1
|
Seki F, Yurimoto T, Kamioka M, Inoue T, Komaki Y, Iriki A, Sasaki E, Yamazaki Y. Development of a non-invasive novel individual marmoset holder for evaluation by awake functional magnetic resonance brain imaging. J Neurosci Methods 2025; 417:110390. [PMID: 39956398 DOI: 10.1016/j.jneumeth.2025.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/07/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Although functional MRI (fMRI) in awake marmosets (Callithrix jacchus) is fascinating for functional brain mapping and evaluation of brain disease models, it is difficult to launch awake fMRI on scanners with bore sizes of less than 16 cm. A universal marmoset holder for the small-bore size MRI was designed, and it was evaluated whether this holder could conduct auditory stimulation fMRI in the awake state using 16 cm bore size MRI scanner. NEW METHOD The marmoset holder was designed with an outer diameter of 71.9 mm. A holder was designed to allow adjustment according to the individual head shape, enabling the use of the holder universally. An awake fMRI study of auditory response was conducted to evaluate the practicality of the new holder. Whole-brain activation was investigated when marmosets heard the marmoset social communication "phee call" an artificial tone sound and reversed of those. RESULTS The prefrontal cortex was significantly activated in response to phee calls, whereas only the auditory cortex was activated in response to pure tones. In contrast, the auditory response was decreased when marmosets heard phee call. Their stimulus-specific responses indicated they perceived and differentiated sound characteristics in the fMRI environment. COMPARISON WITH EXISTING METHODS A holder does not require surgical intervention or a custom-made helmet to minimize head movement in a small space. CONCLUSION Our newly developed holder made it possible to perform longitudinal fMRI experiments on multiple marmosets in a less invasive manner.
Collapse
Affiliation(s)
- Fumiko Seki
- Imaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
| | - Terumi Yurimoto
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
| | - Michiko Kamioka
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan; Laboratory of Parasitology, Faculty of Veterinary Medicine, Okayama University of Science.
| | - Yuji Komaki
- Imaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
| | - Yumiko Yamazaki
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Department of Psychological Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| |
Collapse
|
2
|
Chitsaz D, Rowley CD, Uccelli NA, Lefebvre S, Krahn AI, Reintsch WE, Durcan TM, Tardif CL, Kennedy TE. Multiplex Immunofluorescent Batch Labeling of Marmoset Brain Sections. Brain Behav 2025; 15:e70308. [PMID: 40181645 PMCID: PMC11968781 DOI: 10.1002/brb3.70308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/29/2024] [Accepted: 01/12/2025] [Indexed: 04/05/2025] Open
Abstract
PURPOSE The common marmoset is a small nonhuman primate that has emerged as a valuable animal model in neuroscience research. Accurate analysis of brain tissue is crucial to understand marmoset neurophysiology and to model neurodegenerative diseases. Many studies to date have complemented magnetic resonance imaging (MRI) with histochemical staining rather than immunofluorescent labeling, which can generate more informative and higher resolution images. There is a need for high-throughput immunolabeling and imaging methodologies to generate resources for the burgeoning marmoset field, particularly brain histology atlases to display the organization of different cell types and other structures. METHODS AND FINDINGS Here, we have characterized a set of marmoset-compatible fluorescent dyes and antibodies that label myelin, axons, dendrites, and the iron-storage protein ferritin, and developed a batch-style multiplex immunohistochemistry protocol to uniformly process large numbers of tissue slides for multiple cell-type specific markers. CONCLUSION We provide a practical guide for researchers interested in harnessing the potential of marmoset models to advance understanding of brain structure, function, and pathophysiology.
