepartment of Ophthalmology/University of LausanneLausanneSwitzerland
| | | | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and Swiss Federal Institute of TechnologyZurichSwitzerland
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of PsychologyUniversity of ViennaViennaAustria
| |
Collapse
|
19
|
Frick LD, Hankir MK, Borner T, Malagola E, File B, Gero D. Novel Insights into the Physiology of Nutrient Sensing and Gut-Brain Communication in Surgical and Experimental Obesity Therapy. Obes Surg 2023; 33:2906-2916. [PMID: 37474864 PMCID: PMC10435392 DOI: 10.1007/s11695-023-06739-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Despite standardized surgical technique and peri-operative care, metabolic outcomes of bariatric surgery are not uniform. Adaptive changes in brain function may play a crucial role in achieving optimal postbariatric weight loss. This review follows the anatomic-physiologic structure of the postbariatric nutrient-gut-brain communication chain through its key stations and provides a concise summary of recent findings in bariatric physiology, with a special focus on the composition of the intestinal milieu, intestinal nutrient sensing, vagal nerve-mediated gastrointestinal satiation signals, circulating hormones and nutrients, as well as descending neural signals from the forebrain. The results of interventional studies using brain or vagal nerve stimulation to induce weight loss are also summarized. Ultimately, suggestions are made for future diagnostic and therapeutic research for the treatment of obesity.
Collapse
Affiliation(s)
- Lukas D Frick
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bálint File
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Wigner Research Centre for Physics, Budapest, Hungary
| | - Daniel Gero
- Department of Surgery and Transplantation, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zürich, Switzerland.
| |
Collapse
|
20
|
Chae Y, Lee IS. Central Regulation of Eating Behaviors in Humans: Evidence from Functional Neuroimaging Studies. Nutrients 2023; 15:3010. [PMID: 37447336 PMCID: PMC10347214 DOI: 10.3390/nu15133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Neuroimaging has great potential to provide insight into the neural response to food stimuli. Remarkable advances have been made in understanding the neural activity underlying food perception, not only in normal eating but also in obesity, eating disorders, and disorders of gut-brain interaction in recent decades. In addition to the abnormal brain function in patients with eating disorders compared to healthy controls, new therapies, such as neurofeedback and neurostimulation techniques, have been developed that target the malfunctioning brain regions in patients with eating disorders based on the results of neuroimaging studies. In this review, we present an overview of early and more recent research on the central processing and regulation of eating behavior in healthy and patient populations. In order to better understand the relationship between the gut and the brain as well as the neural mechanisms underlying abnormal ingestive behaviors, we also provide suggestions for future directions to enhance our current methods used in food-related neuroimaging studies.
Collapse
Affiliation(s)
- Younbyoung Chae
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Kilpatrick LA, An HM, Pawar S, Sood R, Gupta A. Neuroimaging Investigations of Obesity: a Review of the Treatment of Sex from 2010. Curr Obes Rep 2023; 12:163-174. [PMID: 36933153 PMCID: PMC10250271 DOI: 10.1007/s13679-023-00498-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE OF REVIEW To summarize the results of adult obesity neuroimaging studies (structural, resting-state, task-based, diffusion tensor imaging) published from 2010, with a focus on the treatment of sex as an important biological variable in the analysis, and identify gaps in sex difference research. RECENT FINDINGS Neuroimaging studies have shown obesity-related changes in brain structure, function, and connectivity. However, relevant factors such as sex are often not considered. We conducted a systematic review and keyword co-occurrence analysis. Literature searches identified 6281 articles, of which 199 met inclusion criteria. Among these, only 26 (13%) considered sex as an important variable in the analysis, directly comparing the sexes (n = 10; 5%) or providing single-sex/disaggregated data (n = 16, 8%); the remaining studies controlled for sex (n = 120, 60%) or did not consider sex in the analysis (n = 53, 27%). Synthesizing sex-based results, obesity-related parameters (e.g., body mass index, waist circumference, obese status) may be generally associated with more robust morphological alterations in men and more robust structural connectivity alterations in women. Additionally, women with obesity generally expressed increased reactivity in affect-related regions, while men with obesity generally expressed increased reactivity in motor-related regions; this was especially true under a fed state. The keyword co-occurrence analysis indicated that sex difference research was especially lacking in intervention studies. Thus, although sex differences in the brain associated with obesity are known to exist, a large proportion of the literature informing the research and treatment strategies of today has not specifically examined sex effects, which is needed to optimize treatment.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Hyeon Min An
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Shrey Pawar
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Riya Sood
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA.
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA.
| |
Collapse
|
22
|
de Klerk MT, Smeets PAM, la Fleur SE. Inhibitory control as a potential treatment target for obesity. Nutr Neurosci 2023; 26:429-444. [PMID: 35343884 DOI: 10.1080/1028415x.2022.2053406] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Strong reward responsiveness to food and insufficient inhibitory control are thought to be implicated in the development and maintenance of obesity. This narrative review addresses the role of inhibitory control in obesity and weight loss, and in how far inhibitory control is a promising target for weight loss interventions. METHODS PubMed, Web of Science, and Google Scholar were searched for papers up to May 2021. 41 papers were included. RESULTS Individuals with obesity have poorer food-specific inhibitory control, particularly when hungry, and less concurrent activation of inhibitory brain areas. Moreover, this was strongly predictive of future weight gain. More activation of inhibitory brain areas, on the other hand, was predictive of weight loss: individuals with successful weight loss initially show inhibitory brain activity comparable to that of normal weight individuals. When successful weight maintenance is achieved for at least 1 year, this inhibitory activity is further increased. Interventions targeting inhibitory control in obese individuals have divergent effects. Firstly, food-specific inhibitory control training is particularly effective for people with low inhibitory control and high BMI. Secondly, neuromodulation paradigms are rather heterogeneous: although rTMS to the left dorsolateral prefrontal cortex induced some weight-loss, multiple sessions of tDCS reduced food consumption (desire) and induced weight loss in two thirds of the papers. Thirdly, neurofeedback results in successful upregulation of brain activity and connectivity, but occasionally leads to increased food intake. In conclusion, inhibitory control is implicated in obesity. It can be targeted to promote weight loss although major weight losses have not been achieved.
Collapse
Affiliation(s)
- M T de Klerk
- Image Sciences Institute, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Neurobiology of Energy Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - P A M Smeets
- Image Sciences Institute, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - S E la Fleur
- Neurobiology of Energy Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Li G, Hu Y, Zhang W, Wang J, Ji W, Manza P, Volkow ND, Zhang Y, Wang GJ. Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions. Mol Psychiatry 2023; 28:1466-1479. [PMID: 36918706 PMCID: PMC10208984 DOI: 10.1038/s41380-023-02025-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Obesity has tripled over the past 40 years to become a major public health issue, as it is linked with increased mortality and elevated risk for various physical and neuropsychiatric illnesses. Accumulating evidence from neuroimaging studies suggests that obesity negatively affects brain function and structure, especially within fronto-mesolimbic circuitry. Obese individuals show abnormal neural responses to food cues, taste and smell, resting-state activity and functional connectivity, and cognitive tasks including decision-making, inhibitory-control, learning/memory, and attention. In addition, obesity is associated with altered cortical morphometry, a lowered gray/white matter volume, and impaired white matter integrity. Various interventions and treatments including bariatric surgery, the most effective treatment for obesity in clinical practice, as well as dietary, exercise, pharmacological, and neuromodulation interventions such as transcranial direct current stimulation, transcranial magnetic stimulation and neurofeedback have been employed and achieved promising outcomes. These interventions and treatments appear to normalize hyper- and hypoactivations of brain regions involved with reward processing, food-intake control, and cognitive function, and also promote recovery of brain structural abnormalities. This paper provides a comprehensive literature review of the recent neuroimaging advances on the underlying neural mechanisms of both obesity and interventions, in the hope of guiding development of novel and effective treatments.
Collapse
Affiliation(s)
- Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China.
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Zakers A, Cimolai V. Complementary and Integrative Medicine and Eating Disorders in Youth: Traditional Yoga, Virtual Reality, Light Therapy, Neurofeedback, Acupuncture, Energy Psychology Techniques, Art Therapies, and Spirituality. Child Adolesc Psychiatr Clin N Am 2023; 32:421-450. [PMID: 37147045 DOI: 10.1016/j.chc.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Eating disorders (EDs) are a non-heterogeneous group of illnesses with significant physical and mental comorbidity and mortality associated with maladaptive coping. With the exception of lisdexamfetamine (Vyvanse) for binge eating disorder, no medications have been effective for the core symptoms of ED. ED requires a multimodal approach. Complementary and integrative medicine (CIM) can be helpful as an adjunct. The most promising CIM interventions are traditional yoga, virtual reality, eye movement desensitization and reprocessing, Music Therapy, and biofeedback/neurofeedback.
