1
|
Klar P, Çatal Y, Jocham G, Langner R, Northoff G. Time-dependent scale-free brain dynamics during naturalistic inputs. Neuroimage 2025; 314:121255. [PMID: 40347997 DOI: 10.1016/j.neuroimage.2025.121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/20/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
Environmental processes, such as auditory and visual inputs, often follow power-law distributions with a time-dependent and constantly changing spectral exponent, β(t). However, it remains unclear how the brain's scale-free dynamics continuously respond to naturalistic inputs, such as by potentially alternating instead of static levels of the spectral exponent. Our fMRI study investigates the brain's dynamic, time-dependent spectral exponent, β(t), during movie-watching, and uses time-varying inter-subject correlation, ISC(t), to assess the extent to which input dynamics are reflected as shared brain activity across subjects in early sensory regions. Notably, we investigate the level of ISC particularly based on the modulation by time-dependent scale-free dynamics or β(t). We obtained three key findings: First, the brain's β(t) showed a distinct temporal structure in visual and auditory regions during naturalistic inputs compared to the resting-state, investigated in the 7 Tesla Human Connectome Project dataset. Second, β(t) and ISC(t) were positively correlated during naturalistic inputs. Third, grouping subjects based on the Rest-to-Movie standard deviation change of the time-dependent spectral exponent β(t) revealed that the brain's relative shift from intrinsic to stimulus-driven scale-free dynamics modulates the level of shared brain activity, or ISC(t), and thus the imprinting of inputs on brain activity. This modulation was further supported by the observation that the two groups displayed significantly different β(t)-ISC(t) correlations, where the group with a higher mean of ISC(t) during inputs also exhibited a higher β(t)-ISC(t) correlation in visual and auditory regions. In summary, our fMRI study underscores a positive relationship between time-dependent scale-free dynamics and ISC, where higher spectral exponents correspond to higher degrees of shared brain activity during ongoing audiovisual inputs.
Collapse
Affiliation(s)
- Philipp Klar
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, Ontario K1Z 7K4, Canada
| | - Gerhard Jocham
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, 145 Carling Avenue, Rm. 6435, Ottawa, Ontario K1Z 7K4, Canada
| |
Collapse
|
2
|
Wang L, Li C, Liu L, Zhang W, Liu Y. The effect of venlafaxine on language function in patients with subcortical aphasia. J Psychiatr Res 2025; 186:172-191. [PMID: 40250324 DOI: 10.1016/j.jpsychires.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE To investigate the effect of venlafaxine on the recovery of language function in patients with subcortical aphasia by using functional magnetic resonance imaging (fMRI) and to provide a theoretical basis for clinical drug treatment in patients with subcortical aphasia. METHODS Thirty-two patients with subcortical aphasia after acute stroke were randomly divided into a venlafaxine group and a control group, with 16 patients in each group. Behavioral assessments of speech function and fMRI were performed three times at 3 ± 2 days (V1), 30 ± 7 days (V2), and 90 ± 7 days (V3) after symptom onset. Behavioral assessments of speech function included the Chinese version of the Western Aphasia Test, the spontaneous word frequency test, and the image naming test. fMRI examinations include task-fMRI, resting-state fMRI (rs-fMRI), and diffusion tensor imaging (DTI). RESULTS ① There were no differences in language function scores between the venlafaxine and control groups at pretreatment (P > 0.05); however, the venlafaxine group scores were higher than those of the control group at time points V2 and V3 (P < 0.05), and the venlafaxine group scores were significantly greater at V2 than at V1 (P < 0.05) and at V3 than at V2 (P < 0.05). ② Regarding fMRI results, there were no significant between-group differences at V1, whereas compared with those in the control group, the venlafaxine group had greater activation and functional connection of the bilateral Broca area and structural connectivity of nerve fibers in the nondominant dorsal and ventral pathways at V2 and greater activation and functional activity of the bilateral Broca region and increased structural connectivity of the bilateral ventral pathway nerve fibers at V3. CONCLUSION Early application of venlafaxine can significantly promote the recovery of language function in patients with subcortical aphasia. With the recovery of language function, we observed corresponding changes in the fMRI data of patients at various stages after stroke. These results are helpful for understanding the mechanism of language function recovery in patients with subcortical aphasia and provide new ideas for the treatment of aphasia after stroke.
Collapse
Affiliation(s)
- Lingjie Wang
- Department of Neurology, Huizhou Central People's Hospital, No. 41, Eling North Road, Huizhou, Guangdong Province, 516001, PR China
| | - Chunyong Li
- Dept. Encephalopathy, Guangzhou Conghua District Hospital of Traditional Chinese Medicine, No. 21, Jiekou Street Town North Road, Conghua District, Guangzhou, 510010, PR China.
| | - Liu Liu
- Department of Neurosurgery, General Hospital of Southern Theatre Command, PLA, Guangzhou, Yuexiu District, China, No. 111, Liuhua Avenue, Yuexiu District, Guangzhou, 510010, PR China
| | - Wei Zhang
- Dept. Neurology, Chaozhou Central Hospital, No. 84, Huancheng West Road, Xiangqiao District, Chaozhou, 521000, PR China
| | - Yan Liu
- Dept. Neurology, Foresea Life Insurance Guangzhou General Hospital, No. 703, Xincheng Avenue, Guangzhou, 511340, PR China.
| |
Collapse
|
3
|
Rolls ET. Emotion, Motivation, Reasoning, and How Their Brain Systems Are Related. Brain Sci 2025; 15:507. [PMID: 40426678 PMCID: PMC12110625 DOI: 10.3390/brainsci15050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/01/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
A unified theory of emotion and motivation is updated in which motivational states are states in which instrumental goal-directed actions are performed to obtain anticipated rewards or avoid punishers, and emotional states are states that are elicited when the (conditioned or unconditioned) instrumental reward or punisher is or is not received. This advances our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as a sweet taste or pain, and the brain systems that learn to expect rewards or punishers and that therefore produce motivational and emotional states. It is argued that instrumental actions under the control of the goal are important for emotion, because they require an intervening emotional state in which an action is learned or performed to obtain the goal, that is, the reward, or to avoid the punisher. The primate including human orbitofrontal cortex computes the reward value, and the anterior cingulate cortex is involved in learning the action to obtain the goal. In contrast, when the instrumental response is overlearned and becomes a habit with stimulus-response associations, emotional states may be less involved. In another route to output, the human orbitofrontal cortex has effective connectivity to the inferior frontal gyrus regions involved in language and provides a route for declarative reports about subjective emotional states to be produced. Reasoning brain systems provide alternative strategies to obtain rewards or avoid punishers and can provide different goals for action compared to emotional systems.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK;
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
4
|
Rolls ET, Zhang C, Feng J. Slow semantic learning in the cerebral cortex, and its relation to the hippocampal episodic memory system. Cereb Cortex 2025; 35:bhaf107. [PMID: 40347159 DOI: 10.1093/cercor/bhaf107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/12/2025] Open
Abstract
A key question is how new semantic representations are formed in the human brain and how this may benefit from the hippocampal episodic memory system. Here, we describe the major effective connectivity between the hippocampal memory system and the anterior temporal lobe (ATL) semantic memory system in humans. Then, we present and model a theory of how semantic representations may be formed in the human ATL using slow associative learning in semantic attractor networks that receive inputs from the hippocampal episodic memory system. The hypothesis is that if one category of semantic representations is being processed for several seconds, then a slow short-term memory trace associative biologically plausible learning rule will enable all the components during that time to be associated together in a semantic attractor network. This benefits from the binding of components provided by the hippocampal episodic memory system. The theory is modeled in a four-layer network for view-invariant visual object recognition, followed by a semantic attractor network layer that utilizes a temporal trace associative learning rule to form semantic categories based on the inputs that occur close together in time, using inputs from the hippocampal system or from the world.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Chenfei Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
5
|
Rolls ET, Turova TS. Visual cortical networks for "What" and "Where" to the human hippocampus revealed with dynamical graphs. Cereb Cortex 2025; 35:bhaf106. [PMID: 40347158 DOI: 10.1093/cercor/bhaf106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/12/2025] Open
Abstract
Key questions for understanding hippocampal function in memory and navigation in humans are the type and source of visual information that reaches the human hippocampus. We measured bidirectional pairwise effective connectivity with functional magnetic resonance imaging between 360 cortical regions while 956 Human Connectome Project participants viewed scenes, faces, tools, or body parts. We developed a method using deterministic dynamical graphs to define whole cortical networks and the flow in both directions between their cortical regions over timesteps after signal is applied to V1. We revealed that a ventromedial cortical visual "Where" network from V1 via the retrosplenial and medial parahippocampal scene areas reaches the hippocampus when scenes are viewed. A ventrolateral "What" visual cortical network reaches the hippocampus from V1 via V2-V4, the fusiform face cortex, and lateral parahippocampal region TF when faces/objects are viewed. There are major implications for understanding the computations of the human vs rodent hippocampus in memory and navigation: primates with their fovea and highly developed cortical visual processing networks process information about the location of faces, objects, and landmarks in viewed scenes, whereas in rodents the representations in the hippocampal system are mainly about the place where the individual is located and self-motion between places.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute for the Science and Technology of Brain Inspired Intelligence, Fudan University, China
| | | |
Collapse
|
6
|
Kitazawa Y, Sakakura K, Uda H, Kuroda N, Ueda R, Firestone E, Lee MH, Jeong JW, Sonoda M, Osawa SI, Ukishiro K, Ishida M, Kakinuma K, Ota S, Takayama Y, Iijima K, Kambara T, Endo H, Suzuki K, Nakasato N, Iwasaki M, Asano E. Visualization of functional and effective connectivity underlying auditory descriptive naming. Clin Neurophysiol 2025; 175:2010729. [PMID: 40349545 DOI: 10.1016/j.clinph.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVE We visualized functional and effective connectivity within specific white matter networks in response to auditory descriptive questions. METHODS We investigated 40 Japanese-speaking patients with focal epilepsy and estimated connectivity measures using cortical high-gamma dynamics and MRI tractography. RESULTS Hearing a wh-interrogative at question onset enhanced inter-hemispheric functional connectivity, with left-to-right callosal facilitatory flows between the superior-temporal gyri, contrasted by functional connectivity diminution with right-to-left callosal suppressive flows between dorsolateral prefrontal regions. Processing verbs associated with concrete objects or adverbs increased left intra-hemispheric connectivity, with bidirectional facilitatory flows through extensive white matter pathways. Questions beginning with what, compared to where, induced greater neural engagement in the left posterior inferior-frontal gyrus at question offset, linked to enhanced functional connectivity and bidirectional facilitatory flows to the temporal lobe neocortex via the arcuate fasciculus. During overt responses, inter-hemispheric functional connectivity was enhanced, with bidirectional callosal flows between Rolandic areas, and individuals with higher IQ scores exhibited less prolonged neural engagement in the left posterior middle frontal gyrus. CONCLUSIONS Visualization of directional neural interactions within white matter networks during overt naming is feasible. SIGNIFICANCE Phrase order may influence network dynamics in listeners, even when presented with auditory descriptive questions conveying similar meanings.
