1
|
Zhou Y, Song Y, Song X, He F, Xu M, Ming D. Review of directional leads, stimulation patterns and programming strategies for deep brain stimulation. Cogn Neurodyn 2025; 19:33. [PMID: 39866658 PMCID: PMC11757656 DOI: 10.1007/s11571-024-10210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025] Open
Abstract
Deep brain stimulation (DBS) is a well-established treatment for both neurological and psychiatric disorders. Directional DBS has the potential to minimize stimulation-induced side effects and maximize clinical benefits. Many new directional leads, stimulation patterns and programming strategies have been developed in recent years. Therefore, it is necessary to review new progress in directional DBS. This paper summarizes progress for directional DBS from the perspective of directional DBS leads, stimulation patterns, and programming strategies which are three key elements of DBS systems. Directional DBS leads are reviewed in electrode design and volume of tissue activated visualization strategies. Stimulation patterns are reviewed in stimulation parameters and advances in stimulation patterns. Programming strategies are reviewed in computational modeling, monopolar review, direction indicators and adaptive DBS. This review will provide a comprehensive overview of primary directional DBS leads, stimulation patterns and programming strategies, making it helpful for those who are developing DBS systems.
Collapse
Affiliation(s)
- Yijie Zhou
- School of Disaster and Emergency Medicine of Tianjin University, Tianjin, 300072 China
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Yibo Song
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
| | - Xizi Song
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Feng He
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| |
Collapse
|
2
|
Bowersock JL, Wylie SA, Alhourani A, Zemmar A, Holiday V, Hedera P, Stewart T, Bridwell E, Hattab I, Ugiliweneza B, Neimat JS, van Wouwe NC. Theta and beta power in the subthalamic nucleus responds to conflict across subregions and hemispheres. Brain Commun 2025; 7:fcaf021. [PMID: 39882026 PMCID: PMC11775628 DOI: 10.1093/braincomms/fcaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
The subthalamic nucleus is thought to play a crucial role in controlling impulsive actions. Networked among the basal ganglia and receiving input from several cortical areas, the subthalamic nucleus is well positioned to influence action selection when faced with competing and conflicting action outcomes. The purpose of this study was to test the dissociable roles of the dorsal and ventral aspects of the subthalamic nucleus during action conflict in patients with Parkinson's disease undergoing intraoperative neurophysiological recording and to explore a potential mechanism for this inhibitory control. We hypothesized that modulations of neurophysiological activity during action conflict would be more pronounced in the dorsal subthalamic nucleus compared with the ventral subthalamic nucleus, due to the dissociation of cortical afferents to subthalamic nucleus subregions and previous findings of deep brain stimulation targeting subthalamic nucleus subregions in Parkinson's disease. We recorded neurophysiological activity while 10 participants with Parkinson's disease performed the Simon task during deep brain stimulation surgery. Response-locked local field potentials in the theta and beta band (associated with conflict control and movement inhibition, respectively) were analysed across subthalamic nucleus subregions and hemispheres relative to the motor response (ipsilateral/contralateral). In the presence of action conflict, the dorsal subthalamic nucleus, connected to cortical motor regions, exhibited larger theta power relative to the ventral subthalamic nucleus subregion, which is linked to the limbic circuits (P < 0.05). This evidence supports independent subregion function in conflict control. However, both subregions had relatively increased beta power for conflict trials compared with non-conflict in the hemisphere ipsilateral to the motor response. The conflict-related beta modulation was not present in the contralateral hemisphere. This indicates the importance of the ipsilateral hemisphere in the inhibition of incorrect action impulses. Additionally, higher intertrial beta power in the ventral subregion correlated with reduced accuracy on conflict trials, which we propose, could serve as a biomarker for impaired task performance. The results of the study support the existence of a functional dissociation within subthalamic nucleus subregions, emphasizing the role of the dorsal subthalamic nucleus in modulating action conflict.