Collapse
Affiliation(s)
- Aleema Zakers
- MPH Georgia Institute of Technology, Moorhouse School of Medicine, Emory School of Medicine, 750 Ferst Drive, Atlanta, GA 30332, USA.
| | - Valentina Cimolai
- Private Practice, Bloom Psychiatry and Wellness and Mindful Healing Group, 1245 Court Street, Clearwater, FL 33756, USA
| |
Collapse
|
25
|
Pereira DJ, Sayal A, Pereira J, Morais S, Macedo A, Direito B, Castelo-Branco M. Neurofeedback-dependent influence of the ventral striatum using a working memory paradigm targeting the dorsolateral prefrontal cortex. Front Behav Neurosci 2023; 17:1014223. [PMID: 36844653 PMCID: PMC9947361 DOI: 10.3389/fnbeh.2023.1014223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Executive functions and motivation have been established as key aspects for neurofeedback success. However, task-specific influence of cognitive strategies is scarcely explored. In this study, we test the ability to modulate the dorsolateral prefrontal cortex, a strong candidate for clinical application of neurofeedback in several disorders with dysexecutive syndrome, and investigate how feedback contributes to better performance in a single session. Participants of both neurofeedback (n = 17) and sham-control (n = 10) groups were able to modulate DLPFC in most runs (with or without feedback) while performing a working memory imagery task. However, activity in the target area was higher and more sustained in the active group when receiving feedback. Furthermore, we found increased activity in the nucleus accumbens in the active group, compared with a predominantly negative response along the block in participants receiving sham feedback. Moreover, they acknowledged the non-contingency between imagery and feedback, reflecting the impact on motivation. This study reinforces DLPFC as a robust target for neurofeedback clinical implementations and enhances the critical influence of the ventral striatum, both poised to achieve success in the self-regulation of brain activity.
Collapse
Affiliation(s)
- Daniela Jardim Pereira
- Neurorradiology Functional Area, Imaging Department, Coimbra Hospital and University Center, Coimbra, Portugal,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,Siemens Healthineers Portugal, Lisboa, Portugal
| | - João Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Sofia Morais
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Bruno Direito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,IATV—Instituto do Ambiente, Tecnologia e Vida (IATV), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,*Correspondence: Miguel Castelo-Branco
| |
Collapse
|
26
|
Acute Effects of Different Electroacupuncture Point Combinations to Modulate the Gut-Brain Axis in the Minipig Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4384693. [PMID: 36310617 PMCID: PMC9613379 DOI: 10.1155/2022/4384693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to compare the gut-brain axis responses to acute electroacupuncture (EA) at different acupoint combinations in the minipig model. Four adult Yucatan minipigs were subjected twice to four acute EA treatments (25-minute acute sessions) including sham (false acupoints) and control (no EA), during anesthesia and according to a Latin-square design paradigm. Acupoint combinations (4 loci each) are head-abdomen (#70 Dafengmen, #35 Sanwan), back (bilateral #27 Pishu, #28 Weishu), leg (bilateral #79 Hangou, #63 Housanli), and sham (2 bilateral points that are not acupoints). Electrocardiograms were performed to explore heart rate variability (HRV). Infrared thermography was used to measure skin temperature at the stimulation points. Saliva (cortisol) and blood samples (leptin, total/active ghrelin, insulin, and glucose) were collected for further analyses before and after acute EA. All animals were also subjected to BOLD fMRI to investigate the brain responses to EA. Acute EA significantly modulated several physiological and metabolic parameters compared to basal, sham, and/or control conditions, with contrasting effects in terms of BOLD responses in brain regions involved in the hedonic and cognitive control of food intake. The head-abdomen combination appeared to be the most promising combination in terms of brain modulation of the corticostriatal circuit, with upregulation of the dorsolateral prefrontal cortex, dorsal striatum, and anterior cingulate cortex. It also induced significantly lower plasma ghrelin levels compared to sham, suggesting anorectic effects, as well as no temperature drop at the stimulation site. This study opens the way to a further preclinical trial aimed at investigating chronic EA in obese minipigs.
Collapse
|
27
|
Kullmann S, Veit R, Crabtree DR, Buosi W, Androutsos O, Johnstone AM, Manios Y, Preissl H, Smeets PAM. The effect of hunger state on hypothalamic functional connectivity in response to food cues. Hum Brain Mapp 2022; 44:418-428. [PMID: 36056618 PMCID: PMC9842901 DOI: 10.1002/hbm.26059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 01/25/2023] Open
Abstract
The neural underpinnings of the integration of internal and external cues that reflect nutritional status are poorly understood in humans. The hypothalamus is a key integrative area involved in short- and long-term energy intake regulation. Hence, we examined the effect of hunger state on the hypothalamus network using functional magnetic resonance imaging. In a multicenter study, participants performed a food cue viewing task either fasted or sated on two separate days. We evaluated hypothalamic functional connectivity (FC) using psychophysiological interactions during high versus low caloric food cue viewing in 107 adults (divided into four groups based on age and body mass index [BMI]; age range 24-76 years; BMI range 19.5-41.5 kg/m2 ). In the sated compared to the fasted condition, the hypothalamus showed significantly higher FC with the bilateral caudate, the left insula and parts of the left inferior frontal cortex. Interestingly, we observed a significant interaction between hunger state and BMI group in the dorsolateral prefrontal cortex (DLPFC). Participants with normal weight compared to overweight and obesity showed higher FC between the hypothalamus and DLPFC in the fasted condition. The current study showed that task-based FC of the hypothalamus can be modulated by internal (hunger state) and external cues (i.e., food cues with varying caloric content) with a general enhanced communication in the sated state and obesity-associated differences in hypothalamus to DLPFC communication. This could potentially promote overeating in persons with obesity.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany,Department of Internal Medicine, Division of Diabetology, Endocrinology and NephrologyEberhard Karls University TübingenTübingenGermany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany
| | - Daniel R. Crabtree
- The Rowett InstituteUniversity of AberdeenAberdeenScotland,Division of Biomedical Sciences, Centre for Health ScienceUniversity of the Highlands and IslandsInvernessUK
| | - William Buosi
- The Rowett InstituteUniversity of AberdeenAberdeenScotland
| | - Odysseas Androutsos
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and DieteticsUniversity of ThessalyVolosGreece
| | | | - Yannis Manios
- Department of Nutrition‐Dietetics, School of Health Science and EducationHarokopio UniversityAthensGreece
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany,Department of Internal Medicine, Division of Diabetology, Endocrinology and NephrologyEberhard Karls University TübingenTübingenGermany
| | - Paul A. M. Smeets
- Division of Human Nutrition and HealthWageningen UniversityWageningenThe Netherlands,Image Sciences Institute, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
28
|
Orth L, Meeh J, Gur RC, Neuner I, Sarkheil P. Frontostriatal circuitry as a target for fMRI-based neurofeedback interventions: A systematic review. Front Hum Neurosci 2022; 16:933718. [PMID: 36092647 PMCID: PMC9449529 DOI: 10.3389/fnhum.2022.933718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Dysregulated frontostriatal circuitries are viewed as a common target for the treatment of aberrant behaviors in various psychiatric and neurological disorders. Accordingly, experimental neurofeedback paradigms have been applied to modify the frontostriatal circuitry. The human frontostriatal circuitry is topographically and functionally organized into the "limbic," the "associative," and the "motor" subsystems underlying a variety of affective, cognitive, and motor functions. We conducted a systematic review of the literature regarding functional magnetic resonance imaging-based neurofeedback studies that targeted brain activations within the frontostriatal circuitry. Seventy-nine published studies were included in our survey. We assessed the efficacy of these studies in terms of imaging findings of neurofeedback intervention as well as behavioral and clinical outcomes. Furthermore, we evaluated whether the neurofeedback targets of the studies could be assigned to the identifiable frontostriatal subsystems. The majority of studies that targeted frontostriatal circuitry functions focused on the anterior cingulate cortex, the dorsolateral prefrontal cortex, and the supplementary motor area. Only a few studies (n = 14) targeted the connectivity of the frontostriatal regions. However, post-hoc analyses of connectivity changes were reported in more cases (n = 32). Neurofeedback has been frequently used to modify brain activations within the frontostriatal circuitry. Given the regulatory mechanisms within the closed loop of the frontostriatal circuitry, the connectivity-based neurofeedback paradigms should be primarily considered for modifications of this system. The anatomical and functional organization of the frontostriatal system needs to be considered in decisions pertaining to the neurofeedback targets.