Collapse
Affiliation(s)
- Yu Kitazawa
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki 3058575, Japan; Department of Neurosurgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Hiroshi Uda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Riyo Ueda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Min-Hee Lee
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Shin-Ichiro Osawa
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 9808574, Japan
| | - Kazushi Ukishiro
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Makoto Ishida
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Kazuo Kakinuma
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Shoko Ota
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan; Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Toshimune Kambara
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Psychology, Hiroshima University, Hiroshima 7398524, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 9808574, Japan
| | - Kyoko Suzuki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48858, USA.
| |
Collapse
|
7
|
Gyoda T, Hashimoto R, Inagaki S, Tsushi N, Kitao T, Minati L, Yoshimura N. Electroencephalography-guided transcranial direct current stimulation improves picture-naming performance. Neuroimage 2025; 308:120997. [PMID: 39778817 DOI: 10.1016/j.neuroimage.2024.120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Transcranial direct current stimulation (tDCS) is a potential method for improving verbal function by stimulating Broca's area. Previous studies have shown the effectiveness of using functional magnetic resonance imaging (fMRI) to optimize the stimulation site, but it is unclear whether similar optimization can be achieved using scalp electroencephalography (EEG). Here, we investigated whether tDCS targeting a brain area identified by EEG can improve verbalization performance during a picture-naming task. In Experiment 1, EEG and fMRI data were acquired during a naming task with 21 participants. Comparison of EEG and fMRI data showed overlap in the highest areas of activation for 80% of the participants. In Experiment 2, tDCS was administered to 15 participants using a crossover design, with stimulation targeting the EEG-guided area, Broca's area, and sham conditions. Our findings indicated that tDCS targeting the EEG-guided area significantly improved lexical retrieval speed compared with stimulation over Broca's area and sham conditions. These results support the validity of EEG-based area identification and its use in optimizing the effects of tDCS on improving language function.
Collapse
Affiliation(s)
| | - Ryuichiro Hashimoto
- Department of Language Science, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Satoru Inagaki
- School of Computing, Institute of Science Tokyo (formerly Tokyo Institute of Technology), Yokohama, Japan
| | | | | | - Ludovico Minati
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; Center for Mind/Brain Science (CIMeC), University of Trento, Trento, Italy
| | - Natsue Yoshimura
- School of Computing, Institute of Science Tokyo (formerly Tokyo Institute of Technology), Yokohama, Japan; ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan.
| |
Collapse
|
8
|
Querry M, Botzung A, Sourty M, Chabran E, Sanna L, Loureiro de Sousa P, Cretin B, Demuynck C, Muller C, Ravier A, Schorr B, Philippi N, Blanc F. Functional Connectivity Changes Associated With Depression in Dementia With Lewy Bodies. Int J Geriatr Psychiatry 2025; 40:e70058. [PMID: 40011213 PMCID: PMC11865007 DOI: 10.1002/gps.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVES Depressive symptoms are frequent in the early stages of dementia with Lewy bodies (DLB), and more than half of DLB patients would have a history of depression. Our study sought to investigate the functional connectivity (FC) changes associated with depressive symptoms in prodromal to mild DLB patients compared with controls. METHODS MRI data were collected from 66 DLB patients and 18 controls. Depression was evaluated with the Mini International Neuropsychiatric Interview. Resting-state FC (rsFC) was investigated with the CONN toolbox using a seed-based approach and both regression and comparison analyses. RESULTS Correlations were found between the depression scores and the rsFC between fronto-temporal and primary visual areas in DLB patients (p < 0.05, FDR corrected). Depressed DLB patients also showed decreased rsFC within the salience network (SN), increased rsFC between the default mode network (DMN) and the language network (LN) and decreased rsFC between the cerebellar network (CN) and the fronto-parietal network (FPN) compared to non-depressed DLB patients (p < 0.05, uncorrected). Comparison analyses between antidepressant-treated and non-treated DLB patients highlighted FC changes in treated patients involving the SN, the DMN, the FPN and the dorsal attentional network (p < 0.05, uncorrected). CONCLUSIONS Our findings revealed that depressive symptoms would especially be associated with rsFC changes between fronto-temporal and primary visual areas in DLB patients. Such alterations could contribute to difficulties in regulating emotions, processing biases towards negative stimuli, and self-focused ruminations. TRIAL REGISTRATION This study is part of the cohort study AlphaLewyMA (https://clinicaltrials.gov/ct2/show/NCT01876459).
Collapse
Affiliation(s)
- Manon Querry
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
| | - Anne Botzung
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Marion Sourty
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
| | - Elena Chabran
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
| | - Léa Sanna
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Paulo Loureiro de Sousa
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
| | - Benjamin Cretin
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Catherine Demuynck
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Candice Muller
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Alix Ravier
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Benoît Schorr
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Nathalie Philippi
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Frédéric Blanc
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| |
Collapse
|
9
|
Li Z, Ma J, Bai H, Deng B, Lin J, Wang W. Brain local structural connectomes and the subtypes of the medial temporal lobe parcellations. Front Neurosci 2025; 19:1529123. [PMID: 40012681 PMCID: PMC11861214 DOI: 10.3389/fnins.2025.1529123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Objective To investigate the quantitative characteristics and major subtypes of local structural connectomes for medial temporal lobe (MTL) parcellations. Methods The Q-Space Diffeomorphic Reconstruction (QSDR) method was used to track white matter fibers for the ROIs within MTL based on the integrating high-resolution T1 structural MR imaging and diffusion MR imaging of 100 adult Chinese individuals. Graph theoretical analysis was employed to construct the local structural connectome models for ROIs within MTL and acquire the network parameters. These connectivity matrices of these connectomes were classified into major subtypes undergoing hierarchical clustering. Results (1) In the local brain connectomes, the overall network features exhibited a low characteristic path length paired with moderate to high global efficiency, suggesting the effectiveness of the local brain connectome construction. The amygdala connectomes exhibited longer characteristic path length and weaker global efficiency than the ipsilateral hippocampus and parahippocampal connectomes. (2) The hubs of the amygdala connectomes were dispersed across the ventral frontal, olfactory area, limbic, parietal regions and subcortical nuclei, and the hubs the hippocampal connectomes were mainly situated within the limbic, parietal, and subcortical regions. The hubs distribution of the parahippocampal connectomes resembled the hippocampal structural connectomes, but lacking interhemispheric connections and connectivity with subcortical nuclei. (3) The subtypes of the brain local structural connectomes for each ROI were classified by hierarchical clustering, The subtypes of the bilateral amygdala connectomes were the amygdala-prefrontal connectome; the amygdala-ipsilateral or contralateral limbic connectome and the amygdala-posterior connectome. The subtypes of the bilateral hippocampal connectomes primarily included the hippocampus-ipsilateral or contralateral limbic connectome and the anterior temporal-hippocampus-ventral temporal-occipital connectome in the domain hemisphere. The subtypes of the parahippocampal connectomes exhibited resemblances to those of the hippocampus. Conclusion We have constructed the brain local connectomes of the MTL parcellations and acquired the network parameters to delineate the hubs distribution through graph theory analysis. The connectomes can be classified into different major subtypes, which were closely related to the functional connectivity.