Collapse
Affiliation(s)
- Jessica L Bowersock
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Scott A Wylie
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Ahmad Alhourani
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Ajmal Zemmar
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Victoria Holiday
- Department of Neurology, University of Louisville Health, Louisville, KY 40202, USA
| | - Peter Hedera
- Department of Neurology, University of Louisville Health, Louisville, KY 40202, USA
| | - Travis Stewart
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Elizabeth Bridwell
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Isabelle Hattab
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Joseph S Neimat
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Nelleke C van Wouwe
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Ging-Jehli NR, Cavanagh JF, Ahn M, Segar DJ, Asaad WF, Frank MJ. Basal ganglia components have distinct computational roles in decision-making dynamics under conflict and uncertainty. PLoS Biol 2025; 23:e3002978. [PMID: 39847590 PMCID: PMC11756759 DOI: 10.1371/journal.pbio.3002978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/10/2024] [Indexed: 01/25/2025] Open
Abstract
The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands. Through the application of novel computational modeling tools in tandem with direct neural recordings from human BG areas, we find that neural dynamics in the theta band manifest as variations in a collapsing decision boundary as a function of conflict and uncertainty. We collected intracranial recordings from patients diagnosed with either Parkinson's disease (PD) (n = 14) or dystonia (n = 3) in the subthalamic nucleus (STN), globus pallidus internus (GPi), and globus pallidus externus (GPe) during their performance of a novel perceptual discrimination task in which we independently manipulated uncertainty and conflict. To formally characterize whether these task and neural components influenced decision dynamics, we leveraged modified diffusion decision models (DDMs). Behavioral choices and response time distributions were best characterized by a modified DDM in which the decision boundary collapsed over time, but where the onset and shape of this collapse varied with conflict. Moreover, theta dynamics in BG structures modulated the onset and shape of this collapse but differentially across task conditions. In STN, theta activity was related to a prolonged decision boundary (indexed by slower collapse and therefore more deliberate choices) during high conflict situations. Conversely, rapid declines in GPe theta during low conflict conditions were related to rapidly collapsing boundaries and expedited choices, with additional complementary decision bound adjustments during high uncertainty situations. Finally, GPi theta effects were uniform across conditions, with increases in theta associated with a prolongation of decision bound collapses. Together, these findings provide a nuanced understanding of how our brain thwarts impulsive actions while nonetheless enabling behavioral adaptation amidst noisy and conflicting information.
Collapse
Affiliation(s)
- Nadja R. Ging-Jehli
- Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
| | - James F. Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Minkyu Ahn
- Warren Alpert Medical School, Departments of Neuroscience & Neurosurgery, The Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA and The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, Rhode Island, United States of America
| | - David J. Segar
- Warren Alpert Medical School, Departments of Neuroscience & Neurosurgery, The Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA and The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, Rhode Island, United States of America
| | - Wael F. Asaad
- Warren Alpert Medical School, Departments of Neuroscience & Neurosurgery, The Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA and The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, Rhode Island, United States of America
| | - Michael J. Frank
- Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
4
|
Herz DM, Frank MJ, Tan H, Groppa S. Subthalamic control of impulsive actions: insights from deep brain stimulation in Parkinson's disease. Brain 2024; 147:3651-3664. [PMID: 38869168 PMCID: PMC11531846 DOI: 10.1093/brain/awae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Control of actions allows adaptive, goal-directed behaviour. The basal ganglia, including the subthalamic nucleus, are thought to play a central role in dynamically controlling actions through recurrent negative feedback loops with the cerebral cortex. Here, we summarize recent translational studies that used deep brain stimulation to record neural activity from and apply electrical stimulation to the subthalamic nucleus in people with Parkinson's disease. These studies have elucidated spatial, spectral and temporal features of the neural mechanisms underlying the controlled delay of actions in cortico-subthalamic networks and demonstrated their causal effects on