Collapse
Affiliation(s)
- Linda Orth
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Johanna Meeh
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany
| | - Pegah Sarkheil
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| |
Collapse
|
29
|
Ester T, Kullmann S. Neurobiological regulation of eating behavior: Evidence based on non-invasive brain stimulation. Rev Endocr Metab Disord 2022; 23:753-772. [PMID: 34862944 PMCID: PMC9307556 DOI: 10.1007/s11154-021-09697-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
The prefrontal cortex is appreciated as a key neurobiological player in human eating behavior. A special focus is herein dedicated to the dorsolateral prefrontal cortex (DLPFC), which is critically involved in executive function such as cognitive control over eating. Persons with obesity display hypoactivity in this brain area, which is linked to overconsumption and food craving. Contrary to that, higher activity in the DLPFC is associated with successful weight-loss and weight-maintenance. Transcranial direct current stimulation (tDCS) is a non-invasive neurostimulation tool used to enhance self-control and inhibitory control. The number of studies using tDCS to influence eating behavior rapidly increased in the last years. However, the effectiveness of tDCS is still unclear, as studies show mixed results and individual differences were shown to be an important factor in the effectiveness of non-invasive brain stimulation. Here, we describe the current state of research of human studies using tDCS to influence food intake, food craving, subjective feeling of hunger and body weight. Excitatory stimulation of the right DLPFC seems most promising to reduce food cravings to highly palatable food, while other studies provide evidence that stimulating the left DLPFC shows promising effects on weight loss and weight maintenance, especially in multisession approaches. Overall, the reported findings are heterogeneous pointing to large interindividual differences in tDCS responsiveness.
Collapse
Affiliation(s)
- Theresa Ester
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Ebehard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
30
|
Godet A, Fortier A, Bannier E, Coquery N, Val-Laillet D. Interactions between emotions and eating behaviors: Main issues, neuroimaging contributions, and innovative preventive or corrective strategies. Rev Endocr Metab Disord 2022; 23:807-831. [PMID: 34984602 DOI: 10.1007/s11154-021-09700-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/13/2022]
Abstract
Emotional eating is commonly defined as the tendency to (over)eat in response to emotion. Insofar as it involves the (over)consumption of high-calorie palatable foods, emotional eating is a maladaptive behavior that can lead to eating disorders, and ultimately to metabolic disorders and obesity. Emotional eating is associated with eating disorder subtypes and with abnormalities in emotion processing at a behavioral level. However, not enough is known about the neural pathways involved in both emotion processing and food intake. In this review, we provide an overview of recent neuroimaging studies, highlighting the brain correlates between emotions and eating behavior that may be involved in emotional eating. Interaction between neural and neuro-endocrine pathways (HPA axis) may be involved. In addition to behavioral interventions, there is a need for a holistic approach encompassing both neural and physiological levels to prevent emotional eating. Based on recent imaging, this review indicates that more attention should be paid to prefrontal areas, the insular and orbitofrontal cortices, and reward pathways, in addition to regions that play a major role in both the cognitive control of emotions and eating behavior. Identifying these brain regions could allow for neuromodulation interventions, including neurofeedback training, which deserves further investigation.
Collapse
Affiliation(s)
- Ambre Godet
- Nutrition Metabolisms and Cancer (NuMeCan), INRAE, INSERM, Univ Rennes, St Gilles, France
| | - Alexandra Fortier
- Nutrition Metabolisms and Cancer (NuMeCan), INRAE, INSERM, Univ Rennes, St Gilles, France
| | - Elise Bannier
- CRNS, INSERM, IRISA, INRIA, Univ Rennes, Empenn Rennes, France
- Radiology Department, Rennes University Hospital, Rennes, France
| | - Nicolas Coquery
- Nutrition Metabolisms and Cancer (NuMeCan), INRAE, INSERM, Univ Rennes, St Gilles, France
| | - David Val-Laillet
- Nutrition Metabolisms and Cancer (NuMeCan), INRAE, INSERM, Univ Rennes, St Gilles, France.
| |
Collapse
|
31
|
Alterations in Functional and Structural Connectivity of Basal Ganglia Network in Patients with Obesity. Brain Topogr 2022; 35:453-463. [PMID: 35780276 DOI: 10.1007/s10548-022-00906-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Obesity is related to overconsumption of high-calorie (HiCal) food, which is modulated by brain reward and inhibitory control circuitries. The basal ganglia (BG) are a key set of nuclei within the reward circuitry, but obesity-associated functional and structural abnormalities of BG have not been well studied. Resting-state functional MRI with independent component analysis (ICA) and probabilistic tractography were employed to investigate differences in BG-related functional-(FC) and structural connectivity (SC) between 32 patients with obesity (OB) and 35 normal-weight (NW) participants. Compared to NW, OB showed significantly lower FC strength in the caudate nucleus within the BG network, and seed-based FC analysis showed lower FC between caudate and dorsolateral prefrontal cortex (DLPFC), which was negatively correlated with craving for HiCal food cues. Further SC analysis revealed that OB showed lower SC than NW between left caudate and left DLPFC as measured with fractional anisotropy (FA). Alterations in FC and SC between caudate and DLPFC in obese patients, which highlights the role of BG network in modulating the balance between reward and inhibitory-control.
Collapse
|
32
|
Sadler JR, Persky S, Gu C, Aghababian AH, Carnell S. Is obesity in the brain? Parent perceptions of brain influences on obesity. Pediatr Obes 2022; 17:e12881. [PMID: 34939352 PMCID: PMC9373357 DOI: 10.1111/ijpo.12881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/22/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
Neuroimaging studies demonstrate associations of brain structure and function with children's eating behaviour and body weight, and the feasibility of integrating brain measures into obesity risk assessment and intervention is growing. However, little is known about lay perceptions of how the brain influences obesity. We investigated parent perceptions of brain contributions to obesity in three separate studies: 1) a study of mothers of adolescents recruited for neuroimaging research (n = 88), 2) a study of ethnically Chinese parents of 5-13 year olds participating in a parent feeding survey (n = 277), and 3) a study of parents of 3-15 year olds completing an online survey (n = 113). In general, parents believed that brain factors influence obesity, but considered them less influential than behaviours such as diet and exercise. Causal attributions for brain factors were correlated with attributions for genetic factors and biological factors (e.g., metabolism). Parents who perceived their child to be overweight or had a high concern about their child becoming overweight in the future rated brain factors as more important in determining their child's weight and more likely to lessen their child's ability to control their weight. Our results suggest that parents attribute obesity to the brain to a moderate degree, and that education or feedback regarding brain influences on obesity could be a promising obesity intervention component.
Collapse
Affiliation(s)
- Jennifer R Sadler
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan Persky
- Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Cihang Gu
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anahys H Aghababian
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Weiss F, Zhang J, Aslan A, Kirsch P, Gerchen MF. Feasibility of training the dorsolateral prefrontal-striatal network by real-time fMRI neurofeedback. Sci Rep 2022; 12:1669. [PMID: 35102203 PMCID: PMC8803939 DOI: 10.1038/s41598-022-05675-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
Real-time fMRI neurofeedback (rt-fMRI NF) is a promising non-invasive technique that enables volitional control of usually covert brain processes. While most rt-fMRI NF studies so far have demonstrated the ability of the method to evoke changes in brain activity and improve symptoms of mental disorders, a recently evolving field is network-based functional connectivity (FC) rt-fMRI NF. However, FC rt-fMRI NF has methodological challenges such as respirational artefacts that could potentially bias the training if not controlled. In this randomized, double-blind, yoke-controlled, pre-registered FC rt-fMRI NF study with healthy participants (N = 40) studied over three training days, we tested the feasibility of an FC rt-fMRI NF approach with online global signal regression (GSR) to control for physiological artefacts for up-regulation of connectivity in the dorsolateral prefrontal-striatal network. While our pre-registered null hypothesis significance tests failed to reach criterion, we estimated the FC training effect at a medium effect size at the end of the third training day after rigorous control of physiological artefacts in the offline data. This hints at the potential of FC rt-fMRI NF for the development of innovative transdiagnostic circuit-specific interventional approaches for mental disorders and the effect should now be confirmed in a well-powered study.
