1
|
Davis MM, Woodburn M, Nugiel T, Rakesh D, Tate M, Asciutto W, Lin W, Cohen JR, Sheridan MA. Longitudinal associations between birth-to-six cortical growth and childhood neurocognitive function. Proc Natl Acad Sci U S A 2025; 122:e2418176122. [PMID: 40424148 DOI: 10.1073/pnas.2418176122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/28/2025] [Indexed: 05/29/2025] Open
Abstract
The human cortex undergoes immense change in the first years of life, doubling in thickness within the first year and evidencing the greatest change within the first 5 y. While substantial research has identified the early postnatal period as a sensitive period in cortical development, research to date lacks the temporal resolution necessary to identify which aspects of cortical change predict later neural and cognitive function. This study leveraged a rich longitudinal dataset of cortical thickness in 50 children who were scanned up to 11 times between birth and 6 y. We used nonlinear multilevel modeling to explore patterns of cortical change across the brain during this period and distinguish whether different phases of change would predict performance and brain activation during a working memory task children completed at approximately 9 y. Cortical thickness across the brain showed a large increase from birth through 12 mo, a decrease from 12 to 18 mo, and a small increase from 18 mo to 6 y, mirroring patterns of early neural proliferation, pruning, and sustained growth. Performance and neural activation during the working memory task were associated with smaller peak (i.e., 12 mo) thickness and a marginally less steep 12 to 18-mo decline in thickness in the middle frontal gyrus (MFG) of the frontal lobe, in line with evidence demonstrating concurrent links between frontal lobe structure and working memory. These findings validate theories of cortical growth developed in preclinical models using human data and demonstrate that prefrontal cortex development in infancy uniquely predicts neurocognitive function 9 y later.
Collapse
Affiliation(s)
- Megan M Davis
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Mackenzie Woodburn
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Tehila Nugiel
- Department of Psychology, Florida State University, Tallahassee, FL 32306
| | - Divyangana Rakesh
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London SE5 8AF, United Kingdom
| | - Maresa Tate
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - William Asciutto
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Weili Lin
- Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| |
Collapse
|
2
|
Sadeghi N, van der Velpen IF, Baker BT, Batta I, Cahill KJ, Genon S, McCormick E, Michel LC, Moraczewski D, Seraji M, Shaw P, Silva RF, Soleimani N, Sprooten E, Sørensen Ø, Thomas AG, Thurm A, Zhou ZX, Calhoun VD, Kievit R, Plachti A, Zuo XN, White T. The interplay between brain and behavior during development: A multisite effort to generate and share simulated datasets. Sci Data 2025; 12:473. [PMID: 40118942 PMCID: PMC11928570 DOI: 10.1038/s41597-025-04740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
One of the challenges in the field of neuroimaging is that we often lack knowledge about the underlying truth and whether our methods can detect developmental changes. To address this gap, five research groups around the globe created simulated datasets embedded with their assumptions of the interplay between brain development, cognition, and behavior. Each group independently created the datasets, unaware of the approaches and assumptions made by the other groups. Each group simulated three datasets with the same variables, each with 10,000 participants over 7 longitudinal waves, ranging from 7 to 20 years-of-age. The independently created datasets include demographic data, brain derived variables along with behavior and cognition variables. These datasets and code that were used to generate the datasets can be downloaded and used by the research community to apply different longitudinal models to determine the underlying patterns and assumptions where the ground truth is known.