behaviour in distinct processing windows. While these mechanisms have been conceptualized as control signals for suppressing impulsive response tendencies in conflict tasks and as decision threshold adjustments in value-based and perceptual decisions, we propose a common framework linking decision-making, cognition and movement. Within this framework, subthalamic deep brain stimulation can lead to suboptimal choices by reducing the time that patients take for deliberation before committing to an action. However, clinical studies have consistently shown that the occurrence of impulse control disorders is reduced, not increased, after subthalamic deep brain stimulation surgery. This apparent contradiction can be reconciled when recognizing the multifaceted nature of impulsivity, its underlying mechanisms and modulation by treatment. While subthalamic deep brain stimulation renders patients susceptible to making decisions without proper forethought, this can be disentangled from effects related to dopamine comprising sensitivity to benefits versus costs, reward delay aversion and learning from outcomes. Alterations in these dopamine-mediated mechanisms are thought to underlie the development of impulse control disorders and can be relatively spared with reduced dopaminergic medication after subthalamic deep brain stimulation. Together, results from studies using deep brain stimulation as an experimental tool have improved our understanding of action control in the human brain and have important implications for treatment of patients with neurological disorders.
Collapse
Affiliation(s)
- Damian M Herz
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02903, USA
| | - Huiling Tan
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH Oxford, UK
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
5
|
Sanchez AMA, Roberts MJ, Temel Y, Janssen MLF. Invasive neurophysiological recordings in human basal ganglia. What have we learned about non-motor behaviour? Eur J Neurosci 2024; 60:6145-6159. [PMID: 39419545 DOI: 10.1111/ejn.16579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Research into the function of deep brain structures has benefited greatly from microelectrode recordings in animals. This has helped to unravel physiological processes in the healthy and malfunctioning brain. Translation to the human is necessary for improving basic understanding of subcortical structures and their implications in diseases. The use of microelectrode recordings as a standard component of deep brain stimulation surgery offers the most viable route for studying the electrophysiology of single cells and local neuronal populations in important deep structures of the human brain. Most of the studies in the basal ganglia have targeted the motor loop and movement disorder pathophysiology. In recent years, however, research has diversified to include limbic and cognitive processes. This review aims to provide an overview of advances in neuroscience made using intraoperative and post-operative recordings with a focus on non-motor activity in the basal ganglia.
Collapse
Affiliation(s)
- Ana Maria Alzate Sanchez
- Mental Health and Neuroscience Research Institute, Faculty of Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mark J Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Yasin Temel
- Mental Health and Neuroscience Research Institute, Faculty of Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marcus L F Janssen
- Mental Health and Neuroscience Research Institute, Faculty of Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
6
|
Ai S. STN-PFC circuit related to attentional fluctuations during non-movement decision-making. Neuroscience 2024; 553:110-120. [PMID: 38972448 DOI: 10.1016/j.neuroscience.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Decision-making is a cognitive process, in which participants need to attend to relevant information and ignore the irrelevant information. Previous studies have described a set of cortical areas important for attention. It is unclear whether subcortical areas also serve a role. The subthalamic nucleus (STN), a part of basal ganglia, is traditionally considered a critical node in the cortico-basal ganglia-thalamus-cortico network. Given the location of the STN and its widespread connections with cortical and subcortical brain regions, the STN plays an important role in motor and non-motor cognitive processing. We would like to know if STN is also related to fluctuations in attentional task performance, and how the STN interacts with prefrontal cortical regions during the process. We examined neural activities within STN covaried with lapses of attention (defined as behavior error). We found that decreased neural activities in STN were associated with sustained attention. By examining connectivity across STN and various sub-regions of the prefrontal cortex (PFC), we found that decreased connectivity across areas was associated with sustained attention. Our results indicated that decreased STN activities were associated with sustained attention, and the STN-PFC circuit supported this process.