Collapse
Affiliation(s)
- Franziska Weiss
- Department of Clinical Psychology, Central Institute of Mental Health (ZI), Heidelberg University/Medical Faculty Mannheim, J5, 68159, Mannheim, Germany
| | - Jingying Zhang
- Department of Clinical Psychology, Central Institute of Mental Health (ZI), Heidelberg University/Medical Faculty Mannheim, J5, 68159, Mannheim, Germany
| | - Acelya Aslan
- Department of Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Heidelberg University/Medical Faculty Mannheim, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health (ZI), Heidelberg University/Medical Faculty Mannheim, J5, 68159, Mannheim, Germany.,Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Mannheim, Germany.,Department of Psychology, Heidelberg University, Heidelberg, Germany
| | - Martin Fungisai Gerchen
- Department of Clinical Psychology, Central Institute of Mental Health (ZI), Heidelberg University/Medical Faculty Mannheim, J5, 68159, Mannheim, Germany. .,Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Mannheim, Germany. .,Department of Psychology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
34
|
Hou X, Xiao X, Gong Y, Li Z, Chen A, Zhu C. Functional Near-Infrared Spectroscopy Neurofeedback Enhances Human Spatial Memory. Front Hum Neurosci 2021; 15:681193. [PMID: 34658812 PMCID: PMC8511425 DOI: 10.3389/fnhum.2021.681193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Spatial memory is an important cognitive function for human daily life and may present dysfunction or decline due to aging or clinical diseases. Functional near-infrared spectroscopy neurofeedback (fNIRS-NFB) is a promising neuromodulation technique with several special advantages that can be used to improve human cognitive functions by manipulating the neural activity of targeted brain regions or networks. In this pilot study, we intended to test the feasibility of fNIRS-NFB to enhance human spatial memory ability. The lateral parietal cortex, an accessible cortical region in the posterior medial hippocampal-cortical network that plays a crucial role in human spatial memory processing, was selected as the potential feedback target. A placebo-controlled fNIRS-NFB experiment was conducted to instruct individuals to regulate the neural activity in this region or an irrelevant control region. Experimental results showed that individuals learned to up-regulate the neural activity in the region of interest successfully. A significant increase in spatial memory performance was found after 8-session neurofeedback training in the experimental group but not in the control group. Furthermore, neurofeedback-induced neural activation increase correlated with spatial memory improvement. In summary, this study preliminarily demonstrated the feasibility of fNIRS-NFB to improve human spatial memory and has important implications for further applications.
Collapse
Affiliation(s)
- Xin Hou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Xiang Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yilong Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zheng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Center for Cognition and Neuroergonomics, Beijing Normal University at Zhuhai, Zhuhai, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Antao Chen
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
35
|
Healthy decisions in the cued-attribute food choice paradigm have high test-retest reliability. Sci Rep 2021; 11:12844. [PMID: 34145325 PMCID: PMC8213742 DOI: 10.1038/s41598-021-91933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/02/2021] [Indexed: 12/01/2022] Open
Abstract
Food choice paradigms are commonly used to study decision mechanisms, individual differences, and intervention efficacy. Here, we measured behavior from twenty-three healthy young adults who completed five repetitions of a cued-attribute food choice paradigm over two weeks. This task includes cues prompting participants to explicitly consider the healthiness of the food items before making a selection, or to choose naturally based on whatever freely comes to mind. We found that the average patterns of food choices following both cue types and ratings about the palatability (i.e. taste) and healthiness of the food items were similar across all five repetitions. At the individual level, the test-retest reliability for choices in both conditions and healthiness ratings was excellent. However, test-retest reliability for taste ratings was only fair, suggesting that estimates about palatability may vary more from day to day for the same individual.
Collapse
|
36
|
Haugg A, Renz FM, Nicholson AA, Lor C, Götzendorfer SJ, Sladky R, Skouras S, McDonald A, Craddock C, Hellrung L, Kirschner M, Herdener M, Koush Y, Papoutsi M, Keynan J, Hendler T, Cohen Kadosh K, Zich C, Kohl SH, Hallschmid M, MacInnes J, Adcock RA, Dickerson KC, Chen NK, Young K, Bodurka J, Marxen M, Yao S, Becker B, Auer T, Schweizer R, Pamplona G, Lanius RA, Emmert K, Haller S, Van De Ville D, Kim DY, Lee JH, Marins T, Megumi F, Sorger B, Kamp T, Liew SL, Veit R, Spetter M, Weiskopf N, Scharnowski F, Steyrl D. Predictors of real-time fMRI neurofeedback performance and improvement - A machine learning mega-analysis. Neuroimage 2021; 237:118207. [PMID: 34048901 DOI: 10.1016/j.neuroimage.2021.118207] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.
Collapse
Affiliation(s)
- Amelie Haugg
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland; Faculty of Psychology, University of Vienna, Austria.
| | - Fabian M Renz
- Faculty of Psychology, University of Vienna, Austria
| | | | - Cindy Lor
- Faculty of Psychology, University of Vienna, Austria
| | | | - Ronald Sladky
- Faculty of Psychology, University of Vienna, Austria
| | - Stavros Skouras
- Department of Biological and Medical Psychology, University of Bergen, Norway
| | - Amalia McDonald
- Department of Psychology, University of Virginia, United States
| | - Cameron Craddock
- Department of Diagnostic Medicine, The University of Texas at Austin Dell Medical School, United States
| | - Lydia Hellrung
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland; McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Canada
| | - Marcus Herdener
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland
| | - Yury Koush
- Department of Radiology and Biomedical Imaging, Yale University, United States
| | - Marina Papoutsi
- UCL Huntington's Disease Centre, Institute of Neurology, University College London, United Kingdom; IXICO plc, United Kingdom
| | - Jackob Keynan
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Israel
| | - Talma Hendler
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Israel
| | | | - Catharina Zich
- Nuffiled Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Simon H Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Germany
| | - Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Germany; German Center for Diabetes Research (DZD), Germany
| | - Jeff MacInnes
- Institute for Learning and Brain Sciences, University of Washington, United States
| | - R Alison Adcock
- Duke Institute for Brain Sciences, Duke University, United States; Department of Psychiatry and Behavioral Sciences, Duke University, United States
| | - Kathryn C Dickerson
- Department of Psychiatry and Behavioral Sciences, Duke University, United States
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, United States
| | - Kymberly Young
- Department of Psychiatry, School of Medicine, University of Pittsburgh, United States
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, United States; Stephenson School of Biomedical Engineering, University of Oklahoma, United States
| | - Michael Marxen
- Department of Psychiatry, Technische Universität Dresden, Germany
| | - Shuxia Yao
- Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, China
| | - Benjamin Becker
- Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, China
| | - Tibor Auer
- School of Psychology, University of Surrey, United Kingdom
| | | | - Gustavo Pamplona
- Department of Ophthalmology, University of Lausanne and Fondation Asile des Aveugles, Switzerland
| | - Ruth A Lanius
- Department of Psychiatry, University of Western Ontario, Canada
| | - Kirsten Emmert
- Department of Neurology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - Sven Haller
- Department of Surgical Sciences, Radiology, Uppsala University, Sweden
| | - Dimitri Van De Ville
- Center for Neuroprosthetics, Ecole polytechnique féderale de Lausanne, Switzerland; Faculty of Medicine, University of Geneva, Switzerland
| | - Dong-Youl Kim
- Department of Brain and Cognitive Engineering, Korea University, Korea
| | - Jong-Hwan Lee
- Department of Brain and Cognitive Engineering, Korea University, Korea
| | - Theo Marins
- D'Or Institute for Research and Education, Brazil
| | | | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | - Tabea Kamp
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | | | - Ralf Veit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Germany; German Center for Diabetes Research (DZD), Germany; High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Germany
| | - Maartje Spetter
- School of Psychology, University of Birmingham, United Kingdom
| | - Nikolaus Weiskopf
- Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland; Faculty of Psychology, University of Vienna, Austria
| | - David Steyrl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland; Faculty of Psychology, University of Vienna, Austria
| |
Collapse
|
37
|
Veit R, Schag K, Schopf E, Borutta M, Kreutzer J, Ehlis AC, Zipfel S, Giel KE, Preissl H, Kullmann S. Diminished prefrontal cortex activation in patients with binge eating disorder associates with trait impulsivity and improves after impulsivity-focused treatment based on a randomized controlled IMPULS trial. NEUROIMAGE-CLINICAL 2021; 30:102679. [PMID: 34215149 PMCID: PMC8102655 DOI: 10.1016/j.nicl.2021.102679] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/18/2023]
Abstract
Persons with binge eating disorder show increased impulsivity. We investigated cognitive control to food cues using fNIRS. Compared to healthy controls, binge eaters show weaker activation of the prefrontal cortex. After behavioral therapy, binge eaters increase prefrontal cortex activation.
