1
|
Alcala-Zermeno JL, Gregg NM, Osman G, Mandrekar JN, Starnes K, Worrell G, Lundstrom BN. Optimizing stimulation parameters for anterior thalamic nuclei deep brain stimulation in epilepsy: A randomized crossover trial. Epilepsia 2025. [PMID: 40423665 DOI: 10.1111/epi.18479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025]
Abstract
OBJECTIVE The effects of brain stimulation for diseases like epilepsy are delayed, making stimulation optimization difficult. The parameters for anterior thalamic nuclei (ANT) deep brain stimulation (DBS) for focal drug-resistant epilepsy management are often restricted to those used in the SANTE landmark trial. There is little evidence regarding effective alternatives, and low-frequency stimulation is typically neglected. We prospectively compare a widely differing stimulation parameter set to typical settings. METHODS This randomized, modified crossover, open trial compares the efficacy and safety of an alternative set of parameters using continuous low-frequency stimulation (cLFS) with a longer pulse width (7 Hz, 200 μs, continuous) compared to SANTE's intermittent high-frequency stimulation (iHFS) with a short pulse width (145 Hz, 90 μs, cycling 1 min on/5 min off). After 3 months on a randomly assigned first set, patients are switched to the other settings, unless seizure-free. Patients are re-evaluated after 3 more months, which marks the completion of the trial. After that, they can either remain on the same settings or switch back. RESULTS Sixteen patients with a median baseline seizure frequency of 13.8 seizures/month (interquartile range [IQR] = 2.7-22.8) were included in the analysis. At trial completion (median follow-up = 30 weeks, IQR = 26-35), ANT-DBS significantly reduced median seizure frequency (62%, IQR = 18-81, Wilcoxon test statistic [W] = 99, p = .008). Both iHFS (33%, IQR = 0-65, W = 81, p = .02) and cLFS (73%, IQR = 30-79, W = 105, p = .001) significantly reduced median seizure frequency. cLFS showed improved median seizure frequency reduction compared to iHFS (W = 63, p = .03) and was not associated with any moderate or severe adverse effects. SIGNIFICANCE Results support cLFS for ANT-DBS as a safe and effective alternative to typical iHFS parameters. Stimulation with widely differing parameter sets may be as effective as or, in some situations, more effective than typical stimulation parameters.
Collapse
Affiliation(s)
- Juan Luis Alcala-Zermeno
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Comprehensive Epilepsy Center, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | | | - Jayawant N Mandrekar
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Keith Starnes
- Department of Child and Adolescent Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
2
|
Andrews L, Keller SS, Bhojak M, Osman-Farah J, Macerollo A. Investigating the neural correlates of subjective sleep changes following subthalamic nucleus deep brain stimulation for Parkinson's disease. Parkinsonism Relat Disord 2025; 136:107887. [PMID: 40408849 DOI: 10.1016/j.parkreldis.2025.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/13/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
INTRODUCTION Sleep disturbances in Parkinson's disease (PD) are extremely common and significantly impact quality of life. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established therapy for motor symptoms and may also influence sleep outcomes. However, the relationship between stimulation location, structural networks, and sleep improvements remains poorly understood, particularly over longer durations. METHODS We conducted a retrospective analysis of 53 PD patients implanted with bilateral STN-DBS. Sleep outcomes were assessed using self-report measures, with subsection scores for nighttime sleep, daytime wakefulness, and total sleep disturbance analysed. Local stimulation effects were modelled using sweet spot analyses, and innervated tracts were examined through discriminative fiber filtering. Associations with motor improvements and demographic factors were analysed. RESULTS Significant improvements were reported in both nighttime sleep and daytime wakefulness. Motor symptom improvements were significantly positively associated with cumulative sleep scores but did not fully explain sleep changes. Sweet spot analyses revealed associations between cumulative sleep score improvements and the sensorimotor STN, while fiber filtering implicated brainstem, cerebellar, and cortical motor tracts for daytime and cumulative sleep improvements. These associations remained significant after controlling for motor improvements. DISCUSSION Our findings suggest that STN-DBS may modulate sleep via broader structural connections and beyond motor symptom improvements. The lateralised effects and involvement of widespread tracts underscore the complexity of DBS-related sleep modulation. Future studies should incorporate longitudinal designs and objective measures to disentangle motor-independent mechanisms and optimise therapeutic strategies.
Collapse
Affiliation(s)
- Luke Andrews
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK.
| | - Simon S Keller
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | | | | | - Antonella Macerollo
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
3
|
Paracka L, Heldmann M, Lange F, Saryyeva A, Klietz M, Münte TF, Kopp B, Wegner F, Krauss JK. Subthalamic nucleus dynamics during executive functioning: Insights from local field potentials in Parkinson's disease. Neuroscience 2025; 574:65-73. [PMID: 40210195 DOI: 10.1016/j.neuroscience.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
This study explores the involvement of the subthalamic nucleus (STN) in executive functions, particularly cognitive flexibility, in Parkinson's disease (PD) patients. Utilizing a computerized Wisconsin Card Sorting Task (WCST) and local field potential (LFP) recordings from implanted deep brain stimulation (DBS) electrodes, we investigated task-specific neural dynamics. Behavioural results demonstrated increased error rates and prolonged response times in trials requiring set-shifting and rule induction via cross-temporal information integration. Electrophysiological analyses revealed integration-specific LFP modulations, including enhanced theta-band activity linked to conflict monitoring and cognitive control during high-demand trials, and beta-band suppression associated with motor inhibition and task disengagement. These findings underscore the STN's integrative role in non-motor domains, supporting its function in cross-temporal information integration for cognitive control. The results also highlight the utility of the WCST for assessing multiple executive processes and the potential of LFP-based biomarkers to refine DBS programming. Despite the relatively small sample size, this study provides novel insights into the oscillatory dynamics of the STN, emphasizing its broader role in decision-making and executive control. Future research should expand the understanding of the STN's contributions across cognitive domains.
Collapse
Affiliation(s)
- Lejla Paracka
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Marcus Heldmann
- Department Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany; Center for Brain Behavior and Metabolism, University of Lübeck, Germany
| | - Florian Lange
- Department of Neurology, Hannover Medical School, Hannover, Germany; Behavioral Economics and Engineering Group, KU Leuven, Belgium
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Thomas F Münte
- Center for Brain Behavior and Metabolism, University of Lübeck, Germany.
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| |
Collapse
|
4
|
Borgheai SB, Howell B, Isbaine F, Noecker AM, Opri E, Risk BB, McIntyre CC, Miocinovic S. Evaluation of DBS computational modeling methodologies using in-vivo electrophysiology in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.05.25326314. [PMID: 40385436 PMCID: PMC12083610 DOI: 10.1101/2025.05.05.25326314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease (PD) and other neuropsychiatric disorders, but its outcomes vary due to differences in patient selection, electrode placement, and programming. Optimizing DBS parameter settings requires postoperative adjustments through a trial-and-error process, which is complex and time-consuming. As such, researchers have been developing patient-specific computational models to help guide DBS programming. Despite growing interest in image-guided DBS technology, and recent adoption into clinical practice, the direct validation of the prediction accuracy remains limited. The objective of this study was to establish a comparative framework for validating the accuracy of various DBS computational modeling methodologies in predicting the activation of clinically relevant pathways using in vivo measurements from PD patients undergoing subthalamic (STN) DBS surgery. Our prior work assessed the accuracy of driving force (DF) models in native space by predicting activation of the corticospinal/bulbar tract (CSBT) and cortico-subthalamic hyperdirect pathway (HDP) using very short- (<2 ms) and short-latency (2-4 ms) cortical evoked potentials (cEPs). In this study, we extended our previous work by comparing the accuracy of five computational modeling variations for predicting the activation of HDP and CSBT based on three key factors: modeling method (DF vs. Volume of Tissue Activated [VTA]), imaging space (native vs. normative), and anatomical representation (pathway vs. volume). The model performances were quantified using the coefficient of determination (R2) between the cEP amplitudes and percent pathway activation or percent volume (structure) overlap. We compared model accuracy for 11 PD patients. The DF-Native-Pathway model was the most accurate method for quantitatively predicting experimental subcortical pathway activations. Additionally, our analysis showed that using normative brain space, instead of native (i.e., patient-specific) space, significantly diminished the accuracy of model predictions. Although the DF and VTA modeling methods exhibited comparable accuracy for the hyperdirect pathway, they diverged significantly in their predictions for the corticospinal tract. In conclusion, we believe that the choice of methodology should depend on the specific application and the required level of precision in clinical, surgical, or research settings. These findings offer valuable guidance for developing more accurate models, facilitating reliable DBS outcome predictions, and advancing both clinical practice and research.
Collapse
Affiliation(s)
| | - Bryan Howell
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Faical Isbaine
- Department of Neurosurgery, Emory University, Atlanta, GA
| | - Angela M Noecker
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Enrico Opri
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Benjamin B Risk
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC
- Department of Neurosurgery, Duke University, Durham, NC
| | - Svjetlana Miocinovic
- Department of Neurology, Emory University, Atlanta, GA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
5
|
Bahners BH, Goede LL, Zvarova P, Meyer GM, Butenko K, Lofredi R, Rajamani N, Schaper FLWVJ, Neudorfer C, Hollunder B, Pijar J, Madan S, Hart LA, Sure M, Steina A, Rassoulou F, Hartmann CJ, Butz M, Hirschmann J, Vesper J, Faust K, Schneider GH, Sander T, Fox MD, Miller KJ, Schnitzler A, Kühn AA, Florin E, Horn A. The Deep Brain Stimulation Response Network in Parkinson's Disease Operates in the High Beta Band. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.07.25325381. [PMID: 40297426 PMCID: PMC12036417 DOI: 10.1101/2025.04.07.25325381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms in patients with Parkinson's disease. Using functional MRI, optimal DBS response networks have been characterized. However, neural activity associated with Parkinsonian symptoms is magnitudes faster than what can be resolved by this method. While both spatial and temporal domains of these networks appear critical, no single study has yet investigated both domains simultaneously. Here, we aim to close this gap using subthalamic local field potentials that were concurrently recorded alongside whole-brain magnetoencephalography in a multi-center cohort of patients that underwent STN-DBS for the treatment of Parkinson's disease (N = 100 hemispheres). In every cortical vertex, cortico-subthalamic coupling was correlated with stimulation outcomes. This network spatially resembled fMRI-based findings (R = 0.40, P = 0.039) and explained significant amounts of variance in clinical outcomes (β std = 0.30, P = 0.002), while theta-alpha and low beta coupling did not show significant associations with DBS response (theta-alpha: β std = -0.02, P = 0.805; low beta: β std = -0.08, P = 0.426). The 'optimal' high beta coupling map was robust when subjected to various cross-validation designs (10-fold cross-validation: R = 0.29, P = 0.009; split-half design: R = 0.31, P = 0.026) and was able to predict outcomes across DBS centers (R = 0.74; P (1) = 8.9e-5). We identified a DBS response network that i) resembles the previously defined MRI network and ii) operates in the high-beta band. Maximal connectivity to this network was associated with optimal DBS outcomes and was able to cross-predict clinical improvements across DBS surgeons and centers.
Collapse
|
6
|
Zhang Q, Eagleson R, Ribaupierre SD. A technology framework for distributed preoperative planning and medical training in deep brain stimulation. Comput Med Imaging Graph 2025; 123:102533. [PMID: 40157051 DOI: 10.1016/j.compmedimag.2025.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
Deep brain stimulation (DBS) is a groundbreaking therapy for movement disorders, necessitating precise planning and extensive training to ensure accurate electrode placement in critical brain regions, such as the thalamic nuclei. This paper introduces an innovative technology framework for DBS to support distributed, real-time preoperative planning and medical training. The system integrates advanced imaging techniques, interactive graphical representation, and real-time data synchronization to assist clinicians in accurately identifying essential anatomical structures and refining pre-surgical plans. At the platform's core are multi-volume rendering, segmentation, and virtual tool modeling algorithms that employ transparency and refinement controls to seamlessly merge and visualize different tissue types in 3D alongside their interactions with surgical tools. This method enhances visual clarity and provides a highly detailed depiction of crucial structures, ensuring the precision required for effective DBS planning. By delivering dynamic, real-time feedback, the framework supports improved decision-making and sets a new standard for collaborative DBS training and procedural preparation. The platform's web-based synchronization architecture enhances collaboration by allowing neurologists and surgeons to simultaneously interact with visualized data from any location. This functionality supports live feedback, promotes collaborative decision-making, and streamlines procedural planning, leading to improved surgical outcomes. Performance evaluations across various hardware configurations and web browsers demonstrate the platform's high rendering speed and low-latency data synchronization, ensuring responsive and reliable interactions essential for clinical use. Its adaptability makes it suitable for medical training, preoperative planning, and intraoperative support, accommodating a wide range of hardware setups and web environments to address the specific demands of DBS-related procedures. This research lays a robust foundation for advancing distributed clinical planning, comprehensive medical education, and improved patient care in neurostimulation therapies.
