1
|
Dong T, Lee HH, Zang H, Lee H, Tian Q, Wan L, Fan Q, Huang S. In vivo cortical microstructure mapping using high-gradient diffusion MRI accounting for intercompartmental water exchange effects. Neuroimage 2025; 314:121258. [PMID: 40349743 DOI: 10.1016/j.neuroimage.2025.121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 04/19/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
In recent years, mapping tissue microstructure in the cortex using high gradient diffusion MRI has received growing attention. The Soma And Neurite Density Imaging (SANDI) explicitly models the soma compartment in the cortex assuming impermeable membranes. As such, it does not account for diffusion time dependence due to water exchange in the estimated microstructural properties, as neurites in gray matter are much less myelinated than in white matter. In this work, we performed a systematic evaluation of an extended SANDI model for in vivo human cortical microstructural mapping that accounts for water exchange effects between the neurite and extracellular compartments using the anisotropic Kärger model. We refer to this model as in vivo SANDIX, adapting the nomenclature from previous publications. As in the original SANDI model, the soma compartment is modeled as an impermeable sphere due to the much smaller surface-to-volume ratio compared to the neurite compartment. A Monte Carlo simulation study was performed to examine the sensitivity of the in vivo SANDIX model to sphere radii, compartment fractions, and water exchange times. The simulation results indicate that the proposed in vivo SANDIX framework can account for the water exchange effect and provide measures of intra-soma and intra-neurite signal fractions without spurious time-dependence in estimated parameters, whereas the measured water exchange times need to be interpreted with caution. The model was then applied to in vivo diffusion MRI data acquired in 13 healthy adults on the 3-Tesla Connectome MRI scanner equipped with 300 mT/m gradients. The in vivo results exhibited patterns that were consistent with corresponding anatomical characteristics in both cortex and white matter. In particular, the estimated water exchange times in gray and white matter were distinct and differentiated between the two tissue types. Our results show the SANDIX approach applied to high-gradient diffusion MRI data achieves cortical microstructure mapping of the in vivo human brain with the evaluation of water exchange effects. This approach potentially provides a more appropriate description of in vivo cortical microstructure for improving data interpretation in future neurobiological studies.
Collapse
Affiliation(s)
- Tanxin Dong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Interaction, Tianjin, China
| | - Hong-Hsi Lee
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Han Zang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Interaction, Tianjin, China
| | - Hansol Lee
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Qiyuan Tian
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Liang Wan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qiuyun Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Interaction, Tianjin, China.
| | - SusieY Huang
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Jelescu IO, Grussu F, Ianus A, Hansen B, Barrett RLC, Aggarwal M, Michielse S, Nasrallah F, Syeda W, Wang N, Veraart J, Roebroeck A, Bagdasarian AF, Eichner C, Sepehrband F, Zimmermann J, Soustelle L, Bowman C, Tendler BC, Hertanu A, Jeurissen B, Verhoye M, Frydman L, van de Looij Y, Hike D, Dunn JF, Miller K, Landman BA, Shemesh N, Anderson A, McKinnon E, Farquharson S, Dell'Acqua F, Pierpaoli C, Drobnjak I, Leemans A, Harkins KD, Descoteaux M, Xu D, Huang H, Santin MD, Grant SC, Obenaus A, Kim GS, Wu D, Le Bihan D, Blackband SJ, Ciobanu L, Fieremans E, Bai R, Leergaard TB, Zhang J, Dyrby TB, Johnson GA, Cohen‐Adad J, Budde MD, Schilling KG. Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 1: In vivo small-animal imaging. Magn Reson Med 2025; 93:2507-2534. [PMID: 40008568 PMCID: PMC11971505 DOI: 10.1002/mrm.30429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 02/27/2025]
Abstract
Small-animal diffusion MRI (dMRI) has been used for methodological development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. The steps from animal setup and monitoring, to acquisition, analysis, and interpretation are complex, with many decisions that may ultimately affect what questions can be answered using the resultant data. This work aims to present selected considerations and recommendations from the diffusion community on best practices for preclinical dMRI of in vivo animals. We describe the general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in animal species and disease models and discuss why some may be more or less appropriate for different studies. We, then, give recommendations for in vivo acquisition protocols, including decisions on hardware, animal preparation, and imaging sequences, followed by advice for data processing including preprocessing, model-fitting, and tractography. Finally, we provide an online resource that lists publicly available preclinical dMRI datasets and software packages to promote responsible and reproducible research. In each section, we attempt to provide guides and recommendations, but also highlight areas for which no guidelines exist (and why), and where future work should focus. Although we mainly cover the central nervous system (on which most preclinical dMRI studies are focused), we also provide, where possible and applicable, recommendations for other organs of interest. An overarching goal is to enhance the rigor and reproducibility of small animal dMRI acquisitions and analyses, and thereby advance biomedical knowledge.