Collapse
Affiliation(s)
- Neda Sadeghi
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Isabelle F van der Velpen
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradley T Baker
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, Georgia, USA
| | - Ishaan Batta
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, Georgia, USA
| | - Kyle J Cahill
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, Georgia, USA
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Ethan McCormick
- Methodology and Statistics Department, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Educational Statistics and Research Methods, School of Education, University of Delaware, Newark, USA
| | - Léa C Michel
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, National Institutes Health, Bethesda, USA
| | - Masoud Seraji
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, Georgia, USA
| | - Philip Shaw
- King's Maudsley Partnership for Child and Young People, King's College London, London, UK
| | - Rogers F Silva
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, Georgia, USA
| | - Najme Soleimani
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, Georgia, USA
| | - Emma Sprooten
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Adam G Thomas
- Data Science and Sharing Team, National Institute of Mental Health, National Institutes Health, Bethesda, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Zi-Xuan Zhou
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, Beijing, China
- Center for the Integrative Developmental Neuroscience, Child Mind Institute, New York, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, Georgia, USA
| | - Rogier Kievit
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Plachti
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Olson HA, Camacho MC, Abdurokhmonova G, Ahmad S, Chen EM, Chung H, Lorenzo RD, Dineen ÁT, Ganz M, Licandro R, Magnain C, Marrus N, McCormick SA, Rutter TM, Wagner L, Woodruff Carr K, Zöllei L, Vaughn KA, Madsen KS. Measuring and interpreting individual differences in fetal, infant, and toddler neurodevelopment. Dev Cogn Neurosci 2025; 73:101539. [PMID: 40056738 PMCID: PMC11930173 DOI: 10.1016/j.dcn.2025.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 03/10/2025] Open
Abstract
As scientists interested in fetal, infant, and toddler (FIT) neurodevelopment, our research questions often focus on how individual children differ in their neurodevelopment and the predictive value of those individual differences for long-term neural and behavioral outcomes. Measuring and interpreting individual differences in neurodevelopment can present challenges: Is there a "standard" way for the human brain to develop? How do the semantic, practical, or theoretical constraints that we place on studying "development" influence how we measure and interpret individual differences? While it is important to consider these questions across the lifespan, they are particularly relevant for conducting and interpreting research on individual differences in fetal, infant, and toddler neurodevelopment due to the rapid, profound, and heterogeneous changes happening during this period, which may be predictive of long-term outcomes. This article, therefore, has three goals: 1) to provide an overview about how individual differences in neurodevelopment are studied in the field of developmental cognitive neuroscience, 2) to identify challenges and considerations when studying individual differences in neurodevelopment, and 3) to discuss potential implications and solutions moving forward.
Collapse
Affiliation(s)
- Halie A Olson
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis School of Medicine, MO, USA.
| | | | - Sahar Ahmad
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, NC, USA
| | - Emily M Chen
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Haerin Chung
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Renata Di Lorenzo
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Melanie Ganz
- Department of Computer Science, University of Copenhagen & Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Roxane Licandro
- Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research (CIR), Early Life Image Analysis (ELIA) Group, Austria
| | - Caroline Magnain
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Natasha Marrus
- Department of Psychiatry, Washington University in St. Louis School of Medicine, MO, USA
| | - Sarah A McCormick
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA
| | - Tara M Rutter
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Lauren Wagner
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Kali Woodruff Carr
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kelly A Vaughn
- Children's Learning Institute, Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
4
|
Zelco A, Joshi A. Single-Cell Analysis of Sex and Gender Differences in the Human Brain During Development and Disease. Cell Mol Neurobiol 2025; 45:20. [PMID: 40016536 PMCID: PMC11868228 DOI: 10.1007/s10571-025-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Sex and gender (SG) differences in the human brain are of interest to society and science as numerous processes are impacted by them, including brain development, behavior, and diseases. By collecting publicly available single-cell data from the in-utero to elderly age in healthy, Alzheimer's disease and multiple sclerosis samples, we identified and characterized SG-biased genes in ten brain cell types across 9 age and disease groups. Sex and gender differences in the transcriptome were present throughout the lifespan and across all cell types. Although there was limited overlap among SG-biased genes across different age and disease groups, we observed significant functional overlap. Female-biased genes are consistently enriched for brain-related processes, while male-biased genes are enriched for metabolic pathways. Additionally, mitochondrial genes showed a consistent female bias across cell types. We also found that androgen response elements (not estrogen) were significantly enriched in both male- and female-biased genes, and thymosin hormone targets being consistently enriched only in male-biased genes. We systematically characterised SG differences in brain development and brain-related disorders at a single-cell level, by analysing a total of publicly available 419,885 single nuclei from 161 human brain samples (72 females, 89 males). The significant enrichment of androgen (not estrogen) response elements in both male- and female-biased genes suggests that androgens are important regulators likely establishing these SG differences. Finally, we provide full characterization of SG-biased genes at different thresholds for the scientific community as a web resource.