Collapse
Affiliation(s)
- Zhensheng Li
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jie Ma
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Hongmin Bai
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Bingmei Deng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jian Lin
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Weimin Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| |
Collapse
|
10
|
Shah HA, Duehr J, Abramyan A, Mittelman L, Galvez R, Winby T, Silverstein JW, D'Amico RS. Enhancing brain tumor surgery precision with multimodal connectome imaging: Structural and functional connectivity in language-dominant areas. Clin Neurol Neurosurg 2025; 249:108760. [PMID: 39870028 DOI: 10.1016/j.clineuro.2025.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
OBJECTIVES Language is a critical aspect of human cognition and function, and its preservation is a priority for neurosurgical interventions in the left frontal operculum. However, identification of language areas can be inconsistent, even with electrical mapping. The use of multimodal structural and functional neuroimaging in conjunction with intraoperative neuromonitoring may augment cortical language area identification to guide the resection of left frontal opercular lesions. METHODS Structural and functional connectome scans were generated using a machine learning software to reparcellate a validated schema of the Human Connectome Project Multi-Modal Parcellation (HCP-MMP) atlas based on individual structural and functional connectivity identified through anatomic, diffusion, and resting-state functional MRI (rs-fMRI). Structural connectivity imaging was analyzed to determine at-risk parcellations and seed-based analysis of regions of interest (ROIs) was performed to identify functional relationships. RESULTS Two patients with left frontal lesions were analyzed, one with a WHO Grade IV gliosarcoma, and the other with an intracerebral abscess. Individual patterns of functional connectivity were identified by functional neuroimaging revealing distinct relationships between language network parcellations. Multimodal, connectome-guided resections with intraoperative neuromonitoring were performed, with both patients demonstrating intact or improved language function relative to baseline at follow-up. Follow-up imaging demonstrated functional reorganization observed between Brodmann areas 44 and 45 and other parcellations of the language network. CONCLUSION Preoperative visualization of structural and functional connectivity of language areas can be incorporated into a multimodal operative approach with intraoperative neuromonitoring to facilitate the preservation of language areas during intracranial neurosurgery. These modalities may also be used to monitor functional recovery.
Collapse
Affiliation(s)
- Harshal A Shah
- Department of Neurosurgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| | - James Duehr
- Department of Neurosurgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Arevik Abramyan
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Laura Mittelman
- Department of Neurosurgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Rosivel Galvez
- Department of Neurosurgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA; Downstate Medical Center, State University of New York, New York, NY, USA
| | - Taylor Winby
- Department of Neurosurgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Justin W Silverstein
- Department of Neurology, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA; Neuro Protective Solutions, New York, NY, USA
| | - Randy S D'Amico
- Department of Neurosurgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| |
Collapse
|
11
|
Geng S, Dai Y, Rolls ET, Liu Y, Zhang Y, Deng L, Chen Z, Feng J, Li F, Cao M. Rightward brain structural asymmetry in young children with autism. Mol Psychiatry 2025:10.1038/s41380-025-02890-9. [PMID: 39815059 DOI: 10.1038/s41380-025-02890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
To understand the neural mechanism of autism spectrum disorder (ASD) and developmental delay/intellectual disability (DD/ID) that can be associated with ASD, it is important to investigate individuals at an early stage with brain, behavioural and also genetic measures, but such research is still lacking. Here, using the cross-sectional sMRI data of 1030 children under 8 years old, we employed developmental normative models to investigate the atypical development of gray matter volume (GMV) asymmetry in individuals with ASD without DD/ID, ASD with DD/ID and individuals with only DD/ID, and their associations with behavioral and clinical measures and transcription profiles. By extracting the individual deviations of patients from the typical controls with normative models, we found a commonly abnormal pattern of GMV asymmetry across all ASD children: more rightward laterality in the inferior parietal lobe and precentral gyrus, and higher individual variability in the temporal pole. Specifically, ASD with DD/ID children showed a severer and more extensive abnormal pattern in GMV asymmetry deviation values, which was linked with both ASD symptoms and verbal IQ. The abnormal pattern of ASD without DD/ID children showed higher and more extensive individual variability, which was linked with ASD symptoms only. DD/ID children showed no significant differences from healthy population in asymmetry. Lastly, the GMV laterality patterns of all patient groups were significantly associated with both shared and unique gene expression profiles. Our findings provide evidence for rightward GMV asymmetry of some cortical regions in young ASD children (1-7 years) in a large sample (1030 cases), show that these asymmetries are related to ASD symptoms, and identify genes that are significantly associated with these differences.
Collapse
Grants
- 81901826, 61932008, 62076068, 82271627, 82125032, 81930095, 81761128035, 82202243, and 82204048 National Natural Science Foundation of China (National Science Foundation of China)
- GWV-10.1-XK07, 2020CXJQ01, 2018YJRC03 Foundation of Shanghai Municipal Commission of Health and Family Planning (Shanghai Municipal Commission of Health and Family Planning Foundation)
Collapse
Affiliation(s)
- Shujie Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Yuan Dai
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
- Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Yuqi Liu
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Lin Deng
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilin Chen
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Fei Li
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Miao Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
| |
Collapse
|
12
|
Rolls ET. Hippocampal Discoveries: Spatial View Cells, Connectivity, and Computations for Memory and Navigation, in Primates Including Humans. Hippocampus 2025; 35:e23666. [PMID: 39690918 DOI: 10.1002/hipo.23666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Two key series of discoveries about the hippocampus are described. One is the discovery of hippocampal spatial view cells in primates. This discovery opens the way to a much better understanding of human episodic memory, for episodic memory prototypically involves a memory of where people or objects or rewards have been seen in locations "out there" which could never be implemented by the place cells that encode the location of a rat or mouse. Further, spatial view cells are valuable for navigation using vision and viewed landmarks, and provide for much richer, vision-based, navigation than the place to place self-motion update performed by rats and mice who live in dark underground tunnels. Spatial view cells thus offer a revolution in our understanding of the functions of the hippocampus in memory and navigation in humans and other primates with well-developed foveate vision. The second discovery describes a computational theory of the hippocampal-neocortical memory system that includes the only quantitative theory of how information is recalled from the hippocampus to the neocortex. It is shown how foundations for this research were the discovery of reward neurons for food reward, and non-reward, in the primate orbitofrontal cortex, and representations of value including of monetary value in the human orbitofrontal cortex; and the discovery of face identity and face expression cells in the primate inferior temporal visual cortex and how they represent transform-invariant information. This research illustrates how in order to understand a brain computation, a whole series of integrated interdisciplinary discoveries is needed to build a theory of the operation of each neural system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| |
Collapse
|
13
|
Mas‐Cuesta L, Baltruschat S, Cándido A, Catena A. Brain signatures of catastrophic events: Emotion, salience, and cognitive control. Psychophysiology 2024; 61:e14674. [PMID: 39169571 PMCID: PMC11579218 DOI: 10.1111/psyp.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/10/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Anticipatory brain activity makes it possible to predict the occurrence of expected situations. However, events such as traffic accidents are statistically unpredictable and can generate catastrophic consequences. This study investigates the brain activity and effective connectivity associated with anticipating and processing such unexpected, unavoidable accidents. We asked 161 participants to ride a motorcycle simulator while recording their electroencephalographic activity. Of these, 90 participants experienced at least one accident while driving. We conducted both within-subjects and between-subjects comparisons. During the pre-accident period, the right inferior parietal lobe (IPL), left anterior cingulate cortex (ACC), and right insula showed higher activity in the accident condition. In the post-accident period, the bilateral orbitofrontal cortex, right IPL, bilateral ACC, and middle and superior frontal gyrus also showed increased activity in the accident condition. We observed greater effective connectivity within the nodes of the limbic network (LN) and between the nodes of the attentional networks in the pre-accident period. In the post-accident period, we also observed greater effective connectivity between networks, from the ventral attention network (VAN) to the somatomotor network and from nodes in the visual network, VAN, and default mode network to nodes in the frontoparietal network, LN, and attentional networks. This suggests that activating salience-related processes and emotional processing allows the anticipation of accidents. Once an accident has occurred, integration and valuation of the new information takes place, and control processes are initiated to adapt behavior to the new demands of the environment.
Collapse
Affiliation(s)
- Laura Mas‐Cuesta
- Mind, Brain and Behavior Research CenterUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| | - Sabina Baltruschat
- Mind, Brain and Behavior Research CenterUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| | - Antonio Cándido
- Mind, Brain and Behavior Research CenterUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| | - Andrés Catena
- School of PsychologyUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| |
Collapse
|
14
|
Rolls ET, Zhang R, Deco G, Vatansever D, Feng J. Selective Brain Activations and Connectivities Related to the Storage and Recall of Human Object-Location, Reward-Location, and Word-Pair Episodic Memories. Hum Brain Mapp 2024; 45:e70056. [PMID: 39436048 PMCID: PMC11494686 DOI: 10.1002/hbm.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Different cortical systems to the hippocampus were activated using fMRI during different types of episodic memory task. For object with scene location episodic memory, the activations were high in cortical systems involved in spatial processing, including the ventromedial visual and medial parahippocampal system. These activations for the medial parahippocampal system were higher in the right hemisphere. The activations in the face and object processing ventrolateral visual cortical stream regions FFC, PIT, V8 and TE2p were higher in the object-location in scene task than the reward-location task, and were higher in the right hemisphere. For reward-location in scene episodic memory, activations were also high in the ventromedial visual cortical spatial stream to the hippocampus, but were also selectively high in storage in key reward cortical regions (ventromedial prefrontal 10r, 10v, 10d; pregenual anterior cingulate d32, p24, p32, s32; and medial orbitofrontal cortex reward-related pOFC, 11l, OFC). For word-pair episodic memory, activations were lower in the ventromedial visual and medial parahippocampal spatial cortical stream, and were higher in language-related regions in Broca's area (44, 45, 47l), and were higher in the left hemisphere for these regions and for the many highly connected inferior frontal gyrus regions in the left hemisphere. Further, effective connectivity analyses during the episodic memory tasks showed that the direction of connectivity for these systems was from early visual cortical regions V2-V4 to the ventromedial visual cortical regions VMV1-3 and VVC for spatial scene processing; was from the pregenual anterior cingulate and orbitofrontal cortex reward systems to the hippocampal system; and was from the FFC/V8/PIT system to TE2p in the visual inferior temporal visual cortex, which has connectivity to lateral parahippocampal TF, which in turn has forward effective connectivity to the hippocampus.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan UniversityShanghaiChina
- Oxford Centre for Computational NeuroscienceOxfordUK
| | - Ruohan Zhang
- Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
- Brain and Cognition, Pompeu Fabra UniversityBarcelonaSpain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu FabraBarcelonaSpain
| | - Deniz Vatansever
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan UniversityShanghaiChina
| | - Jianfeng Feng
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan UniversityShanghaiChina
| |
Collapse
|
15
|
Li C, Lu Y, Yu S, Cui Y. TS-AI: A deep learning pipeline for multimodal subject-specific parcellation with task contrasts synthesis. Med Image Anal 2024; 97:103297. [PMID: 39154619 DOI: 10.1016/j.media.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Accurate mapping of brain functional subregions at an individual level is crucial. Task-based functional MRI (tfMRI) captures subject-specific activation patterns during various functions and behaviors, facilitating the individual localization of functionally distinct subregions. However, acquiring high-quality tfMRI is time-consuming and resource-intensive in both scientific and clinical settings. The present study proposes a two-stage network model, TS-AI, to individualize an atlas on cortical surfaces through the prediction of tfMRI data. TS-AI first synthesizes a battery of task contrast maps for each individual by leveraging tract-wise anatomical connectivity and resting-state networks. These synthesized maps, along with feature maps of tract-wise anatomical connectivity and resting-state networks, are then fed into an end-to-end deep neural network to individualize an atlas. TS-AI enables the synthesized task contrast maps to be used in individual parcellation without the acquisition of actual task fMRI scans. In addition, a novel feature consistency loss is designed to assign vertices with similar features to the same parcel, which increases individual specificity and mitigates overfitting risks caused by the absence of individual parcellation ground truth. The individualized parcellations were validated by assessing test-retest reliability, homogeneity, and cognitive behavior prediction using diverse reference atlases and datasets, demonstrating the superior performance and generalizability of TS-AI. Sensitivity analysis yielded insights into region-specific features influencing individual variation in functional regionalization. Additionally, TS-AI identified accelerated shrinkage in the medial temporal and cingulate parcels during the progression of Alzheimer's disease, suggesting its potential in clinical research and applications.