Collapse
Affiliation(s)
- Ileana O. Jelescu
- Department of RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
- CIBM Center for Biomedical ImagingEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Francesco Grussu
- Radiomics GroupVall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
- Queen Square MS Centre, Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
| | - Andrada Ianus
- Champalimaud ResearchChampalimaud FoundationLisbonPortugal
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Brian Hansen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| | - Rachel L. C. Barrett
- Department of NeuroimagingInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- NatBrainLab, Department of Forensics and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Stijn Michielse
- Department of Neurosurgery, School for Mental Health and Neuroscience (MHeNS)Maastricht University Medical CenterMaastrichtThe Netherlands
| | - Fatima Nasrallah
- The Queensland Brain InstituteThe University of QueenslandSt LuciaQueenslandAustralia
| | - Warda Syeda
- Melbourne Neuropsychiatry CentreThe University of MelbourneParkvilleVictoriaAustralia
| | - Nian Wang
- Department of Radiology and Imaging SciencesIndiana UniversityBloomingtonIndianaUSA
- Stark Neurosciences Research InstituteIndiana University School of MedicineBloomingtonIndianaUSA
| | - Jelle Veraart
- Center for Biomedical ImagingNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Alard Roebroeck
- Faculty of psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Andrew F. Bagdasarian
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Center for Interdisciplinary Magnetic ResonanceNational HIgh Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - Cornelius Eichner
- Department of NeuropsychologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Farshid Sepehrband
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCUniversity of Southern CaliforniaCaliforniaLos AngelesUSA
| | - Jan Zimmermann
- Department of Neuroscience, Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Christien Bowman
- Bio‐Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpAntwerpBelgium
- μNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Benjamin C. Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Andreea Hertanu
- Department of RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Ben Jeurissen
- imec Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpenBelgium
- Lab for Equilibrium Investigations and Aerospace, Department of PhysicsUniversity of AntwerpAntwerpenBelgium
| | - Marleen Verhoye
- Bio‐Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpAntwerpBelgium
- μNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Lucio Frydman
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics, Gynaecology and Obstetrics, School of MedicineUniversité de GenèveGenèveSwitzerland
| | - David Hike
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Center for Interdisciplinary Magnetic ResonanceNational HIgh Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - Jeff F. Dunn
- Department of Radiology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain Institute, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research Institute, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Karla Miller
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Bennett A. Landman
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Noam Shemesh
- Champalimaud ResearchChampalimaud FoundationLisbonPortugal
| | - Adam Anderson
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Emilie McKinnon
- Medical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Shawna Farquharson
- National Imaging FacilityThe University of QueenslandBrisbaneQueenslandAustralia
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental SciencesKing's College LondonLondonUK
| | - Carlo Pierpaoli
- Laboratory on Quantitative Medical imaging, NIBIBNational Institutes of HealthBethesdaMarylandUSA
| | - Ivana Drobnjak
- Department of Computer ScienceUniversity College LondonLondonUK
| | - Alexander Leemans
- PROVIDI Lab, Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Kevin D. Harkins
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaing Lab (SCIL), Computer Science DepartmentUniversité de SherbrookeSherbrookeQuebecCanada
- Imeka SolutionsSherbrookeQuebecCanada
| | - Duan Xu
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Hao Huang
- Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Mathieu D. Santin
- Centre for NeuroImaging Research (CENIR), Inserm U 1127, CNRS UMR 7225Sorbonne UniversitéParisFrance
- Paris Brain InstituteParisFrance
| | - Samuel C. Grant
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Center for Interdisciplinary Magnetic ResonanceNational HIgh Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - Andre Obenaus
- Division of Biomedical SciencesUniversity of California RiversideRiversideCaliforniaUSA
- Preclinical and Translational Imaging CenterUniversity of California IrvineIrvineCaliforniaUSA
| | - Gene S. Kim
- Department of RadiologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Denis Le Bihan
- CEA, DRF, JOLIOT, NeuroSpinGif‐sur‐YvetteFrance
- Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Stephen J. Blackband
- Department of NeuroscienceUniversity of FloridaGainesvilleFloridaUSA
- McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
- National High Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - Luisa Ciobanu
- NeuroSpin, UMR CEA/CNRS 9027Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Els Fieremans
- Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of MedicineZhejiang UniversityHangzhouChina
- Frontier Center of Brain Science and Brain‐Machine IntegrationZhejiang UniversityZhejiangChina
| | - Trygve B. Leergaard
- Department of Molecular Biology, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jiangyang Zhang
- Department of RadiologyNew York University School of MedicineNew YorkNew YorkUSA
| | - Tim B. Dyrby
- Danish Research Centre for Magnetic ResonanceCentre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
| | - G. Allan Johnson
- Duke Center for In Vivo Microscopy, Department of RadiologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Institute of Biomedical EngineeringPolytechnique MontrealMontrealQuebecCanada
- Functional Neuroimaging Unit, CRIUGMUniversity of MontrealMontrealQuebecCanada
- Mila ‐ Quebec AI InstituteMontrealQuebecCanada
| | - Matthew D. Budde
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Clement J Zablocki VA Medical CenterMilwaukeeWisconsinUSA
| | - Kurt G. Schilling
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
3
|
Mansour H, Azrak R, Cook JJ, Hornburg KJ, Qi Y, Tian Y, Williams RW, Yeh FC, White LE, Johnson GA. The Duke Mouse Brain Atlas: MRI and light sheet microscopy stereotaxic atlas of the mouse brain. SCIENCE ADVANCES 2025; 11:eadq8089. [PMID: 40305623 PMCID: PMC12042906 DOI: 10.1126/sciadv.adq8089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Atlases of the brain are critical resources that make it possible to share data in a common reference frame. Unexpectedly, there is no three-dimensional (3D) stereotaxic atlas of the mouse brain that provides whole brain coverage at macro to single-cell levels. Diffusion tensor images from five perfusion-fixed (in skull) specimens were acquired at 15 micrometers, the highest resolution ever reported. Diffusion tensor imaging yields multiple 3D volumes, each of which highlights unique cytoarchitecture. The averages were mapped into micro-computed tomography of the mouse skull to create external landmarks (bregma and lambda). Light sheet images of the same brains were coregistered, providing cell maps in the same stereotaxic space. The Allen Reference Atlas was registered to the volume to correct the geometric distortion in that atlas and bring it into the stereotaxic space. The resulting multiscalar (13 terabytes) atlas provides a common spatial framework to anneal data across molecular, structural, and functional studies of mice.