Background Behavioral and cognitive control are vital for healthy eating behavior. Patients with binge eating disorder (BED) suffer under recurrent binge eating episodes accompanied by subjective loss of control that results, among other factors, from increased impulsivity. Methods In the current study, we investigated the frontal network using functional near-infrared spectroscopy (fNIRS) during a food specific go/nogo task to assess response inhibition in 24 patients with BED (BMI range 22.6–59.7 kg/m2) compared to 12 healthy controls (HC) (BMI range 20.9–27 kg/m2). Patients with BED were invited to undergo fNIRS measurements before an impulsivity-focused cognitive behavioral group treatment, directly after this treatment and 3 months afterwards. As this was a planned subgroup analysis of the randomized controlled IMPULS trial, patients with BED were randomized either to the treatment group (n = 14) or to a control group (n = 10). The treatment group received 8 weekly sessions of the IMPULS treatment. Results We found a significant response inhibition effect (nogo minus go), in terms of an increased oxygenated hemoglobin response in the bilateral prefrontal cortex in both groups. The greatest response was observed when participants were instructed to go for healthy and withhold their response to unhealthy high caloric food cues. The healthy nogo condition failed to show a significant prefrontal inhibitory response, which was probably related to the task design, as the condition was considered more demanding. BED patients, especially those with higher trait impulsivity, showed a weaker activation of the prefrontal cortex during response inhibition, predominantly in the right hemisphere. Interestingly, three months after the treatment, patients of the treatment group increased their right prefrontal cortex activity during response inhibition. Likewise, increased prefrontal cortex activation correlated with decreased trait impulsivity after treatment. Conclusions Our results suggest that patients with BED have limited resources to activate the prefrontal cortex when asked to inhibit a reaction onto food-specific stimuli. However, this effect could be partly driven by differences in BMI between the HC and BED group. Cognitive-behavioral therapy targeting impulsive eating behavior may improve prefrontal cortex recruitment during response inhibition.
Collapse
Affiliation(s)
- Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Kathrin Schag
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany; Center of Excellence for Eating Disorders Tübingen (COMET), Tübingen, Germany
| | - Eric Schopf
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Maike Borutta
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Jann Kreutzer
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany; Center of Excellence for Eating Disorders Tübingen (COMET), Tübingen, Germany
| | - Katrin E Giel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany; Center of Excellence for Eating Disorders Tübingen (COMET), Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Germany.
| |
Collapse
|
38
|
Yu L, Long Q, Tang Y, Yin S, Chen Z, Zhu C, Chen A. Improving Emotion Regulation Through Real-Time Neurofeedback Training on the Right Dorsolateral Prefrontal Cortex: Evidence From Behavioral and Brain Network Analyses. Front Hum Neurosci 2021; 15:620342. [PMID: 33815078 PMCID: PMC8010650 DOI: 10.3389/fnhum.2021.620342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/24/2021] [Indexed: 11/15/2022] Open
Abstract
We investigated if emotion regulation can be improved through self-regulation training on non-emotional brain regions, as well as how to change the brain networks implicated in this process. During the training period, the participants were instructed to up-regulate their right dorsolateral prefrontal cortex (rDLPFC) activity according to real-time functional near-infrared spectroscopy (fNIRS) neurofeedback signals, and there was no emotional element. The results showed that the training significantly increased emotion regulation, resting-state functional connectivity (rsFC) within the emotion regulation network (ERN) and frontoparietal network (FPN), and rsFC between the ERN and amygdala; however, training did not influence the rsFC between the FPN and the amygdala. However, self-regulation training on rDLPFC significantly improved emotion regulation and generally increased the rsFCs within the networks; the rsFC between the ERN and amygdala was also selectively increased. The present study also described a safe approach that may improve emotion regulation through self-regulation training on non-emotional brain regions.
Collapse
Affiliation(s)
- Linlin Yu
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Quanshan Long
- Faculty of Education, Yunnan Normal University, Kunming, China
| | - Yancheng Tang
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Shouhang Yin
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Zijun Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Antao Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
39
|
Baqapuri HI, Roes LD, Zvyagintsev M, Ramadan S, Keller M, Roecher E, Zweerings J, Klasen M, Gur RC, Mathiak K. A Novel Brain-Computer Interface Virtual Environment for Neurofeedback During Functional MRI. Front Neurosci 2021; 14:593854. [PMID: 33505237 PMCID: PMC7830095 DOI: 10.3389/fnins.2020.593854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Virtual environments (VEs), in the recent years, have become more prevalent in neuroscience. These VEs can offer great flexibility, replicability, and control over the presented stimuli in an immersive setting. With recent developments, it has become feasible to achieve higher-quality visuals and VEs at a reasonable investment. Our aim in this project was to develop and implement a novel real-time functional magnetic resonance imaging (rt-fMRI)-based neurofeedback (NF) training paradigm, taking into account new technological advances that allow us to integrate complex stimuli into a visually updated and engaging VE. We built upon and developed a first-person shooter in which the dynamic change of the VE was the feedback variable in the brain-computer interface (BCI). We designed a study to assess the feasibility of the BCI in creating an immersive VE for NF training. In a randomized single-blinded fMRI-based NF-training session, 24 participants were randomly allocated into one of two groups: active and reduced contingency NF. All participants completed three runs of the shooter-game VE lasting 10 min each. Brain activity in a supplementary motor area region of interest regulated the possible movement speed of the player's avatar and thus increased the reward probability. The gaming performance revealed that the participants were able to actively engage in game tasks and improve across sessions. All 24 participants reported being able to successfully employ NF strategies during the training while performing in-game tasks with significantly higher perceived NF control ratings in the NF group. Spectral analysis showed significant differential effects on brain activity between the groups. Connectivity analysis revealed significant differences, showing a lowered connectivity in the NF group compared to the reduced contingency-NF group. The self-assessment manikin ratings showed an increase in arousal in both groups but failed significance. Arousal has been linked to presence, or feelings of immersion, supporting the VE's objective. Long paradigms, such as NF in MRI settings, can lead to mental fatigue; therefore, VEs can help overcome such limitations. The rewarding achievements from gaming targets can lead to implicit learning of self-regulation and may broaden the scope of NF applications.
Collapse
Affiliation(s)
- Halim I. Baqapuri
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Linda D. Roes
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Mikhail Zvyagintsev
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Souad Ramadan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Micha Keller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Erik Roecher
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Martin Klasen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
40
|
Rösch SA, Schmidt R, Lührs M, Ehlis AC, Hesse S, Hilbert A. Evidence of fNIRS-Based Prefrontal Cortex Hypoactivity in Obesity and Binge-Eating Disorder. Brain Sci 2020; 11:E19. [PMID: 33375315 PMCID: PMC7823505 DOI: 10.3390/brainsci11010019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity (OB) and associated binge-eating disorder (BED) show increased impulsivity and emotional dysregulation. Albeit well-established in neuropsychiatric research, functional near-infrared spectroscopy (fNIRS) has rarely been used to study OB and BED. Here, we investigated fNIRS-based food-specific brain signalling, its association with impulsivity and emotional dysregulation, and the temporal variability in individuals with OB with and without BED compared to an age- and sex-stratified normal weight (NW) group. Prefrontal cortex (PFC) responses were recorded in individuals with OB (n = 15), OB + BED (n = 13), and NW (n = 12) in a passive viewing and a response inhibition task. Impulsivity and emotional dysregulation were self-reported; anthropometrics were objectively measured. The OB and NW groups were measured twice 7 days apart. Relative to the NW group, the OB and OB + BED groups showed PFC hyporesponsivity across tasks, whereas there were few significant differences between the OB and OB + BED groups. Greater levels of impulsivity were significantly associated with stronger PFC responses, while more emotional dysregulation was significantly associated with lower PFC responses. Temporal differences were found in the left orbitofrontal cortex responses, yet in opposite directions in the OB and NW groups. This study demonstrated diminished fNIRS-based PFC responses across OB phenotypes relative to a NW group. The association between impulsivity, emotional dysregulation, and PFC hypoactivity supports the assumption that BED constitutes a specific OB phenotype.
Collapse
Affiliation(s)
- Sarah A. Rösch
- Integrated Research and Treatment Center Adiposity Diseases, Behavioural Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Semmelweisstrasse 10, 04103 Leipzig, Germany; (R.S.); (A.H.)