Collapse
Affiliation(s)
- Qi Zhang
- School of Information Technology, Illinois State University, 100 North University Street, Normal, IL, 61761, United States.
| | - Roy Eagleson
- Department of Electrical and Computer Engineering, Western University, London, Ontario, N6A 5B9, Canada.
| | - Sandrine de Ribaupierre
- Department of Clinical Neurological Sciences, Schulich School of Medicine, Western University, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
7
|
Golmohammadi A, Payonk JP, van Rienen U, Appali R. A Computational Study on the Activation of Neural Transmission in Deep Brain Stimulation. IEEE Trans Biomed Eng 2025; 72:1132-1147. [PMID: 39480713 DOI: 10.1109/tbme.2024.3489799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Deep brain stimulation (DBS) is an established treatment for neurodegenerative movement disorders such as Parkinson's disease that mitigates symptoms by overwriting pathological signals from the central nervous system to the motor system. Nearly all computational models of DBS, directly or indirectly, associate clinical improvements with the extent of fiber activation in the vicinity of the stimulating electrode. However, it is not clear how such activation modulates information transmission. Here, we use the exact cable equation for straight or curved axons and show that DBS segregates the signaling pathways into one of the three communicational modes: complete information blockage, uni-, and bi-directional transmission. Furthermore, all these modes respond to the stimulating pulse in an asynchronous but frequency-locked fashion. Asynchrony depends on the geometry of the axon, its placement and orientation, and the stimulation protocol. At the same time, the electrophysiology of the nerve determines frequency-locking. Such a trimodal response challenges the notion of activation as a binary state and studies that correlate it with the DBS outcome. Importantly, our work suggests that a mechanistic understanding of DBS action relies on distinguishing between these three modes of information transmission.
Collapse
|
8
|
Garg I, Verma M, Kumar H, Maurya R, Negi T, Jain P. Bioelectronic Therapeutics: A Revolutionary Medical Practice in Health Care. Bioelectricity 2025; 7:2-28. [PMID: 40342937 PMCID: PMC12054615 DOI: 10.1089/bioe.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
The emerging field of bioelectronic therapeutics unfolds great opportunities for treating numerous neurological and inflammatory conditions by utilizing the amalgamation of molecular medicine, neuroscience, engineering, and computing. These innovative treatments leverage advanced technology to precisely identify, design, and regulate electrical signaling patterns in the nervous system, addressing multiple diseases. Modifying neural signaling patterns to produce therapeutic effects at a particular organ may blur the lines between conventional medical practices. These modify the neurological behavior using electrical, magnetic, optical, and ultrasonic pulses through closed-loop systems to optimize neural behavior. The Food and Drug Administration (FDA) has approved numerous invasive and noninvasive bioelectronic devices, in the treatment of various neuronal diseases and non-neuronal diseases. Furthermore, the FDA has approved many devices for clinical studies. The field of bioelectronics encounters challenges in integrating with the health care system, including incomplete understanding of human nervous anatomy, neuronal function, membrane potential, and technological limitations. This review aims to explore bioelectronics therapeutics, their role or action in challenges to growth and their solutions, and the prospects of bioelectronic therapeutics.
Collapse
Affiliation(s)
- Ishu Garg
- Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Madhu Verma
- ITS College of Pharmacy, Ghaziabad, Uttar Pradesh, India
| | - Harish Kumar
- Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Ravi Maurya
- Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Tushar Negi
- Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | | |
Collapse
|
9
|
Werner LM, Schnitzler A, Hirschmann J. Subthalamic Nucleus Deep Brain Stimulation in the Beta Frequency Range Boosts Cortical Beta Oscillations and Slows Down Movement. J Neurosci 2025; 45:e1366242024. [PMID: 39788738 PMCID: PMC11867002 DOI: 10.1523/jneurosci.1366-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Recordings from Parkinson's disease (PD) patients show strong beta-band oscillations (13-35 Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100 Hz) ameliorates motor symptoms and reduces beta activity in the basal ganglia and motor cortex, the effects of low-frequency DBS (<30 Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal. Here, we investigated how subthalamic nucleus (STN) beta-band DBS affects cortical beta oscillations and motor performance. We recorded the magnetoencephalogram of 14 PD patients (nine males) with DBS implants while on their usual medication. Following a baseline recording (DBS OFF), we applied bipolar DBS at beta frequencies (10, 16, 20, 26, and 30 Hz) via the left electrode in a cyclic fashion, turning stimulation on (5 s) and off (3 s) repeatedly. Cyclic stimulation was applied at rest and during right-hand finger tapping. In the baseline recording, we observed a negative correlation between the strength of hemispheric beta power lateralization and the tap rate. Importantly, beta-band DBS accentuated the lateralization and reduced the tap rate proportionally. The change in lateralization was specific to the alpha/beta range (8-26 Hz), outlasted stimulation, and did not depend on the stimulation frequency, suggesting a remote-induced response rather than entrainment. Our study demonstrates that cortical beta oscillations can be manipulated by STN beta-band DBS. This manipulation has consequences for motor performance, supporting a causal role of beta oscillations.
Collapse
Affiliation(s)
- Lucy M Werner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
10
|
Speakes ME, Reznik-Schaefer K, Al-Ramadhani R, Fernandez LD, Hect JL, Abel TJ, Welch WP. Treatment of pediatric drug-resistant generalized epilepsy with responsive neurostimulation of the centromedian nucleus of the thalamus: A case series of seven patients. Epilepsy Res 2025; 210:107516. [PMID: 39864118 DOI: 10.1016/j.eplepsyres.2025.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
PURPOSE Responsive neurostimulation of the centromedian nucleus of the thalamus (CM RNS) is being investigated for treatment of drug-resistant generalized epilepsy with promising results. The aim of this study is to report outcomes of seven patients with pediatric-onset drug-resistant generalized epilepsy, including both genetic generalized epilepsy (GGE) and Lennox-Gastaut syndrome (LGS), who underwent treatment with bilateral CM RNS. METHODS A retrospective chart review was performed for patients with drug-resistant generalized epilepsy who underwent treatment with bilateral CM RNS at Children's Hospital of Pittsburgh from 2020 to 2022. Improvement in seizure frequency was obtained through patient and/or caregiver reports on standardized patient questionnaires. The primary outcome measure was percent improvement in seizure frequency at time of last follow-up appointment compared to baseline seizure frequency. RESULTS Five of the seven patients (71 %) had an average 50 % or greater improvement in seizure frequency among seizure types including four of the five patients (80 %) with GGE and one of the two patients (50 %) with LGS. There were no serious adverse events including post-operative infection, stroke, or device malfunction/migration. CONCLUSION This data, along with other recent studies, suggests that CM RNS can improve seizure frequency in pediatric-onset drug-resistant generalized epilepsy, but larger systematic studies with longer follow-up times and standardized outcome measures are needed to determine long-term effectiveness and optimal patient selection for thalamic RNS.
Collapse
Affiliation(s)
- Mikaela E Speakes
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 8th Floor Faculty Pavilion, 4401 Penn Ave., Pittsburgh, PA 15224, United States.
| | - Kiersten Reznik-Schaefer
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 8th Floor Faculty Pavilion, 4401 Penn Ave., Pittsburgh, PA 15224, United States.
| | - Ruba Al-Ramadhani
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 8th Floor Faculty Pavilion, 4401 Penn Ave., Pittsburgh, PA 15224, United States.
| | - Luis D Fernandez
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 8th Floor Faculty Pavilion, 4401 Penn Ave., Pittsburgh, PA 15224, United States.
| | - Jasmine L Hect
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, Suite B-400, 200 Lothrop Street, Pittsburgh, PA 15213, United States.
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, Suite B-400, 200 Lothrop Street, Pittsburgh, PA 15213, United States; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15260, United States.
| | - William P Welch
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 8th Floor Faculty Pavilion, 4401 Penn Ave., Pittsburgh, PA 15224, United States.
| |
Collapse
|
11
|
Lebrón Sánchez YM, Torres V, Carreras A, Jimenez Marrero AA, Bleubar Ozoria RD, Rivera L, Pérez-Fernández A. Deep Brain Stimulation Lead Functional Repositioning After Spontaneous Pneumocephalus Resorption: A Clinical Case Presentation and Systematic Review. Cureus 2025; 17:e77506. [PMID: 39958129 PMCID: PMC11828712 DOI: 10.7759/cureus.77506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
Deep brain stimulation (DBS) has become a critical intervention for managing advanced Parkinson's disease (PD), particularly for patients whose symptoms are no longer controlled by medication. This report details the case of a 61-year-old male with PD who experienced electrode displacement due to pneumocephalus following DBS surgery targeting the subthalamic nucleus (STN). Initial imaging revealed a significant subdural air volume causing electrode displacement. However, one month later, spontaneous pneumocephalus resorption led to the functional repositioning of the electrodes, restoring proper function and negating the need for reoperation. The accompanying systematic review analyzed 24 studies, involving 1,439 patients across 12 countries, to assess the occurrence and management in this specific scenario. Findings showed electrode displacement occurred in 75% of cases, but spontaneous repositioning happened only in 12.5%, typically with air volumes below 10 cm³. Larger volumes often required surgical intervention, though definitive thresholds for action remain unclear. The review highlights inconsistencies in managing this complication, emphasizing the need for clearer protocols to improve outcomes. This work underscores the rarity of spontaneous electrode realignment and the importance of careful evaluation of pneumocephalus volume and patient symptoms. It advocates for evidence-based management strategies to balance clinical intervention with the potential for natural resolution, aiming to enhance DBS efficacy and patient quality of life. Further research is necessary to establish standardized guidelines for addressing this complication.
Collapse
Affiliation(s)
| | - Viviana Torres
- Parkinson's Disease and Movement Disorders Unit, Neurofunctional Group, Santo Domingo, DOM
| | - Angel Carreras
- Parkinson's Disease and Movement Disorders Unit, Neurofunctional Group, Santo Domingo, DOM
| | | | | | - Lianca Rivera
- Parkinson's Disease and Movement Disorders Unit, Neurofunctional Group, Santo Domingo, DOM
| | - Ambar Pérez-Fernández
- Parkinson's Disease and Movement Disorders Unit, Neurofunctional Group, Santo Domingo, DOM
| |
Collapse
|
12
|
Luo X, Zeng Z, Zheng S, Chen J, Jannin P. Statistical Multiscore Functional Atlas Creation for Image-Guided Deep Brain Stimulation. IEEE Trans Neural Syst Rehabil Eng 2025; 33:818-828. [PMID: 40031525 DOI: 10.1109/tnsre.2025.3542395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Deep brain stimulation is increasingly performed for patients who suffer from drug-resistant movement disorders. It still remains challenging to determine the optimal electrode contact location to obtain the optimal surgical outcome and simultaneously minimize adverse effects. This paper proposes to construct a new statistical functional atlas to guide electrode contact targeting during deep brain stimulation. The construction of the atlas consists of four main steps: 1) multimodal image segmentation and registration, 2) activation volume modeling, 3) computing and combining multiple functional scores, and 4) generation of multiscore functional atlas. Based on these steps, the statistical functional atlas is created by integrating anatomical information analysis with multiple clinical scores that postoperatively characterize stimulation efficacy (e.g., motor symptom) and adverse effect. We evaluated the created atlas on 40 subthalamic nucleus stimulated parkinsonian patient datasets. The experimental results show that the reproducibility of the created statistical functional atlas was more than 75% in the cross validation. In addition, the motor, neuropsychological, and health scores can be reproduced up to 77%, 82%, and 78%. Compared to the actually implanted electrode position, the atlas predicted and the manually planned electrode position errors were 2.89 mm and 2.38 mm, respectively. The constructed multiscore atlas provides an automatic and accurate electrode targeting strategy that potentially outperforms manually planned approaches.
Collapse
|
13
|
Chapman TP, Divanbeighi Zand AP, Debrah E, Petric B, Farrell SM, FitzGerald JJ, Moosavi SH, Green AL. Deep brain stimulation of the motor thalamus relieves experimentally induced air hunger. Eur Respir J 2024; 64:2401156. [PMID: 39401855 PMCID: PMC11618815 DOI: 10.1183/13993003.01156-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/20/2024] [Indexed: 10/30/2024]
Abstract
RESEARCH QUESTION We previously reported that deep brain stimulation (DBS) of the motor thalamus, in a patient with post-stroke tremor, relieved breathlessness associated with COPD. This raised the question of whether motor thalamus DBS mitigates the ascending dyspnoea signal. We therefore sought to conduct a fully powered cohort study of experimentally induced air hunger, an uncomfortable urge to breathe in patients with motor thalamus DBS "ON" and "OFF". METHODS 16 patients (three females) with DBS of the ventral intermediate nucleus (VIM) as treatment for tremor underwent hypercapnic air hunger tests, with DBS ON and OFF. Patients rated air hunger on a visual analogue scale (VAS) every 15 s. Hypercapnia and ventilation were matched for ON and OFF states (end-tidal carbon dioxide tension mean±sd 43±4 and 43±4 mmHg, respectively; ventilation 13.7 and 13.4 L·min-1, respectively). Participants' ventilation was constrained to baseline levels by breathing from a 3-L inspiratory reservoir with fixed flow of fresh gas while targeting their resting breathing frequency to a metronome. RESULTS Overall steady-state air hunger was 52±28%VAS for ON and 67±20%VAS for OFF (p=0.002; two-tailed paired t-test). The mean reduction in air hunger during VIM DBS was -14.4%VAS. DBS of the motor thalamus relieved air hunger in 13 patients, heightened air hunger in two and caused no change in one. CONCLUSION DBS of the motor thalamus for tremor relief also mitigates the air hunger component of dyspnoea. We posit that DBS of the motor thalamus heightens the gating control of the thalamus modulating the ascending air hunger signal. Extent of relief suggests that thalamic DBS may prove to be a viable therapy for intractable dyspnoea.