Collapse
Affiliation(s)
- Harrison Mansour
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ryan Azrak
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - James J. Cook
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kathryn J. Hornburg
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yi Qi
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yuqi Tian
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonard E. White
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
| | - G. Allan Johnson
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Genc S, Ball G, Chamberland M, Raven EP, Tax CMW, Ward I, Yang JYM, Palombo M, Jones DK. MRI signatures of cortical microstructure in human development align with oligodendrocyte cell-type expression. Nat Commun 2025; 16:3317. [PMID: 40195348 PMCID: PMC11977195 DOI: 10.1038/s41467-025-58604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Neuroanatomical changes to the cortex during adolescence have been well documented using MRI, revealing ongoing cortical thinning and volume loss. Recent advances in MRI hardware and biophysical models of tissue informed by diffusion MRI data hold promise for identifying the cellular changes driving these morphological observations. Using ultra-strong gradient MRI, this study quantifies cortical neurite and soma microstructure in typically developing youth. Across domain-specific networks, cortical neurite signal fraction, attributed to neuronal and glial processes, increases with age. The apparent soma radius, attributed to the apparent radius of glial and neuronal cell bodies, decreases with age. Analyses of two independent post-mortem datasets reveal that genes increasing in expression through adolescence are significantly enriched in cortical oligodendrocytes and Layer 5-6 neurons. In our study, we show spatial and temporal alignment of oligodendrocyte cell-type gene expression with neurite and soma microstructural changes, suggesting that ongoing cortical myelination processes drive adolescent cortical development.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, VIC, Australia.
| | - Gareth Ball
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isobel Ward
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Joseph Y M Yang
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Neuroscience Research, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
5
|
Zeng JY, Huang HW, Zhuang SP, Wu Y, Chen S, Zou ZY, Chen HJ. Soma and neurite density imaging detects brain microstructural impairments in amyotrophic lateral sclerosis. Eur J Radiol 2025; 184:111981. [PMID: 39933303 DOI: 10.1016/j.ejrad.2025.111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVE To investigate whole-brain microstructural changes in amyotrophic lateral sclerosis (ALS) using soma and neurite density imaging (SANDI), a novel multicompartment model of diffusion-weighted imaging that estimates apparent soma and neurite density. METHODS This study consists of 41 healthy controls and 43 patients with ALS, whose diffusion-weighted data were acquired. The SANDI-derived (including signal fractions of soma (fsoma), neurite (fneurite), and extra-cellular space (fextra)) and diffusion tensor imaging (DTI)-derived metrics were obtained. Voxel-based analyses were performed to evaluate intergroup differences and the correlation of SANDI and DTI metrics with clinical parameters. RESULTS In ALS patients, fneurite reduction involved both gray matter (primarily the bilateral precentral gyri, supplementary motor area, medial frontal gyrus, anterior cingulate cortex, inferior frontal gyrus, orbital gyrus, paracentral lobule, postcentral gyrus, middle cingulate cortex, hippocampus and parahippocampal gyrus, and insula, and left anterior parts of the temporal lobe) and white matter (primarily the bilateral corticospinal tract, body of corpus callosum, and brainstem) (P <0.05 after false discovery rate correction). The fextra increment showed a similar spatial distribution in ALS patients. Interestingly, the decreased fsoma in ALS primarily located in gray matter; while, the increased fsoma primarily involved white matter. The spatial distribution of fneurite/fextra/fsoma changes was larger than that detected by conventional DTI metrics, and the fneurite/fextra/fsoma were correlated with disease severity. CONCLUSIONS SANDI may serve as a clinically relevant model, superior to conventional DTI, for characterizing microstructural impairments such as neurite degeneration and soma alteration in ALS.
Collapse
Affiliation(s)
- Jing-Yi Zeng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Hui-Wei Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Shao-Peng Zhuang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 China.