- International Max Planck Research School NeuroCom, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103 Leipzig, Germany
| | - Ricarda Schmidt
- Integrated Research and Treatment Center Adiposity Diseases, Behavioural Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Semmelweisstrasse 10, 04103 Leipzig, Germany; (R.S.); (A.H.)
| | - Michael Lührs
- Brain Innovation B.V., Oxfordlaan 55, 6229 EV Maastricht, The Netherlands;
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany;
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Center, Liebigstrasse 18, 04103 Leipzig, Germany;
| | - Anja Hilbert
- Integrated Research and Treatment Center Adiposity Diseases, Behavioural Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Semmelweisstrasse 10, 04103 Leipzig, Germany; (R.S.); (A.H.)
| |
Collapse
|
41
|
Merchant JS, Cosme D, Giuliani NR, Dirks B, Berkman ET. Neural Substrates of Food Valuation and Its Relationship With BMI and Healthy Eating in Higher BMI Individuals. Front Behav Neurosci 2020; 14:578676. [PMID: 33343310 PMCID: PMC7746820 DOI: 10.3389/fnbeh.2020.578676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/10/2020] [Indexed: 01/22/2023] Open
Abstract
Considerable evidence points to a link between body mass index (BMI), eating behavior, and the brain's reward system. However, much of this research focuses on food cue reactivity without examining the subjective valuation process as a potential mechanism driving individual differences in BMI and eating behavior. The current pre-registered study (https://osf.io/n4c95/) examined the relationship between BMI, healthy eating, and subjective valuation of healthy and unhealthy foods in a community sample of individuals with higher BMI who intended to eat more healthily. Particularly, we examined: (1) alterations in neurocognitive measures of subjective valuation related to BMI and healthy eating; (2) differences in the neurocognitive valuation for healthy and unhealthy foods and their relation to BMI and healthy eating; (3) and whether we could conceptually replicate prior findings demonstrating differences in neural reactivity to palatable vs. plain foods. To this end, we scanned 105 participants with BMIs ranging from 23 to 42 using fMRI during a willingness-to-pay task that quantifies trial-by-trial valuation of 30 healthy and 30 unhealthy food items. We measured out of lab eating behavior via the Automated Self-Administered 24 H Dietary Assessment Tool, which allowed us to calculate a Healthy Eating Index (HEI). We found that our sample exhibited robust, positive linear relationships between self-reported value and neural responses in regions previously implicated in studies of subjective value, suggesting an intact valuation system. However, we found no relationship between valuation and BMI nor HEI, with Bayes Factor indicating moderate evidence for a null relationship. Separating the food types revealed that healthy eating, as measured by the HEI, was inversely related to subjective valuation of unhealthy foods. Imaging data further revealed a stronger linkage between valuation of healthy (compared to unhealthy) foods and corresponding response in the ventromedial prefrontal cortex (vmPFC), and that the interaction between healthy and unhealthy food valuation in this region is related to HEI. Finally, our results did not replicate reactivity differences demonstrated in prior work, likely due to differences in the mapping between food healthiness and palatability. Together, our findings point to disruptions in the valuation of unhealthy foods in the vmPFC as a potential mechanism influencing healthy eating.
Collapse
Affiliation(s)
- Junaid S Merchant
- Neuroscience and Cognitive Science Program (NACS), Department of Psychology, University of Maryland, College Park, MD, United States
| | - Danielle Cosme
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicole R Giuliani
- Prevention Science Institute, Department of Special Education and Clinical Sciences, University of Oregon, Eugene, OR, United States
| | - Bryce Dirks
- Department of Psychology, University of Miami, Coral Gables, FL, United States
| | - Elliot T Berkman
- Center for Translational Neuroscience, Department of Psychology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
42
|
Constant A, Moirand R, Thibault R, Val-Laillet D. Meeting of Minds around Food Addiction: Insights from Addiction Medicine, Nutrition, Psychology, and Neurosciences. Nutrients 2020; 12:nu12113564. [PMID: 33233694 PMCID: PMC7699750 DOI: 10.3390/nu12113564] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
This review, focused on food addiction (FA), considers opinions from specialists with different expertise in addiction medicine, nutrition, health psychology, and behavioral neurosciences. The concept of FA is a recurring issue in the clinical description of abnormal eating. Even though some tools have been developed to diagnose FA, such as the Yale Food Addiction Scale (YFAS) questionnaire, the FA concept is not recognized as an eating disorder (ED) so far and is even not mentioned in the Diagnostic and Statistical Manuel of Mental Disorders version 5 (DSM-5) or the International Classification of Disease (ICD-11). Its triggering mechanisms and relationships with other substance use disorders (SUD) need to be further explored. Food addiction (FA) is frequent in the overweight or obese population, but it remains unclear whether it could articulate with obesity-related comorbidities. As there is currently no validated therapy against FA in obese patients, FA is often underdiagnosed and untreated, so that FA may partly explain failure of obesity treatment, addiction transfer, and weight regain after obesity surgery. Future studies should assess whether a dedicated management of FA is associated with better outcomes, especially after obesity surgery. For prevention and treatment purposes, it is necessary to promote a comprehensive psychological approach to FA. Understanding the developmental process of FA and identifying precociously some high-risk profiles can be achieved via the exploration of the environmental, emotional, and cognitive components of eating, as well as their relationships with emotion management, some personality traits, and internalized weight stigma. Under the light of behavioral neurosciences and neuroimaging, FA reveals a specific brain phenotype that is characterized by anomalies in the reward and inhibitory control processes. These anomalies are likely to disrupt the emotional, cognitive, and attentional spheres, but further research is needed to disentangle their complex relationship and overlap with obesity and other forms of SUD. Prevention, diagnosis, and treatment must rely on a multidisciplinary coherence to adapt existing strategies to FA management and to provide social and emotional support to these patients suffering from highly stigmatized medical conditions, namely overweight and addiction. Multi-level interventions could combine motivational interviews, cognitive behavioral therapies, and self-help groups, while benefiting from modern exploratory and interventional tools to target specific neurocognitive processes.
Collapse
Affiliation(s)
- Aymery Constant
- INRAE, INSERM, University Rennes, NuMeCan, Nutrition Metabolisms Cancer, 35590 St Gilles, 35000 Rennes, France; (A.C.); (R.M.); (R.T.)
- EHESP, School of Public Health, 35043 Rennes, France
| | - Romain Moirand
- INRAE, INSERM, University Rennes, NuMeCan, Nutrition Metabolisms Cancer, 35590 St Gilles, 35000 Rennes, France; (A.C.); (R.M.); (R.T.)
- Unité d’Addictologie, CHU Rennes, 35000 Rennes, France
| | - Ronan Thibault
- INRAE, INSERM, University Rennes, NuMeCan, Nutrition Metabolisms Cancer, 35590 St Gilles, 35000 Rennes, France; (A.C.); (R.M.); (R.T.)
- Unité de Nutrition, CHU Rennes, 35000 Rennes, France
| | - David Val-Laillet
- INRAE, INSERM, University Rennes, NuMeCan, Nutrition Metabolisms Cancer, 35590 St Gilles, 35000 Rennes, France; (A.C.); (R.M.); (R.T.)
- Correspondence:
| |
Collapse
|
43
|
Tursic A, Eck J, Lührs M, Linden DEJ, Goebel R. A systematic review of fMRI neurofeedback reporting and effects in clinical populations. Neuroimage Clin 2020; 28:102496. [PMID: 33395987 PMCID: PMC7724376 DOI: 10.1016/j.nicl.2020.102496] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Real-time fMRI-based neurofeedback is a relatively young field with a potential to impact the currently available treatments of various disorders. In order to evaluate the evidence of clinical benefits and investigate how consistently studies report their methods and results, an exhaustive search of fMRI neurofeedback studies in clinical populations was performed. Reporting was evaluated using a limited number of Consensus on the reporting and experimental design of clinical and cognitive-behavioral neurofeedback studies (CRED-NF checklist) items, which was, together with a statistical power and sensitivity calculation, used to also evaluate the existing evidence of the neurofeedback benefits on clinical measures. The 62 found studies investigated regulation abilities and/or clinical benefits in a wide range of disorders, but with small sample sizes and were therefore unable to detect small effects. Most points from the CRED-NF checklist were adequately reported by the majority of the studies, but some improvements are suggested for the reporting of group comparisons and relations between regulation success and clinical benefits. To establish fMRI neurofeedback as a clinical tool, more emphasis should be placed in the future on using larger sample sizes determined through a priori power calculations and standardization of procedures and reporting.
Collapse
Affiliation(s)
- Anita Tursic
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Brain Innovation B.V, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands.
| | - Judith Eck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Brain Innovation B.V, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands.