Collapse
Affiliation(s)
- Tom P Chapman
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, UK
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Amir P Divanbeighi Zand
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Emmanuel Debrah
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Beth Petric
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Sarah M Farrell
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - James J FitzGerald
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Shakeeb H Moosavi
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, UK
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Alexander L Green
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Cho N, Squair JW, Aureli V, James ND, Bole-Feysot L, Dewany I, Hankov N, Baud L, Leonhartsberger A, Sveistyte K, Skinnider MA, Gautier M, Laskaratos A, Galan K, Goubran M, Ravier J, Merlos F, Batti L, Pages S, Berard N, Intering N, Varescon C, Watrin A, Duguet L, Carda S, Bartholdi KA, Hutson TH, Kathe C, Hodara M, Anderson MA, Draganski B, Demesmaeker R, Asboth L, Barraud Q, Bloch J, Courtine G. Hypothalamic deep brain stimulation augments walking after spinal cord injury. Nat Med 2024; 30:3676-3686. [PMID: 39623087 DOI: 10.1038/s41591-024-03306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 12/15/2024]
Abstract
A spinal cord injury (SCI) disrupts the neuronal projections from the brain to the region of the spinal cord that produces walking, leading to various degrees of paralysis. Here, we aimed to identify brain regions that steer the recovery of walking after incomplete SCI and that could be targeted to augment this recovery. To uncover these regions, we constructed a space-time brain-wide atlas of transcriptionally active and spinal cord-projecting neurons underlying the recovery of walking after incomplete SCI. Unexpectedly, interrogation of this atlas nominated the lateral hypothalamus (LH). We demonstrate that glutamatergic neurons located in the LH (LHVglut2) contribute to the recovery of walking after incomplete SCI and that augmenting their activity improves walking. We translated this discovery into a deep brain stimulation therapy of the LH (DBSLH) that immediately augmented walking in mice and rats with SCI and durably increased recovery through the reorganization of residual lumbar-terminating projections from brainstem neurons. A pilot clinical study showed that DBSLH immediately improved walking in two participants with incomplete SCI and, in conjunction with rehabilitation, mediated functional recovery that persisted when DBSLH was turned off. There were no serious adverse events related to DBSLH. These results highlight the potential of targeting specific brain regions to maximize the engagement of spinal cord-projecting neurons in the recovery of neurological functions after SCI. Further trials must establish the safety and efficacy profile of DBSLH, including potential changes in body weight, psychological status, hormonal profiles and autonomic functions.
Collapse
Affiliation(s)
- Newton Cho
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jordan W Squair
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Viviana Aureli
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicholas D James
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Léa Bole-Feysot
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Inssia Dewany
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Hankov
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Laetitia Baud
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Anna Leonhartsberger
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Kristina Sveistyte
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Michael A Skinnider
- Lewis-Sigler Institute of Integrative Genomics and Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Matthieu Gautier
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Achilleas Laskaratos
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Katia Galan
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Maged Goubran
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jimmy Ravier
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Frederic Merlos
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Laura Batti
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Stéphane Pages
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Nadia Berard
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nadine Intering
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Camille Varescon
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | | | - Stefano Carda
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Kay A Bartholdi
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Thomas H Hutson
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Claudia Kathe
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Michael Hodara
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Mark A Anderson
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Bogdan Draganski
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin Demesmaeker
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Leonie Asboth
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Quentin Barraud
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jocelyne Bloch
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland.
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Grégoire Courtine
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland.
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
15
|
Hacker ML, Isaacs DA, Rajamani N, Pazira K, Abdou E, Sharp S, Davis TL, Hedera P, Phibbs FT, Charles D, Horn A. Evaluating a motor progression connectivity model across Parkinson's disease stages. J Neurol 2024; 271:7309-7315. [PMID: 39373780 PMCID: PMC11561123 DOI: 10.1007/s00415-024-12703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Stimulation of a specific site in the dorsolateral subthalamic nucleus (STN) was recently associated with slower motor progression in Parkinson's Disease (PD), based on the deep brain stimulation (DBS) in early-stage PD pilot clinical trial. Here, subject-level visualizations are presented of this early-stage PD dataset to further describe the relationship between active contacts and motor progression. This study also evaluates whether stimulation of the sweet spot and connectivity model associated with slower motor progression is also associated with improvements in long-term motor outcomes in patients with advanced-stage PD. METHODS Active contacts of the early-stage PD cohort (N = 14) were analyzed alongside the degree of two-year motor progression. Sweet spot and connectivity models derived from the early-stage PD cohort were then used to determine how well they can estimate the variance in long-term motor outcomes in an independent STN-DBS cohort of advanced-stage PD patients (N = 29). RESULTS In early-stage PD, proximity of stimulation to the dorsolateral STN was associated with slower motor progression. In advanced-stage PD, stimulation proximity to the early PD connectivity model and sweet spot were associated with better long-term motor outcomes (R = 0.60, P < 0.001; R = 0.37, P = 0.046, respectively). CONCLUSIONS Results suggest stimulation of a specific site in the dorsolateral STN is associated with both slower motor progression and long-term motor improvements in PD.
Collapse
Affiliation(s)
- Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David A Isaacs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität Zu Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics Department of Neurology Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kian Pazira
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eli Abdou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sheffield Sharp
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas L Davis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Hedera
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Fenna T Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Charles
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität Zu Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics Department of Neurology Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
16
|
Gharabaghi A, Cebi I, Leavitt D, Scherer M, Bookjans P, Brunnett B, Milosevic L, Weiss D. Randomized crossover trial on motor and non-motor outcome of directional deep brain stimulation in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:204. [PMID: 39461964 PMCID: PMC11513109 DOI: 10.1038/s41531-024-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Deep brain stimulation (DBS) with electric field steering may avoid areas responsible for side effects. This prospective randomized cross-over trial compared omnidirectional (OS) and directional (DS) subthalamic DBS in 19 patients. Electromyographically measured rigidity was the primary outcome. Motor and non-motor scores were secondary outcomes. There were no significant differences between OS and DS. In the acute setting, both conditions improved motor scores compared to no stimulation. Motor symptoms improved after 3 weeks of OS relative to acute measurements, whereas they worsened under DS. The more ventral the active contact, and the less the motor improvement sweet spot was stimulated, the greater the benefit of DS over OS for executive function. Accurate OS of the dorsal subthalamic nucleus ensures motor and non-motor improvements. While DS can mitigate executive decline stemming from off-target stimulation, it may lead to worse motor outcomes. Larger, long-term studies are needed to confirm these findings. (Registration: subthalamic steering for therapy optimization in Parkinson's Disease ClinicalTrials.gov: NCT03548506, 2018-06-06).
Collapse
Affiliation(s)
- Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany.
- Center for Bionic Intelligence Tübingen Stuttgart (BITS), Tübingen, Germany.
- German Center for Mental Health (DZPG), Tübingen, Germany.
| | - Idil Cebi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Center for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Dallas Leavitt
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Maximilian Scherer
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Patrick Bookjans
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Bastian Brunnett
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Luka Milosevic
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Daniel Weiss
- Center for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Halász L, Sajonz BEA, Miklós G, van Elswijk G, Hagh Gooie S, Várkuti B, Tamás G, Coenen VA, Erōss L. Predictive modeling of sensory responses in deep brain stimulation. Front Neurol 2024; 15:1467307. [PMID: 39410997 PMCID: PMC11473379 DOI: 10.3389/fneur.2024.1467307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Although stimulation-induced sensations are typically considered undesirable side effects in clinical DBS therapy, there are emerging scenarios, such as computer-brain interface applications, where these sensations may be intentionally created. The selection of stimulation parameters, whether to avoid or induce sensations, is a challenging task due to the vast parameter space involved. This study aims to streamline DBS parameter selection by employing a machine learning model to predict the occurrence and somatic location of paresthesias in response to thalamic DBS. Methods We used a dataset comprising 3,359 paresthetic sensations collected from 18 thalamic DBS leads from 10 individuals in two clinical centers. For each stimulation, we modeled the Volume of Tissue Activation (VTA). We then used the stimulation parameters and the VTA information to train a machine learning model to predict the occurrence of sensations and their corresponding somatic areas. Results Our results show fair to substantial agreement with ground truth in predicting the presence and somatic location of DBS-evoked paresthesias, with Kappa values ranging from 0.31 to 0.72. We observed comparable performance in predicting the presence of paresthesias for both seen and unseen cases (Kappa 0.72 vs. 0.60). However, Kappa agreement for predicting specific somatic locations was significantly lower for unseen cases (0.53 vs. 0.31). Conclusion The results suggest that machine learning can potentially be used to optimize DBS parameter selection, leading to faster and more efficient postoperative management. Outcome predictions may be used to guide clinical DBS programming or tuning of DBS based computer-brain interfaces.
Collapse
Affiliation(s)
- László Halász
- Institute of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Albert Szent-Györgyi Medical School, Doctoral School of Clinical Medicine, Clinical and Experimental Research for Reconstructive and Organ-Sparing Surgery, University of Szeged, Szeged, Hungary
| | - Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University and Medical Faculty of Freiburg University, Freiburg, Germany
| | - Gabriella Miklós
- Institute of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- CereGate GmbH, München, Germany
| | | | | | | | - Gertrúd Tamás
- Department of Neurology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University and Medical Faculty of Freiburg University, Freiburg, Germany
- Center for Deep Brain Stimulation, Freiburg University, Freiburg, Germany
| | - Loránd Erōss
- Institute of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Provenza NR, Reddy S, Allam AK, Rajesh SV, Diab N, Reyes G, Caston RM, Katlowitz KA, Gandhi AD, Bechtold RA, Dang HQ, Najera RA, Giridharan N, Kabotyanski KE, Momin F, Hasen M, Banks GP, Mickey BJ, Kious BM, Shofty B, Hayden BY, Herron JA, Storch EA, Patel AB, Goodman WK, Sheth SA. Disruption of neural periodicity predicts clinical response after deep brain stimulation for obsessive-compulsive disorder. Nat Med 2024; 30:3004-3014. [PMID: 38997607 PMCID: PMC11485242 DOI: 10.1038/s41591-024-03125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Recent advances in surgical neuromodulation have enabled chronic and continuous intracranial monitoring during everyday life. We used this opportunity to identify neural predictors of clinical state in 12 individuals with treatment-resistant obsessive-compulsive disorder (OCD) receiving deep brain stimulation (DBS) therapy ( NCT05915741 ). We developed our neurobehavioral models based on continuous neural recordings in the region of the ventral striatum in an initial cohort of five patients and tested and validated them in a held-out cohort of seven additional patients. Before DBS activation, in the most symptomatic state, theta/alpha (9 Hz) power evidenced a prominent circadian pattern and a high degree of predictability. In patients with persistent symptoms (non-responders), predictability of the neural data remained consistently high. On the other hand, in patients who improved symptomatically (responders), predictability of the neural data was significantly diminished. This neural feature accurately classified clinical status even in patients with limited duration recordings, indicating generalizability that could facilitate therapeutic decision-making.
Collapse
Affiliation(s)
- Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
| | - Sandesh Reddy
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Anthony K Allam
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sameer V Rajesh
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nabeel Diab
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel Reyes
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Rose M Caston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Kalman A Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ajay D Gandhi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Raphael A Bechtold
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Huy Q Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo A Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nisha Giridharan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Faiza Momin
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Mohammed Hasen
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Garrett P Banks
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Brian J Mickey
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Brent M Kious
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Ben Shofty
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey A Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ankit B Patel
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Wayne K Goodman
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
19
|
Nanda P, Sisterson N, Walton A, Chu CJ, Cash SS, Moura LMVR, Oster JM, Urban A, Richardson RM. Centromedian region thalamic responsive neurostimulation mitigates idiopathic generalized and multifocal epilepsy with focal to bilateral tonic-clonic seizures. Epilepsia 2024; 65:2626-2640. [PMID: 39052021 DOI: 10.1111/epi.18070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Although >30% of epilepsy patients have drug-resistant epilepsy (DRE), typically those with generalized or multifocal disease have not traditionally been considered surgical candidates. Responsive neurostimulation (RNS) of the centromedian (CM) region of the thalamus now appears to be a promising therapeutic option for this patient population. We present outcomes following CM RNS for 13 patients with idiopathic generalized epilepsy (IGE) and eight with multifocal onsets that rapidly generalize to bilateral tonic-clonic (focal to bilateral tonic-clonic [FBTC]) seizures. METHODS A retrospective review of all patients undergoing bilateral CM RNS by the senior author through July 2022 were reviewed. Electrodes were localized and volumes of tissue activation were modeled in Lead-DBS. Changes in patient seizure frequency were extracted from electronic medical records. RESULTS Twenty-one patients with DRE underwent bilateral CM RNS implantation. For 17 patients with at least 1 year of postimplantation follow-up, average seizure reduction from preoperative baseline was 82.6% (SD = 19.0%, median = 91.7%), with 18% of patients Engel class 1, 29% Engel class 2, 53% Engel class 3, and 0% Engel class 4. There was a trend for average seizure reduction to be greater for patients with nonlesional FBTC seizures than for other patients. For patients achieving at least Engel class 3 outcome, median time to worthwhile seizure reduction was 203.5 days (interquartile range = 110.5-343.75 days). Patients with IGE with myoclonic seizures had a significantly shorter time to worthwhile seizure reduction than other patients. The surgical targeting strategy evolved after the first four subjects to achieve greater anatomic accuracy. SIGNIFICANCE Patients with both primary and rapidly generalized epilepsy who underwent CM RNS experienced substantial seizure relief. Subsets of these patient populations may particularly benefit from CM RNS. The refinement of lead targeting, tuning of RNS system parameters, and patient selection are ongoing areas of investigation.