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001 China.
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001 China.
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001 China.
| |
Collapse
|
6
|
Preziosa P, Pagani E, Meani A, Margoni M, Rubin M, Esposito F, Palombo M, Filippi M, Rocca MA. Soma and neurite density abnormalities of paramagnetic rim lesions and core-sign lesions in multiple sclerosis. J Neurol 2025; 272:145. [PMID: 39812706 DOI: 10.1007/s00415-025-12887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND In multiple sclerosis (MS), susceptibility-weighted imaging (SWI) may reveal white matter lesions (WML) with a paramagnetic rim ("paramagnetic rim lesions" [PRLs]) or diffuse hypointensity ("core-sign lesions"), reflecting different stages of WML evolution. OBJECTIVE Using the soma and neurite density imaging (SANDI) model on diffusion-weighted magnetic resonance imaging (MRI), we characterized microstructural abnormalities of MS PRLs and core-sign lesions and their clinical relevance. METHODS Forty MS patients and 20 healthy controls (HC) underwent a 3 T brain MRI. Using SANDI, the fractions of neurite (fneurite) and soma (fsoma) and size of soma (rsoma) were quantified in PRLs (including their core and rim separately), and core-sign lesions identified on SWI-phase. RESULTS Among 1811 WMLs, 122 (6.7%) core-sign lesions and 97 (5.4%) PRLs were identified. Compared to HC and MS normal-appearing white matter, all MS WML showed significantly lower fneurite and fsoma and higher rsoma (FDR-p < 0.001). Compared to SWI-isointense WML, core-sign lesions showed a significantly higher fneurite, and lower fsoma and rsoma (FDR-p ≤ 0.005). Compared to SWI-isointense WML and core-sign lesions, PRLs showed a significantly lower fneurite, higher fsoma, and higher rsoma (FDR-p ≤ 0.001). The PRL-core showed significantly lower fneurite, and higher rsoma than PRL-rim (FDR-p < 0.001). Lower PRL fneurite (β ≤ -0.006, FDR-p ≤ 0.015) and higher rsoma (β ≥ 0.032, FDR-p ≤ 0.024) were significantly associated with a longer disease duration and more severe disability. CONCLUSIONS In PRLs, the significant and clinically relevant neurite loss and increased soma fraction and size possibly reflect increased astrogliosis and activated microglia. Core-sign lesions exhibit milder axonal loss, microglia density and astrogliosis, supporting their less destructive nature.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy.
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Rubin
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| | - Federica Esposito
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Palombo
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
7
|
Chan KS, Ma Y, Lee H, Marques JP, Olesen J, Coelho S, Novikov DS, Jespersen S, Huang SY, Lee HH. In vivo human neurite exchange imaging (NEXI) at 500 mT/m diffusion gradients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628450. [PMID: 39763747 PMCID: PMC11702555 DOI: 10.1101/2024.12.13.628450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of in vivo imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s). We performed diffusion MRI measurements in 15 healthy volunteers at multiple diffusion times (13-30 ms) and b -values up to 17.5 ms/μm2. The anisotropic Kärger model was applied to estimate the exchange time between intra-neurite and extracellular water in gray matter. The estimated exchange time across the cortical ribbon was around (median±interquartile range) 13±8 ms on Connectome 2.0, substantially faster than that measured using an imaging protocol compatible with Connectome 1.0-alike systems on the same cohort. Our investigation suggested that the NEXI exchange time estimation using a Connectome 1.0 compatible protocol was more prone to residual noise floor biases due to the small time-dependent signal contrasts across diffusion times when the exchange is fast (≤20 ms). Furthermore, spatial variation of exchange time was observed across the cortex, where the motor cortex, somatosensory cortex and visual cortex exhibit longer exchange times compared to other cortical regions. Non-linear fitting for the anisotropic Kärger model was accelerated 100 times using a GPU-based pipeline compared to the conventional CPU-based approach. This study highlighted the importance of the chosen diffusion times and measures to address Rician noise in dMRI data, which can have a substantial impact on the estimated NEXI exchange time and require extra attention when comparing NEXI results between various hardware setups.