Collapse
Affiliation(s)
- Shengnan Ai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Choi JW, Malekmohammadi M, Niketeghad S, Cross KA, Ebadi H, Alijanpourotaghsara A, Aron A, Rutishauser U, Pouratian N. Prefrontal-subthalamic theta signaling mediates delayed responses during conflict processing. Prog Neurobiol 2024; 236:102613. [PMID: 38631480 PMCID: PMC11149786 DOI: 10.1016/j.pneurobio.2024.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
While medial frontal cortex (MFC) and subthalamic nucleus (STN) have been implicated in conflict monitoring and action inhibition, respectively, an integrated understanding of the spatiotemporal and spectral interaction of these nodes and how they interact with motor cortex (M1) to definitively modify motor behavior during conflict is lacking. We recorded neural signals intracranially across presupplementary motor area (preSMA), M1, STN, and globus pallidus internus (GPi), during a flanker task in 20 patients undergoing deep brain stimulation implantation surgery for Parkinson disease or dystonia. Conflict is associated with sequential and causal increases in local theta power from preSMA to STN to M1 with movement delays directly correlated with increased STN theta power, indicating preSMA is the MFC locus that monitors conflict and signals STN to implement a 'break.' Transmission of theta from STN-to-M1 subsequently results in a transient increase in M1-to-GPi beta flow immediately prior to movement, modulating the motor network to actuate the conflict-related action inhibition (i.e., delayed response). Action regulation during conflict relies on two distinct circuits, the conflict-related theta and movement-related beta networks, that are separated spatially, spectrally, and temporally, but which interact dynamically to mediate motor performance, highlighting complex parallel yet interacting networks regulating movement.
Collapse
Affiliation(s)
- Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
| | - Soroush Niketeghad
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
| | - Katy A Cross
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Hamasa Ebadi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Adam Aron
- Department of Psychology, University of California, San Diego, CA 92093, USA
| | - Ueli Rutishauser
- Departments of Neurosurgery and Neurology, and Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Caruso VC, Wray AH, Lescht E, Chang SE. Neural oscillatory activity and connectivity in children who stutter during a non-speech motor task. J Neurodev Disord 2023; 15:40. [PMID: 37964200 PMCID: PMC10647051 DOI: 10.1186/s11689-023-09507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Neural motor control rests on the dynamic interaction of cortical and subcortical regions, which is reflected in the modulation of oscillatory activity and connectivity in multiple frequency bands. Motor control is thought to be compromised in developmental stuttering, particularly involving circuits in the left hemisphere that support speech, movement initiation, and timing control. However, to date, evidence comes from adult studies, with a limited understanding of motor processes in childhood, closer to the onset of stuttering. METHODS We investigated the neural control of movement initiation in children who stutter and children who do not stutter by evaluating transient changes in EEG oscillatory activity (power, phase locking to button press) and connectivity (phase synchronization) during a simple button press motor task. We compared temporal changes in these oscillatory dynamics between the left and right hemispheres and between children who stutter and children who do not stutter, using mixed-model analysis of variance. RESULTS We found reduced modulation of left hemisphere oscillatory power, phase locking to button press and phase connectivity in children who stutter compared to children who do not stutter, consistent with previous findings of dysfunction within the left sensorimotor circuits. Interhemispheric connectivity was weaker at lower frequencies (delta, theta) and stronger in the beta band in children who stutter than in children who do not stutter. CONCLUSIONS Taken together, these findings indicate weaker engagement of the contralateral left motor network in children who stutter even during low-demand non-speech tasks, and suggest that the right hemisphere might be recruited to support sensorimotor processing in childhood stuttering. Differences in oscillatory dynamics occurred despite comparable task performance between groups, indicating that an altered balance of cortical activity might be a core aspect of stuttering, observable during normal motor behavior.