Collapse
Affiliation(s)
- Daryan Chitsaz
- Integrated Program in NeuroscienceMcGill UniversityMontréalQuebecCanada
- Department of Neurology & Neurosurgery, Montreal Neurological Institute‐HospitalMcGill UniversityMontréalQuebecCanada
| | | | - Nonthué A. Uccelli
- Department of Neurology & Neurosurgery, Montreal Neurological Institute‐HospitalMcGill UniversityMontréalQuebecCanada
| | - Sarah Lefebvre
- Cognitive Neuroscience Unit, Montreal Neurological Institute‐HospitalMcGill UniversityMontrealQuebecCanada
| | - Andrea I. Krahn
- The Neuro's Early Drug Discovery Unit (EDDU)McGill UniversityMontrealQuebecCanada
| | - Wolfgang E. Reintsch
- The Neuro's Early Drug Discovery Unit (EDDU)McGill UniversityMontrealQuebecCanada
| | - Thomas M. Durcan
- Integrated Program in NeuroscienceMcGill UniversityMontréalQuebecCanada
- Department of Neurology & Neurosurgery, Montreal Neurological Institute‐HospitalMcGill UniversityMontréalQuebecCanada
- The Neuro's Early Drug Discovery Unit (EDDU)McGill UniversityMontrealQuebecCanada
| | - Christine L. Tardif
- Integrated Program in NeuroscienceMcGill UniversityMontréalQuebecCanada
- Department of Neurology & Neurosurgery, Montreal Neurological Institute‐HospitalMcGill UniversityMontréalQuebecCanada
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontréalQuebecCanada
| | - Timothy E. Kennedy
- Integrated Program in NeuroscienceMcGill UniversityMontréalQuebecCanada
- Department of Neurology & Neurosurgery, Montreal Neurological Institute‐HospitalMcGill UniversityMontréalQuebecCanada
| |
Collapse
|
3
|
Chen Y, Menegas W, Zhang Q, Feng G. Common marmoset: An emerging non-human primate model for translational applications in brain disorders. Curr Opin Neurobiol 2025; 92:102998. [PMID: 40090137 DOI: 10.1016/j.conb.2025.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
One of the fundamental challenges for modern neuroscience has been to translate discoveries from model organisms into effective therapeutics for human brain disorders. This challenge partly arises from the structural and functional differences between rodent and human brains [1]. To bridge this gap, non-human primates (NHPs) can be used as an intermediate step because of their genetic, physiological, and behavioral similarities to humans. Among NHPs, the common marmoset has become a valuable animal model in neuroscience research due to its fast generation time and unique biological and behavioral characteristics [2]. In this review, we first summarize the progress toward developing models for brain disorders. We then discuss emerging technologies and resources that will help advance our understanding of the neurobiological mechanisms underlying different brain disorders using marmoset genetic models. Finally, we describe using marmoset models to test novel therapeutic approaches such as gene therapy and neural circuit manipulation.
Collapse
Affiliation(s)
- Yefei Chen
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - William Menegas
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Qiangge Zhang
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Guoping Feng
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
4
|
Jafari A, Dureux A, Zanini A, Menon RS, Gilbert KM, Everling S. Unique Cortical and Subcortical Activation Patterns for Different Conspecific Calls in Marmosets. J Neurosci 2025; 45:e0670242024. [PMID: 39516045 PMCID: PMC11735661 DOI: 10.1523/jneurosci.0670-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The common marmoset (Callithrix jacchus) is known for its highly vocal nature, displaying a diverse range of calls. Functional imaging in marmosets has shown that the processing of conspecific calls activates a brain network that includes fronto-temporal areas. It is currently unknown whether different call types activate the same or different networks. In this study, nine adult marmosets (four females) were exposed to four common vocalizations (phee, chatter, trill, and twitter), and their brain responses were recorded using event-related functional magnetic resonance imaging at 9.4 T. We found robust activations in the auditory cortices, encompassing core, belt, and parabelt regions, and in subcortical areas like the inferior colliculus, medial geniculate nucleus, and amygdala in response to these calls. Although a common network was engaged, distinct activity patterns were evident for different vocalizations that could be distinguished by a 3D convolutional neural network, indicating unique neural processing for each vocalization. Our findings also indicate the involvement of the cerebellum and medial prefrontal cortex in distinguishing particular vocalizations from others.