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Brain Innovation B.V, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands.
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Brain Innovation B.V, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| |
Collapse
|
44
|
Moazzami K, Wittbrodt MT, Alkhalaf M, Lima BB, Nye JA, Mehta PK, Quyyumi AA, Vaccarino V, Bremner JD, Shah AJ. Association Between Mental Stress-Induced Inferior Frontal Cortex Activation and Angina in Coronary Artery Disease. Circ Cardiovasc Imaging 2020; 13:e010710. [PMID: 32772572 PMCID: PMC7422935 DOI: 10.1161/circimaging.120.010710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The inferior frontal lobe is an important area of the brain involved in the stress response, and higher activation with acute mental stress may indicate a more severe stress reaction. However, it is unclear if activation of this region with stress correlates with angina in individuals with coronary artery disease. METHODS Individuals with stable coronary artery disease underwent acute mental stress testing using a series of standardized speech/arithmetic stressors in conjunction with high resolution positron emission tomography imaging of the brain. Blood flow to the inferior frontal lobe was evaluated as a ratio compared with whole brain flow for each scan. Angina was assessed with the Seattle Angina Questionnaire's angina frequency subscale at baseline and 2 years follow-up. RESULTS We analyzed 148 individuals with coronary artery disease (mean age [SD] 62 [8] years; 69% male, and 35.8% Black). For every doubling in the inferior frontal lobe activation, angina frequency was increased by 13.7 units at baseline ([Formula: see text], 13.7 [95% CI, 6.3-21.7]; P=0.008) and 11.6 units during follow-up ([Formula: see text], 11.6 [95% CI, 4.1-19.2]; P=0.01) in a model adjusted for baseline demographics. Mental stress-induced ischemia and activation of other brain pain processing regions (thalamus, insula, and amygdala) accounted for 40.0% and 13.1% of the total effect of inferior frontal lobe activation on angina severity, respectively. CONCLUSIONS Inferior frontal lobe activation with mental stress is independently associated with angina at baseline and during follow-up. Mental stress-induced ischemia and other pain processing brain regions may play a contributory role.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA (K.M., B.B.L., V.V., A.J.S.).,Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine (K.M., M.A., B.B.L., P.K.M., A.A.Q., A.J.S.), Emory University School of Medicine, Atlanta, GA
| | - Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences (M.T.W., J.D.B.), Emory University School of Medicine, Atlanta, GA
| | - Mhmtjamil Alkhalaf
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine (K.M., M.A., B.B.L., P.K.M., A.A.Q., A.J.S.), Emory University School of Medicine, Atlanta, GA
| | - Bruno B Lima
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA (K.M., B.B.L., V.V., A.J.S.).,Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine (K.M., M.A., B.B.L., P.K.M., A.A.Q., A.J.S.), Emory University School of Medicine, Atlanta, GA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences (J.A.N., J.D.B.), Emory University School of Medicine, Atlanta, GA
| | - Puja K Mehta
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine (K.M., M.A., B.B.L., P.K.M., A.A.Q., A.J.S.), Emory University School of Medicine, Atlanta, GA
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine (K.M., M.A., B.B.L., P.K.M., A.A.Q., A.J.S.), Emory University School of Medicine, Atlanta, GA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA (K.M., B.B.L., V.V., A.J.S.)
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences (M.T.W., J.D.B.), Emory University School of Medicine, Atlanta, GA.,Department of Radiology and Imaging Sciences (J.A.N., J.D.B.), Emory University School of Medicine, Atlanta, GA.,Atlanta VA Medical Center, Decatur, GA (J.D.B., A.J.S.)
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA (K.M., B.B.L., V.V., A.J.S.).,Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine (K.M., M.A., B.B.L., P.K.M., A.A.Q., A.J.S.), Emory University School of Medicine, Atlanta, GA.,Atlanta VA Medical Center, Decatur, GA (J.D.B., A.J.S.)
| |
Collapse
|
45
|
Qualls-Creekmore E, Marlatt KL, Aarts E, Bruce-Keller A, Church TS, Clément K, Fisher JO, Gordon-Larsen P, Morrison CD, Raybould HE, Ryan DH, Schauer PR, Spector AC, Spetter MS, Stuber GD, Berthoud HR, Ravussin E. What Should I Eat and Why? The Environmental, Genetic, and Behavioral Determinants of Food Choice: Summary from a Pennington Scientific Symposium. Obesity (Silver Spring) 2020; 28:1386-1396. [PMID: 32520444 PMCID: PMC7501251 DOI: 10.1002/oby.22806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/29/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
This review details the proceedings of a Pennington Biomedical scientific symposium titled, "What Should I Eat and Why? The Environmental, Genetic, and Behavioral Determinants of Food Choice." The symposium was designed to review the literature about energy homeostasis, particularly related to food choice and feeding behaviors, from psychology to physiology. This review discusses the intrinsic determinants of food choice, including biological mechanisms (genetics), peripheral and central signals, brain correlates, and the potential role of the microbiome. This review also address the extrinsic determinants (environment) of food choice within our physical and social environments. Finally, this review reports the current treatment practices for the clinical management of eating-induced overweight and obesity. An improved understanding of these determinants will inform best practices for the clinical treatment and prevention of obesity. Strategies paired with systemic shifts in our public health policies and changes in our "obesogenic" environment will be most effective at attenuating the obesity epidemic.
Collapse
Affiliation(s)
- Emily Qualls-Creekmore
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Kara L. Marlatt
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Esther Aarts
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Annadora Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Tim S. Church
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
- ACAP Health, Dallas, TX, USA
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches (NutriOmics) Research Unit, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition e, Pitié-Salpêtrière Hospital, 47-83 bd de l’Hôpital, Paris, France
| | - Jennifer O. Fisher
- Center for Obesity Research and Education, Temple University, Philadelphia, PA, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher D. Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Helen E. Raybould
- Department of Anatomy, Physiology, Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Donna H. Ryan
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Philip R. Schauer
- Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alan C. Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Maartje S. Spetter
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| | - Garret D. Stuber
- Departments of Anesthesiology, Pain Medicine & Pharmacology, University of Washington, Seattle, WA, USA
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
46
|
Kohl SH, Mehler DMA, Lührs M, Thibault RT, Konrad K, Sorger B. The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback-A Systematic Review and Recommendations for Best Practice. Front Neurosci 2020; 14:594. [PMID: 32848528 PMCID: PMC7396619 DOI: 10.3389/fnins.2020.00594] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Background: The effects of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)-neurofeedback on brain activation and behaviors have been studied extensively in the past. More recently, researchers have begun to investigate the effects of functional near-infrared spectroscopy-based neurofeedback (fNIRS-neurofeedback). FNIRS is a functional neuroimaging technique based on brain hemodynamics, which is easy to use, portable, inexpensive, and has reduced sensitivity to movement artifacts. Method: We provide the first systematic review and database of fNIRS-neurofeedback studies, synthesizing findings from 22 peer-reviewed studies (including a total of N = 441 participants; 337 healthy, 104 patients). We (1) give a comprehensive overview of how fNIRS-neurofeedback training protocols were implemented, (2) review the online signal-processing methods used, (3) evaluate the quality of studies using pre-set methodological and reporting quality criteria and also present statistical sensitivity/power analyses, (4) investigate the effectiveness of fNIRS-neurofeedback in modulating brain activation, and (5) review its effectiveness in changing behavior in healthy and pathological populations. Results and discussion: (1–2) Published studies are heterogeneous (e.g., neurofeedback targets, investigated populations, applied training protocols, and methods). (3) Large randomized controlled trials are still lacking. In view of the novelty of the field, the quality of the published studies is moderate. We identified room for improvement in reporting important information and statistical power to detect realistic effects. (4) Several studies show that people can regulate hemodynamic signals from cortical brain regions with fNIRS-neurofeedback and (5) these studies indicate the feasibility of modulating motor control and prefrontal brain functioning in healthy participants and ameliorating symptoms in clinical populations (stroke, ADHD, autism, and social anxiety). However, valid conclusions about specificity or potential clinical utility are premature. Conclusion: Due to the advantages of practicability and relatively low cost, fNIRS-neurofeedback might provide a suitable and powerful alternative to EEG and fMRI neurofeedback and has great potential for clinical translation of neurofeedback. Together with more rigorous research and reporting practices, further methodological improvements may lead to a more solid understanding of fNIRS-neurofeedback. Future research will benefit from exploiting the advantages of fNIRS, which offers unique opportunities for neurofeedback research.