Collapse
Affiliation(s)
- Valeria C Caruso
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Amanda Hampton Wray
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erica Lescht
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
9
|
Rezaei MR, Jeoung H, Gharamani A, Saha U, Bhat V, Popovic MR, Yousefi A, Chen R, Lankarany M. Inferring cognitive state underlying conflict choices in verbal Stroop task using heterogeneous input discriminative-generative decoder model. J Neural Eng 2023; 20:056016. [PMID: 37473753 DOI: 10.1088/1741-2552/ace932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Objective. The subthalamic nucleus (STN) of the basal ganglia interacts with the medial prefrontal cortex (mPFC) and shapes a control loop, specifically when the brain receives contradictory information from either different sensory systems or conflicting information from sensory inputs and prior knowledge that developed in the brain. Experimental studies demonstrated that significant increases in theta activities (2-8 Hz) in both the STN and mPFC as well as increased phase synchronization between mPFC and STN are prominent features of conflict processing. While these neural features reflect the importance of STN-mPFC circuitry in conflict processing, a low-dimensional representation of the mPFC-STN interaction referred to as a cognitive state, that links neural activities generated by these sub-regions to behavioral signals (e.g. the response time), remains to be identified.Approach. Here, we propose a new model, namely, the heterogeneous input discriminative-generative decoder (HI-DGD) model, to infer a cognitive state underlying decision-making based on neural activities (STN and mPFC) and behavioral signals (individuals' response time) recorded in ten Parkinson's disease (PD) patients while they performed a Stroop task. PD patients may have conflict processing which is quantitatively (may be qualitative in some) different from healthy populations.Main results. Using extensive synthetic and experimental data, we showed that the HI-DGD model can diffuse information from neural and behavioral data simultaneously and estimate cognitive states underlying conflict and non-conflict trials significantly better than traditional methods. Additionally, the HI-DGD model identified which neural features made significant contributions to conflict and non-conflict choices. Interestingly, the estimated features match well with those reported in experimental studies.Significance. Finally, we highlight the capability of the HI-DGD model in estimating a cognitive state from a single trial of observation, which makes it appropriate to be utilized in closed-loop neuromodulation systems.
Collapse
Affiliation(s)
- Mohammad R Rezaei
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network (UHN), Toronto, ON, Canada
- KITE Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Haseul Jeoung
- Krembil Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Ayda Gharamani
- Krembil Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Worcester Polytechnic Institute, MA, United States of America
| | - Utpal Saha
- Krembil Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Venkat Bhat
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- KITE Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Ali Yousefi
- Worcester Polytechnic Institute, MA, United States of America
| | - Robert Chen
- Krembil Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Milad Lankarany
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network (UHN), Toronto, ON, Canada
- KITE Research Institute, University Health Network (UHN), Toronto, ON, Canada
| |
Collapse
|
10
|
Najera RA, Mahavadi AK, Khan AU, Boddeti U, Del Bene VA, Walker HC, Bentley JN. Alternative patterns of deep brain stimulation in neurologic and neuropsychiatric disorders. Front Neuroinform 2023; 17:1156818. [PMID: 37415779 PMCID: PMC10320008 DOI: 10.3389/fninf.2023.1156818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Deep brain stimulation (DBS) is a widely used clinical therapy that modulates neuronal firing in subcortical structures, eliciting downstream network effects. Its effectiveness is determined by electrode geometry and location as well as adjustable stimulation parameters including pulse width, interstimulus interval, frequency, and amplitude. These parameters are often determined empirically during clinical or intraoperative programming and can be altered to an almost unlimited number of combinations. Conventional high-frequency stimulation uses a continuous high-frequency square-wave pulse (typically 130-160 Hz), but other stimulation patterns may prove efficacious, such as continuous or bursting theta-frequencies, variable frequencies, and coordinated reset stimulation. Here we summarize the current landscape and potential clinical applications for novel stimulation patterns.