Collapse
Affiliation(s)
- Chengyi Li
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Brian Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Yuheng Lu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Brian Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Brian Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Yue Cui
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Brian Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Yuanjun X, Guan M, Zhang T, Ma C, Wang L, Lin X, Li C, Wang Z, Zhujing M, Wang H, Peng F. Targeting auditory verbal hallucinations in schizophrenia: effective connectivity changes induced by low-frequency rTMS. Transl Psychiatry 2024; 14:393. [PMID: 39341819 PMCID: PMC11438995 DOI: 10.1038/s41398-024-03106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Low-frequency repetitive transcranial magnetic stimulation (rTMS) has emerged as an effective intervention for alleviating symptoms of psychiatric disorders, particularly schizophrenia characterized by persistent auditory verbal hallucinations (AVH). However, the underlying mechanism of its action remain elusive. This study employed a randomized controlled design to investigate the impact of low-frequency rTMS on the neural connectivity at the stimulate site, specifically left temporoparietal junction (TPJ), in schizophrenia patients with suffering from AVH. Using Dynamic Causal Modeling (DCM), this study assessed changes in directed connectivity patterns and their correlations with clinical symptomatology. The results demonstrated significant improvements in AVH. Notably, significant changes in connectivity were observed, including both abnormal functional connectivity and effective connectivity among multiple brain regions. Particularly, the inhibition effects from the left precentral gyrus and left medial superior frontal gyrus to the left TPJ were closely associated with improvements in AVH. These findings underscore the potential of rTMS to effectively modulate neural pathways implicated in hallucinations in schizophrenia, thereby providing a neurobiological foundation for its therapeutic effects.
Collapse
Affiliation(s)
- Xie Yuanjun
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China.
- Department of Radiology, Fourth Military Medical University, Xi'an, China.
| | - Muzhen Guan
- Deparment of Mental Health, Xi'an Medical College, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Lingling Wang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Xinxin Lin
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Fourth Military Medical University, Xi'an, China
| | - Ma Zhujing
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Fourth Military Medical University, Xi'an, China.
| | - Fang Peng
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China.
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China.
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
17
|
Huang L, Hu W, Cui L, Zhang Z, Lu Y, Li Q, Huang Q, Wang L, Jiang J, Guo Q, Alzheimer's Disease Neuroimaging Initiative (ADNI). Temporo-frontoparietal hypoconnectivity as a biomarker for isolated language impairment in mild cognitive impairment: A cross-cohort comparison. Alzheimers Dement 2024; 20:6566-6578. [PMID: 39115942 PMCID: PMC11497662 DOI: 10.1002/alz.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Whether brain functional connectivity (FC) is consistently disrupted in individuals with mild cognitive impairment (MCI) with isolated language impairment (ilMCI), and its potential to differentiate between MCI subtypes remains uncertain. METHODS Cross-sectional data from 404 participants in two cohorts (the Chinese Preclinical Alzheimer's Disease Study and the Alzheimer's Disease Neuroimaging Initiative) were analyzed, including neuropsychological tests, resting-state functional magnetic resonance imaging (fMRI), cerebral amyloid positivity, and apolipoprotein E (APOE) status. RESULTS Temporo-frontoparietal FC, particularly between the bilateral superior temporal pole and the left inferior frontal/supramarginal gyri, was consistently decreased in ilMCI compared to amnestic MCI (aMCI) and normal controls, which was correlated with semantic impairment. Using mean temporo-frontoparietal FC as a classifier could improve accuracy in identifying ilMCI subgroups with positive cerebral amyloid deposition and APOE risk alleles. DISCUSSION Temporal-frontoparietal hypoconnectivity was observed in individuals with ilMCI, which may reflect semantic impairment and serve as a valuable biomarker to indicate potential mechanisms of underlying neuropathology. HIGHLIGHTS Temporo-frontoparietal hypoconnectivity was observed in impaired language mild cognitive impairment (ilMCI). Temporo-frontoparietal hypoconnectivity may reflect semantic impairment. Temporo-frontoparietal functional connectivity can classify ilMCI subtypes.
Collapse
Affiliation(s)
- Lin Huang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenjing Hu
- Institute of Biomedical EngineeringSchool of Life SciencesShanghai UniversityShanghaiChina
| | - Liang Cui
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhen Zhang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yao Lu
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qinjie Li
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine and PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Luyao Wang
- Institute of Biomedical EngineeringSchool of Life SciencesShanghai UniversityShanghaiChina
| | - Jiehui Jiang
- Institute of Biomedical EngineeringSchool of Life SciencesShanghai UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | | |
Collapse
|
18
|
Rolls ET, Yan X, Deco G, Zhang Y, Jousmaki V, Feng J. A ventromedial visual cortical 'Where' stream to the human hippocampus for spatial scenes revealed with magnetoencephalography. Commun Biol 2024; 7:1047. [PMID: 39183244 PMCID: PMC11345434 DOI: 10.1038/s42003-024-06719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
The primate including the human hippocampus implicated in episodic memory and navigation represents a spatial view, very different from the place representations in rodents. To understand this system in humans, and the computations performed, the pathway for this spatial view information to reach the hippocampus was analysed in humans. Whole-brain effective connectivity was measured with magnetoencephalography between 30 visual cortical regions and 150 other cortical regions using the HCP-MMP1 atlas in 21 participants while performing a 0-back scene memory task. In a ventromedial visual stream, V1-V4 connect to the ProStriate region where the retrosplenial scene area is located. The ProStriate region has connectivity to ventromedial visual regions VMV1-3 and VVC. These ventromedial regions connect to the medial parahippocampal region PHA1-3, which, with the VMV regions, include the parahippocampal scene area. The medial parahippocampal regions have effective connectivity to the entorhinal cortex, perirhinal cortex, and hippocampus. In contrast, when viewing faces, the effective connectivity was more through a ventrolateral visual cortical stream via the fusiform face cortex to the inferior temporal visual cortex regions TE2p and TE2a. A ventromedial visual cortical 'Where' stream to the hippocampus for spatial scenes was supported by diffusion topography in 171 HCP participants at 7 T.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.
| | - Xiaoqian Yan
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona, Spain
| | - Yi Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Veikko Jousmaki
- Aalto NeuroImaging, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Rolls ET, Treves A. A theory of hippocampal function: New developments. Prog Neurobiol 2024; 238:102636. [PMID: 38834132 DOI: 10.1016/j.pneurobio.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
20
|
Rolls ET, Feng J, Zhang R. Selective activations and functional connectivities to the sight of faces, scenes, body parts and tools in visual and non-visual cortical regions leading to the human hippocampus. Brain Struct Funct 2024; 229:1471-1493. [PMID: 38839620 PMCID: PMC11176242 DOI: 10.1007/s00429-024-02811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Connectivity maps are now available for the 360 cortical regions in the Human Connectome Project Multimodal Parcellation atlas. Here we add function to these maps by measuring selective fMRI activations and functional connectivity increases to stationary visual stimuli of faces, scenes, body parts and tools from 956 HCP participants. Faces activate regions in the ventrolateral visual cortical stream (FFC), in the superior temporal sulcus (STS) visual stream for face and head motion; and inferior parietal visual (PGi) and somatosensory (PF) regions. Scenes activate ventromedial visual stream VMV and PHA regions in the parahippocampal scene area; medial (7m) and lateral parietal (PGp) regions; and the reward-related medial orbitofrontal cortex. Body parts activate the inferior temporal cortex object regions (TE1p, TE2p); but also visual motion regions (MT, MST, FST); and the inferior parietal visual (PGi, PGs) and somatosensory (PF) regions; and the unpleasant-related lateral orbitofrontal cortex. Tools activate an intermediate ventral stream area (VMV3, VVC, PHA3); visual motion regions (FST); somatosensory (1, 2); and auditory (A4, A5) cortical regions. The findings add function to cortical connectivity maps; and show how stationary visual stimuli activate other cortical regions related to their associations, including visual motion, somatosensory, auditory, semantic, and orbitofrontal cortex value-related, regions.
