1
|
Carboni L, Nwaigwe D, Mainsant M, Bayle R, Reyboz M, Mermillod M, Dojat M, Achard S. Exploring continual learning strategies in artificial neural networks through graph-based analysis of connectivity: Insights from a brain-inspired perspective. Neural Netw 2025; 185:107125. [PMID: 39847940 DOI: 10.1016/j.neunet.2025.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/24/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025]
Abstract
Artificial Neural Networks (ANNs) aim at mimicking information processing in biological networks. In cognitive neuroscience, graph modeling is a powerful framework widely used to study brain structural and functional connectivity. Yet, the extension of graph modeling to ANNs has been poorly explored especially in terms of functional connectivity (i.e. the contextual change of the activity's units in networks). In the perspective of designing more robust and interpretable ANNs, we study how a brain-inspired graph-based approach can be extended and used to investigate ANN properties and behaviors. We focus our study on different continual learning strategies inspired by the biological mechanisms and modeled with ANNs. We show that graph modeling offers a simple and elegant framework to deeply investigate ANNs, compare their performances, and explore deleterious behaviors such as catastrophic forgetting.
Collapse
Affiliation(s)
- Lucrezia Carboni
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France; Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Dwight Nwaigwe
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France; Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Marion Mainsant
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France; Univ. Grenoble Alpes, CEA, LIST, 38000 Grenoble, France
| | - Raphael Bayle
- Univ. Grenoble Alpes, CEA, LIST, 38000 Grenoble, France
| | - Marina Reyboz
- Univ. Grenoble Alpes, CEA, LIST, 38000 Grenoble, France
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Michel Dojat
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France; Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France.
| | - Sophie Achard
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France
| |
Collapse
|
2
|
Huang C, Li A, Pang Y, Yang J, Zhang J, Wu X, Mei L. How the intrinsic functional connectivity patterns of the semantic network support semantic processing. Brain Imaging Behav 2024; 18:539-554. [PMID: 38261218 DOI: 10.1007/s11682-024-00849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Semantic processing, a core of language comprehension, involves the activation of brain regions dispersed extensively across the frontal, temporal, and parietal cortices that compose the semantic network. To comprehend the functional structure of this semantic network and how it prepares for semantic processing, we investigated its intrinsic functional connectivity (FC) and the relation between this pattern and semantic processing ability in a large sample from the Human Connectome Project (HCP) dataset. We first defined a well-studied brain network for semantic processing, and then we characterized the within-network connectivity (WNC) and the between-network connectivity (BNC) within this network using a voxel-based global brain connectivity (GBC) method based on resting-state functional magnetic resonance imaging (fMRI). The results showed that 97.73% of the voxels in the semantic network displayed considerably greater WNC than BNC, demonstrating that the semantic network is a fairly encapsulated network. Moreover, multiple connector hubs in the semantic network were identified after applying the criterion of WNC > 1 SD above the mean WNC of the semantic network. More importantly, three of these connector hubs (i.e., the left anterior temporal lobe, angular gyrus, and orbital part of the inferior frontal gyrus) were reliably associated with semantic processing ability. Our findings suggest that the three identified regions use WNC as the central mechanism for supporting semantic processing and that task-independent spontaneous connectivity in the semantic network is essential for semantic processing.
Collapse
Affiliation(s)
- Chengmei Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jiayi Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jingxian Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Wu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China.
| |
Collapse
|
3
|
Liao Z, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot JL, Paillère Martinot ML, Artiges E, Nees F, Papadopoulos Orfanos D, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Paus T, IMAGEN Consortium. Hemispheric asymmetry in cortical thinning reflects intrinsic organization of the neurotransmitter systems and homotopic functional connectivity. Proc Natl Acad Sci U S A 2023; 120:e2306990120. [PMID: 37831741 PMCID: PMC10589642 DOI: 10.1073/pnas.2306990120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/07/2023] [Indexed: 10/15/2023] Open
Abstract
Hemispheric lateralization and its origins have been of great interest in neuroscience for over a century. The left-right asymmetry in cortical thickness may stem from differential maturation of the cerebral cortex in the two hemispheres. Here, we investigated the spatial pattern of hemispheric differences in cortical thinning during adolescence, and its relationship with the density of neurotransmitter receptors and homotopic functional connectivity. Using longitudinal data from IMAGEN study (N = 532), we found that many cortical regions in the frontal and temporal lobes thinned more in the right hemisphere than in the left. Conversely, several regions in the occipital and parietal lobes thinned less in the right (vs. left) hemisphere. We then revealed that regions thinning more in the right (vs. left) hemispheres had higher density of neurotransmitter receptors and transporters in the right (vs. left) side. Moreover, the hemispheric differences in cortical thinning were predicted by homotopic functional connectivity. Specifically, regions with stronger homotopic functional connectivity showed a more symmetrical rate of cortical thinning between the left and right hemispheres, compared with regions with weaker homotopic functional connectivity. Based on these findings, we suggest that the typical patterns of hemispheric differences in cortical thinning may reflect the intrinsic organization of the neurotransmitter systems and related patterns of homotopic functional connectivity.