Collapse
Affiliation(s)
- Aura Zelco
- Department of Clinical Science, Computational Biology Unit, University of Bergen, Bergen, Norway.
| | - Anagha Joshi
- Department of Clinical Science, Computational Biology Unit, University of Bergen, Bergen, Norway.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| |
Collapse
|
5
|
Haines HT, Suri S, Patel R, Chiesa ST. Association of early life cardiovascular risk factors with grey matter structure in young adults in the United Kingdom: the ALSPAC study. EBioMedicine 2024; 110:105490. [PMID: 39631146 PMCID: PMC11652839 DOI: 10.1016/j.ebiom.2024.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Cumulative exposures to obesity, hypertension, and physical inactivity from midlife (40-65 years) onwards are three known cardiovascular risk factors for dementia and associated cerebral structural damage. Exactly how early in the lifespan sensitive periods for exposure to these risk factors begin is yet to be established, specifically with respect to onset of cerebral structural changes. We aimed to investigate whether cardiovascular risk across childhood and adolescence is already associated with cerebral structure in regions previously linked with dementia, during young adulthood. METHODS Participants were selected from the Avon Longitudinal Study of Parents and Children (ALSPAC), a UK-based prospective cohort of young people, if they had participated in a neuroimaging sub-study (N = 862). We entered data from repeated clinical assessments into mixed-effects models to estimate baseline and rate of change in body mass index (BMI) and mean arterial pressure (MAP) between ages 7-17 years, and physical activity (PA) between 11-15 years. Linear models assessed whether cardiovascular risk factors were associated with grey matter macrostructural indices (cortical thickness, surface area, volume) in young adulthood (∼20 years). FINDINGS BMI was found to be associated with grey matter macrostructure in nodes of Default Mode Network previously found to show atrophy in dementia. Baseline BMI was associated with thickness of precuneus cortex and entorhinal surface area, whilst rate of change in BMI across childhood and adolescence was associated with thickness of parahippocampal and middle temporal gyri and inferior parietal cortex in addition to entorhinal and parahippocampal surface area. Further, we identified associations between baseline MAP and PA and entorhinal surface area. Exploratory whole-brain analyses revealed associations between baseline and rate of change in these cardiovascular risk factors and the cortical thickness, surface area, and volume of broader groups of cortical and subcortical regions. INTERPRETATION Findings provide preliminary evidence that cerebral structural differences in regions linked to dementia in old age may be legacy of developmental differences associated with cardiovascular risk exposure during early life. This has relevance for lifespan models of dementia risk and timing of preventative interventions. Further work is required to generalise findings beyond this predominantly white, male, and middle-class sample to more diverse cohorts. FUNDING NIHR Oxford Health BRC (NIHR203316), Wellcome Trust (203139/Z/16/Z).
Collapse
Affiliation(s)
- Holly T Haines
- Department of Experimental Psychology, University of Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, University of Oxford, United Kingdom; Department of Psychiatry, Warneford Hospital, University of Oxford, United Kingdom.