Collapse
Affiliation(s)
- Edmund T Rolls
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China.
- Oxford Centre for Computational Neuroscience, Oxford, UK.
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China
| | - Ruohan Zhang
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
21
|
Rolls ET. The memory systems of the human brain and generative artificial intelligence. Heliyon 2024; 10:e31965. [PMID: 38841455 PMCID: PMC11152951 DOI: 10.1016/j.heliyon.2024.e31965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Generative Artificial Intelligence foundation models (for example Generative Pre-trained Transformer - GPT - models) can generate the next token given a sequence of tokens. How can this 'generative AI' be compared with the 'real' intelligence of the human brain, when for example a human generates a whole memory in response to an incomplete retrieval cue, and then generates further prospective thoughts? Here these two types of generative intelligence, artificial in machines and real in the human brain are compared, and it is shown how when whole memories are generated by hippocampal recall in response to an incomplete retrieval cue, what the human brain computes, and how it computes it, are very different from generative AI. Key differences are the use of local associative learning rules in the hippocampal memory system, and of non-local backpropagation of error learning in AI. Indeed, it is argued that the whole operation of the human brain is performed computationally very differently to what is implemented in generative AI. Moreover, it is emphasized that the primate including human hippocampal system includes computations about spatial view and where objects and people are in scenes, whereas in rodents the emphasis is on place cells and path integration by movements between places. This comparison with generative memory and processing in the human brain has interesting implications for the further development of generative AI and for neuroscience research.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China
| |
Collapse
|
22
|
Rolls ET. Two what, two where, visual cortical streams in humans. Neurosci Biobehav Rev 2024; 160:105650. [PMID: 38574782 DOI: 10.1016/j.neubiorev.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
ROLLS, E. T. Two What, Two Where, Visual Cortical Streams in Humans. NEUROSCI BIOBEHAV REV 2024. Recent cortical connectivity investigations lead to new concepts about 'What' and 'Where' visual cortical streams in humans, and how they connect to other cortical systems. A ventrolateral 'What' visual stream leads to the inferior temporal visual cortex for object and face identity, and provides 'What' information to the hippocampal episodic memory system, the anterior temporal lobe semantic system, and the orbitofrontal cortex emotion system. A superior temporal sulcus (STS) 'What' visual stream utilising connectivity from the temporal and parietal visual cortex responds to moving objects and faces, and face expression, and connects to the orbitofrontal cortex for emotion and social behaviour. A ventromedial 'Where' visual stream builds feature combinations for scenes, and provides 'Where' inputs via the parahippocampal scene area to the hippocampal episodic memory system that are also useful for landmark-based navigation. The dorsal 'Where' visual pathway to the parietal cortex provides for actions in space, but also provides coordinate transforms to provide inputs to the parahippocampal scene area for self-motion update of locations in scenes in the dark or when the view is obscured.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China.
| |
Collapse
|
23
|
Zhang B, Rolls ET, Wang X, Xie C, Cheng W, Feng J. Roles of the medial and lateral orbitofrontal cortex in major depression and its treatment. Mol Psychiatry 2024; 29:914-928. [PMID: 38212376 DOI: 10.1038/s41380-023-02380-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
We describe evidence for dissociable roles of the medial and lateral orbitofrontal cortex (OFC) in major depressive disorder (MDD) from structure, functional activation, functional connectivity, metabolism, and neurochemical systems. The reward-related medial orbitofrontal cortex has lower connectivity and less reward sensitivity in MDD associated with anhedonia symptoms; and the non-reward related lateral OFC has higher functional connectivity and more sensitivity to non-reward/aversive stimuli in MDD associated with negative bias symptoms. Importantly, we propose that conventional antidepressants act to normalize the hyperactive lateral (but not medial) OFC to reduce negative bias in MDD; while other treatments are needed to operate on the medial OFC to reduce anhedonia, with emerging evidence suggesting that ketamine may act in this way. The orbitofrontal cortex is the key cortical region in emotion and reward, and the current review presents much new evidence about the different ways that the medial and lateral OFC are involved in MDD.
Collapse
Affiliation(s)
- Bei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, PR China
- Medical Psychological Institute, Central South University, Changsha, PR China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, PR China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China.
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China.
- Department of Computer Science, University of Warwick, Coventry, UK.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China.
- Zhangjiang Fudan International Innovation Center, Shanghai, PR China.
| |
Collapse
|
24
|
Rolls ET, Deco G, Huang CC, Feng J. The connectivity of the human frontal pole cortex, and a theory of its involvement in exploit versus explore. Cereb Cortex 2024; 34:bhad416. [PMID: 37991264 DOI: 10.1093/cercor/bhad416] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/23/2023] Open
Abstract
The frontal pole is implicated in humans in whether to exploit resources versus explore alternatives. Effective connectivity, functional connectivity, and tractography were measured between six human frontal pole regions and for comparison 13 dorsolateral and dorsal prefrontal cortex regions, and the 360 cortical regions in the Human Connectome Project Multi-modal-parcellation atlas in 171 HCP participants. The frontal pole regions have effective connectivity with Dorsolateral Prefrontal Cortex regions, the Dorsal Prefrontal Cortex, both implicated in working memory; and with the orbitofrontal and anterior cingulate cortex reward/non-reward system. There is also connectivity with temporal lobe, inferior parietal, and posterior cingulate regions. Given this new connectivity evidence, and evidence from activations and damage, it is proposed that the frontal pole cortex contains autoassociation attractor networks that are normally stable in a short-term memory state, and maintain stability in the other prefrontal networks during stable exploitation of goals and strategies. However, if an input from the orbitofrontal or anterior cingulate cortex that expected reward, non-reward, or punishment is received, this destabilizes the frontal pole and thereby other prefrontal networks to enable exploration of competing alternative goals and strategies. The frontal pole connectivity with reward systems may be key in exploit versus explore.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
25
|
Zhang R, Rolls ET, Cheng W, Feng J. Different cortical connectivities in human females and males relate to differences in strength and body composition, reward and emotional systems, and memory. Brain Struct Funct 2024; 229:47-61. [PMID: 37861743 PMCID: PMC10827883 DOI: 10.1007/s00429-023-02720-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Sex differences in human brain structure and function are important, partly because they are likely to be relevant to the male-female differences in behavior and in mental health. To analyse sex differences in cortical function, functional connectivity was measured in 36,531 participants (53% female) in the UK Biobank (mean age 69) using the Human Connectome Project multimodal parcellation atlas with 360 well-specified cortical regions. Most of the functional connectivities were lower in females (Bonferroni corrected), with the mean Cohen's d = - 0.18. Removing these as covariates reduced the difference of functional connectivities for females-males from d = - 0.18 to - 0.06. The lower functional connectivities in females were especially of somatosensory/premotor regions including the insula, opercular cortex, paracentral lobule and mid-cingulate cortex, and were correlated with lower maximum workload (r = 0.17), and with higher whole body fat mass (r = - 0.17). But some functional connectivities were higher in females, involving especially the ventromedial prefrontal cortex and posterior cingulate cortex, and these were correlated with higher liking for some rewards such as sweet foods, higher happiness/subjective well-being, and with better memory-related functions. The main findings were replicated in 1000 individuals (532 females, mean age 29) from the Human Connectome Project. This investigation shows the cortical systems with different functional connectivity between females and males, and also provides for the first time a foundation for understanding the implications for behavior of these differences between females and males.
Collapse
Affiliation(s)
- Ruohan Zhang
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Edmund T Rolls
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China.
- Oxford Centre for Computational Neuroscience, Oxford, UK.
| | - Wei Cheng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China
| |
Collapse
|
26
|
Rolls ET, Deco G, Zhang Y, Feng J. Hierarchical organization of the human ventral visual streams revealed with magnetoencephalography. Cereb Cortex 2023; 33:10686-10701. [PMID: 37689834 DOI: 10.1093/cercor/bhad318] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/11/2023] Open
Abstract
The hierarchical organization between 25 ventral stream visual cortical regions and 180 cortical regions was measured with magnetoencephalography using the Human Connectome Project Multimodal Parcellation atlas in 83 Human Connectome Project participants performing a visual memory task. The aim was to reveal the hierarchical organization using a whole-brain model based on generative effective connectivity with this fast neuroimaging method. V1-V4 formed a first group of interconnected regions. Especially V4 had connectivity to a ventrolateral visual stream: V8, the fusiform face cortex, and posterior inferior temporal cortex PIT. These regions in turn had effectivity connectivity to inferior temporal cortex visual regions TE2p and TE1p. TE2p and TE1p then have connectivity to anterior temporal lobe regions TE1a, TE1m, TE2a, and TGv, which are multimodal. In a ventromedial visual stream, V1-V4 connect to ventromedial regions VMV1-3 and VVC. VMV1-3 and VVC connect to the medial parahippocampal gyrus PHA1-3, which, with the VMV regions, include the parahippocampal scene area. The medial parahippocampal PHA1-3 regions have connectivity to the hippocampal system regions the perirhinal cortex, entorhinal cortex, and hippocampus. These effective connectivities of two ventral visual cortical streams measured with magnetoencephalography provide support to the hierarchical organization of brain systems measured with fMRI, and new evidence on directionality.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Yi Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
27
|
Waterhouse L. Why multiple intelligences theory is a neuromyth. Front Psychol 2023; 14:1217288. [PMID: 37701872 PMCID: PMC10493274 DOI: 10.3389/fpsyg.2023.1217288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
A neuromyth is a commonly accepted but unscientific claim about brain function. Many researchers have claimed Howard Gardner's multiple intelligences (MI) theory is a neuromyth because they have seen no evidence supporting his proposal for independent brain-based intelligences for different types of cognitive abilities. Although Gardner has made claims that there are dedicated neural networks or modules for each of the intelligences, nonetheless Gardner has stated his theory could not be a neuromyth because he never claimed it was a neurological theory. This paper explains the lack of evidence to support MI theory. Most important, no researcher has directly looked for a brain basis for the intelligences. Moreover, factor studies have not shown the intelligences to be independent, and studies of MI teaching effects have not explored alternate causes for positive effects and have not been conducted by standard scientific methods. Gardner's MI theory was not a neuromyth initially because it was based on theories of the 1980s of brain modularity for cognition, and few researchers then were concerned by the lack of validating brain studies. However, in the past 40 years neuroscience research has shown that the brain is not organized in separate modules dedicated to specific forms of cognition. Despite the lack of empirical support for Gardner's theory, MI teaching strategies are widely used in classrooms all over the world. Crucially, belief in MI and use of MI in the classroom limit the effort to find evidence-based teaching methods. Studies of possible interventions to try to change student and teacher belief in neuromyths are currently being undertaken. Intervention results are variable: One research group found that teachers who knew more about the brain still believed education neuromyths. Teachers need to learn to detect and reject neuromyths. Widespread belief in a neuromyth does not make a theory legitimate. Theories must be based on sound empirical evidence. It is now time for MI theory to be rejected, once and for all, and for educators to turn to evidence-based teaching strategies.