Collapse
Affiliation(s)
- Azadeh Jafari
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
5
|
Rollin IZ, Papoti D, Bishop M, Szczupak D, Corigliano MR, Hitchens TK, Zhang B, Pell SKA, Guretse SS, Dureux A, Murai T, Sukoff Rizzo SJ, Klassen LM, Zeman P, Gilbert KM, Menon RS, Lin MK, Everling S, Silva AC, Schaeffer DJ. An Open Access Resource for Marmoset Neuroscientific Apparatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623252. [PMID: 39605348 PMCID: PMC11601486 DOI: 10.1101/2024.11.12.623252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The use of the common marmoset (Callithrix jacchus) for neuroscientific inquiry has grown precipitously over the past two decades. Despite windfalls of grant support from funding initiatives in North America, Europe, and Asia to model human brain diseases in the marmoset, marmoset-specific apparatus are of sparse availability from commercial vendors and thus are often developed and reside within individual laboratories. Through our collective research efforts, we have designed and vetted myriad designs for awake or anesthetized magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), as well as focused ultrasound (FUS), electrophysiology, optical imaging, surgery, and behavior in marmosets across the age-span. This resource makes these designs openly available, reducing the burden of de novo development across the marmoset field. The computer-aided-design (CAD) files are publicly available through the Marmoset Brain Connectome (MBC) resource (https://www.marmosetbrainconnectome.org/apparatus/) and include dozens of downloadable CAD assemblies, software and online calculators for marmoset neuroscience. In addition, we make available a variety of vetted touchscreen and task-based fMRI code and stimuli. Here, we highlight the online interface and the development and validation of a few yet unpublished resources: Software to automatically extract the head morphology of a marmoset from a CT and produce a 3D printable helmet for awake neuroimaging, and the design and validation of 8-channel and 14-channel receive arrays for imaging deep structures during anatomical and functional MRI.
Collapse
Affiliation(s)
- Isabela Zimmermann Rollin
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Daniel Papoti
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Mitchell Bishop
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Diego Szczupak
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael R. Corigliano
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T. Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bei Zhang
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Sarah K. A. Pell
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simeon S. Guretse
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Takeshi Murai
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stacey J. Sukoff Rizzo
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - L. Martyn Klassen
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Peter Zeman
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Ravi S. Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Meng-Kuan Lin
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Afonso C. Silva
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David J. Schaeffer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Atapour N, Rosa MGP, Bai S, Bednarek S, Kulesza A, Saworska G, Teymornejad S, Worthy KH, Majka P. Distribution of calbindin-positive neurons across areas and layers of the marmoset cerebral cortex. PLoS Comput Biol 2024; 20:e1012428. [PMID: 39312590 PMCID: PMC11495585 DOI: 10.1371/journal.pcbi.1012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/22/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
The diversity of the mammalian cerebral cortex demands technical approaches to map the spatial distribution of neurons with different biochemical identities. This issue is magnified in the case of the primate cortex, characterized by a large number of areas with distinctive cytoarchitectures. To date, no full map of the distribution of cells expressing a specific protein has been reported for the cortex of any primate. Here we have charted the 3-dimensional distribution of neurons expressing the calcium-binding protein calbindin (CB+ neurons) across the entire marmoset cortex, using a combination of immunohistochemistry, automated cell identification, computerized reconstruction, and cytoarchitecture-aware registration. CB+ neurons formed a heterogeneous population, which together corresponded to 10-20% of the cortical neurons. They occurred in higher proportions in areas corresponding to low hierarchical levels of processing, such as sensory cortices. Although CB+ neurons were concentrated in the supragranular and granular layers, there were clear global trends in their laminar distribution. For example, their relative density in infragranular layers increased with hierarchical level along sensorimotor processing streams, and their density in layer 4 was lower in areas involved in sensorimotor integration, action planning and motor control. These results reveal new quantitative aspects of the cytoarchitectural organization of the primate cortex, and demonstrate an approach to mapping the full distribution of neurochemically distinct cells throughout the brain which is readily applicable to most other mammalian species.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Marcello G. P. Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Shi Bai