Collapse
Affiliation(s)
- Kwok-Shing Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yixin Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hansol Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - José P. Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jonas Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Santiago Coelho
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sune Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Lee H, Lee H, Ma Y, Eskandarian L, Gaudet K, Tian Q, Krijnen EA, Russo AW, Salat DH, Klawiter EC, Huang SY. Age-related alterations in human cortical microstructure across the lifespan: Insights from high-gradient diffusion MRI. Aging Cell 2024; 23:e14267. [PMID: 39118344 PMCID: PMC11561659 DOI: 10.1111/acel.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The human brain undergoes age-related microstructural alterations across the lifespan. Soma and Neurite Density Imaging (SANDI), a novel biophysical model of diffusion MRI, provides estimates of cell body (soma) radius and density, and neurite density in gray matter. The goal of this cross-sectional study was to assess the sensitivity of high-gradient diffusion MRI toward age-related alterations in cortical microstructure across the adult lifespan using SANDI. Seventy-two cognitively unimpaired healthy subjects (ages 19-85 years; 40 females) were scanned on the 3T Connectome MRI scanner with a maximum gradient strength of 300mT/m using a multi-shell diffusion MRI protocol incorporating 8 b-values and diffusion time of 19 ms. Intra-soma signal fraction obtained from SANDI model-fitting to the data was strongly correlated with age in all major cortical lobes (r = -0.69 to -0.60, FDR-p < 0.001). Intra-soma signal fraction (r = 0.48-0.63, FDR-p < 0.001) and soma radius (r = 0.28-0.40, FDR-p < 0.04) were significantly correlated with cortical volume in the prefrontal cortex, frontal, parietal, and temporal lobes. The strength of the relationship between SANDI metrics and age was greater than or comparable to the relationship between cortical volume and age across the cortical regions, particularly in the occipital lobe and anterior cingulate gyrus. In contrast to the SANDI metrics, all associations between diffusion tensor imaging (DTI) and diffusion kurtosis imaging metrics and age were low to moderate. These results suggest that high-gradient diffusion MRI may be more sensitive to underlying substrates of neurodegeneration in the aging brain than DTI and traditional macroscopic measures of neurodegeneration such as cortical volume and thickness.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Hong‐Hsi Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Yixin Ma
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Laleh Eskandarian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Kyla Gaudet
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Qiyuan Tian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Eva A. Krijnen
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC Location VUmcAmsterdamThe Netherlands
| | - Andrew W. Russo
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David H. Salat
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Eric C. Klawiter
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Susie Y. Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
9
|
Karat BG, Genc S, Raven EP, Palombo M, Khan AR, Jones DK. The developing hippocampus: Microstructural evolution through childhood and adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608590. [PMID: 39229062 PMCID: PMC11370384 DOI: 10.1101/2024.08.19.608590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The hippocampus is a structure in the medial temporal lobe which serves multiple cognitive functions. While important, the development of the hippocampus in the formative period of childhood and adolescence has not been extensively investigated, with most contemporary research focusing on macrostructural measures of volume. Thus, there has been little research on the development of the micron-scale structures (i.e., microstructure) of the hippocampus, which engender its cognitive functions. The current study examined age-related changes of hippocampal microstructure using diffusion MRI data acquired with an ultra-strong gradient (300 mT/m) MRI scanner in a sample of children and adolescents (N=88; 8-19 years). Surface-based hippocampal modelling was combined with established microstructural approaches, such as Diffusion Tensor Imaging (DTI) and Neurite Orientation Dispersion Density Imaging (NODDI), and a more advanced gray matter diffusion model Soma And Neurite Density Imaging (SANDI). No significant changes in macrostructural measures (volume, gyrification, and thickness) were found between 8-19 years, while significant changes in microstructure measures related to neurites (from NODDI and SANDI), soma (from SANDI), and mean diffusivity (from DTI) were found. In particular, there was a significant increase across age in neurite MR signal fraction and a significant decrease in extracellular MR signal fraction and mean diffusivity across the hippocampal subfields and long-axis. A significant negative correlation between age and MR apparent soma radius was found in the subiculum and CA1 throughout the anterior and body of the hippocampus. Further surface-based analyses uncovered variability in age-related microstructural changes between the subfields and long-axis, which may reflect ostensible developmental differences along these two axes. Finally, correlation of hippocampal surfaces representing age-related changes of microstructure with maps derived from histology allowed for postulation of the potential underlying microstructure that diffusion changes across age may be capturing. Overall, distinct neurite and soma developmental profiles in the human hippocampus during late childhood and adolescence are reported for the first time.