Collapse
Affiliation(s)
- Ricardo A. Najera
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anil K. Mahavadi
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anas U. Khan
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victor A. Del Bene
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. NPJ SCIENCE OF LEARNING 2023; 8:1. [PMID: 36593247 PMCID: PMC9807644 DOI: 10.1038/s41539-022-00152-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation used for improving cognitive functions via delivering weak electrical stimulation with a certain frequency. This systematic review and meta-analysis investigated the effects of tACS protocols on cognitive functions in healthy young adults. We identified 56 qualified studies that compared cognitive functions between tACS and sham control groups, as indicated by cognitive performances and cognition-related reaction time. Moderator variable analyses specified effect size according to (a) timing of tACS, (b) frequency band of simulation, (c) targeted brain region, and (b) cognitive domain, respectively. Random-effects model meta-analysis revealed small positive effects of tACS protocols on cognitive performances. The moderator variable analyses found significant effects for online-tACS with theta frequency band, online-tACS with gamma frequency band, and offline-tACS with theta frequency band. Moreover, cognitive performances were improved in online- and offline-tACS with theta frequency band on either prefrontal and posterior parietal cortical regions, and further both online- and offline-tACS with theta frequency band enhanced executive function. Online-tACS with gamma frequency band on posterior parietal cortex was effective for improving cognitive performances, and the cognitive improvements appeared in executive function and perceptual-motor function. These findings suggested that tACS protocols with specific timing and frequency band may effectively improve cognitive performances.
Collapse
Affiliation(s)
- Tae Lee Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea.
| |
Collapse
|
12
|
Cole RC, Espinoza AI, Singh A, Berger JI, Cavanagh JF, Wessel JR, Greenlee JD, Narayanan NS. Novelty-induced frontal-STN networks in Parkinson's disease. Cereb Cortex 2022; 33:469-485. [PMID: 35297483 PMCID: PMC9837604 DOI: 10.1093/cercor/bhac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Novelty detection is a primitive subcomponent of cognitive control that can be deficient in Parkinson's disease (PD) patients. Here, we studied the corticostriatal mechanisms underlying novelty-response deficits. In participants with PD, we recorded from cortical circuits with scalp-based electroencephalography (EEG) and from subcortical circuits using intraoperative neurophysiology during surgeries for implantation of deep brain stimulation (DBS) electrodes. We report three major results. First, novel auditory stimuli triggered midfrontal low-frequency rhythms; of these, 1-4 Hz "delta" rhythms were linked to novelty-associated slowing, whereas 4-7 Hz "theta" rhythms were specifically attenuated in PD. Second, 32% of subthalamic nucleus (STN) neurons were response-modulated; nearly all (94%) of these were also modulated by novel stimuli. Third, response-modulated STN neurons were coherent with midfrontal 1-4 Hz activity. These findings link scalp-based measurements of neural activity with neuronal activity in the STN. Our results provide insight into midfrontal cognitive control mechanisms and how purported hyperdirect frontobasal ganglia circuits evaluate new information.