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kulesza
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Gabriela Saworska
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Sadaf Teymornejad
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Katrina H. Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Liang L, Zimmermann Rollin I, Alikaya A, Ho JC, Santini T, Bostan AC, Schwerdt HN, Stauffer WR, Ibrahim TS, Pirondini E, Schaeffer DJ. An open-source MRI compatible frame for multimodal presurgical mapping in macaque and capuchin monkeys. J Neurosci Methods 2024; 407:110133. [PMID: 38588922 PMCID: PMC11127775 DOI: 10.1016/j.jneumeth.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND High-precision neurosurgical targeting in nonhuman primates (NHPs) often requires presurgical anatomical mapping with noninvasive neuroimaging techniques (MRI, CT, PET), allowing for translation of individual anatomical coordinates to surgical stereotaxic apparatus. Given the varied tissue contrasts that these imaging techniques produce, precise alignment of imaging-based coordinates to surgical apparatus can be cumbersome. MRI-compatible stereotaxis with radiopaque fiducial markers offer a straight-forward and reliable solution, but existing commercial options do not fit in conformal head coils that maximize imaging quality. NEW METHOD We developed a compact MRI-compatible stereotaxis suitable for a variety of NHP species (Macaca mulatta, Macaca fascicularis, and Cebus apella) that allows multimodal alignment through technique-specific fiducial markers. COMPARISON WITH EXISTING METHODS With the express purpose of compatibility with clinically available MRI, CT, and PET systems, the frame is no larger than a human head, while allowing for imaging NHPs in the supinated position. This design requires no marker implantation, special software, or additional knowledge other than the operation of a common large animal stereotaxis. RESULTS We demonstrated the applicability of this 3D-printable apparatus across a diverse set of experiments requiring presurgical planning: 1) We demonstrate the accuracy of the fiducial system through a within-MRI cannula insertion and subcortical injection of a viral vector. 2) We also demonstrated accuracy of multimodal (MRI and CT) alignment and coordinate transfer to guide a surgical robot electrode implantation for deep-brain electrophysiology. CONCLUSIONS The computer-aided design files and engineering drawings are publicly available, with the modular design allowing for low cost and manageable manufacturing.
Collapse
Affiliation(s)
- Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Isabela Zimmermann Rollin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aydin Alikaya
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jonathan C Ho
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreea C Bostan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tamer S Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh, Psychiatry, Pittsburgh, PA, USA; University of Pittsburgh, Radiology, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - David J Schaeffer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Selvanayagam J, Johnston KD, Everling S. Laminar Dynamics of Target Selection in the Posterior Parietal Cortex of the Common Marmoset. J Neurosci 2024; 44:e1583232024. [PMID: 38627088 PMCID: PMC11112649 DOI: 10.1523/jneurosci.1583-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 05/24/2024] Open
Abstract
The lateral intraparietal area (LIP) plays a crucial role in target selection and attention in primates, but the laminar microcircuitry of this region is largely unknown. To address this, we used ultra-high density laminar electrophysiology with Neuropixels probes to record neural activity in the posterior parietal cortex (PPC) of two adult marmosets while they performed a simple visual target selection task. Our results reveal neural correlates of visual target selection in the marmoset, similar to those observed in macaques and humans, with distinct timing and profiles of activity across cell types and cortical layers. Notably, a greater proportion of neurons exhibited stimulus-related activity in superficial layers whereas a greater proportion of infragranular neurons exhibited significant postsaccadic activity. Stimulus-related activity was first observed in granular layer putative interneurons, whereas target discrimination activity emerged first in supragranular layers putative pyramidal neurons, supporting a canonical laminar circuit underlying visual target selection in marmoset PPC. These findings provide novel insights into the neural basis of visual attention and target selection in primates.