Collapse
Affiliation(s)
- Zhijie Liao
- Research Centre of Sainte-Justine University Hospital, Montreal, QCH3T 1C5, Canada
- Department of Psychiatry and Addictology, University of Montreal, Montreal, QCH3T 1J4, Canada
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim68159, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, DublinD02 PN40, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, DublinD02 PN40, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic & Developmental Psychiatry Centre, King’s College London, LondonSE5 8AF, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim69117, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim68131, Germany
| | - Antoine Grigis
- NeuroSpin, Energies and Atomic Energy Commission, Université Paris-Saclay, Paris F-91191, France
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT05405
- Department of Psychology, University of Vermont, Burlington, VT05405
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin10117, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin38116, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Developmental trajectories & psychiatry” Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Paris75006, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Developmental trajectories & psychiatry” Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Paris75006, France
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, AP-HP.Sorbonne Université, Paris75006, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Developmental trajectories & psychiatry” Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Paris75006, France
- Etablissement Public de Santé Barthélemy Durand, Paris91700, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim68159, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim69117, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel24118, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen37075, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim68159, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim68159, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden01087, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden01087, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin10117, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, DublinD02 PN40, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai200437, Peoples Republic of China
- Centre for Population Neuroscience and Precision Medicine, Charite Universitätsmedizin Berlin, Berlin10117, Germany
| | - Tomáš Paus
- Research Centre of Sainte-Justine University Hospital, Montreal, QCH3T 1C5, Canada
- Department of Psychiatry and Addictology, University of Montreal, Montreal, QCH3T 1J4, Canada
- Department of Neuroscience, University of Montreal, Montreal, QCH3T 1J4, Canada
| | - IMAGEN Consortium
- Research Centre of Sainte-Justine University Hospital, Montreal, QCH3T 1C5, Canada
- Department of Psychiatry and Addictology, University of Montreal, Montreal, QCH3T 1J4, Canada
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim68159, Germany
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, DublinD02 PN40, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, DublinD02 PN40, Ireland
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic & Developmental Psychiatry Centre, King’s College London, LondonSE5 8AF, United Kingdom
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim69117, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim68131, Germany
- NeuroSpin, Energies and Atomic Energy Commission, Université Paris-Saclay, Paris F-91191, France
- Department of Psychiatry, University of Vermont, Burlington, VT05405
- Department of Psychology, University of Vermont, Burlington, VT05405
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, NottinghamNG7 2RD, United Kingdom
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin10117, Germany
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin38116, Germany
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Developmental trajectories & psychiatry” Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Paris75006, France
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, AP-HP.Sorbonne Université, Paris75006, France
- Etablissement Public de Santé Barthélemy Durand, Paris91700, France
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel24118, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen37075, Germany
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden01087, Germany
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, DublinD02 PN40, Ireland
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai200437, Peoples Republic of China
- Centre for Population Neuroscience and Precision Medicine, Charite Universitätsmedizin Berlin, Berlin10117, Germany
- Department of Neuroscience, University of Montreal, Montreal, QCH3T 1J4, Canada
| |
Collapse
|
4
|
Graff K, Tansey R, Rai S, Ip A, Rohr C, Dimond D, Dewey D, Bray S. Functional connectomes become more longitudinally self-stable, but not more distinct from others, across early childhood. Neuroimage 2022; 258:119367. [PMID: 35716841 DOI: 10.1016/j.neuroimage.2022.119367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Functional connectomes, as measured with functional magnetic resonance imaging (fMRI), are highly individualized, and evidence suggests this individualization may increase across childhood. A connectome can become more individualized either by increasing self-stability or decreasing between-subject-similarity. Here we used a longitudinal early childhood dataset to investigate age associations with connectome self-stability, between-subject-similarity, and developmental individualization, defined as an individual's self-stability across a 12-month interval relative to their between-subject-similarity. fMRI data were collected during an 18-minute passive viewing scan from 73 typically developing children aged 4-7 years, at baseline and 12-month follow-up. We found that young children had highly individualized connectomes, with sufficient self-stability across 12-months for 98% identification accuracy. Linear models showed a significant relationship between age and developmental individualization across the whole brain and in most networks. This association appeared to be largely driven by an increase in self-stability with age, with only weak evidence for relationships between age and similarity across participants. Together our findings suggest that children's connectomes become more individualized across early childhood, and that this effect is driven by increasing self-stability rather than decreasing between-subject-similarity.
Collapse
Affiliation(s)
- Kirk Graff
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada.
| | - Ryann Tansey
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Shefali Rai
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Amanda Ip
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Christiane Rohr
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Dennis Dimond
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Community Health Science, University of Calgary, Calgary, AB, Canada
| | - Signe Bray
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|