| | - Sana Suri
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, University of Oxford, United Kingdom; Department of Psychiatry, Warneford Hospital, University of Oxford, United Kingdom
| | - Raihaan Patel
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, University of Oxford, United Kingdom; Department of Psychiatry, Warneford Hospital, University of Oxford, United Kingdom
| | - Scott T Chiesa
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, United Kingdom
| |
Collapse
|
6
|
Rahi B, Rashid F, Sultana R, Benoit J, Parvez F, Khan K. Impact of Nutritional Minerals Biomarkers on Cognitive Performance Among Bangladeshi Rural Adolescents-A Pilot Study. Nutrients 2024; 16:3865. [PMID: 39599651 PMCID: PMC11597576 DOI: 10.3390/nu16223865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Nutritional metals (NM) are essential for neurodevelopment and cognitive performance during growth. Nevertheless, epidemiological evidence regarding the associations between NM and brain function remains understudied, particularly among adolescents. Therefore, the objective of this pilot study was to examine the effects of NM biomarkers such as iron (Fe), selenium (Se), zinc (Zn), magnesium (Mg), and copper (Cu) on neurobehavioral functions among a group of rural Bangladeshi adolescents. Methodology: We conducted a cross-sectional study involving 105 adolescents aged 13-17 from Araihazar, Bangladesh. Cognitive function was assessed using the computer-based Behavioral Assessment and Research System (BARS), focusing attention, memory, and executive function, and blood NM levels (Fe, Se, Zn, Mg, and Cu) were measured. Associations between individual minerals, NM composite scores, and cognition were analyzed using multiple linear regressions. Results: This study included 47 boys and 58 girls with an average age of 15 years. Fe levels were correlated with Continuous Performance Test (CPT) latency (r = -0.42, p < 0.05) and Se levels correlated with Match-to-Sample (MTS) correct count (r = 0.32, p < 0.01). Linear regressions showed that Se was associated with MTS correct count (b = 0.02, 95%CI: 0.01, -0.04), reflecting visual memory, and Fe was associated with CPT latency (b = -0.68, 95%CI: -1.11, -0.26), reflecting improved attention. The same BARS measures were also significantly associated with the 3-NM composite score. Conclusions: Our findings suggest that NM, particularly Fe, Se, and NM mixtures, could play a crucial role in brain development and neurocognitive function during adolescence. Further studies will help design national public health policies and strategies to address and mitigate brain health deficiencies among adolescents.
Collapse
Affiliation(s)
- Berna Rahi
- Department of Human Sciences, College of Health Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | - Fahmida Rashid
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, TX 77341, USA; (F.R.); (R.S.); (K.K.)
| | - Rasheda Sultana
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, TX 77341, USA; (F.R.); (R.S.); (K.K.)
| | - Julia Benoit
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX 77004, USA;
| | - Faruque Parvez
- Department of Environmental Health, Mailman School of Public Health, Columbia University, 722W, 168th St., New York, NY 10032, USA;
| | - Khalid Khan
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, TX 77341, USA; (F.R.); (R.S.); (K.K.)
| |
Collapse
|
7
|
Pagani LS, Harandian K, Gauthier B, Kosak LA, Necsa B, Tremblay MS. Middle Childhood Sport Participation Predicts Timely Long-Term Chances of Academic Success in Boys and Girls by Late Adolescence. Med Sci Sports Exerc 2024; 56:2184-2194. [PMID: 38934497 DOI: 10.1249/mss.0000000000003511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
INTRODUCTION School-aged children experience successive academic demands that increase over time. Extracurricular sport develops skills that involve physical movement, social rules, formal practice, and rational competition. This may facilitate success. PURPOSE Using a prospective-longitudinal birth cohort of 746 girls/721 boys, we examined prospective associations between middle childhood sport participation with subsequent indicators of academic success in adolescence. We hypothesized that persistent participation would promote long-term achievement indicators. METHODS Mothers reported on whether the child participated in sporting activities with a coach/instructor from ages 6 to 10 yr. Developmental trajectories of participation were generated using longitudinal latent class analysis and then used to predict outcomes. From ages 12 to 17 yr, youth self-reported on academic indicators of success over the last 6 months. These were linearly regressed on trajectories of participation in sport, while controlling for preexisting and concurrent child/family confounds. RESULTS Children's sport participation from kindergarten to fourth grade predicted long-term chances of academic success in boys and girls, above and beyond individual/family confounders. Consistent participation predicted increments indicators of future success and reductions in academic failure and dropout risk through to the senior year of secondary school, ranging from 9.1% to 21.3% for girls and 11.7% to 22.9% for boys. CONCLUSIONS We provide compelling and timely evidence of long-term associations between children's sport participation and subsequent indicators of academic success in typically developing boys and girls by late adolescence. Persistent sport involvement in sport increased educational prospects by late adolescence, potentially improving opportunities for success in emerging adulthood.