Collapse
Affiliation(s)
- Lynn Waterhouse
- The College of New Jersey, Ewing Township, NJ, United States
| |
Collapse
|
28
|
Wu D, Li X. Graph propagation network captures individual specificity of the relationship between functional and structural connectivity. Hum Brain Mapp 2023; 44:3885-3896. [PMID: 37186004 PMCID: PMC10203799 DOI: 10.1002/hbm.26320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Functional connectivity (FC) network characterizes the functional interactions between brain regions and is considered to root in the underlying structural connectivity (SC) network. If this is the case, individual variations in SC should cause corresponding individual variations in FC. However, divergences exist in the correspondence between direct SC and FC and researchers still cannot capture individual differences in FC via direct SC. As brain regions may interact through multi-hop indirect SC pathways, we conceived that one can capture the individual specific SC-FC relationship via incorporating indirect SC pathways appropriately. In this study, we designed graph propagation network (GPN) that models the information propagation between brain regions based on the SC network. Effects of interactions through multi-hop SC pathways naturally emerge from the multilayer information propagation in GPN. We predicted the individual differences in FC network based on SC network via multilayer GPN and results indicate that multilayer GPN incorporating effects of multi-hop indirect SCs greatly enhances the ability to predict individual FC network. Furthermore, the SC-FC relationship evaluated via the prediction accuracy is negatively correlated with the functional gradient, suggesting that the SC-FC relationship gradually uncouples along the functional hierarchy spanning from unimodal to transmodal cortex. We also revealed important intermediate brain regions along multi-hop SC pathways involving in the individual SC-FC relationship. These results suggest that multilayer GPN can serve as a method to establish individual SC-FC relationship at the macroneuroimaging level.
Collapse
Affiliation(s)
- Dongya Wu
- School of Information Science and TechnologyNorthwest UniversityXi'anChina
| | - Xin Li
- School of MathematicsNorthwest UniversityXi'anChina
| |
Collapse
|
29
|
Rolls ET. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct Funct 2023; 228:1201-1257. [PMID: 37178232 PMCID: PMC10250292 DOI: 10.1007/s00429-023-02644-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
30
|
Rolls ET, Rauschecker JP, Deco G, Huang CC, Feng J. Auditory cortical connectivity in humans. Cereb Cortex 2023; 33:6207-6227. [PMID: 36573464 PMCID: PMC10422925 DOI: 10.1093/cercor/bhac496] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
To understand auditory cortical processing, the effective connectivity between 15 auditory cortical regions and 360 cortical regions was measured in 171 Human Connectome Project participants, and complemented with functional connectivity and diffusion tractography. 1. A hierarchy of auditory cortical processing was identified from Core regions (including A1) to Belt regions LBelt, MBelt, and 52; then to PBelt; and then to HCP A4. 2. A4 has connectivity to anterior temporal lobe TA2, and to HCP A5, which connects to dorsal-bank superior temporal sulcus (STS) regions STGa, STSda, and STSdp. These STS regions also receive visual inputs about moving faces and objects, which are combined with auditory information to help implement multimodal object identification, such as who is speaking, and what is being said. Consistent with this being a "what" ventral auditory stream, these STS regions then have effective connectivity to TPOJ1, STV, PSL, TGv, TGd, and PGi, which are language-related semantic regions connecting to Broca's area, especially BA45. 3. A4 and A5 also have effective connectivity to MT and MST, which connect to superior parietal regions forming a dorsal auditory "where" stream involved in actions in space. Connections of PBelt, A4, and A5 with BA44 may form a language-related dorsal stream.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China
| | - Josef P Rauschecker
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
- Institute for Advanced Study, Technical University, Munich, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
31
|
Rolls ET. Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 2023; 33:533-572. [PMID: 36070199 PMCID: PMC10946493 DOI: 10.1002/hipo.23467] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023]
Abstract
Hippocampal and parahippocampal gyrus spatial view neurons in primates respond to the spatial location being looked at. The representation is allocentric, in that the responses are to locations "out there" in the world, and are relatively invariant with respect to retinal position, eye position, head direction, and the place where the individual is located. The underlying connectivity in humans is from ventromedial visual cortical regions to the parahippocampal scene area, leading to the theory that spatial view cells are formed by combinations of overlapping feature inputs self-organized based on their closeness in space. Thus, although spatial view cells represent "where" for episodic memory and navigation, they are formed by ventral visual stream feature inputs in the parahippocampal gyrus in what is the parahippocampal scene area. A second "where" driver of spatial view cells are parietal inputs, which it is proposed provide the idiothetic update for spatial view cells, used for memory recall and navigation when the spatial view details are obscured. Inferior temporal object "what" inputs and orbitofrontal cortex reward inputs connect to the human hippocampal system, and in macaques can be associated in the hippocampus with spatial view cell "where" representations to implement episodic memory. Hippocampal spatial view cells also provide a basis for navigation to a series of viewed landmarks, with the orbitofrontal cortex reward inputs to the hippocampus providing the goals for navigation, which can then be implemented by hippocampal connectivity in humans to parietal cortex regions involved in visuomotor actions in space. The presence of foveate vision and the highly developed temporal lobe for object and scene processing in primates including humans provide a basis for hippocampal spatial view cells to be key to understanding episodic memory in the primate and human hippocampus, and the roles of this system in primate including human navigation.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
32
|
Rolls ET, Feng R, Feng J. Lifestyle risks associated with brain functional connectivity and structure. Hum Brain Mapp 2023; 44:2479-2492. [PMID: 36799566 PMCID: PMC10028639 DOI: 10.1002/hbm.26225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Some lifestyle factors are related to health and brain function and structure, but the brain systems involved are incompletely understood. A general linear model was used to test the associations of the combined and separate lifestyle risk measures of alcohol use, smoking, diet, amounts of physical activity, leisure activity, and mobile phone use, with brain functional connectivity with the high resolution Human Connectome Project (HCP) atlas in 19,415 participants aged 45-78 from the UK Biobank, with replication with HCP data. Higher combined lifestyle risk scores were associated with lower functional connectivity across the whole brain, but especially of three brain systems. Low physical, and leisure and social, activity were associated with low connectivities of the somatosensory/motor cortical regions and of hippocampal memory-related regions. Low mobile phone use, perhaps indicative of poor social communication channels, was associated with low functional connectivity of brain regions in and related to the superior temporal sulcus that are involved in social behavior and face processing. Smoking was associated with lower functional connectivity of especially frontal regions involved in attention. Lower cortical thickness in some of these regions, and also lower subcortical volume of the hippocampus, amygdala, and globus pallidus, were also associated with the sum of the poor lifestyle scores. This very large scale analysis emphasizes how the lifestyle of humans relates to their brain structure and function, and provides a foundation for understanding the causalities that relate to the differences found here in the brains of different individuals.