Collapse
Affiliation(s)
- Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathaniel Sisterson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashley Walton
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lidia M V R Moura
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joel M Oster
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Alexandra Urban
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Semenova U, Dzhalagoniya I, Gamaleya A, Tomskiy A, Shaikh AG, Sedov A. Pallidal multifractal complexity is a new potential physiomarker of dystonia. Clin Neurophysiol 2024; 162:31-40. [PMID: 38555665 DOI: 10.1016/j.clinph.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE Low-frequency 4-12 Hz pallidal oscillations are being considered as potential physiomarkers for dystonia. We suggest investigating the multifractal properties of pallidal activity as an additional marker. METHODS We employed local field potentials (LFP) recordings from 23 patients with dystonia who were undergoing deep brain stimulation (DBS) surgery to explore the connection between disease severity and the multifractal characteristics of pallidal activity. Furthermore, we performed an analysis of LFP recordings from four patients, following the externalization of DBS lead electrodes, to investigate the impact of DBS and neck muscle vibration on multifractal parameters. RESULTS Greater dystonia severity exhibited a correlation with a narrower multifractal spectrum width but higher multifractal spectral asymmetry. Both GPi DBS and muscle vibration in dystonia patients expanded the multifractal spectrum width while restoring multifractal spectral symmetry. Notably, the threshold peak intensities for an increase in multifractal spectrum width substantially overlapped with the optimal volume of tissue activated. A broader multifractal spectrum during DBS corresponded to more favorable clinical outcomes. CONCLUSIONS Multifractal properties of pallidal neuronal activity serve as indicators of neural dysfunction in dystonia. SIGNIFICANCE These findings suggest the potential of utilizing multifractal characteristics as predictive factors for the DBS outcome in dystonia.
Collapse
Affiliation(s)
- Ulia Semenova
- N.N.Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Indiko Dzhalagoniya
- N.N.Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna Gamaleya
- N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russian Federation
| | - Alexey Tomskiy
- N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russian Federation
| | - Aasef G Shaikh
- Departments of Neurology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Neurological Institute, University Hospitals, Cleveland, OH, USA; Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Alexey Sedov
- N.N.Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| |
Collapse
|
21
|
Rajamani N, Friedrich H, Butenko K, Dembek T, Lange F, Navrátil P, Zvarova P, Hollunder B, de Bie RMA, Odekerken VJJ, Volkmann J, Xu X, Ling Z, Yao C, Ritter P, Neumann WJ, Skandalakis GP, Komaitis S, Kalyvas A, Koutsarnakis C, Stranjalis G, Barbe M, Milanese V, Fox MD, Kühn AA, Middlebrooks E, Li N, Reich M, Neudorfer C, Horn A. Deep brain stimulation of symptom-specific networks in Parkinson's disease. Nat Commun 2024; 15:4662. [PMID: 38821913 PMCID: PMC11143329 DOI: 10.1038/s41467-024-48731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Deep Brain Stimulation can improve tremor, bradykinesia, rigidity, and axial symptoms in patients with Parkinson's disease. Potentially, improving each symptom may require stimulation of different white matter tracts. Here, we study a large cohort of patients (N = 237 from five centers) to identify tracts associated with improvements in each of the four symptom domains. Tremor improvements were associated with stimulation of tracts connected to primary motor cortex and cerebellum. In contrast, axial symptoms are associated with stimulation of tracts connected to the supplementary motor cortex and brainstem. Bradykinesia and rigidity improvements are associated with the stimulation of tracts connected to the supplementary motor and premotor cortices, respectively. We introduce an algorithm that uses these symptom-response tracts to suggest optimal stimulation parameters for DBS based on individual patient's symptom profiles. Application of the algorithm illustrates that our symptom-tract library may bear potential in personalizing stimulation treatment based on the symptoms that are most burdensome in an individual patient.
Collapse
Affiliation(s)
- Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Helen Friedrich
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- University of Würzburg, Faculty of Medicine, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Till Dembek
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Florian Lange
- Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Pavel Navrátil
- Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Patricia Zvarova
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, 10117, Germany
| | - Barbara Hollunder
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, 10117, Germany
- Brain Simulation Section, Department of Neurology, Charité University Medicine Berlin and Berlin Institute of Health, Berlin, 10117, Germany
| | - Rob M A de Bie
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Vincent J J Odekerken
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jens Volkmann
- Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Xin Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhipei Ling
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, 572000, China
| | - Chen Yao
- Department of Neurosurgery, The National Key Clinic Specialty, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Petra Ritter
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, 10117, Germany
- Brain Simulation Section, Department of Neurology, Charité University Medicine Berlin and Berlin Institute of Health, Berlin, 10117, Germany
- Bernstein center for Computational Neuroscience Berlin, Berlin, 10117, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georgios P Skandalakis
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens, Greece
| | - Spyridon Komaitis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens, Greece
- Centre for Spinal Studies and Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Aristotelis Kalyvas
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens, Greece
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Christos Koutsarnakis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens, Greece
| | - George Stranjalis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens, Greece
| | - Michael Barbe
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Vanessa Milanese
- Neurosurgical Division, Hospital Beneficência Portuguesa de São Paulo, São Paulo, Brazil
- Department of Neurosurgery, Mayo Clinic, Florida, USA
- Movement Disorders and Neuromodulation Unit, DOMMO Clinic, São Paulo, Brazil
| | - Michael D Fox
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, 02114, USA
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, 10117, Germany
- Brain Simulation Section, Department of Neurology, Charité University Medicine Berlin and Berlin Institute of Health, Berlin, 10117, Germany
| | | | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Reich
- Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, 02114, USA
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, 02114, USA
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
22
|
Vogel D, Nordin T, Feiler S, Wårdell K, Coste J, Lemaire JJ, Hemm S. Probabilistic stimulation mapping from intra-operative thalamic deep brain stimulation data in essential tremor. J Neural Eng 2024; 21:036017. [PMID: 38701768 DOI: 10.1088/1741-2552/ad4742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Deep brain stimulation (DBS) is a therapy for Parkinson's disease (PD) and essential tremor (ET). The mechanism of action of DBS is still incompletely understood. Retrospective group analysis of intra-operative data recorded from ET patients implanted in the ventral intermediate nucleus of the thalamus (Vim) is rare. Intra-operative stimulation tests generate rich data and their use in group analysis has not yet been explored.Objective.To implement, evaluate, and apply a group analysis workflow to generate probabilistic stimulation maps (PSMs) using intra-operative stimulation data from ET patients implanted in Vim.Approach.A group-specific anatomical template was constructed based on the magnetic resonance imaging scans of 6 ET patients and 13 PD patients. Intra-operative test data (total:n= 1821) from the 6 ET patients was analyzed: patient-specific electric field simulations together with tremor assessments obtained by a wrist-based acceleration sensor were transferred to this template. Occurrence and weighted mean maps were generated. Voxels associated with symptomatic response were identified through a linear mixed model approach to form a PSM. Improvements predicted by the PSM were compared to those clinically assessed. Finally, the PSM clusters were compared to those obtained in a multicenter study using data from chronic stimulation effects in ET.Main results.Regions responsible for improvement identified on the PSM were in the posterior sub-thalamic area (PSA) and at the border between the Vim and ventro-oral nucleus of the thalamus (VO). The comparison with literature revealed a center-to-center distance of less than 5 mm and an overlap score (Dice) of 0.4 between the significant clusters. Our workflow and intra-operative test data from 6 ET-Vim patients identified effective stimulation areas in PSA and around Vim and VO, affirming existing medical literature.Significance.This study supports the potential of probabilistic analysis of intra-operative stimulation test data to reveal DBS's action mechanisms and to assist surgical planning.
Collapse
Affiliation(s)
- Dorian Vogel
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
| | - Teresa Nordin
- Department of Biomedical Engineering, Linköping University, Campus US, Linköping, Sweden
| | - Stefanie Feiler
- Dynamics and statistics of complex systems, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
| | - Karin Wårdell
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
- Department of Biomedical Engineering, Linköping University, Campus US, Linköping, Sweden
| | - Jérôme Coste
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
- Service de Neurochirurgie, Hôpital Gabriel-Montpied, Centre Hospitalier Universitaire de Clermont-Ferrand, 58 rue Montalembert, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
- Service de Neurochirurgie, Hôpital Gabriel-Montpied, Centre Hospitalier Universitaire de Clermont-Ferrand, 58 rue Montalembert, Clermont-Ferrand, France
| | - Simone Hemm
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
- Department of Biomedical Engineering, Linköping University, Campus US, Linköping, Sweden
| |
Collapse
|
23
|
Elias GJB, Germann J, Joel SE, Li N, Horn A, Boutet A, Lozano AM. A large normative connectome for exploring the tractographic correlates of focal brain interventions. Sci Data 2024; 11:353. [PMID: 38589407 PMCID: PMC11002007 DOI: 10.1038/s41597-024-03197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Diffusion-weighted MRI (dMRI) is a widely used neuroimaging modality that permits the in vivo exploration of white matter connections in the human brain. Normative structural connectomics - the application of large-scale, group-derived dMRI datasets to out-of-sample cohorts - have increasingly been leveraged to study the network correlates of focal brain interventions, insults, and other regions-of-interest (ROIs). Here, we provide a normative, whole-brain connectome in MNI space that enables researchers to interrogate fiber streamlines that are likely perturbed by given ROIs, even in the absence of subject-specific dMRI data. Assembled from multi-shell dMRI data of 985 healthy Human Connectome Project subjects using generalized Q-sampling imaging and multispectral normalization techniques, this connectome comprises ~12 million unique streamlines, the largest to date. It has already been utilized in at least 18 peer-reviewed publications, most frequently in the context of neuromodulatory interventions like deep brain stimulation and focused ultrasound. Now publicly available, this connectome will constitute a useful tool for understanding the wider impact of focal brain perturbations on white matter architecture going forward.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
- Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
- Krembil Research Institute, University of Toronto, Toronto, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), University Health Network, Toronto, Canada
| | | | - Ningfei Li
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
- Krembil Research Institute, University of Toronto, Toronto, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.
- Krembil Research Institute, University of Toronto, Toronto, Canada.
| |
Collapse
|
24
|
Ebden M, Elkaim LM, Breitbart S, Yan H, Warsi N, Huynh M, Mithani K, Venetucci Gouveia F, Fasano A, Ibrahim GM, Gorodetsky C. Chronic Pallidal Local Field Potentials Are Associated With Dystonic Symptoms in Children. Neuromodulation 2024; 27:551-556. [PMID: 37768258 DOI: 10.1016/j.neurom.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Novel deep brain stimulation devices can record local field potentials (LFPs), which represent the synchronous synaptic activity of neuronal populations. The clinical relevance of LFPs in patients with dystonia remains unclear. OBJECTIVES We sought to determine whether chronic LFPs recorded from the globus pallidus internus (GPi) were associated with symptoms of dystonia in children. MATERIALS AND METHODS Ten patients with heterogeneous forms of dystonia (genetic and acquired) were implanted with neurostimulators that recorded LFP spectral snapshots. Spectra were compared across parent-reported asymptomatic and symptomatic periods, with daily narrowband data superimposed in 24 one-hour bins. RESULTS Spectral power increased during periods of registered dystonic symptoms: mean increase = 102%, CI: (76.7, 132). Circadian rhythms within the LFP narrowband time series correlated with dystonic symptoms: for delta/theta-waves, correlation = 0.33, CI: (0.18, 0.47) and for alpha waves, correlation = 0.27, CI: (0.14, 0.40). CONCLUSIONS LFP spectra recorded in the GPi indicate a circadian pattern and are associated with the manifestation of dystonic symptoms.