Collapse
Affiliation(s)
| | | | - Benoit Gauthier
- Art and Sciences Faculty, Applied Human Sciences Program, Université de Montréal, Montreal, CANADA
| | - Laurie-Anne Kosak
- School of Psycho-Education, Université de Montréal, Montreal, CANADA
| | - Beatrice Necsa
- School of Psycho-Education, Université de Montréal, Montreal, CANADA
| | | |
Collapse
|
8
|
Boer OD, Franken IHA, Muetzel RL, Cousijn J, El Marroun H. Examining associations between brain morphology in late childhood and early alcohol or tobacco use initiation in adolescence: Findings from a large prospective cohort. Biol Psychol 2024; 192:108859. [PMID: 39233273 DOI: 10.1016/j.biopsycho.2024.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
A prominent challenge in understanding neural consequences of substance use involves disentangling predispositional risk factors from resulting consequences of substance use. Existing literature has identified pre-existing brain variations as vulnerability markers for substance use throughout adolescence. As early initiation of use is an important predictor for later substance use problems, we examined whether pre-existing brain variations are associated with early initiation of use. In the Generation R Study, a prospective population-based cohort, brain morphology (gray matter volume, cortical thickness and surface area) was assessed at ages 10 and 14 using neuroimaging. In the second wave, participants reported on alcohol and tobacco use initiation. From a base study population (N = 3019), we examined the longitudinal (N = 2218) and cross-sectional (N = 1817) association between brain morphology of frontolimbic regions of interest known to be associated with substance use risk, and very early (age < 13) alcohol/tobacco use initiation. Additionally, longitudinal and cross-sectional associations were examined with a brain surface-based approach. Models were adjusted for age at neuroimaging, sex and relevant sociodemographic factors. No associations were found between brain morphology (ages 10 and 14) and early alcohol/tobacco use initiation (<13 years). Sex-specific analyses suggested a cross-sectional association between smaller brain volume and early initiated tobacco use in girls. Our findings are important for interpreting studies examining neural consequences of substance use in the general population. Future longitudinal studies are needed to specify whether these findings can be extended to initiation and continuation of alcohol/tobacco use in later stages of adolescence.
Collapse
Affiliation(s)
- Olga D Boer
- Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Science, Erasmus University Rotterdam, 3000 DR Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, University Medical Center Rotterdam, Erasmus MC, Sophia Children's Hospital, 3000 CB Rotterdam, the Netherlands
| | - Ingmar H A Franken
- Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Science, Erasmus University Rotterdam, 3000 DR Rotterdam, the Netherlands
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry, University Medical Center Rotterdam, Erasmus MC, Sophia Children's Hospital, 3000 CB Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, the Netherlands
| | - Janna Cousijn
- Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Science, Erasmus University Rotterdam, 3000 DR Rotterdam, the Netherlands
| | - Hanan El Marroun
- Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Science, Erasmus University Rotterdam, 3000 DR Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, University Medical Center Rotterdam, Erasmus MC, Sophia Children's Hospital, 3000 CB Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Zhu J, Garin CM, Qi XL, Machado A, Wang Z, Hamed SB, Stanford TR, Salinas E, Whitlow CT, Anderson AW, Zhou XM, Calabro FJ, Luna B, Constantinidis C. Brain structure and activity predicting cognitive maturation in adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.608315. [PMID: 39229176 PMCID: PMC11370567 DOI: 10.1101/2024.08.23.608315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cognitive abilities of primates, including humans, continue to improve through adolescence 1,2. While a range of changes in brain structure and connectivity have been documented 3,4, how they affect neuronal activity that ultimately determines performance of cognitive functions remains unknown. Here, we conducted a multilevel longitudinal study of monkey adolescent neurocognitive development. The developmental trajectory of neural activity in the prefrontal cortex accounted remarkably well for working memory improvements. While complex aspects of activity changed progressively during adolescence, such as the rotation of stimulus representation in multidimensional neuronal space, which has been implicated