Collapse
Affiliation(s)
- Janahan Selvanayagam
- Graduate Program in Neuroscience, Western University, London, Ontario N6A 3K7, Canada
- Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada
| | - Kevin D Johnston
- Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, Western University, London, Ontario N6A 3K7, Canada
- Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
| |
Collapse
|
9
|
Parks TV, Szczupak D, Choi SH, Schaeffer DJ. Noninvasive focal transgene delivery with viral neuronal tracers in the marmoset monkey. CELL REPORTS METHODS 2024; 4:100709. [PMID: 38359822 PMCID: PMC10921014 DOI: 10.1016/j.crmeth.2024.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
We establish a reliable method for selectively delivering adeno-associated viral vectors (AAVs) across the blood-brain barrier (BBB) in the marmoset without the need for neurosurgical injection. We focally perturbed the BBB (∼1 × 2 mm) in area 8aD of the frontal cortex in four adult marmoset monkeys using low-intensity transcranial focused ultrasound aided by microbubbles. Within an hour of opening the BBB, either AAV2 or AAV9 was delivered systemically via tail-vein injection. In all four marmosets, fluorescence-encoded neurons were observed at the site of BBB perturbation, with AAV2 showing a sparse distribution of transduced neurons when compared to AAV9. The results are compared to direct intracortical injections of anterograde tracers into area 8aD and similar (albeit sparser) long-range connectivity was observed. With evidence of transduced neurons specific to the region of BBB opening as well as long-distance tracing, we establish a framework for focal noninvasive transgene delivery to the marmoset brain.
Collapse
Affiliation(s)
- T Vincenza Parks
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diego Szczupak
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sang-Ho Choi
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Szczupak D, Schaeffer DJ, Tian X, Choi SH, Fang-Cheng, Iack PM, Campos VP, Mayo JP, Patsch J, Mitter C, Haboosheh A, Kwon HS, Vieira MAC, Reich DS, Jacobson S, Kasprian G, Tovar-Moll F, Lent R, Silva AC. Direct interhemispheric cortical communication via thalamic commissures: a new white matter pathway in the primate brain. Cereb Cortex 2024; 34:bhad394. [PMID: 37950874 PMCID: PMC10793074 DOI: 10.1093/cercor/bhad394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/13/2023] Open
Abstract
Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported and named the thalamic commissures (TCs) as an additional interhemispheric axonal fiber pathway connecting the cortex to the contralateral thalamus in the rodent brain. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted MRI, viral axonal tracing, and fMRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as a vital fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.
Collapse
Affiliation(s)
- Diego Szczupak
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - David J Schaeffer
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Xiaoguang Tian
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Sang-Ho Choi
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Fang-Cheng
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Pamela Meneses Iack
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Vinicius P Campos
- Department of Electrical and Computer Engineering, 400 Trabalhador São-Carlense Avenue, University of São Paulo, São Carlos, SP 13565-905, Brazil
| | - J Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, 1622 Locust Street, Pittsburgh, PA 15261, USA
| | - Janina Patsch
- Department of Biomedical Imaging and Image-Guided Therapy of the Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria
| | - Christian Mitter
- Department of Biomedical Imaging and Image-Guided Therapy of the Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria
| | - Amit Haboosheh
- Department of Radiology Hadassah Ein Karem Hospital, Kalman Ya'akov Man St, Jerusalem 9112001, Israel
| | - Ha Seung Kwon
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Marcelo A C Vieira
- Department of Electrical and Computer Engineering, 400 Trabalhador São-Carlense Avenue, University of São Paulo, São Carlos, SP 13565-905, Brazil
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Steve Jacobson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy of the Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria
| | - Fernanda Tovar-Moll
- D’Or Institute of Research and Education, 30 Rua Diniz Cordeiro Street, Rio de Janeiro, Rio de Janeiro 22281-100, Brazil
| | - Roberto Lent
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- D’Or Institute of Research and Education, 30 Rua Diniz Cordeiro Street, Rio de Janeiro, Rio de Janeiro 22281-100, Brazil
| | - Afonso C Silva
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Parks TV, Szuzupak D, Choi SH, Alikaya A, Mou Y, Silva AC, Schaeffer DJ. Noninvasive disruption of the blood-brain barrier in the marmoset monkey. Commun Biol 2023; 6:806. [PMID: 37532791 PMCID: PMC10397190 DOI: 10.1038/s42003-023-05185-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