Collapse
Affiliation(s)
- Bradley G Karat
- Robarts Research Institute, Western University, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| | - Sila Genc
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Ali R Khan
- Robarts Research Institute, Western University, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Genc S, Ball G, Chamberland M, Raven EP, Tax CM, Ward I, Yang JYM, Palombo M, Jones DK. MRI signatures of cortical microstructure in human development align with oligodendrocyte cell-type expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605934. [PMID: 39131383 PMCID: PMC11312524 DOI: 10.1101/2024.07.30.605934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Neuroanatomical changes to the cortex during adolescence have been well documented using MRI, revealing ongoing cortical thinning and volume loss with age. However, the underlying cellular mechanisms remain elusive with conventional neuroimaging. Recent advances in MRI hardware and new biophysical models of tissue informed by diffusion MRI data hold promise for identifying the cellular changes driving these morphological observations. This study used ultra-strong gradient MRI to obtain high-resolution, in vivo estimates of cortical neurite and soma microstructure in sample of typically developing children and adolescents. Cortical neurite signal fraction, attributed to neuronal and glial processes, increased with age (mean R2 fneurite=.53, p<3.3e-11, 11.91% increase over age), while apparent soma radius decreased (mean R2 Rsoma=.48, p<4.4e-10, 1% decrease over age) across domain-specific networks. To complement these findings, developmental patterns of cortical gene expression in two independent post-mortem databases were analysed. This revealed increased expression of genes expressed in oligodendrocytes, and excitatory neurons, alongside a relative decrease in expression of genes expressed in astrocyte, microglia and endothelial cell-types. Age-related genes were significantly enriched in cortical oligodendrocytes, oligodendrocyte progenitors and Layer 5-6 neurons (pFDR<.001) and prominently expressed in adolescence and young adulthood. The spatial and temporal alignment of oligodendrocyte cell-type gene expression with neurite and soma microstructural changes suggest that ongoing cortical myelination processes contribute to adolescent cortical development. These findings highlight the role of intra-cortical myelination in cortical maturation during adolescence and into adulthood.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Gareth Ball
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, The Netherlands
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, USA
| | - Chantal Mw Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isobel Ward
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Data and Analysis for Social Care and Health, Office for National Statistics, Newport, United Kingdom
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Barakovic M, Weigel M, Cagol A, Schaedelin S, Galbusera R, Lu PJ, Chen X, Melie-Garcia L, Ocampo-Pineda M, Bahn E, Stadelmann C, Palombo M, Kappos L, Kuhle J, Magon S, Granziera C. A novel imaging marker of cortical "cellularity" in multiple sclerosis patients. Sci Rep 2024; 14:9848. [PMID: 38684744 PMCID: PMC11059177 DOI: 10.1038/s41598-024-60497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riccardo Galbusera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Xinjie Chen
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mario Ocampo-Pineda
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Erik Bahn
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | | | - Marco Palombo
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Ludwig Kappos
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefano Magon
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Kundu S, Barsoum S, Ariza J, Nolan AL, Latimer CS, Keene CD, Basser PJ, Benjamini D. Mapping the individual human cortex using multidimensional MRI and unsupervised learning. Brain Commun 2023; 5:fcad258. [PMID: 37953850 PMCID: PMC10638106 DOI: 10.1093/braincomms/fcad258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Human evolution has seen the development of higher-order cognitive and social capabilities in conjunction with the unique laminar cytoarchitecture of the human cortex. Moreover, early-life cortical maldevelopment has been associated with various neurodevelopmental diseases. Despite these connections, there is currently no noninvasive technique available for imaging the detailed cortical laminar structure. This study aims to address this scientific and clinical gap by introducing an approach for imaging human cortical lamina. This method combines diffusion-relaxation multidimensional MRI with a tailored unsupervised machine learning approach that introduces enhanced microstructural sensitivity. This new imaging method simultaneously encodes the microstructure, the local chemical composition and importantly their correlation within complex and heterogenous tissue. To validate our approach, we compared the intra-cortical layers obtained using our ex vivo MRI-based method with those derived from Nissl staining of postmortem human brain specimens. The integration of unsupervised learning with diffusion-relaxation correlation MRI generated maps that demonstrate sensitivity to areal differences in cytoarchitectonic features observed in histology. Significantly, our observations revealed layer-specific diffusion-relaxation signatures, showing reductions in both relaxation times and diffusivities at the deeper cortical levels. These findings suggest a radial decrease in myelin content and changes in cell size and anisotropy, reflecting variations in both cytoarchitecture and myeloarchitecture. Additionally, we demonstrated that 1D relaxation and high-order diffusion MRI scalar indices, even when aggregated and used jointly in a multimodal fashion, cannot disentangle the cortical layers. Looking ahead, our technique holds the potential to open new avenues of research in human neurodevelopment and the vast array of disorders caused by disruptions in neurodevelopment.
Collapse
Affiliation(s)
- Shinjini Kundu
- Department of Radiology, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Stephanie Barsoum
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jeanelle Ariza
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Schiavi S, Palombo M, Zacà D, Tazza F, Lapucci C, Castellan L, Costagli M, Inglese M. Mapping tissue microstructure across the human brain on a clinical scanner with soma and neurite density image metrics. Hum Brain Mapp 2023; 44:4792-4811. [PMID: 37461286 PMCID: PMC10400787 DOI: 10.1002/hbm.26416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/02/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023] Open
Abstract
Soma and neurite density image (SANDI) is an advanced diffusion magnetic resonance imaging biophysical signal model devised to probe in vivo microstructural information in the gray matter (GM). This model requires acquisitions that include b values that are at least six times higher than those used in clinical practice. Such high b values are required to disentangle the signal contribution of water diffusing in soma from that diffusing in neurites and extracellular space, while keeping the diffusion time as short as possible to minimize potential bias due to water exchange. These requirements have limited the use of SANDI only to preclinical or cutting-edge human scanners. Here, we investigate the potential impact of neglecting water exchange in the SANDI model and present a 10-min acquisition protocol that enables to characterize both GM and white matter (WM) on 3 T scanners. We implemented analytical simulations to (i) evaluate the stability of the fitting of SANDI parameters when diminishing the number of shells; (ii) estimate the bias due to potential exchange between neurites and extracellular space in such reduced acquisition scheme, comparing it with the bias due to experimental noise. Then, we demonstrated the feasibility and assessed the repeatability and reproducibility of our approach by computing microstructural metrics of SANDI with AMICO toolbox and other state-of-the-art models on five healthy subjects. Finally, we applied our protocol to five multiple sclerosis patients. Results suggest that SANDI is a practical method to characterize WM and GM tissues in vivo on performant clinical scanners.