in cognitive flexibility, even simpler attributes, such as the baseline firing rate in the period preceding a stimulus appearance had predictive power over behavior. Unexpectedly, decreases in brain volume and thickness, which are widely thought to underlie cognitive changes in humans 5 did not predict well the trajectory of neural activity or cognitive performance changes. Whole brain cortical volume in particular, exhibited an increase and reached a local maximum in late adolescence, at a time of rapid behavioral improvement. Maturation of long-distance white matter tracts linking the frontal lobe with areas of the association cortex and subcortical regions best predicted changes in neuronal activity and behavior. Our results provide evidence that optimization of neural activity depending on widely distributed circuitry effects cognitive development in adolescence.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
| | - Clément M Garin
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, 69675 Bron Cedex, France
| | - Xue-Lian Qi
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Anna Machado
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Zhengyang Wang
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, 69675 Bron Cedex, France
| | - Terrence R Stanford
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Emilio Salinas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| |
Collapse
|
10
|
Cheng TW, Mills KL, Pfeifer JH. Revisiting adolescence as a sensitive period for sociocultural processing. Neurosci Biobehav Rev 2024; 164:105820. [PMID: 39032845 PMCID: PMC11407824 DOI: 10.1016/j.neubiorev.2024.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Waves of research and public discourse have characterized adolescence as periods of developmental risk and opportunity. Underlying this discussion is the recognition that adolescence is a period of major biological and social transition when experience may have an outsized effect on development. This article updates and expands upon prior work suggesting that adolescence may be a sensitive period for sociocultural processing specifically. By integrating evidence from developmental psychology and neuroscience, we identify how trajectories of social and neurobiological development may relate to adolescents' ability to adapt to and learn from their social environments. However, we also highlight gaps in the literature, including challenges in attributing developmental change to adolescent experiences. We discuss the importance of better understanding variability in biology (e.g., pubertal development) and cultural environments, as well as distinguishing between sensitive periods and periods of heightened sensitivity. Finally, we look toward future directions and translational implications of this research.
Collapse
Affiliation(s)
- Theresa W Cheng
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA; Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA 02138, USA.
| | - Kathryn L Mills
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA.
| | - Jennifer H Pfeifer
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA.
| |
Collapse
|
11
|
Tan B, Tamanyan K, Walter L, Nixon GM, Davey MJ, Ditchfield M, Horne RSC. Cortical grey matter changes, behavior and cognition in children with sleep disordered breathing. J Sleep Res 2024; 33:e14006. [PMID: 37475108 DOI: 10.1111/jsr.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
This paper investigated cortical thickness and volumetric changes in children to better understand the impact of obstructive sleep disordered breathing (SDB) on the neurodevelopment of specific regions of the brain. We also aimed to investigate how these changes were related to the behavioral and cognitive deficits observed in the condition. Neuroimaging, behavioral, and sleep data were obtained from 30 children (15 non-snoring controls, 15 referred for assessment of SDB) aged 7 to 17 years. Gyral-based regions of interest were identified using the Desikan-Killiany atlas. Student's t-tests were used to compare regions of interest between the controls and SDB groups. We found that the cortical thickness was significantly greater in the right caudal anterior cingulate and right cuneus regions and there were volumetric increases in the left caudal middle frontal, bilateral rostral anterior cingulate, left, right, and bilateral caudate brain regions in children with SDB compared with controls. Neither cortical thickness nor volumetric changes were associated with behavioral or cognitive measures. The findings of this study indicate disruptions to neural developmental processes occurring in structural regions of the brain; however, these changes appear unrelated to behavioural or cognitive outcomes.