Collapse
Affiliation(s)
- Rachel C Cole
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
| | - Arturo I Espinoza
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, 57069, SD, United States
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa, 340 Iowa Ave, Iowa City, IA, 52242, United States
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, 2001 Redondo S Dr, Albuquerque, NM 87106, United States
| | - Jan R Wessel
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States
- Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Jeremy D Greenlee
- Department of Neurosurgery, University of Iowa, 340 Iowa Ave, Iowa City, IA, 52242, United States
- Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
- Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
13
|
Zhang Q, Zhao B, Neumann WJ, Xie H, Shi L, Zhu G, Yin Z, Qin G, Bai Y, Meng F, Yang A, Jiang Y, Zhang J. Low-frequency oscillations link frontal and parietal cortex with subthalamic nucleus in conflicts. Neuroimage 2022; 258:119389. [PMID: 35714885 DOI: 10.1016/j.neuroimage.2022.119389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Low-frequency oscillations (LFOs, 28 Hz) in the subthalamic nucleus(STN) are known to reflect cognitive conflict. However, it is unclear if LFOs mediate communication and functional interactions among regions implicated in conflict processing, such as the motor cortex (M1), premotor cortex (PMC), and superior parietal lobule (SPL). To investigate the potential contribution of LFOs to cognitive conflict mediation, we recorded M1, PMC, and SPL activities by right subdural electrocorticography (ECoG) simultaneously with bilateral STN local field potentials (LFPs) by deep brain stimulation electrodes in 13 patients with Parkinson's disease who performed the arrow version of the Eriksen flanker task. Elevated cue-related LFO activity was observed across patients during task trials, with the earliest onset in PMC and SPL. At cue onset, LFO power exhibited a significantly greater increase or a trend of a greater increase in the PMC, M1, and STN, and less increase in the SPL during high-conflict (incongruent) trials than in low-conflict (congruent) trials. The local LFO power increases in PMC, SPL, and right STN were correlated with response time, supporting the notion that these structures are critical hubs for cognitive conflict processing. This power increase was accompanied by increased functional connectivity between the PMC and right STN, which was correlated with response time across subjects. Finally, ipsilateral PMC-STN Granger causality was enhanced during high-conflict trials, with direction from STN to PMC. Our study indicates that LFOs link the frontal and parietal cortex with STN during conflicts, and the ipsilateral PMC-STN connection is specifically involved in this cognitive conflict processing.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charite´, Universita¨Tsmedizin Berlin, Charite´ Campus Mitte, Berlin 10117, Germany
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, The South Fourth Ring Road, West Road, Fengtai District & No. 119, Beijing 100070, China; Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
| |
Collapse
|
14
|
Moolchand P, Jones SR, Frank MJ. Biophysical and Architectural Mechanisms of Subthalamic Theta under Response Conflict. J Neurosci 2022; 42:4470-4487. [PMID: 35477903 PMCID: PMC9172290 DOI: 10.1523/jneurosci.2433-19.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
The cortico-basal ganglia circuit is needed to suppress prepotent actions and to facilitate controlled behavior. Under conditions of response conflict, the frontal cortex and subthalamic nucleus (STN) exhibit increased spiking and theta band power, which are linked to adaptive regulation of behavioral output. The electrophysiological mechanisms underlying these neural signatures of impulse control remain poorly understood. To address this lacuna, we constructed a novel large-scale, biophysically principled model of the subthalamopallidal (STN-globus pallidus externus) network and examined the mechanisms that modulate theta power and spiking in response to cortical input. Simulations confirmed that theta power does not emerge from intrinsic network dynamics but is robustly elicited in response to cortical input as burst events representing action selection dynamics. Rhythmic burst events of multiple cortical populations, representing a state of conflict where cortical motor plans vacillate in the theta range, led to prolonged STN theta and increased spiking, consistent with empirical literature. Notably, theta band signaling required NMDA, but not AMPA, currents, which were in turn related to a triphasic STN response characterized by spiking, silence, and bursting periods. Finally, theta band resonance was also strongly modulated by architectural connectivity, with maximal theta arising when multiple cortical populations project to individual STN "conflict detector" units because of an NMDA-dependent supralinear response. Our results provide insights into the biophysical principles and architectural constraints that give rise to STN dynamics during response conflict, and how their disruption can lead to impulsivity and compulsivity.SIGNIFICANCE STATEMENT The subthalamic nucleus exhibits theta band power modulation related to cognitive control over motor actions during conditions of response conflict. However, the mechanisms of such dynamics are not understood. Here we developed a novel biophysically detailed and data-constrained large-scale model of the subthalamopallidal network, and examined the impacts of cellular and network architectural properties that give rise to theta dynamics. Our investigations implicate an important role for NMDA receptors and cortico-subthalamic nucleus topographical connectivities in theta power modulation.
Collapse
Affiliation(s)
- Prannath Moolchand
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|