Collapse
Affiliation(s)
- Mark Ebden
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lior M Elkaim
- Division of Neurology and Neurosurgery, McGill University, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara Breitbart
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Han Yan
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nebras Warsi
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - MyLoi Huynh
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karim Mithani
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Flavia Venetucci Gouveia
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurology, the Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Calvano A, Kleinholdermann U, Heun AS, Bopp MHA, Nimsky C, Timmermann L, Pedrosa DJ. Structural connectivity of low-frequency subthalamic stimulation for improving stride length in Parkinson's disease. Neuroimage Clin 2024; 42:103591. [PMID: 38507954 PMCID: PMC10965492 DOI: 10.1016/j.nicl.2024.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND A reduction in stride length is considered a key characteristic of gait kinematics in Parkinson's disease (PD) and has been identified as a predictor of falls. Although low-frequency stimulation (LFS) has been suggested as a method to improve gait characteristics, the underlying structural network is not well understood. OBJECTIVE This study aims to investigate the structural correlates of changes in stride length during LFS (85 Hz). METHODS Objective gait performance was retrospectively evaluated in 19 PD patients who underwent deep brain stimulation (DBS) at 85 Hz and 130 Hz. Individual DBS contacts and volumes of activated tissue (VAT) were computed using preoperative magnetic resonance imaging (MRI) and postoperative computed tomography (CT) scans. Structural connectivity profiles to predetermined cortical and mesencephalic areas were estimated using a normative connectome. RESULTS LFS led to a significant improvement in stride length compared to 130 Hz stimulation. The intersection between VAT and the associative subregion of the subthalamic nucleus (STN) was associated with an improvement in stride length and had structural connections to the supplementary motor area, prefrontal cortex, and pedunculopontine nucleus. Conversely, we found that a lack of improvement was linked to stimulation volumes connected to cortico-diencephalic fibers bypassing the STN dorsolaterally. The robustness of the connectivity model was verified through leave-one-patient-out, 5-, and 10-fold cross cross-validation paradigms. CONCLUSION These findings offer new insights into the structural connectivity that underlies gait changes following LFS. Targeting the non-motor subregion of the STN with LFS on an individual level may present a potential therapeutic approach for PD patients with gait disorders.
Collapse
Affiliation(s)
- Alexander Calvano
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Urs Kleinholdermann
- Department of Neurology, Philipps-University Marburg, Marburg, Germany; Center of Mind, Brain and Behaviour, Philipps-University Marburg, Marburg, Germany
| | | | - Miriam H A Bopp
- Center of Mind, Brain and Behaviour, Philipps-University Marburg, Marburg, Germany; Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Center of Mind, Brain and Behaviour, Philipps-University Marburg, Marburg, Germany; Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, Philipps-University Marburg, Marburg, Germany; Center of Mind, Brain and Behaviour, Philipps-University Marburg, Marburg, Germany
| | - David J Pedrosa
- Department of Neurology, Philipps-University Marburg, Marburg, Germany; Center of Mind, Brain and Behaviour, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
26
|
Chinichian N, Lindner M, Yanchuk S, Schwalger T, Schöll E, Berner R. Modeling brain network flexibility in networks of coupled oscillators: a feasibility study. Sci Rep 2024; 14:5713. [PMID: 38459077 PMCID: PMC10923875 DOI: 10.1038/s41598-024-55753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Modeling the functionality of the human brain is a major goal in neuroscience for which many powerful methodologies have been developed over the last decade. The impact of working memory and the associated brain regions on the brain dynamics is of particular interest due to their connection with many functions and malfunctions in the brain. In this context, the concept of brain flexibility has been developed for the characterization of brain functionality. We discuss emergence of brain flexibility that is commonly measured by the identification of changes in the cluster structure of co-active brain regions. We provide evidence that brain flexibility can be modeled by a system of coupled FitzHugh-Nagumo oscillators where the network structure is obtained from human brain Diffusion Tensor Imaging (DTI). Additionally, we propose a straightforward and computationally efficient alternative macroscopic measure, which is derived from the Pearson distance of functional brain matrices. This metric exhibits similarities to the established patterns of brain template flexibility that have been observed in prior investigations. Furthermore, we explore the significance of the brain's network structure and the strength of connections between network nodes or brain regions associated with working memory in the observation of patterns in networks flexibility. This work enriches our understanding of the interplay between the structure and function of dynamic brain networks and proposes a modeling strategy to study brain flexibility.
Collapse
Affiliation(s)
- Narges Chinichian
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany.
- Psychiatry Department, Charité-Universitätsmedizin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience, Berlin, Germany.
| | - Michael Lindner
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Serhiy Yanchuk
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Institute of Mathematics, Humboldt Universität zu Berlin, Berlin, Germany
- School of Mathematical Sciences, University College Cork, Cork, Ireland
| | - Tilo Schwalger
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Institute of Mathematics, Technische Universität Berlin, Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Rico Berner
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Department of Physics, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
27
|
Hollunder B, Ostrem JL, Sahin IA, Rajamani N, Oxenford S, Butenko K, Neudorfer C, Reinhardt P, Zvarova P, Polosan M, Akram H, Vissani M, Zhang C, Sun B, Navratil P, Reich MM, Volkmann J, Yeh FC, Baldermann JC, Dembek TA, Visser-Vandewalle V, Alho EJL, Franceschini PR, Nanda P, Finke C, Kühn AA, Dougherty DD, Richardson RM, Bergman H, DeLong MR, Mazzoni A, Romito LM, Tyagi H, Zrinzo L, Joyce EM, Chabardes S, Starr PA, Li N, Horn A. Mapping dysfunctional circuits in the frontal cortex using deep brain stimulation. Nat Neurosci 2024; 27:573-586. [PMID: 38388734 PMCID: PMC10917675 DOI: 10.1038/s41593-024-01570-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Frontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregated the frontal cortex into circuits that had become dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to frontal, ranging from interconnections with sensorimotor cortices in dystonia, the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairments in the human brain.
Collapse
Affiliation(s)
- Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jill L Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ilkem Aysu Sahin
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nanditha Rajamani
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pablo Reinhardt
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Zvarova
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mircea Polosan
- Université Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Department of Psychiatry, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Harith Akram
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Chencheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pavel Navratil
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Martin M Reich
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A Dembek
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten Finke
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hagai Bergman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Mahlon R DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Luigi M Romito
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Himanshu Tyagi
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Department of Neuropsychiatry, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Eileen M Joyce
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Department of Neuropsychiatry, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Stephan Chabardes
- Université Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Béreau M, Kibleur A, Servant M, Clément G, Dujardin K, Rolland AS, Wirth T, Lagha-Boukbiza O, Voirin J, Santin MDN, Hainque E, Grabli D, Comte A, Drapier S, Durif F, Marques A, Eusebio A, Azulay JP, Giordana C, Houeto JL, Jarraya B, Maltete D, Rascol O, Rouaud T, Tir M, Moreau C, Danaila T, Prange S, Tatu L, Tranchant C, Corvol JC, Devos D, Thobois S, Desmarets M, Anheim M. Motivational and cognitive predictors of apathy after subthalamic nucleus stimulation in Parkinson's disease. Brain 2024; 147:472-485. [PMID: 37787488 DOI: 10.1093/brain/awad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023] Open
Abstract
Postoperative apathy is a frequent symptom in Parkinson's disease patients who have undergone bilateral deep brain stimulation of the subthalamic nucleus. Two main hypotheses for postoperative apathy have been suggested: (i) dopaminergic withdrawal syndrome relative to postoperative dopaminergic drug tapering; and (ii) direct effect of chronic stimulation of the subthalamic nucleus. The primary objective of our study was to describe preoperative and 1-year postoperative apathy in Parkinson's disease patients who underwent chronic bilateral deep brain stimulation of the subthalamic nucleus. We also aimed to identify factors associated with 1-year postoperative apathy considering: (i) preoperative clinical phenotype; (ii) dopaminergic drug management; and (iii) volume of tissue activated within the subthalamic nucleus and the surrounding structures. We investigated a prospective clinical cohort of 367 patients before and 1 year after chronic bilateral deep brain stimulation of the subthalamic nucleus. We assessed apathy using the Lille Apathy Rating Scale and carried out a systematic evaluation of motor, cognitive and behavioural signs. We modelled the volume of tissue activated in 161 patients using the Lead-DBS toolbox and analysed overlaps within motor, cognitive and limbic parts of the subthalamic nucleus. Of the 367 patients, 94 (25.6%) exhibited 1-year postoperative apathy: 67 (18.2%) with 'de novo apathy' and 27 (7.4%) with 'sustained apathy'. We observed disappearance of preoperative apathy in 22 (6.0%) patients, who were classified as having 'reversed apathy'. Lastly, 251 (68.4%) patients had neither preoperative nor postoperative apathy and were classified as having 'no apathy'. We identified preoperative apathy score [odds ratio (OR) 1.16; 95% confidence interval (CI) 1.10, 1.22; P < 0.001], preoperative episodic memory free recall score (OR 0.93; 95% CI 0.88, 0.97; P = 0.003) and 1-year postoperative motor responsiveness (OR 0.98; 95% CI 0.96, 0.99; P = 0.009) as the main factors associated with postoperative apathy. We showed that neither dopaminergic dose reduction nor subthalamic stimulation were associated with postoperative apathy. Patients with 'sustained apathy' had poorer preoperative fronto-striatal cognitive status and a higher preoperative action initiation apathy subscore. In these patients, apathy score and cognitive status worsened postoperatively despite significantly lower reduction in dopamine agonists (P = 0.023), suggesting cognitive dopa-resistant apathy. Patients with 'reversed apathy' benefited from the psychostimulant effect of chronic stimulation of the limbic part of the left subthalamic nucleus (P = 0.043), suggesting motivational apathy. Our results highlight the need for careful preoperative assessment of motivational and cognitive components of apathy as well as executive functions in order to better prevent or manage postoperative apathy.
Collapse
Affiliation(s)
- Matthieu Béreau
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
| | - Astrid Kibleur
- LIP/PC2S, Université Grenoble Alpes, Université Savoie Mont Blanc, 38040 Grenoble Cedex 9, France
| | - Mathieu Servant
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
| | - Gautier Clément
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
| | - Kathy Dujardin
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
| | - Anne-Sophie Rolland
- Lille Neurosciences and Cognition, CHU-Lille, Department of Medical Pharmacology, NS-Park/F-CRIN, Univ. Lille, Inserm, 59045 Lille, France
| | - Thomas Wirth
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
| | - Ouhaid Lagha-Boukbiza
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
| | - Jimmy Voirin
- Department of Neurosurgery, NS-PARK/F-CRIN network, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Marie des Neiges Santin
- Department of Neurosurgery, NS-PARK/F-CRIN network, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Elodie Hainque
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - David Grabli
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - Alexandre Comte
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
- Centre d'investigation clinique Inserm CIC 1431, CHU Besançon, F-25000 Besançon, France
| | - Sophie Drapier
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Rennes, 35000 Rennes, France
| | - Franck Durif
- CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, NS-Park/F-CRIN network, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Ana Marques
- CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, NS-Park/F-CRIN network, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 13005 Marseille, France
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille Univ., 13005 Marseille, France
| | - Jean-Philippe Azulay
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 13005 Marseille, France
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille Univ., 13005 Marseille, France
| | - Caroline Giordana
- Department of Neurology, NS-Park/F-CRIN network, Centre Hospitalier Universitaire de Nice, 06002 Nice, France
| | - Jean-Luc Houeto
- Department of Neurology, NS-Park/F-CRIN network, Limoges University Hospital, Inserm, U1094, EpiMaCT-Epidemiology of chronic diseases in tropical zone, Limoges University Hospital,87042 Limoges, France
| | - Béchir Jarraya
- Neuroscience Pole, NS-Park/F-CRIN network, Hôpital Foch, Suresnes, University of Versailles Paris-Saclay, INSERM-CEA NeuroSpin, 91191 Gif-sur-Yvette, France
| | - David Maltete
- Department of Neurology, NS-Park/F-CRIN network, Rouen University Hospital and University of Rouen, 76000 Rouen, France
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, 76130 Mont-Saint-Aignan, France
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neuroscience, CIC1436, NS-Park/F-CRIN network, NeuroToul Center of Excellence, Toulouse University Hospital, INSERM, CHU of Toulouse, 31000 Toulouse, France
| | - Tiphaine Rouaud
- Department of Neurology, Centre Expert Parkinson, NS-Park/F-CRIN network, CHU Nantes, 44093 Nantes, France
| | - Mélissa Tir
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
| | - Caroline Moreau
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
| | - Teodor Danaila
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
| | - Stéphane Prange
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
- Service de Neurologie C, NS-Park/F-CRIN network, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500 Bron, France
| | - Laurent Tatu
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
| | - Christine Tranchant
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
| | - Jean-Christophe Corvol
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - David Devos
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
- Lille Neurosciences and Cognition, CHU-Lille, Department of Medical Pharmacology, NS-Park/F-CRIN, Univ. Lille, Inserm, 59045 Lille, France
| | - Stephane Thobois
- Service de Neurologie C, NS-Park/F-CRIN network, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500 Bron, France
- Institut des Sciences Cognitives Marc Jeannerot, CNRS, UMR5229, 69675 Bron, France
| | - Maxime Desmarets
- Centre d'investigation clinique Inserm CIC 1431, CHU Besançon, F-25000 Besançon, France
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France
| | - Mathieu Anheim
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
29
|
Torres V, Del Giudice K, Roldán P, Rumià J, Muñoz E, Cámara A, Compta Y, Sánchez-Gómez A, Valldeoriola F. Image-guided programming deep brain stimulation improves clinical outcomes in patients with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:29. [PMID: 38280901 PMCID: PMC10821897 DOI: 10.1038/s41531-024-00639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment for patients with Parkinson's disease (PD). However, some patients may not respond optimally to clinical programming adjustments. Advances in DBS technology have led to more complex and time-consuming programming. Image-guided programming (IGP) could optimize and improve programming leading to better clinical outcomes in patients for whom DBS programming is not ideal due to sub-optimal response. We conducted a prospective single-center study including 31 PD patients with subthalamic nucleus (STN) DBS and suboptimal responses refractory to clinical programming. Programming settings were adjusted according to the volumetric reconstruction of the stimulation field using commercial postoperative imaging software. Clinical outcomes were assessed at baseline and at 3-month follow-up after IGP, using motor and quality of life (QoL) scales. Additionally, between these two assessment points, follow-up visits for fine-tuning amplitude intensity and medication were conducted at weeks 2, 4, 6, and 9. After IGP, twenty-six patients (83.9%) experienced motor and QoL improvements, with 25.8% feeling much better and 38.7% feeling moderately better according to the patient global impression scale. Five patients (16.1%) had no clinical or QoL changes after IGP. The MDS-UPDRS III motor scale showed a 21.9% improvement and the DBS-IS global score improved by 41.5%. IGP optimizes STN-DBS therapy for PD patients who are experiencing suboptimal clinical outcomes. These findings support using IGP as a standard tool in clinical practice, which could save programming time and improve patients' QoL.