Collapse
Affiliation(s)
- Brendan Tan
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Knarik Tamanyan
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Lisa Walter
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Gillian M Nixon
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, Victoria, Australia
| | - Margot J Davey
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, Victoria, Australia
| | - Michael Ditchfield
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
- Department of Radiology, Monash Children's Hospital, Melbourne, Victoria, Australia
| | - Rosemary S C Horne
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Toenders YJ, van der Cruijsen R, Runze J, van de Groep S, Wierenga L, Crone EA. Mood variability during adolescent development and its relation to sleep and brain development. Sci Rep 2024; 14:8537. [PMID: 38609481 PMCID: PMC11014928 DOI: 10.1038/s41598-024-59227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Mood swings, or mood variability, are associated with negative mental health outcomes. Since adolescence is a time when mood disorder onset peaks, mood variability during this time is of significant interest. Understanding biological factors that might be associated with mood variability, such as sleep and structural brain development, could elucidate the mechanisms underlying mood and anxiety disorders. Data from the longitudinal Leiden self-concept study (N = 191) over 5 yearly timepoints was used to study the association between sleep, brain structure, and mood variability in healthy adolescents aged 11-21 at baseline in this pre-registered study. Sleep was measured both objectively, using actigraphy, as well as subjectively, using a daily diary self-report. Negative mood variability was defined as day-to-day negative mood swings over a period of 5 days after an MRI scan. It was found that negative mood variability peaked in mid-adolescence in females while it linearly increased in males, and average negative mood showed a similar pattern. Sleep duration (subjective and objective) generally decreased throughout adolescence, with a larger decrease in males. Mood variability was not associated with sleep, but average negative mood was associated with lower self-reported energy. In addition, higher thickness in the dorsolateral prefrontal cortex (dlPFC) compared to same-age peers, suggesting a delayed thinning process, was associated with higher negative mood variability in early and mid-adolescence. Together, this study provides an insight into the development of mood variability and its association with brain structure.
Collapse
Affiliation(s)
- Yara J Toenders
- Developmental and Educational Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Renske van der Cruijsen
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Jana Runze
- Clinical Child and Family Studies, VU University Amsterdam, Amsterdam, The Netherlands
| | - Suzanne van de Groep
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Lara Wierenga
- Developmental and Educational Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Eveline A Crone
- Developmental and Educational Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Thomson AR, Hwa H, Pasanta D, Hopwood B, Powell HJ, Lawrence R, Tabuenca ZG, Arichi T, Edden RAE, Chai X, Puts NA. The developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood. Cereb Cortex 2024; 34:bhae046. [PMID: 38430105 PMCID: PMC10908220 DOI: 10.1093/cercor/bhae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| | - Hannah Hwa
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Benjamin Hopwood
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Helen J Powell
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Ross Lawrence
- Division of Cognitive Neurology, Department of Neurology, Johns Hopkins University, 1629 Thames Street Suite 350, Baltimore, MD 21231, United States
| | - Zeus G Tabuenca
- Department of Statistical Methods, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, 1st Floor, South Wing, St Thomas’ Hospital, London, SE1 7EH, United Kingdom
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD 21287, United States
- F.M. Kirby Research Centre for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, United States
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, QC H3A2B4, Canada
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| |
Collapse
|
14
|
Gaiser C, Berthet P, Kia SM, Frens MA, Beckmann CF, Muetzel RL, Marquand AF. Estimating cortical thickness trajectories in children across different scanners using transfer learning from normative models. Hum Brain Mapp 2024; 45:e26565. [PMID: 38339954 PMCID: PMC10839740 DOI: 10.1002/hbm.26565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 02/12/2024] Open
Abstract
This work illustrates the use of normative models in a longitudinal neuroimaging study of children aged 6-17 years and demonstrates how such models can be used to make meaningful comparisons in longitudinal studies, even when individuals are scanned with different scanners across successive study waves. More specifically, we first estimated a large-scale reference normative model using Hierarchical Bayesian Regression from N = 42,993 individuals across the lifespan and from dozens of sites. We then transfer these models to a longitudinal developmental cohort (N = 6285) with three measurement waves acquired on two different scanners that were unseen during estimation of the reference models. We show that the use of normative models provides individual deviation scores that are independent of scanner effects and efficiently accommodate inter-site variations. Moreover, we provide empirical evidence to guide the optimization of sample size for the transfer of prior knowledge about the distribution of regional cortical thicknesses. We show that a transfer set containing as few as 25 samples per site can lead to good performance metrics on the test set. Finally, we demonstrate the clinical utility of this approach by showing that deviation scores obtained from the transferred normative models are able to detect and chart morphological heterogeneity in individuals born preterm.