The common marmoset monkey (Callithrix jacchus) is a species of rising prominence in the neurosciences due to its small size, ease of handling, fast breeding, and its shared functional and structural brain characteristics with Old World primates. With increasing attention on modeling human brain diseases in marmosets, understanding how to deliver therapeutic or neurotropic agents to the marmoset brain noninvasively is of great preclinical importance. In other species, including humans, transcranial focused ultrasound (tFUS) aided by intravenously injected microbubbles has proven to be a transient, reliable, and safe method for disrupting the blood-brain barrier (BBB), allowing the focal passage of therapeutic agents that do not otherwise readily traverse the tight endothelial junctions of the BBB. The critical gap that we address here is to document parameters to disrupt the BBB reliably and safely in marmosets using tFUS. By integrating our marmoset brain atlases and the use of a marmoset-specific stereotactic targeting system, we conduct a series of systematic transcranial sonication experiments in nine marmosets. We demonstrate the effects of center frequency, acoustic pressure, burst period, and duration, establish a minimum microbubble dose, estimate microbubble clearance time, and estimate the duration that the BBB remains open to passage. Successful BBB disruption is reported in vivo with MRI-based contrast agents, as well as Evans blue staining assessed ex vivo. Histology (Hematoxylin and Eosin staining) and immunohistochemistry indicate that the BBB can be safely and reliably opened with the parameters derived from these experiments. The series of experiments presented here establish methods for safely, reproducibly, and focally perturbing the BBB using tFUS in the common marmoset monkey that can serve as a basis for noninvasive delivery of therapeutic or neurotropic agents.
Collapse
Affiliation(s)
- T Vincenza Parks
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diego Szuzupak
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sang-Ho Choi
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aydin Alikaya
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yongshan Mou
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Belin P, Trapeau R, Obliger-Debouche M. A small, but vocal, brain. Cell Rep 2023; 42:112651. [PMID: 37314925 DOI: 10.1016/j.celrep.2023.112651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
In the May issue of Cell Reports, Jafari et al.1 used ultra-high-field fMRI to show that marmosets, like humans and macaques, possess an extensive network of voice-selective areas.
Collapse
Affiliation(s)
- Pascal Belin
- La Timone Neuroscience Institute, Marseille, France.
| | | | | |
Collapse
|
13
|
Szczupak D, Schaeffer DJ, Tian X, Choi SH, Fang-Cheng, Iack PM, Campos VP, Mayo JP, Patsch J, Mitter C, Haboosheh A, Vieira MA, Kasprian G, Tovar-Moll F, Lent R, Silva AC. Direct interhemispheric cortical communication via thalamic commissures: a new white-matter pathway in the primate brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545128. [PMID: 37398056 PMCID: PMC10312754 DOI: 10.1101/2023.06.15.545128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported an additional commissural pathway in rodents, termed the thalamic commissures (TCs), as another interhemispheric axonal fiber pathway that connects cortex to the contralateral thalamus. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted magnetic resonance imaging, viral axonal tracing, and functional MRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as an important fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.
Collapse
Affiliation(s)
- Diego Szczupak
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David J. Schaeffer
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaoguang Tian
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sang-Ho Choi
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Fang-Cheng
- Department of Neurological Surgery University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pamela Meneses Iack
- Department of Neurological Surgery University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - J. Patrick Mayo
- Department of Electrical and Computer Engineering, University of São Paulo, São Carlos, SP 13565-905, Brazil
| | - Janina Patsch
- Department of Biomedical Imaging and Image-guided therapy of the Medical University of Vienna, 1090, Austria
| | - Christian Mitter
- Department of Biomedical Imaging and Image-guided therapy of the Medical University of Vienna, 1090, Austria
| | - Amit Haboosheh
- Department Of Radiology Hadassah Ein Karem Hospital, Jerusalem 9112001, Israel
| | - Marcelo A.C. Vieira
- Department of Electrical and Computer Engineering, University of São Paulo, São Carlos, SP 13565-905, Brazil
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided therapy of the Medical University of Vienna, 1090, Austria
| | | | - Roberto Lent
- Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- D’Or Institute of Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Afonso C. Silva
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
14
|
Jafari A, Dureux A, Zanini A, Menon RS, Gilbert KM, Everling S. A vocalization-processing network in marmosets. Cell Rep 2023; 42:112526. [PMID: 37195863 DOI: 10.1016/j.celrep.2023.112526] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Vocalizations play an important role in the daily life of primates and likely form the basis of human language. Functional imaging studies have demonstrated that listening to voices activates a fronto-temporal voice perception network in human participants. Here, we acquired whole-brain ultrahigh-field (9.4 T) fMRI in awake marmosets (Callithrix jacchus) and demonstrate that these small, highly vocal New World primates possess a similar fronto-temporal network, including subcortical regions, that is activated by the presentation of conspecific vocalizations. The findings suggest that the human voice perception network has evolved from an ancestral vocalization-processing network that predates the separation of New and Old World primates.