Collapse
Affiliation(s)
- Edmund T Rolls
- Department of Computer Science, University of Warwick, Coventry, UK
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Ruiqing Feng
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| |
Collapse
|
33
|
Rolls ET, Deco G, Huang CC, Feng J. The human posterior parietal cortex: effective connectome, and its relation to function. Cereb Cortex 2023; 33:3142-3170. [PMID: 35834902 PMCID: PMC10401905 DOI: 10.1093/cercor/bhac266] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/04/2023] Open
Abstract
The effective connectivity between 21 regions in the human posterior parietal cortex, and 360 cortical regions was measured in 171 Human Connectome Project (HCP) participants using the HCP atlas, and complemented with functional connectivity and diffusion tractography. Intraparietal areas LIP, VIP, MIP, and AIP have connectivity from early cortical visual regions, and to visuomotor regions such as the frontal eye fields, consistent with functions in eye saccades and tracking. Five superior parietal area 7 regions receive from similar areas and from the intraparietal areas, but also receive somatosensory inputs and connect with premotor areas including area 6, consistent with functions in performing actions to reach for, grasp, and manipulate objects. In the anterior inferior parietal cortex, PFop, PFt, and PFcm are mainly somatosensory, and PF in addition receives visuo-motor and visual object information, and is implicated in multimodal shape and body image representations. In the posterior inferior parietal cortex, PFm and PGs combine visuo-motor, visual object, and reward input and connect with the hippocampal system. PGi in addition provides a route to motion-related superior temporal sulcus regions involved in social interactions. PGp has connectivity with intraparietal regions involved in coordinate transforms and may be involved in idiothetic update of hippocampal visual scene representations.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, Shanghai 200602, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
34
|
Rolls ET, Wirth S, Deco G, Huang C, Feng J. The human posterior cingulate, retrosplenial, and medial parietal cortex effective connectome, and implications for memory and navigation. Hum Brain Mapp 2023; 44:629-655. [PMID: 36178249 PMCID: PMC9842927 DOI: 10.1002/hbm.26089] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The human posterior cingulate, retrosplenial, and medial parietal cortex are involved in memory and navigation. The functional anatomy underlying these cognitive functions was investigated by measuring the effective connectivity of these Posterior Cingulate Division (PCD) regions in the Human Connectome Project-MMP1 atlas in 171 HCP participants, and complemented with functional connectivity and diffusion tractography. First, the postero-ventral parts of the PCD (31pd, 31pv, 7m, d23ab, and v23ab) have effective connectivity with the temporal pole, inferior temporal visual cortex, cortex in the superior temporal sulcus implicated in auditory and semantic processing, with the reward-related vmPFC and pregenual anterior cingulate cortex, with the inferior parietal cortex, and with the hippocampal system. This connectivity implicates it in hippocampal episodic memory, providing routes for "what," reward and semantic schema-related information to access the hippocampus. Second, the antero-dorsal parts of the PCD (especially 31a and 23d, PCV, and also RSC) have connectivity with early visual cortical areas including those that represent spatial scenes, with the superior parietal cortex, with the pregenual anterior cingulate cortex, and with the hippocampal system. This connectivity implicates it in the "where" component for hippocampal episodic memory and for spatial navigation. The dorsal-transitional-visual (DVT) and ProStriate regions where the retrosplenial scene area is located have connectivity from early visual cortical areas to the parahippocampal scene area, providing a ventromedial route for spatial scene information to reach the hippocampus. These connectivities provide important routes for "what," reward, and "where" scene-related information for human hippocampal episodic memory and navigation. The midcingulate cortex provides a route from the anterior dorsal parts of the PCD and the supracallosal part of the anterior cingulate cortex to premotor regions.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain Inspired IntelligenceFudan University, Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| | - Sylvia Wirth
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229CNRS and University of LyonBronFrance
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
- Brain and CognitionPompeu Fabra UniversityBarcelonaSpain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA)Universitat Pompeu FabraBarcelonaSpain
| | - Chu‐Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Jianfeng Feng
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain Inspired IntelligenceFudan University, Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| |
Collapse
|
35
|
Intersecting distributed networks support convergent linguistic functioning across different languages in bilinguals. Commun Biol 2023; 6:99. [PMID: 36697483 PMCID: PMC9876897 DOI: 10.1038/s42003-023-04446-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
How bilingual brains accomplish the processing of more than one language has been widely investigated by neuroimaging studies. The assimilation-accommodation hypothesis holds that both the same brain neural networks supporting the native language and additional new neural networks are utilized to implement second language processing. However, whether and how this hypothesis applies at the finer-grained levels of both brain anatomical organization and linguistic functions remains unknown. To address this issue, we scanned Chinese-English bilinguals during an implicit reading task involving Chinese words, English words and Chinese pinyin. We observed broad brain cortical regions wherein interdigitated distributed neural populations supported the same cognitive components of different languages. Although spatially separate, regions including the opercular and triangular parts of the inferior frontal gyrus, temporal pole, superior and middle temporal gyrus, precentral gyrus and supplementary motor areas were found to perform the same linguistic functions across languages, indicating regional-level functional assimilation supported by voxel-wise anatomical accommodation. Taken together, the findings not only verify the functional independence of neural representations of different languages, but show co-representation organization of both languages in most language regions, revealing linguistic-feature specific accommodation and assimilation between first and second languages.
Collapse
|
36
|
Giovannelli F, Borgheresi A, Lucidi G, Squitieri M, Gavazzi G, Suppa A, Berardelli A, Viggiano MP, Cincotta M. Language-related motor facilitation in Italian Sign Language signers. Cereb Cortex 2023:6988100. [PMID: 36646456 DOI: 10.1093/cercor/bhac536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/18/2023] Open
Abstract
Linguistic tasks facilitate corticospinal excitability as revealed by increased motor evoked potential (MEP) induced by transcranial magnetic stimulation (TMS) in the dominant hand. This modulation of the primary motor cortex (M1) excitability may reflect the relationship between speech and gestures. It is conceivable that in healthy individuals who use a sign language this cortical excitability modulation could be rearranged. The aim of this study was to evaluate the effect of spoken language tasks on M1 excitability in a group of hearing signers. Ten hearing Italian Sign Language (LIS) signers and 16 non-signer healthy controls participated. Single-pulse TMS was applied to either M1 hand area at the baseline and during different tasks: (i) reading aloud, (ii) silent reading, (iii) oral movements, (iv) syllabic phonation and (v) looking at meaningless non-letter strings. Overall, M1 excitability during the linguistic and non-linguistic tasks was higher in LIS group compared to the control group. In LIS group, MEPs were significantly larger during reading aloud, silent reading and non-verbal oral movements, regardless the hemisphere. These results suggest that in hearing signers there is a different modulation of the functional connectivity between the speech-related brain network and the motor system.
Collapse
Affiliation(s)
- Fabio Giovannelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Psychology, University of Florence, Florence 50135, Italy
| | - Alessandra Borgheresi
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Florence 50143, Italy
| | - Giulia Lucidi
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Florence 50143, Italy
| | - Martina Squitieri
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Florence 50143, Italy
| | - Gioele Gavazzi
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Psychology, University of Florence, Florence 50135, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy.,IRCCS Neuromed, Pozzilli (IS) 86077, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy.,IRCCS Neuromed, Pozzilli (IS) 86077, Italy
| | - Maria Pia Viggiano
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Psychology, University of Florence, Florence 50135, Italy
| | - Massimo Cincotta
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Florence 50143, Italy
| |
Collapse
|
37
|
Rolls ET, Deco G, Huang CC, Feng J. Human amygdala compared to orbitofrontal cortex connectivity, and emotion. Prog Neurobiol 2023; 220:102385. [PMID: 36442728 DOI: 10.1016/j.pneurobio.2022.102385] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
The amygdala and orbitofrontal cortex have been implicated in emotion. To understand these regions better in humans, their effective connectivity with 360 cortical regions was measured in 171 humans from the Human Connectome Project, and complemented with functional connectivity and diffusion tractography. The human amygdala has effective connectivity from few cortical regions compared to the orbitofrontal cortex: primarily from auditory cortex A5 and the related superior temporal gyrus and temporal pole regions; the piriform (olfactory) cortex; the lateral orbitofrontal cortex 47m; somatosensory cortex; the hippocampus, entorhinal cortex, perirhinal cortex, and parahippocampal TF; and from the cholinergic nucleus basalis. The amygdala has effective connectivity to the hippocampus, entorhinal and perirhinal cortex; to the temporal pole; and to the lateral orbitofrontal cortex. The orbitofrontal cortex has effective connectivity from gustatory, olfactory, and temporal visual, auditory and pole cortex, and to the pregenual anterior and posterior cingulate cortex, hippocampal system, and prefrontal cortex, and provides for rewards and punishers to be used in reported emotions, and memory and navigation to goals. Given the paucity of amygdalo-neocortical connectivity in humans, it is proposed that the human amygdala is involved primarily in autonomic and conditioned responses via brainstem connectivity, rather than in reported (declarative) emotion.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain Brain and Cognition, Pompeu Fabra University, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Wang HF, Zhang W, Rolls ET, Li Y, Wang L, Ma YH, Kang J, Feng J, Yu JT, Cheng W. Hearing impairment is associated with cognitive decline, brain atrophy and tau pathology. EBioMedicine 2022; 86:104336. [PMID: 36356475 PMCID: PMC9649369 DOI: 10.1016/j.ebiom.2022.104336] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/01/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hearing impairment was recently identified as the most prominent risk factor for dementia. However, the mechanisms underlying the link between hearing impairment and dementia are still unclear. METHODS We investigated the association of hearing performance with cognitive function, brain structure and cerebrospinal fluid (CSF) proteins in cross-sectional, longitudinal, mediation and genetic association analyses across the UK Biobank (N = 165,550), the Chinese Alzheimer's Biomarker and Lifestyle (CABLE, N = 863) study, and the Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 1770) database. FINDINGS Poor hearing performance was associated with worse cognitive function in the UK Biobank and in the CABLE study. Hearing impairment was significantly related to lower volume of temporal cortex, hippocampus, inferior parietal lobe, precuneus, etc., and to lower integrity of white matter (WM) tracts. Furthermore, a higher polygenic risk score (PRS) for hearing impairment was strongly associated with lower cognitive function, lower volume of gray matter, and lower integrity of WM tracts. Moreover, hearing impairment was correlated with a high level of CSF tau protein in the CABLE study and in the ADNI database. Finally, mediation analyses showed that brain atrophy and tau pathology partly mediated the association between hearing impairment and cognitive decline. INTERPRETATION Hearing impairment is associated with cognitive decline, brain atrophy and tau pathology, and hearing impairment may reflect the risk for cognitive decline and dementia as it is related to bran atrophy and tau accumulation in brain. However, it is necessary to assess the mechanism in future animal studies. FUNDING A full list of funding bodies that supported this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Hui-Fu Wang
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Edmund T Rolls
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK; Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Yuzhu Li
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Linbo Wang
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jujiao Kang
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Zhangjiang Fudan International Innovation Center, Shanghai, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Zhejiang, China
| | - Jin-Tai Yu
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Wei Cheng
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Zhejiang, China.