Collapse
Affiliation(s)
- Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
| | - Marco Palombo
- CUBRIC, School of PsychologyCardiff UniversityCardiffUK
- School of Computer Science and InformaticsCardiff UniversityCardiffUK
| | | | - Francesco Tazza
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- HNSR, IRRCS Ospedale Policlinico San MartinoGenoaItaly
| | - Lucio Castellan
- Department of NeuroradiologyIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- Laboratory of Medical Physics and Magnetic ResonanceIRCCS Stella MarisPisaItaly
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| |
Collapse
|
14
|
Krijnen EA, Russo AW, Salim Karam E, Lee H, Chiang FL, Schoonheim MM, Huang SY, Klawiter EC. Detection of grey matter microstructural substrates of neurodegeneration in multiple sclerosis. Brain Commun 2023; 5:fcad153. [PMID: 37274832 PMCID: PMC10233898 DOI: 10.1093/braincomms/fcad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple sclerosis features complex pathological changes in grey matter that begin early and eventually lead to diffuse atrophy. Novel approaches to image grey-matter microstructural alterations in vivo are highly sought after and would enable more sensitive monitoring of disease activity and progression. This cross-sectional study aimed to assess the sensitivity of high-gradient diffusion MRI for microstructural tissue damage in cortical and deep grey matter in people with multiple sclerosis and test the hypothesis that reduced cortical cell body density is associated with cortical and deep grey-matter volume loss. Forty-one people with multiple sclerosis (age 24-72, 14 females) and 37 age- and sex-matched healthy controls were scanned on a 3 T Connectom MRI scanner equipped with 300 mT/m gradients using a multi-shell diffusion MRI protocol. The soma and neurite density imaging model was fitted to high-gradient diffusion MRI data to obtain estimates of intra-neurite, intra-cellular and extra-cellular signal fractions and apparent soma radius. Cortical and deep grey-matter microstructural imaging metrics were compared between multiple sclerosis and healthy controls and correlated with grey-matter volume, clinical disability and cognitive outcomes. People with multiple sclerosis showed significant cortical and deep grey-matter volume loss compared with healthy controls. People with multiple sclerosis showed trends towards lower cortical intra-cellular signal fraction and significantly lower intra-cellular and higher extra-cellular signal fractions in deep grey matter, especially the thalamus and caudate, compared with healthy controls. Changes were most pronounced in progressive disease and correlated with the Expanded Disability Status Scale, but not the Symbol Digit Modalities Test. In multiple sclerosis, normalized thalamic volume was associated with thalamic microstructural imaging metrics. Whereas thalamic volume loss did not correlate with cortical volume loss, cortical microstructural imaging metrics were significantly associated with thalamic volume, and not with cortical volume. Compared with the short diffusion time (Δ = 19 ms) achievable on the Connectom scanner, at the longer diffusion time of Δ = 49 ms attainable on clinical scanners, multiple sclerosis-related changes in imaging metrics were generally less apparent with lower effect sizes in cortical and deep grey matter. Soma and neurite density imaging metrics obtained from high-gradient diffusion MRI data provide detailed grey-matter characterization beyond cortical and thalamic volumes and distinguish multiple sclerosis-related microstructural pathology from healthy controls. Cortical cell body density correlates with thalamic volume, appears sensitive to the microstructural substrate of neurodegeneration and reflects disability status in people with multiple sclerosis, becoming more pronounced as disability worsens.
Collapse
Affiliation(s)
- Eva A Krijnen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Andrew W Russo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Elsa Salim Karam
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hansol Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Florence L Chiang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Warner W, Palombo M, Cruz R, Callaghan R, Shemesh N, Jones DK, Dell'Acqua F, Ianus A, Drobnjak I. Temporal Diffusion Ratio (TDR) for imaging restricted diffusion: Optimisation and pre-clinical demonstration. Neuroimage 2023; 269:119930. [PMID: 36750150 PMCID: PMC7615244 DOI: 10.1016/j.neuroimage.2023.119930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.
Collapse
Affiliation(s)
- William Warner
- Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Renata Cruz
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Andrada Ianus
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| | - Ivana Drobnjak
- Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom.
| |
Collapse
|
16
|
Olesen JL, Ianus A, Østergaard L, Shemesh N, Jespersen SN. Tensor denoising of multidimensional MRI data. Magn Reson Med 2023; 89:1160-1172. [PMID: 36219475 PMCID: PMC10092037 DOI: 10.1002/mrm.29478] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE To develop a denoising strategy leveraging redundancy in high-dimensional data. THEORY AND METHODS The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so-called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko-Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor-structure to better characterize noise, and to recursively estimate signal components. RESULTS Relative to matrix-based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi-TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases. CONCLUSIONS The MPPCA denoising technique can be extended to high-dimensional data with improved performance for smaller patch sizes.