Collapse
Affiliation(s)
- Simon H Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David M A Mehler
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael Lührs
- Brain Innovation B.V., Research Department, Maastricht, Netherlands.,Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Robert T Thibault
- School of Psychological Science, University of Bristol, Bristol, United Kingdom.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Kerstin Konrad
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Bettina Sorger
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
47
|
Ren Y, Xu M, von Deneen KM, He Y, Li G, Zheng Y, Zhang W, Li X, Han Y, Cui G, Ji G, Nie Y, Zhang Y. Acute and long-term effects of electroacupuncture alter frontal and insular cortex activity and functional connectivity during resting state. Psychiatry Res Neuroimaging 2020; 298:111047. [PMID: 32114310 DOI: 10.1016/j.pscychresns.2020.111047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
Electroacupuncture (EA) is a safe method for treating obesity; however, its underlying neural mechanisms remain unclear. We employed resting-state-functional-magnetic-resonance-imaging (RS-fMRI) and amplitude-of-low-frequency-fluctuation (ALFF) to investigate acute/long-term effects of EA on brain activity and resting-state-functional-connectivity (RSFC) in overweight/obesity subjects who received real/Sham stimulation. For acute effects, 26 and 19 overweight/obesity subjects were included in EA and Sham groups respectively. There were significant time effects on ALFF in the right insula (INS) and left dorsolateral-prefrontal-cortex (DLPFC) due to decreases/increases in INS/DLPFC in both groups. There were weaker positive RSFC between INS and supplementary-motor-area (SMA)/right DLPFC and weaker negative RSFC between INS and precuneus (PCUN); stronger negative RSFC between DLPFC and dorsomedial-prefrontal-cortex (DMPFC) in both groups. For long-term study, body-mass-index (BMI) had significant reduction in EA (n = 17) and Sham (15) groups; EA had higher BMI reduction than in Sham. There were significant time effects on ALFF in right ventrolateral-prefrontal-cortex (VLPFC) due to significant increases in EA group, and stronger positive RSFC between VLPFC and orbitofrontal-cortex and negative RSFC between VLPFC and left thalamus (THA) in both groups after long-term treatment. These findings suggest that changes in resting-activity and RSFC implicated in inhibitory-control, gastric-motility and satiety-control are associated with EA-induced weight-loss.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Department of Acupuncture and Massage, Xi'an Traditional Chinese Medicine Hospital, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 710021, China.
| | - Mingzhu Xu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Yang He
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yang Zheng
- Department of Acupuncture and Massage, Xi'an Traditional Chinese Medicine Hospital, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 710021, China
| | - Wenjing Zhang
- Department of Acupuncture and Massage, Xi'an Traditional Chinese Medicine Hospital, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 710021, China
| | - Xiaoping Li
- Department of Acupuncture and Massage, Xi'an Traditional Chinese Medicine Hospital, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 710021, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| |
Collapse
|
48
|
Papoutsi M, Magerkurth J, Josephs O, Pépés SE, Ibitoye T, Reilmann R, Hunt N, Payne E, Weiskopf N, Langbehn D, Rees G, Tabrizi SJ. Activity or connectivity? A randomized controlled feasibility study evaluating neurofeedback training in Huntington's disease. Brain Commun 2020; 2:fcaa049. [PMID: 32954301 PMCID: PMC7425518 DOI: 10.1093/braincomms/fcaa049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/11/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Non-invasive methods, such as neurofeedback training, could support cognitive symptom management in Huntington’s disease by targeting brain regions whose function is impaired. The aim of our single-blind, sham-controlled study was to collect rigorous evidence regarding the feasibility of neurofeedback training in Huntington’s disease by examining two different methods, activity and connectivity real-time functional MRI neurofeedback training. Thirty-two Huntington’s disease gene-carriers completed 16 runs of neurofeedback training, using an optimized real-time functional MRI protocol. Participants were randomized into four groups, two treatment groups, one receiving neurofeedback derived from the activity of the supplementary motor area, and another receiving neurofeedback based on the correlation of supplementary motor area and left striatum activity (connectivity neurofeedback training), and two sham control groups, matched to each of the treatment groups. We examined differences between the groups during neurofeedback training sessions and after training at follow-up sessions. Transfer of training was measured by measuring the participants’ ability to upregulate neurofeedback training target levels without feedback (near transfer), as well as by examining change in objective, a priori defined, behavioural measures of cognitive and psychomotor function (far transfer) before and at 2 months after training. We found that the treatment group had significantly higher neurofeedback training target levels during the training sessions compared to the control group. However, we did not find robust evidence of better transfer in the treatment group compared to controls, or a difference between the two neurofeedback training methods. We also did not find evidence in support of a relationship between change in cognitive and psychomotor function and learning success. We conclude that although there is evidence that neurofeedback training can be used to guide participants to regulate the activity and connectivity of specific regions in the brain, evidence regarding transfer of learning and clinical benefit was not robust.
Collapse
Affiliation(s)
- Marina Papoutsi
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1B 5EH, UK
- Correspondence to: Marina Papoutsi, PhD UCL Huntington’s Disease Centre, Queen Square Institute of Neurology University College London, Russell Square House, 10–12 Russell Square London WC1B 5EH, UK E-mail:
| | - Joerg Magerkurth
- Birkbeck-UCL Centre for Neuroimaging, University College London, London WC1H 0AP, UK
| | - Oliver Josephs
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sophia E Pépés
- University of Oxford, Harris Manchester College, Oxford OX1 3TD, UK
| | - Temi Ibitoye
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1B 5EH, UK
| | - Ralf Reilmann
- George Huntington Institute, 48149 Münster, Germany
- Department of Radiology, University of Muenster, 48149 Münster, Germany
- Section for Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tübingen, Germany
| | - Nigel Hunt
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Edwin Payne
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
- Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany
| | - Douglas Langbehn
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Sarah J Tabrizi
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1B 5EH, UK
- UK Dementia Research Institute at University College London, London WC1E 6BT, UK
| |
Collapse
|
49
|
Donofry SD, Jakicic JM, Rogers RJ, Watt JC, Roecklein KA, Erickson KI. Comparison of Food Cue-Evoked and Resting-State Functional Connectivity in Obesity. Psychosom Med 2020; 82:261-271. [PMID: 32267660 PMCID: PMC8057093 DOI: 10.1097/psy.0000000000000769] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Obesity is associated with differences in task-evoked and resting-state functional brain connectivity (FC). However, no studies have compared obesity-related differences in FC evoked by high-calorie food cues from that observed at rest. Such a comparison could improve our understanding of the neural mechanisms of reward valuation and decision making in the context of obesity. METHODS The sample included 122 adults (78% female; mean age = 44.43 [8.67] years) with body mass index (BMI) in the overweight or obese range (mean = 31.28 [3.92] kg/m). Participants completed a functional magnetic resonance imaging scan that included a resting period followed by a visual food cue task. Whole-brain FC analyses examined seed-to-voxel signal covariation during the presentation of high-calorie food and at rest using seeds located in the left and right orbitofrontal cortex, left hippocampus, and left dorsomedial prefrontal cortex. RESULTS For all seeds examined, BMI was associated with stronger FC during the presentation of high-calorie food, but weaker FC at rest. Regions exhibiting BMI-related modulation of signal coherence in the presence of palatable food cues were largely located within the default mode network (z range = 2.34-4.91), whereas regions exhibiting BMI-related modulation of signal coherence at rest were located within the frontostriatal and default mode networks (z range = 3.05-4.11). All FC results exceeded a voxelwise threshold of p < .01 and cluster-defining familywise error threshold of p < .05. CONCLUSIONS These dissociable patterns of FC may suggest separate neural mechanisms contributing to variation in distinct cognitive, psychological, or behavioral domains that may be related to individual differences in risk for obesity.
Collapse
Affiliation(s)
- Shannon D Donofry
- From the Department of Psychiatry (Donofry), University of Pittsburgh School of Medicine; Departments of Psychology (Donofry, Watt, Roecklein, Erickson) and Health and Physical Activity (Jakicic, Rogers), and Healthy Lifestyle Institute (Jakicic, Rogers), University of Pittsburgh; and The Center for the Neural Basis of Cognition (Roecklein, Erickson), Pittsburgh, Pennsylvania
| | | | | | | | | | | |
Collapse
|
50
|
Weiss F, Zamoscik V, Schmidt SN, Halli P, Kirsch P, Gerchen MF. Just a very expensive breathing training? Risk of respiratory artefacts in functional connectivity-based real-time fMRI neurofeedback. Neuroimage 2020; 210:116580. [DOI: 10.1016/j.neuroimage.2020.116580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022] Open
|