Collapse
Affiliation(s)
- Azadeh Jafari
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
15
|
Zhu X, Yan H, Zhan Y, Feng F, Wei C, Yao YG, Liu C. An anatomical and connectivity atlas of the marmoset cerebellum. Cell Rep 2023; 42:112480. [PMID: 37163375 DOI: 10.1016/j.celrep.2023.112480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
The cerebellum is essential for motor control and cognitive functioning, engaging in bidirectional communication with the cerebral cortex. The common marmoset, a small non-human primate, offers unique advantages for studying cerebello-cerebral circuits. However, the marmoset cerebellum is not well described in published resources. In this study, we present a comprehensive atlas of the marmoset cerebellum comprising (1) fine-detailed anatomical atlases and surface-analysis tools of the cerebellar cortex based on ultra-high-resolution ex vivo MRI, (2) functional connectivity and gradient patterns of the cerebellar cortex revealed by awake resting-state fMRI, and (3) structural-connectivity mapping of cerebellar nuclei using high-resolution diffusion MRI tractography. The atlas elucidates the anatomical details of the marmoset cerebellum, reveals distinct gradient patterns of intra-cerebellar and cerebello-cerebral functional connectivity, and maps the topological relationship of cerebellar nuclei in cerebello-cerebral circuits. As version 5 of the Marmoset Brain Mapping project, this atlas is publicly available at https://marmosetbrainmapping.org/MBMv5.html.
Collapse
Affiliation(s)
- Xiaojia Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Yan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yafeng Zhan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Furui Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chuanyao Wei
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cirong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
16
|
Hata J, Nakae K, Tsukada H, Woodward A, Haga Y, Iida M, Uematsu A, Seki F, Ichinohe N, Gong R, Kaneko T, Yoshimaru D, Watakabe A, Abe H, Tani T, Hamda HT, Gutierrez CE, Skibbe H, Maeda M, Papazian F, Hagiya K, Kishi N, Ishii S, Doya K, Shimogori T, Yamamori T, Tanaka K, Okano HJ, Okano H. Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range. Sci Data 2023; 10:221. [PMID: 37105968 PMCID: PMC10250358 DOI: 10.1038/s41597-023-02121-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefore, the common marmoset model is effective in aging research. The current study investigated the aging process of the marmoset brain and provided an open MRI database of marmosets across a wide age range. The Brain/MINDS Marmoset Brain MRI Dataset contains brain MRI information from 216 marmosets ranging in age from 1 and 10 years. At the time of its release, it is the largest public dataset in the world. It also includes multi-contrast MRI images. In addition, 91 of 216 animals have corresponding high-resolution ex vivo MRI datasets. Our MRI database, available at the Brain/MINDS Data Portal, might help to understand the effects of various factors, such as age, sex, body size, and fixation, on the brain. It can also contribute to and accelerate brain science studies worldwide.
Collapse
Affiliation(s)
- Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan.
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
- Live Animal Imaging Center, Central Institute for Experimental Animals, Kanagawa, Japan.