Collapse
Affiliation(s)
- Viviana Torres
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Kirsys Del Giudice
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Pedro Roldán
- Neurosurgery Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Rumià
- Neurosurgery Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Esteban Muñoz
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Ana Cámara
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Almudena Sánchez-Gómez
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain.
| | - Francesc Valldeoriola
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
30
|
Oxenford S, Ríos AS, Hollunder B, Neudorfer C, Boutet A, Elias GJB, Germann J, Loh A, Deeb W, Salvato B, Almeida L, Foote KD, Amaral R, Rosenberg PB, Tang-Wai DF, Wolk DA, Burke AD, Sabbagh MN, Salloway S, Chakravarty MM, Smith GS, Lyketsos CG, Okun MS, Anderson WS, Mari Z, Ponce FA, Lozano A, Neumann WJ, Al-Fatly B, Horn A. WarpDrive: Improving spatial normalization using manual refinements. Med Image Anal 2024; 91:103041. [PMID: 38007978 PMCID: PMC10842752 DOI: 10.1016/j.media.2023.103041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Spatial normalization-the process of mapping subject brain images to an average template brain-has evolved over the last 20+ years into a reliable method that facilitates the comparison of brain imaging results across patients, centers & modalities. While overall successful, sometimes, this automatic process yields suboptimal results, especially when dealing with brains with extensive neurodegeneration and atrophy patterns, or when high accuracy in specific regions is needed. Here we introduce WarpDrive, a novel tool for manual refinements of image alignment after automated registration. We show that the tool applied in a cohort of patients with Alzheimer's disease who underwent deep brain stimulation surgery helps create more accurate representations of the data as well as meaningful models to explain patient outcomes. The tool is built to handle any type of 3D imaging data, also allowing refinements in high-resolution imaging, including histology and multiple modalities to precisely aggregate multiple data sources together.
Collapse
Affiliation(s)
- Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Ana Sofía Ríos
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, ON M5T1W7, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada
| | - Jurgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada
| | - Wissam Deeb
- UMass Chan Medical School, Department of Neurology, Worcester, MA 01655, United States; UMass Memorial Health, Department of Neurology, Worcester, MA 01655, United States
| | - Bryan Salvato
- University of Florida Health Jacksonville, Jacksonville, FL, United States
| | - Leonardo Almeida
- Department of Neurology, University of Minnesota, Twin Cities Campus, Minneapolis, MN, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Robert Amaral
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - David F Tang-Wai
- Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada; Department of Medicine, Division of Neurology, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Anna D Burke
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | - Stephen Salloway
- Department of Psychiatry and Human Behavior and Neurology, Alpert Medical School of Brown University, Providence, RI, United States; Memory & Aging Program, Butler Hospital, Providence, United States
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gwenn S Smith
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | | | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, United States
| | | | - Zoltan Mari
- Johns Hopkins School of Medicine, Baltimore, MD, United States; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | | | - Andres Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada
| | - Wolf-Julian Neumann
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Liu B, Xu J, Feng Z, Hui R, Zhang Y, Liu D, Chang Q, Yu X, Mao Z. One-pass deep brain stimulation of subthalamic nucleus and ventral intermediate nucleus for levodopa-resistant tremor-dominant Parkinson's disease. Front Aging Neurosci 2023; 15:1289183. [PMID: 38187361 PMCID: PMC10768017 DOI: 10.3389/fnagi.2023.1289183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Tremor-dominant Parkinson's disease (TD-PD) can be further separated into levodopa-responsive and levodopa-resistant types, the latter being considered to have a different pathogenesis. Previous studies indicated that deep brain stimulation (DBS) of the subthalamic nucleus (STN) or the globus pallidus internus (GPi) individually was not sufficient for tremor control, especially for the levodopa-resistant TD-PD (LRTD-PD). The thalamic ventral intermediate nucleus (VIM) has been regarded as a potent DBS target for different kinds of tremors. Therefore, we focused on the LRTD-PD subgroup and performed one-pass combined DBSs of STN and VIM to treat refractory tremors, aiming to investigate the safety and effectiveness of this one-trajectory dual-target DBS scheme. Methods We retrospectively collected five LRTD-PD patients who underwent a one-pass combined DBS of STN and VIM via a trans-frontal approach. The targeting of VIM was achieved by probabilistic tractography. Changes in severity of symptoms (measured by the Unified Parkinson Disease Rating Scale part III, UPDRS-III), levodopa equivalent daily doses (LEDD), and disease-specific quality of life (measured by the 39-item Parkinson's Disease Questionnaire, PDQ-39) were evaluated. Results Three-dimensional reconstruction of electrodes illustrated that all leads were successfully implanted into predefined positions. The mean improvement rates (%) were 53 ± 6.2 (UPDRS-III), 82.6 ± 11.4 (tremor-related items of UPDRS), and 52.1 ± 11.4 (PDQ-39), respectively, with a mean follow-up of 11.4 months. Conclusion One-pass combined DBS of STN and VIM via the trans-frontal approach is an effective and safe strategy to alleviate symptoms for LRTD-PD patients.
Collapse
Affiliation(s)
- Bin Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junpeng Xu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhebin Feng
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rui Hui
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Di Liu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Wang Q, Stepniewska I, Kaas JH. Thalamic connections of the caudal part of the posterior parietal cortex differ from the rostral part in galagos (Otolemur garnettii). J Comp Neurol 2023; 531:1752-1771. [PMID: 37702312 PMCID: PMC10959078 DOI: 10.1002/cne.25537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
In this study, thalamic connections of the caudal part of the posterior parietal cortex (PPCc) are described and compared to connections of the rostral part of PPC (PPCr) in strepsirrhine galagos. PPC of galagos is divided into two parts, PPCr and PPCc, based on the responsiveness to electrical stimulation. Stimulation of PPC with long trains of electrical pulses evokes different types of ethologically relevant movements from different subregions ("domains") of PPCr, while it fails to evoke any movements from PPCc. Anatomical tracers were placed in both dorsal and ventral divisions of PPCc to reveal thalamic origins and targets of PPCc connections. We found major thalamic connections of PPCc with the lateral posterior and lateral pulvinar nuclei, distinct from those of PPCr that were mainly with the ventral lateral, anterior pulvinar, and posterior nuclei. The anterior, medial, and inferior pulvinar, ventral anterior, ventral lateral, and intralaminar nuclei had fewer connections with PPCc. Dominant connections of PPCc with lateral posterior and lateral pulvinar nuclei provide evidence that unlike the sensorimotor-orientated PPCr, PPCc is more involved in visual-related functions.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
33
|
Avantaggiato F, Farokhniaee A, Bandini A, Palmisano C, Hanafi I, Pezzoli G, Mazzoni A, Isaias IU. Intelligibility of speech in Parkinson's disease relies on anatomically segregated subthalamic beta oscillations. Neurobiol Dis 2023; 185:106239. [PMID: 37499882 DOI: 10.1016/j.nbd.2023.106239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Speech impairment is commonly reported in Parkinson's disease and is not consistently improved by available therapies - including deep brain stimulation of the subthalamic nucleus (STN-DBS), which can worsen communication performance in some patients. Improving the outcome of STN-DBS on speech is difficult due to our incomplete understanding of the contribution of the STN to fluent speaking. OBJECTIVE To assess the relationship between subthalamic neural activity and speech production and intelligibility. METHODS We investigated bilateral STN local field potentials (LFPs) in nine parkinsonian patients chronically implanted with DBS during overt reading. LFP spectral features were correlated with clinical scores and measures of speech intelligibility. RESULTS Overt reading was associated with increased beta-low ([1220) Hz) power in the left STN, whereas speech intelligibility correlated positively with beta-high ([2030) Hz) power in the right STN. CONCLUSION We identified separate contributions from frequency and brain lateralization of the STN in the execution of an overt reading motor task and its intelligibility. This subcortical organization could be exploited for new adaptive stimulation strategies capable of identifying the occurrence of speaking behavior and facilitating its functional execution.
Collapse
Affiliation(s)
- Federica Avantaggiato
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - AmirAli Farokhniaee
- Fondazione Grigioni per il Morbo di Parkinson, Via Gianfranco Zuretti 35, 20125 Milano, Italy.
| | - Andrea Bandini
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggo 34, Pontedera, Pisa, Italy; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggo 34, Pontedera, Pisa, Italy.
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany; Parkinson Institute Milan, ASST G. Pini-CTO, via Bignami 1, 20126 Milano, Italy.
| | - Ibrahem Hanafi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Via Gianfranco Zuretti 35, 20125 Milano, Italy; Parkinson Institute Milan, ASST G. Pini-CTO, via Bignami 1, 20126 Milano, Italy.
| | - Alberto Mazzoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggo 34, Pontedera, Pisa, Italy.
| | - Ioannis U Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany; Parkinson Institute Milan, ASST G. Pini-CTO, via Bignami 1, 20126 Milano, Italy.
| |
Collapse
|
34
|
Hollunder B, Ostrem JL, Sahin IA, Rajamani N, Oxenford S, Butenko K, Neudorfer C, Reinhardt P, Zvarova P, Polosan M, Akram H, Vissani M, Zhang C, Sun B, Navratil P, Reich MM, Volkmann J, Yeh FC, Baldermann JC, Dembek TA, Visser-Vandewalle V, Alho EJL, Franceschini PR, Nanda P, Finke C, Kühn AA, Dougherty DD, Richardson RM, Bergman H, DeLong MR, Mazzoni A, Romito LM, Tyagi H, Zrinzo L, Joyce EM, Chabardes S, Starr PA, Li N, Horn A. Mapping Dysfunctional Circuits in the Frontal Cortex Using Deep Brain Stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.07.23286766. [PMID: 36945497 PMCID: PMC10029043 DOI: 10.1101/2023.03.07.23286766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Frontal circuits play a critical role in motor, cognitive, and affective processing - and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)function remains largely elusive. Here, we study 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregate the frontal cortex into circuits that became dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to rostral, ranging from interconnections with sensorimotor cortices in dystonia, with the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairment in the human brain.
Collapse
Affiliation(s)
- Barbara Hollunder
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jill L. Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ilkem Aysu Sahin
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nanditha Rajamani
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Simón Oxenford
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pablo Reinhardt
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Zvarova
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mircea Polosan
- Univ. Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Psychiatry Department, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Chencheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pavel Navratil
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A. Dembek
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten Finke
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea A. Kühn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Darin D. Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hagai Bergman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University, Hassadah Medical School, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Mahlon R. DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Luigi M. Romito
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Himanshu Tyagi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Eileen M. Joyce
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Philip A. Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ningfei Li
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Hacker ML, Rajamani N, Neudorfer C, Hollunder B, Oxenford S, Li N, Sternberg AL, Davis TL, Konrad PE, Horn A, Charles D. Connectivity Profile for Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson Disease. Ann Neurol 2023; 94:271-284. [PMID: 37177857 PMCID: PMC10846105 DOI: 10.1002/ana.26674] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. METHODS To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]). RESULTS Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort. INTERPRETATION These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.
Collapse
Affiliation(s)
- Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara Hollunder
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt University of Berlin, Berlin, Germany
| | - Simon Oxenford
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Alice L Sternberg
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas L Davis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter E Konrad
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Charles
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
36
|
Al-Fatly B, Giesler SJ, Oxenford S, Li N, Dembek TA, Achtzehn J, Krause P, Visser-Vandewalle V, Krauss JK, Runge J, Tadic V, Bäumer T, Schnitzler A, Vesper J, Wirths J, Timmermann L, Kühn AA, Koy A. Neuroimaging-based analysis of DBS outcomes in pediatric dystonia: Insights from the GEPESTIM registry. Neuroimage Clin 2023; 39:103449. [PMID: 37321142 PMCID: PMC10275720 DOI: 10.1016/j.nicl.2023.103449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an established treatment in patients of various ages with pharmaco-resistant neurological disorders. Surgical targeting and postoperative programming of DBS depend on the spatial location of the stimulating electrodes in relation to the surrounding anatomical structures, and on electrode connectivity to a specific distribution pattern within brain networks. Such information is usually collected using group-level analysis, which relies on the availability of normative imaging resources (atlases and connectomes). Analysis of DBS data in children with debilitating neurological disorders such as dystonia would benefit from such resources, especially given the developmental differences in neuroimaging data between adults and children. We assembled pediatric normative neuroimaging resources from open-access datasets in order to comply with age-related anatomical and functional differences in pediatric DBS populations. We illustrated their utility in a cohort of children with dystonia treated with pallidal DBS. We aimed to derive a local pallidal sweetspot and explore a connectivity fingerprint associated with pallidal stimulation to exemplify the utility of the assembled imaging resources. METHODS An average pediatric brain template (the MNI brain template 4.5-18.5 years) was implemented and used to localize the DBS electrodes in 20 patients from the GEPESTIM registry cohort. A pediatric subcortical atlas, analogous to the DISTAL atlas known in DBS research, was also employed to highlight the anatomical structures of interest. A local pallidal sweetspot was modeled, and its degree of overlap with stimulation volumes was calculated as a correlate of individual clinical outcomes. Additionally, a pediatric functional connectome of 100 neurotypical subjects from the Consortium for Reliability and Reproducibility was built to allow network-based analyses and decipher a connectivity fingerprint responsible for the clinical improvements in our cohort. RESULTS We successfully implemented a pediatric neuroimaging dataset that will be made available for public use as a tool for DBS analyses. Overlap of stimulation volumes with the identified DBS-sweetspot model correlated significantly with improvement on a local spatial level (R = 0.46, permuted p = 0.019). The functional connectivity fingerprint of DBS outcomes was determined to be a network correlate of therapeutic pallidal stimulation in children with dystonia (R = 0.30, permuted p = 0.003). CONCLUSIONS Local sweetspot and distributed network models provide neuroanatomical substrates for DBS-associated clinical outcomes in dystonia using pediatric neuroimaging surrogate data. Implementation of this pediatric neuroimaging dataset might help to improve the practice and pave the road towards a personalized DBS-neuroimaging analyses in pediatric patients.