Collapse
Affiliation(s)
- Jonas L Olesen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Andrada Ianus
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Margoni M, Pagani E, Preziosa P, Palombo M, Gueye M, Azzimonti M, Filippi M, Rocca MA. In vivo quantification of brain soma and neurite density abnormalities in multiple sclerosis. J Neurol 2023; 270:433-445. [PMID: 36153468 DOI: 10.1007/s00415-022-11386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Soma and neurite density imaging (SANDI) is a new biophysical model that incorporates soma in addition to neurite density, thus possibly providing more specific information about the complex pathological processes of multiple sclerosis (MS). PURPOSE To discriminate the pathological abnormalities of MS white matter (WM) lesions, normal-appearing (NA) WM and cortex and to evaluate the associations among SANDI-derived measures, clinical disability, and conventional MRI variables. METHODS Twenty healthy controls (HC) and 23 MS underwent a 3 T brain MRI. Using SANDI on diffusion-weighted sequence, the fractions of neurite (fneurite) and soma (fsoma) were assessed in WM lesions, NAWM, and cortex. RESULTS Compared to HC WM, MS NAWM showed lower fneurite (false discovery rate [FDR]-p = 0.011). In MS patients, WM lesions showed lower fneurite and fsoma compared to both HC and MS NAWM (FDR-p < 0.001 for all). In the cortex, MS patients had lower fneurite and fsoma compared to HC (FDR-p ≤ 0.009). Compared to both HC and RRMS, PMS patients had lower fneurite in NAWM (vs HC: FDR-p < 0.001; vs RRMS: FDR-p = 0.003) and cortex (vs HC: FDR-p < 0.001; vs RRMS: p = 0.031, not surviving FDR correction), and lower cortical fsoma (vs HC: FDR-p < 0.001; vs RRMS: FDR-p = 0.009). Compared to HC, PMS also showed a higher fsoma in NAWM (FDR-p = 0.015). Fneurite and fsoma in the different brain compartments were correlated with age, phenotype, disease duration, disability, WM lesion volumes, normalized brain, cortical, and WM volumes (r from - 0.761 to 0.821, FDR-p ≤ 0.4). CONCLUSIONS SANDI may represent a clinically relevant model to discriminate different neurodegenerative phenomena that gradually accumulate through MS disease course.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Mor Gueye
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Azzimonti
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
18
|
Stern N, Radunsky D, Blumenfeld‐Katzir T, Chechik Y, Solomon C, Ben‐Eliezer N. Mapping of magnetic resonance imaging's transverse relaxation time at low signal-to-noise ratio using Bloch simulations and principal component analysis image denoising. NMR IN BIOMEDICINE 2022; 35:e4807. [PMID: 35899528 PMCID: PMC9787782 DOI: 10.1002/nbm.4807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
High-resolution mapping of magnetic resonance imaging (MRI)'s transverse relaxation time (T2 ) can benefit many clinical applications by offering improved anatomic details, enhancing the ability to probe tissues' microarchitecture, and facilitating the identification of early pathology. Increasing spatial resolutions, however, decreases data's signal-to-noise ratio (SNR), particularly at clinical scan times. This impairs imaging quality, and the accuracy of subsequent radiological interpretation. Recently, principal component analysis (PCA) was employed for denoising diffusion-weighted MR images and was shown to be effective for improving parameter estimation in multiexponential relaxometry. This study combines the Marchenko-Pastur PCA (MP-PCA) signal model with the echo modulation curve (EMC) algorithm for denoising multiecho spin-echo (MESE) MRI data and improving the precision of EMC-generated single T2 relaxation maps. The denoising technique was validated on simulations, phantom scans, and in vivo brain and knee data. MESE scans were performed on a 3-T Siemens scanner. The acquired images were denoised using the MP-PCA algorithm and were then provided as input for the EMC T2 -fitting algorithm. Quantitative analysis of the denoising quality included comparing the standard deviation and coefficient of variation of T2 values, along with gold standard SNR estimation of the phantom scans. The presented denoising technique shows an increase in T2 maps' precision and SNR, while successfully preserving the morphological features of the tissue. Employing MP-PCA denoising as a preprocessing step decreases the noise-related variability of T2 maps produced by the EMC algorithm and thus increases their precision. The proposed method can be useful for a wide range of clinical applications by facilitating earlier detection of pathologies and improving the accuracy of patients' follow-up.
Collapse
Affiliation(s)
- Neta Stern
- Department of Biomedical EngineeringTel Aviv UniversityIsrael
| | - Dvir Radunsky
- Department of Biomedical EngineeringTel Aviv UniversityIsrael
| | | | - Yigal Chechik
- Department of OrthopedicsShamir Medical CenterBe'er Ya'akovIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Chen Solomon
- Department of Biomedical EngineeringTel Aviv UniversityIsrael
| | - Noam Ben‐Eliezer
- Department of Biomedical EngineeringTel Aviv UniversityIsrael
- Sagol School of NeuroscienceTel Aviv UniversityIsrael
- Center for Advanced Imaging Innovation and Research (CAIR)New York University School of MedicineNew YorkNew YorkUSA
| |
Collapse
|