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Ken Nakae
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Aichi, Japan
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Hiromichi Tsukada
- Center for Mathematical Science and Artificial Intelligence, Chubu University, Aichi, Japan
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Alexander Woodward
- Connectome Analysis Unit, RIKEN Center for Brain Science, Saitama, Japan
| | - Yawara Haga
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Mayu Iida
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Akiko Uematsu
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Fumiko Seki
- Live Animal Imaging Center, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Rui Gong
- Connectome Analysis Unit, RIKEN Center for Brain Science, Saitama, Japan
| | - Takaaki Kaneko
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, Japan
| | - Daisuke Yoshimaru
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Live Animal Imaging Center, Central Institute for Experimental Animals, Kanagawa, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
| | - Hiroshi Abe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
| | - Toshiki Tani
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
| | - Hiro Taiyo Hamda
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Research & Development Department, Araya Inc, Tokyo, Japan
| | - Carlos Enrique Gutierrez
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Saitama, Japan
| | - Masahide Maeda
- Connectome Analysis Unit, RIKEN Center for Brain Science, Saitama, Japan
| | - Frederic Papazian
- Connectome Analysis Unit, RIKEN Center for Brain Science, Saitama, Japan
| | - Kei Hagiya
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Noriyuki Kishi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Ishii
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory of Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Keiji Tanaka
- Connectome Analysis Unit, RIKEN Center for Brain Science, Saitama, Japan
| | - Hirotaka James Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
17
|
Ngo GN, Hori Y, Everling S, Menon RS. Joint-embeddings reveal functional differences in default-mode network architecture between marmosets and humans. Neuroimage 2023; 272:120035. [PMID: 36948281 DOI: 10.1016/j.neuroimage.2023.120035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/30/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
The default-mode network (DMN) is a distributed functional brain system integral for social and higher-order cognition in humans with implications in a myriad of neuropsychological disorders. In this study, we compared the functional architecture of the DMN between humans and marmosets to assess their similarities and differences using joint gradients. This approach permits simultaneous large-scale mapping of functional systems across the cortex of humans and marmosets, revealing evidence of putative homologies between them. In doing so, we find that the DMN architecture of the marmoset exhibits differences along its anterolateral-posterior axis. Specifically, the anterolateral node of the DMN (dorsolateral prefrontal cortex) displayed weak connections and inconsistent connection topographies as compared to its posterior DMN-nodes (posterior cingulate and posterior parietal cortices). We also present evidence that the marmoset medial prefrontal cortex and temporal lobe areas correspond to other macroscopical distributed functional systems that are not part of the DMN. Given the importance of the marmoset as a pre-clinical primate model for higher-order cognitive functioning and the DMN's relevance to cognition, our results suggest that the marmoset may lack the capacity to integrate neural information to subserve cortical dynamics that is necessary for supporting diverse cognitive demands.
Collapse
Affiliation(s)
- Geoffrey N Ngo
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada; Department of Functional Brain Imaging, National Institutes of Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ravi S Menon
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1, Canada.; Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
18
|
Schaeffer DJ, Gilbert KM, Bellyou M, Silva AC, Everling S. Frontoparietal connectivity as a product of convergent evolution in rodents and primates: functional connectivity topologies in grey squirrels, rats, and marmosets. Commun Biol 2022; 5:986. [PMID: 36115876 PMCID: PMC9482620 DOI: 10.1038/s42003-022-03949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Robust frontoparietal connectivity is a defining feature of primate cortical organization. Whether mammals outside the primate order, such as rodents, possess similar frontoparietal functional connectivity organization is a controversial topic. Previous work has primarily focused on comparing mice and rats to primates. However, as these rodents are nocturnal and terrestrial, they rely much less on visual input than primates. Here, we investigated the functional cortical organization of grey squirrels which are diurnal and arboreal, thereby better resembling primate ecology. We used ultra-high field resting-state fMRI data to compute and compare the functional connectivity patterns of frontal regions in grey squirrels (Sciurus carolinensis), rats (Rattus norvegicus), and marmosets (Callithrix jacchus). We utilized a fingerprinting analysis to compare interareal patterns of functional connectivity from seeds across frontal cortex in all three species. The results show that grey squirrels, but not rats, possess a frontoparietal connectivity organization that resembles the connectivity pattern of marmoset lateral prefrontal cortical areas. Since grey squirrels and marmosets have acquired an arboreal way of life but show no common arboreal ancestor, the expansion of the visual system and the formation of a frontoparietal connectivity architecture might reflect convergent evolution driven by similar ecological niches in primates and tree squirrels.
Collapse
Affiliation(s)
- David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Miranda Bellyou
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|