Collapse
Affiliation(s)
- Bassam Al-Fatly
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany.
| | - Sabina J Giesler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Oxenford
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Ningfei Li
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Johannes Achtzehn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Patricia Krause
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Vera Tadic
- Department of Neurology, University Medical Center Schleswig Holstein, Lübeck Campus, Lübeck, Germany
| | - Tobias Bäumer
- Institute of System Motor Science, University Medical Center Schleswig Holstein, Lübeck Campus, Lübeck, Germany
| | - Alfons Schnitzler
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Vesper
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - Andrea A Kühn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany.
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
37
|
Andrews L, Keller SS, Osman-Farah J, Macerollo A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun 2023; 5:fcad171. [PMID: 37304793 PMCID: PMC10257440 DOI: 10.1093/braincomms/fcad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Patients with movement disorders treated by deep brain stimulation do not always achieve successful therapeutic alleviation of motor symptoms, even in cases where surgery is without complications. Magnetic resonance imaging (MRI) offers methods to investigate structural brain-related factors that may be predictive of clinical motor outcomes. This review aimed to identify features which have been associated with variability in clinical post-operative motor outcomes in patients with Parkinson's disease, dystonia, and essential tremor from structural MRI modalities. We performed a literature search for articles published between 1 January 2000 and 1 April 2022 and identified 5197 articles. Following screening through our inclusion criteria, we identified 60 total studies (39 = Parkinson's disease, 11 = dystonia syndromes and 10 = essential tremor). The review captured a range of structural MRI methods and analysis techniques used to identify factors related to clinical post-operative motor outcomes from deep brain stimulation. Morphometric markers, including volume and cortical thickness were commonly identified in studies focused on patients with Parkinson's disease and dystonia syndromes. Reduced metrics in basal ganglia, sensorimotor and frontal regions showed frequent associations with reduced motor outcomes. Increased structural connectivity to subcortical nuclei, sensorimotor and frontal regions was also associated with greater motor outcomes. In patients with tremor, increased structural connectivity to the cerebellum and cortical motor regions showed high prevalence across studies for greater clinical motor outcomes. In addition, we highlight conceptual issues for studies assessing clinical response with structural MRI and discuss future approaches towards optimizing individualized therapeutic benefits. Although quantitative MRI markers are in their infancy for clinical purposes in movement disorder treatments, structural features obtained from MRI offer the powerful potential to identify candidates who are more likely to benefit from deep brain stimulation and provide insight into the complexity of disorder pathophysiology.
Collapse
Affiliation(s)
- Luke Andrews
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Simon S Keller
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
| | - Jibril Osman-Farah
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Antonella Macerollo
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| |
Collapse
|
38
|
Neumann WJ, Horn A, Kühn AA. Insights and opportunities for deep brain stimulation as a brain circuit intervention. Trends Neurosci 2023; 46:472-487. [PMID: 37105806 DOI: 10.1016/j.tins.2023.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
Deep brain stimulation (DBS) is an effective treatment and has provided unique insights into the dynamic circuit architecture of brain disorders. This Review illustrates our current understanding of the pathophysiology of movement disorders and their underlying brain circuits that are modulated with DBS. It proposes principles of pathological network synchronization patterns like beta activity (13-35 Hz) in Parkinson's disease. We describe alterations from microscale including local synaptic activity via modulation of mesoscale hypersynchronization to changes in whole-brain macroscale connectivity. Finally, an outlook on advances for clinical innovations in next-generation neurotechnology is provided: from preoperative connectomic targeting to feedback controlled closed-loop adaptive DBS as individualized network-specific brain circuit interventions.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery at MGH Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; NeuroCure Clinical Research Centre, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; DZNE, German Center for Degenerative Diseases, Berlin, Germany.
| |
Collapse
|
39
|
Breit S, Milosevic L, Naros G, Cebi I, Weiss D, Gharabaghi A. Structural-Functional Correlates of Response to Pedunculopontine Stimulation in a Randomized Clinical Trial for Axial Symptoms of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225031. [PMID: 37092235 DOI: 10.3233/jpd-225031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Axial symptoms of Parkinson's disease (PD) can be debilitating and are often refractory to conventional therapies such as dopamine replacement therapy and deep brain stimulation (DBS) of the subthalamic nuclei (STN). OBJECTIVE Evaluate the efficacy of bilateral DBS of the pedunculopontine nucleus area (PPNa) and investigate structural and physiological correlates of clinical response. METHODS A randomized, double-blind, cross-over clinical trial was employed to evaluate the efficacy of bilateral PPNa-DBS on axial symptoms. Lead positions and neuronal activity were evaluated with respect to clinical response. Connectomic cortical activation profiles were generated based on the volumes of tissue activated. RESULTS PPNa-DBS modestly improved (p = 0.057) axial symptoms in the medication-off condition, with greatest positive effects on gait symptoms (p = 0.027). Electrode placements towards the anterior commissure (ρ= 0.912; p = 0.011) or foramen caecum (ρ= 0.853; p = 0.031), near the 50% mark of the ponto-mesencephalic junction, yielded better therapeutic responses. Recording trajectories of patients with better therapeutic responses (i.e., more anterior electrode placements) had neurons with lower firing-rates (p = 0.003) and higher burst indexes (p = 0.007). Structural connectomic profiles implicated activation of fibers of the posterior parietal lobule which is involved in orienting behavior and locomotion. CONCLUSION Bilateral PPNa-DBS influenced gait symptoms in patients with PD. Anatomical and physiological information may aid in localization of a favorable stimulation target.
Collapse
Affiliation(s)
- Sorin Breit
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, and German Centre of Neurodegenerative Diseases (DZNE), University Hospital and University Tübingen, Tübingen, Germany
| | - Luka Milosevic
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Krembil Research Institute, Clinical and Computational Neuroscience, University Health Network, Toronto, Canada
| | - Georgios Naros
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Idil Cebi
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, and German Centre of Neurodegenerative Diseases (DZNE), University Hospital and University Tübingen, Tübingen, Germany
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, and German Centre of Neurodegenerative Diseases (DZNE), University Hospital and University Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Freund BE, Greco E, Okromelidze L, Mendez J, Tatum WO, Grewal SS, Middlebrooks EH. Clinical outcome of imaging-based programming for anterior thalamic nucleus deep brain stimulation. J Neurosurg 2023; 138:1008-1015. [PMID: 36087330 DOI: 10.3171/2022.7.jns221116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors hypothesized that the proximity of deep brain stimulator contacts to the anterior thalamic nucleus-mammillothalamic tract (ANT-MMT) junction determines responsiveness to treatment with ANT deep brain stimulation (DBS) in drug-resistant epilepsy and conducted this study to test that hypothesis. METHODS This retrospective study evaluated patients who had undergone ANT DBS electrode implantation and whose devices were programmed to stimulate nearest the ANT-MMT junction based on direct MRI visualization. The proximity of the active electrode to the ANT and the ANT-MMT junction was compared between responders (≥ 50% reduction in seizure frequency) and nonresponders. Linear regression was performed to assess the percentage of seizure reduction and distance to both the ANT and the ANT-MMT junction. RESULTS Four (57.1%) of 7 patients had ≥ 50% reduction in seizures. All 4 responders had at least one contact within 1 mm of the ANT-MMT junction, whereas the 3 patients with < 50% seizure improvement did not have a contact within 1 mm of the ANT-MMT junction. Additionally, the 4 responders demonstrated contact positioning closer to the ANT-MMT junction than the 3 nonresponders (mean distance from MMT: 0.7 mm on the left and 0.6 mm on the right in responders vs 3.0 mm on the left and 2.3 mm on the right in nonresponders). However, proximity of the electrode contact to any point in the ANT nucleus did not correlate with seizure reduction. Greater seizure improvement was correlated with a contact position closer to the ANT-MMT junction (R2 = 0.62, p = 0.04). Seizure improvement was not significantly correlated with proximity of the contact to any ANT border (R2 = 0.24, p = 0.26). CONCLUSIONS Obtained using a combination of direct visualization and targeted programming of the ANT-MMT junction, data in this study support the hypothesis that proximity to the ANT alone does not correlate with seizure reduction in ANT DBS, whereas proximity to the ANT-MMT junction does. These findings support the importance of direct targeting in ANT DBS, as well as imaging-informed programming. Additionally, the authors provide supportive evidence for future prospective trials using ANT-MMT junction for direct surgical targeting.
Collapse
|
41
|
Hegde A, Canty M, Littlechild P. A Comparison of Robotic Versus Conventional Frame Based Stereotactic Lead Placement in Parkinson’s Disease. Neuromodulation 2023. [DOI: 10.1016/j.neurom.2023.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
42
|
Fridgeirsson EA, Bais MN, Eijsker N, Thomas RM, Smit DJA, Bergfeld IO, Schuurman PR, van den Munckhof P, de Koning P, Vulink N, Figee M, Mazaheri A, van Wingen GA, Denys D. Patient specific intracranial neural signatures of obsessions and compulsions in the ventral striatum. J Neural Eng 2023; 20. [PMID: 36827705 DOI: 10.1088/1741-2552/acbee1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Objective. Deep brain stimulation is a treatment option for patients with refractory obsessive-compulsive disorder. A new generation of stimulators hold promise for closed loop stimulation, with adaptive stimulation in response to biologic signals. Here we aimed to discover a suitable biomarker in the ventral striatum in patients with obsessive compulsive disorder using local field potentials.Approach.We induced obsessions and compulsions in 11 patients undergoing deep brain stimulation treatment using a symptom provocation task. Then we trained machine learning models to predict symptoms using the recorded intracranial signal from the deep brain stimulation electrodes.Main results.Average areas under the receiver operating characteristics curve were 62.1% for obsessions and 78.2% for compulsions for patient specific models. For obsessions it reached over 85% in one patient, whereas performance was near chance level when the model was trained across patients. Optimal performances for obsessions and compulsions was obtained at different recording sites.Significance. The results from this study suggest that closed loop stimulation may be a viable option for obsessive-compulsive disorder, but that intracranial biomarkers are patient and not disorder specific.Clinical Trial:Netherlands trial registry NL7486.
Collapse
Affiliation(s)
- Egill A Fridgeirsson
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Melisse N Bais
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Nadine Eijsker
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Rajat M Thomas
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk J A Smit
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Isidoor O Bergfeld
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - P Richard Schuurman
- Department of Neurosurgery, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Pelle de Koning
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Nienke Vulink
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, United Kingdom.,Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Guido A van Wingen
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands.,The Netherlands institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Lead-DBS v3.0: Mapping deep brain stimulation effects to local anatomy and global networks. Neuroimage 2023; 268:119862. [PMID: 36610682 PMCID: PMC10144063 DOI: 10.1016/j.neuroimage.2023.119862] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics.
Collapse
|
44
|
Waldthaler J, Sperlich A, Stüssel C, Steidel K, Timmermann L, Pedrosa DJ. Stimulation of non-motor subthalamic nucleus impairs selective response inhibition via prefrontal connectivity. Brain Commun 2023; 5:fcad121. [PMID: 37113315 PMCID: PMC10128876 DOI: 10.1093/braincomms/fcad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/03/2023] [Indexed: 04/29/2023] Open
Abstract
Given the inconsistent results in the past, there is an ongoing debate whether and how deep brain stimulation in the subthalamic nucleus modifies cognitive control processes like response inhibition in persons with Parkinson's disease. In this study, we examined how the location of the stimulation volume within the subthalamic nucleus affects the performance in an antisaccade task but also how its structural connectivity is related to response inhibition. Antisaccade error rates and latencies were collected in 14 participants on and off deep brain stimulation in a randomized order. Stimulation volumes were computed based on patient-specific lead localizations using preoperative MRI and postoperative CT scans. Structural connectivity of the stimulation volumes with pre-defined cortical oculomotor control regions as well as whole-brain connectivity was estimated using a normative connectome. We showed that the detrimental effect of deep brain stimulation on response inhibition, measured as antisaccade error rate, depended upon the magnitude of the intersection of volumes of activated tissue with the non-motor subregion of the subthalamic nucleus and on its structural connectivity with regions of the prefrontal oculomotor network including bilateral frontal eye fields and right anterior cingulate cortex. Our results corroborate previous recommendations for avoidance of stimulation in the ventromedial non-motor subregion of the subthalamic nucleus which connects to the prefrontal cortex to prevent stimulation-induced impulsivity. Furthermore, antisaccades were initiated faster with deep brain stimulation when the stimulation volume was connected to fibres passing the subthalamic nucleus laterally and projecting onto the prefrontal cortex, indicating that improvement of voluntary saccade generation with deep brain stimulation may be an off-target effect driven by stimulation of corticotectal fibres directly projecting from the frontal and supplementary eye fields onto brainstem gaze control areas. Taken together, these findings could help implement individualized circuit-based deep brain stimulation strategies that avoid impulsive side effects while improving voluntary oculomotor control.