| |
Collapse
|
39
|
Ma Q, Wang H, Rolls ET, Xiang S, Li J, Li Y, Zhou Q, Cheng W, Li F. Lower gestational age is associated with lower cortical volume and cognitive and educational performance in adolescence. BMC Med 2022; 20:424. [PMID: 36329481 PMCID: PMC9635194 DOI: 10.1186/s12916-022-02627-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Gestational age (GA) is associated with later cognition and behavior. However, it is unclear how specific cognitive domains and brain structural development varies with the stepwise change of gestational duration. METHODS This large-scale longitudinal cohort study analyzed 11,878 early adolescents' brain volume maps at 9-10 years (baseline) and 5685 at 11-12 years (a 2-year follow-up) from the Adolescent Brain Cognitive Development (ABCD) study. According to gestational age, adolescents were divided into five categorical groups: ≤ 33 weeks, 34-35 weeks, 36 weeks, 37-39 weeks, and ≥ 40 weeks. The NIH Toolbox was used to estimate neurocognitive performance, including crystallized and fluid intelligence, which was measured for 11,878 adolescents at baseline with crystallized intelligence and relevant subscales obtained at 2-year follow-up (with participant numbers ranging from 6185 to 6310 depending on the cognitive domain). An additional large population-based cohort of 618,070 middle adolescents at ninth-grade (15-16 years) from the Danish national register was utilized to validate the association between gestational age and academic achievements. A linear mixed model was used to examine the group differences between gestational age and neurocognitive performance, school achievements, and grey matter volume. A mediation analysis was performed to examine whether brain structural volumes mediated the association between GA and neurocognition, followed with a longitudinal analysis to track the changes. RESULTS Significant group differences were found in all neurocognitive scores, school achievements, and twenty-five cortical regional volumes (P < 0.05, Bonferroni corrected). Specifically, lower gestational ages were associated with graded lower cognition and school achievements and with smaller brain volumes of the fronto-parieto-temporal, fusiform, cingulate, insula, postcentral, hippocampal, thalamic, and pallidal regions. These lower brain volumes mediated the association between gestational age and cognitive function (P = 1 × 10-8, β = 0.017, 95% CI: 0.007-0.028). Longitudinal analysis showed that compared to full term adolescents, preterm adolescents still had smaller brain volumes and crystallized intelligence scores at 11-12 years. CONCLUSIONS These results emphasize the relationships between gestational age at birth and adolescents' lower brain volume, and lower cognitive and educational performance, measured many years later when 9-10 and 11-12 years old. The study indicates the importance of early screening and close follow-up for neurocognitive and behavioral development for children and adolescents born with gestational ages that are even a little lower than full term.
Collapse
Affiliation(s)
- Qing Ma
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China
| | - Hui Wang
- Department of Developmental and Behavioral Pediatric & Child Primary Care/MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China
| | - Edmund T Rolls
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, Conventry, UK.,Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Shitong Xiang
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China
| | - Jiong Li
- Department of Clinical Medicine, Aarhus University, Aarhus, 8000, Denmark
| | - Yuzhu Li
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Wei Cheng
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China. .,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China. .,Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, 321004, China. .,Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, 200032, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care/MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China.
| |
Collapse
|
40
|
Rolls ET, Deco G, Huang CC, Feng J. Prefrontal and somatosensory-motor cortex effective connectivity in humans. Cereb Cortex 2022; 33:4939-4963. [PMID: 36227217 DOI: 10.1093/cercor/bhac391] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022] Open
Abstract
Effective connectivity, functional connectivity, and tractography were measured between 57 cortical frontal and somatosensory regions and the 360 cortical regions in the Human Connectome Project (HCP) multimodal parcellation atlas for 171 HCP participants. A ventral somatosensory stream connects from 3b and 3a via 1 and 2 and then via opercular and frontal opercular regions to the insula, which then connects to inferior parietal PF regions. This stream is implicated in "what"-related somatosensory processing of objects and of the body and in combining with visual inputs in PF. A dorsal "action" somatosensory stream connects from 3b and 3a via 1 and 2 to parietal area 5 and then 7. Inferior prefrontal regions have connectivity with the inferior temporal visual cortex and orbitofrontal cortex, are implicated in working memory for "what" processing streams, and provide connectivity to language systems, including 44, 45, 47l, TPOJ1, and superior temporal visual area. The dorsolateral prefrontal cortex regions that include area 46 have connectivity with parietal area 7 and somatosensory inferior parietal regions and are implicated in working memory for actions and planning. The dorsal prefrontal regions, including 8Ad and 8Av, have connectivity with visual regions of the inferior parietal cortex, including PGs and PGi, and are implicated in visual and auditory top-down attention.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain.,Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
41
|
Setton R, Mwilambwe-Tshilobo L, Sheldon S, Turner GR, Spreng RN. Hippocampus and temporal pole functional connectivity is associated with age and individual differences in autobiographical memory. Proc Natl Acad Sci U S A 2022; 119:e2203039119. [PMID: 36191210 PMCID: PMC9564102 DOI: 10.1073/pnas.2203039119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Recollection of one's personal past, or autobiographical memory (AM), varies across individuals and across the life span. This manifests in the amount of episodic content recalled during AM, which may reflect differences in associated functional brain networks. We take an individual differences approach to examine resting-state functional connectivity of temporal lobe regions known to coordinate AM content retrieval with the default network (anterior and posterior hippocampus, temporal pole) and test for associations with AM. Multiecho resting-state functional magnetic resonance imaging (fMRI) and autobiographical interviews were collected for 158 younger and 105 older healthy adults. Interviews were scored for internal (episodic) and external (semantic) details. Age group differences in connectivity profiles revealed that older adults had lower connectivity within anterior hippocampus, posterior hippocampus, and temporal pole but greater connectivity with regions across the default network compared with younger adults. This pattern was positively related to posterior hippocampal volumes in older adults, which were smaller than younger adult volumes. Connectivity associations with AM showed two significant patterns. The first dissociated connectivity related to internal vs. external AM across participants. Internal AM was related to anterior hippocampus and temporal pole connectivity with orbitofrontal cortex and connectivity within posterior hippocampus. External AM was related to temporal pole connectivity with regions across the lateral temporal cortex. In the second pattern, younger adults displayed temporal pole connectivity with regions throughout the default network associated with more detailed AMs overall. Our findings provide evidence for discrete ensembles of brain regions that scale with systematic variation in recollective styles across the healthy adult life span.
Collapse
Affiliation(s)
- Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, 02138
| | - Laetitia Mwilambwe-Tshilobo
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, H3A 1G1, Canada
| | - Gary R. Turner
- Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Psychology, McGill University, Montreal, QC, H3A 1G1, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
- Douglas Mental Health University Institute, Verdun, QC, H4H 1R3, Canada
| |
Collapse
|
42
|
Rolls ET. The hippocampus, ventromedial prefrontal cortex, and episodic and semantic memory. Prog Neurobiol 2022; 217:102334. [PMID: 35870682 DOI: 10.1016/j.pneurobio.2022.102334] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
The human ventromedial prefrontal cortex (vmPFC)/anterior cingulate cortex is implicated in reward and emotion, but also in memory. It is shown how the human orbitofrontal cortex connecting with the vmPFC and anterior cingulate cortex provide a route to the hippocampus for reward and emotional value to be incorporated into episodic memory, enabling memory of where a reward was seen. It is proposed that this value component results in primarily episodic memories with some value component to be repeatedly recalled from the hippocampus so that they are more likely to become incorporated into neocortical semantic and autobiographical memories. The same orbitofrontal and anterior cingulate regions also connect in humans to the septal and basal forebrain cholinergic nuclei, thereby helping to consolidate memory, and helping to account for why damage to the vMPFC impairs memory. The human hippocampus and vmPFC thus contribute in complementary ways to forming episodic and semantic memories.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; University of Warwick, Department of Computer Science, Coventry, UK.
| |
Collapse
|
43
|
Rolls ET, Deco G, Huang CC, Feng J. Multiple cortical visual streams in humans. Cereb Cortex 2022; 33:3319-3349. [PMID: 35834308 DOI: 10.1093/cercor/bhac276] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
The effective connectivity between 55 visual cortical regions and 360 cortical regions was measured in 171 HCP participants using the HCP-MMP atlas, and complemented with functional connectivity and diffusion tractography. A Ventrolateral Visual "What" Stream for object and face recognition projects hierarchically to the inferior temporal visual cortex, which projects to the orbitofrontal cortex for reward value and emotion, and to the hippocampal memory system. A Ventromedial Visual "Where" Stream for scene representations connects to the parahippocampal gyrus and hippocampus. An Inferior STS (superior temporal sulcus) cortex Semantic Stream receives from the Ventrolateral Visual Stream, from visual inferior parietal PGi, and from the ventromedial-prefrontal reward system and connects to language systems. A Dorsal Visual Stream connects via V2 and V3A to MT+ Complex regions (including MT and MST), which connect to intraparietal regions (including LIP, VIP and MIP) involved in visual motion and actions in space. It performs coordinate transforms for idiothetic update of Ventromedial Stream scene representations. A Superior STS cortex Semantic Stream receives visual inputs from the Inferior STS Visual Stream, PGi, and STV, and auditory inputs from A5, is activated by face expression, motion and vocalization, and is important in social behaviour, and connects to language systems.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain.,Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|