Collapse
Affiliation(s)
- Josefine Waldthaler
- Correspondence to: Josefine Waldthaler, Department of Neurology, University Hospitals Gießen and Marburg, Baldingerstraße, 35033 Marburg, Hesse, Germany E-mail:
| | - Alexander Sperlich
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Charlotte Stüssel
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Kenan Steidel
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg and Justus-Liebig-University Giessen, 35033 Marburg, Germany
| | - David J Pedrosa
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg and Justus-Liebig-University Giessen, 35033 Marburg, Germany
| |
Collapse
|
45
|
Ríos AS, Oxenford S, Neudorfer C, Butenko K, Li N, Rajamani N, Boutet A, Elias GJB, Germann J, Loh A, Deeb W, Wang F, Setsompop K, Salvato B, Almeida LBD, Foote KD, Amaral R, Rosenberg PB, Tang-Wai DF, Wolk DA, Burke AD, Salloway S, Sabbagh MN, Chakravarty MM, Smith GS, Lyketsos CG, Okun MS, Anderson WS, Mari Z, Ponce FA, Lozano AM, Horn A. Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer's disease. Nat Commun 2022; 13:7707. [PMID: 36517479 PMCID: PMC9751139 DOI: 10.1038/s41467-022-34510-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Deep brain stimulation (DBS) to the fornix is an investigational treatment for patients with mild Alzheimer's Disease. Outcomes from randomized clinical trials have shown that cognitive function improved in some patients but deteriorated in others. This could be explained by variance in electrode placement leading to differential engagement of neural circuits. To investigate this, we performed a post-hoc analysis on a multi-center cohort of 46 patients with DBS to the fornix (NCT00658125, NCT01608061). Using normative structural and functional connectivity data, we found that stimulation of the circuit of Papez and stria terminalis robustly associated with cognitive improvement (R = 0.53, p < 0.001). On a local level, the optimal stimulation site resided at the direct interface between these structures (R = 0.48, p < 0.001). Finally, modulating specific distributed brain networks related to memory accounted for optimal outcomes (R = 0.48, p < 0.001). Findings were robust to multiple cross-validation designs and may define an optimal network target that could refine DBS surgery and programming.
Collapse
Grants
- P30 AG066507 NIA NIH HHS
- R01 NS127892 NINDS NIH HHS
- R01 MH113929 NIMH NIH HHS
- R01 MH130666 NIMH NIH HHS
- P30 AG072979 NIA NIH HHS
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Received grants and personal fees from Medtronic and Boston Scientific, grants from Abbott/St. Jude, and Functional Neuromodulation outside the submitted work.
- Received grants from Functional Neuromodulation during conduct of this study, grants and personal fees from Avid/Lily, and Merck, personal fees from Jannsen, GE Healthcare, Biogen and Neuronix outside the submitted work.
- Receives personal fees from Elsai, Lilly, Roche Novartis and Biogen outside the submitted work.
- Received personal fees from Allergan, Biogen, Roche-Genentech, Cortexyme, Bracket, Sanofi, and other type of support from Brain Health Inc and uMethod Health outside of the submitted work.
- Received grants from Functional Neuromodulation Inc. during conduct of this study, from Avanir and Eli Lily and NFL Benefits Office outside of the submitted work.
- Received grants from NIH, Tourette Association of America Grant, Parkinson’s Alliance, Smallwood Foundation, and personal fees from Parkinson’s Foundation Medical Director, Books4Patients, American Academy of Neurology, Peerview, WebMD/Medscape, Mededicus, Movement Disorders Society, Taylor and Francis, Demos, Robert Rose and non-financial support from Medtronic outside of the submitted work.
- Received grants from Medtronic and Functional Neuromodulation during conduct of this study, personal fees from Medtronic, St. Jude, Boston Scientific, and Functional Neuromodulation outside of submitted work
- Deutsches Zentrum für Luft- und Raumfahrt (German Centre for Air and Space Travel)
- National Institutes of Health (R01 13478451, 1R01NS127892-01 & 2R01 MH113929) New Venture Fund (FFOR Seed Grant).
Collapse
Affiliation(s)
- Ana Sofía Ríos
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin Butenko
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, M5T1W7, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Jurgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Wissam Deeb
- UMass Chan Medical School, Department of Neurology, Worcester, MA, 01655, USA
- UMass Memorial Health, Department of Neurology, Worcester, MA, 01655, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bryan Salvato
- University of Florida Health Jacksonville, Jacksonville, FL, USA
| | - Leonardo Brito de Almeida
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Robert Amaral
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David F Tang-Wai
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
- Department of Medicine, Division of Neurology, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Stephen Salloway
- Department of Psychiatry and Human Behavior and Neurology, Alpert Medical School of Brown University, Providence, RI, USA
- Memory & Aging Program, Butler Hospital, Providence, USA
| | | | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | | | - Zoltan Mari
- Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Departments of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
46
|
Spee BTM, Sladky R, Fingerhut J, Laciny A, Kraus C, Carls-Diamante S, Brücke C, Pelowski M, Treven M. Repeating patterns: Predictive processing suggests an aesthetic learning role of the basal ganglia in repetitive stereotyped behaviors. Front Psychol 2022; 13:930293. [PMID: 36160532 PMCID: PMC9497189 DOI: 10.3389/fpsyg.2022.930293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recurrent, unvarying, and seemingly purposeless patterns of action and cognition are part of normal development, but also feature prominently in several neuropsychiatric conditions. Repetitive stereotyped behaviors (RSBs) can be viewed as exaggerated forms of learned habits and frequently correlate with alterations in motor, limbic, and associative basal ganglia circuits. However, it is still unclear how altered basal ganglia feedback signals actually relate to the phenomenological variability of RSBs. Why do behaviorally overlapping phenomena sometimes require different treatment approaches-for example, sensory shielding strategies versus exposure therapy for autism and obsessive-compulsive disorder, respectively? Certain clues may be found in recent models of basal ganglia function that extend well beyond action selection and motivational control, and have implications for sensorimotor integration, prediction, learning under uncertainty, as well as aesthetic learning. In this paper, we systematically compare three exemplary conditions with basal ganglia involvement, obsessive-compulsive disorder, Parkinson's disease, and autism spectrum conditions, to gain a new understanding of RSBs. We integrate clinical observations and neuroanatomical and neurophysiological alterations with accounts employing the predictive processing framework. Based on this review, we suggest that basal ganglia feedback plays a central role in preconditioning cortical networks to anticipate self-generated, movement-related perception. In this way, basal ganglia feedback appears ideally situated to adjust the salience of sensory signals through precision weighting of (external) new sensory information, relative to the precision of (internal) predictions based on prior generated models. Accordingly, behavioral policies may preferentially rely on new data versus existing knowledge, in a spectrum spanning between novelty and stability. RSBs may then represent compensatory or reactive responses, respectively, at the opposite ends of this spectrum. This view places an important role of aesthetic learning on basal ganglia feedback, may account for observed changes in creativity and aesthetic experience in basal ganglia disorders, is empirically testable, and may inform creative art therapies in conditions characterized by stereotyped behaviors.
Collapse
Affiliation(s)
- Blanca T. M. Spee
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald Sladky
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Joerg Fingerhut
- Berlin School of Mind and Brain, Department of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
- Faculty of Philosophy, Philosophy of Science and Religious Studies, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alice Laciny
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
| | | | - Christof Brücke
- Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Matthew Pelowski
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Marco Treven
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
- Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Lofredi R, Auernig CG, Ewert S, Irmen F, Steiner LA, Scheller U, van Wijk BCM, Oxenford S, Kühn AA, Horn A. Interrater reliability of deep brain stimulation electrode localizations. Neuroimage 2022; 262:119552. [PMID: 35981644 DOI: 10.1016/j.neuroimage.2022.119552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Lead-DBS is an open-source, semi-automatized and widely applied software tool facilitating precise localization of deep brain stimulation electrodes both in native as well as in standardized stereotactic space. While automatized preprocessing steps within the toolbox have been tested and validated in previous studies, the interrater reliability in manual refinements of electrode localizations using the tool has not been objectified so far. Here, we investigate the variance introduced in this processing step by different raters when localizing electrodes based on postoperative CT or MRI. Furthermore, we compare the performance of novel trainees that received a structured training and more experienced raters with an expert user. We show that all users yield similar results with an average difference in localizations ranging between 0.52-0.75 mm with 0.07-0.12 mm increases in variability when using postoperative MRI and following normalization to standard space. Our findings may pave the way toward formal training for using Lead-DBS and demonstrate its reliability and ease-of-use for imaging research in the field of deep brain stimulation.
Collapse
Affiliation(s)
- Roxanne Lofredi
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Cem-Georg Auernig
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Siobhan Ewert
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Friederike Irmen
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Leon A Steiner
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Ute Scheller
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Bernadette C M van Wijk
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Simon Oxenford
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany; NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany; DZNE, German center for neurodegenerative diseases, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin
| | - Andreas Horn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
48
|
Windbuhler A, Okkesim S, Christ O, Mottaghi S, Rastogi S, Schmuker M, Baumann T, Hofmann UG. Machine Learning Approaches to Classify Anatomical Regions in Rodent Brain from High Density Recordings. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3530-3533. [PMID: 36086280 DOI: 10.1109/embc48229.2022.9871702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identifying different functional regions during a brain surgery is a challenging task usually performed by highly specialized neurophysiologists. Progress in this field may be used to improve in situ brain navigation and will serve as an important building block to minimize the number of animals in preclinical brain research required by properly positioning implants intraoperatively. The study at hand aims to correlate recorded extracellular signals with the volume of origin by deep learning methods. Our work establishes connections between the position in the brain and recorded high-density neural signals. This was achieved by evaluating the performance of BLSTM, BGRU, QRNN and CNN neural network architectures on multisite electrophysiological data sets. All networks were able to successfully distinguish cortical and thalamic brain regions according to their respective neural signals. The BGRU provides the best results with an accuracy of 88.6 % and demonstrates that this classification task might be solved in higher detail while minimizing complex preprocessing steps.
Collapse
|
49
|
Zhang Q, Zhao B, Neumann WJ, Xie H, Shi L, Zhu G, Yin Z, Qin G, Bai Y, Meng F, Yang A, Jiang Y, Zhang J. Low-frequency oscillations link frontal and parietal cortex with subthalamic nucleus in conflicts. Neuroimage 2022; 258:119389. [PMID: 35714885 DOI: 10.1016/j.neuroimage.2022.119389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Low-frequency oscillations (LFOs, 28 Hz) in the subthalamic nucleus(STN) are known to reflect cognitive conflict. However, it is unclear if LFOs mediate communication and functional interactions among regions implicated in conflict processing, such as the motor cortex (M1), premotor cortex (PMC), and superior parietal lobule (SPL). To investigate the potential contribution of LFOs to cognitive conflict mediation, we recorded M1, PMC, and SPL activities by right subdural electrocorticography (ECoG) simultaneously with bilateral STN local field potentials (LFPs) by deep brain stimulation electrodes in 13 patients with Parkinson's disease who performed the arrow version of the Eriksen flanker task. Elevated cue-related LFO activity was observed across patients during task trials, with the earliest onset in PMC and SPL. At cue onset, LFO power exhibited a significantly greater increase or a trend of a greater increase in the PMC, M1, and STN, and less increase in the SPL during high-conflict (incongruent) trials than in low-conflict (congruent) trials. The local LFO power increases in PMC, SPL, and right STN were correlated with response time, supporting the notion that these structures are critical hubs for cognitive conflict processing. This power increase was accompanied by increased functional connectivity between the PMC and right STN, which was correlated with response time across subjects. Finally, ipsilateral PMC-STN Granger causality was enhanced during high-conflict trials, with direction from STN to PMC. Our study indicates that LFOs link the frontal and parietal cortex with STN during conflicts, and the ipsilateral PMC-STN connection is specifically involved in this cognitive conflict processing.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charite´, Universita¨Tsmedizin Berlin, Charite´ Campus Mitte, Berlin 10117, Germany
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China; Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
| |
Collapse
|
50
|
Overnight unilateral withdrawal of thalamic deep brain stimulation to identify reversibility of gait disturbances. Exp Neurol 2022; 355:114135. [DOI: 10.1016/j.expneurol.2022.114135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022]
|