Collapse
Affiliation(s)
- C. Gaiser
- Department of Neuroscience, Erasmus MCUniversity Medical Centre RotterdamRotterdamThe Netherlands
- The Generation R Study Group, Erasmus MC—Sophia Children's HospitalUniversity Medical Centre RotterdamRotterdamThe Netherlands
| | - P. Berthet
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Center for Mental Disorders Research (NORMENT)University of Oslo, and Oslo University HospitalOsloNorway
| | - S. M. Kia
- Donders Institute for Brain, Cognition, and BehaviorRadboud UniversityNijmegenThe Netherlands
- Department of PsychiatryUtrecht University Medical CenterUtrechtThe Netherlands
- Department of Cognitive Science and Artificial IntelligenceTilburg UniversityTilburgThe Netherlands
| | - M. A. Frens
- Department of Neuroscience, Erasmus MCUniversity Medical Centre RotterdamRotterdamThe Netherlands
| | - C. F. Beckmann
- Donders Institute for Brain, Cognition, and BehaviorRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
- Centre for Functional MRI of the BrainUniversity of OxfordOxfordUK
| | - R. L. Muetzel
- Department of Child and Adolescent Psychiatry, Erasmus MC—Sophia Children's HospitalUniversity Medical Centre RotterdamRotterdamThe Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC—Sophia Children's HospitalUniversity Medical Centre RotterdamRotterdamThe Netherlands
| | - Andre F. Marquand
- Donders Institute for Brain, Cognition, and BehaviorRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
15
|
Dahl A, Eilertsen EM, Rodriguez-Cabello SF, Norbom LB, Tandberg AD, Leonardsen E, Lee SH, Ystrom E, Tamnes CK, Alnæs D, Westlye LT. Genetic and brain similarity independently predict childhood anthropometrics and neighborhood socioeconomic conditions. Dev Cogn Neurosci 2024; 65:101339. [PMID: 38184855 PMCID: PMC10818201 DOI: 10.1016/j.dcn.2023.101339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024] Open
Abstract
Linking the developing brain with individual differences in clinical and demographic traits is challenging due to the substantial interindividual heterogeneity of brain anatomy and organization. Here we employ an integrative approach that parses individual differences in both cortical thickness and common genetic variants, and assess their effects on a wide set of childhood traits. The approach uses a linear mixed model framework to obtain the unique effects of each type of similarity, as well as their covariance. We employ this approach in a sample of 7760 unrelated children in the ABCD cohort baseline sample (mean age 9.9, 46.8% female). In general, associations between cortical thickness similarity and traits were limited to anthropometrics such as height, weight, and birth weight, as well as a marker of neighborhood socioeconomic conditions. Common genetic variants explained significant proportions of variance across nearly all included outcomes, although estimates were somewhat lower than previous reports. No significant covariance of the effects of genetic and cortical thickness similarity was found. The present findings highlight the connection between anthropometrics as well as neighborhood socioeconomic conditions and the developing brain, which appear to be independent from individual differences in common genetic variants in this population-based sample.
Collapse
Affiliation(s)
- Andreas Dahl
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Espen M Eilertsen
- Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway
| | - Sara F Rodriguez-Cabello
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway
| | - Anneli D Tandberg
- Department of Psychology, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway
| | - Esten Leonardsen
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sang Hong Lee
- Australian Centre for Precision Health, UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia; South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, Australia
| | - Eivind Ystrom
- Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway; Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian K Tamnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway
| |
Collapse
|
16
|
Kollndorfer K, Novak A, Nenning KH, Fischmeister FPS, Seidl R, Langs G, Kasprian G, Prayer D, Bartha-Doering L. Cortical thickness in the right medial frontal gyrus predicts planning performance in healthy children and adolescents. Front Psychol 2023; 14:1196707. [PMID: 37794918 PMCID: PMC10546024 DOI: 10.3389/fpsyg.2023.1196707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
The ability to plan is an important part of the set of the cognitive skills called "executive functions." To be able to plan actions in advance is of great importance in everyday life and constitutes one of the major key features for academic as well as economic success. The present study aimed to investigate the neuroanatomical correlates of planning in normally developing children, as measured by the cortical thickness of the prefrontal cortex. Eighteen healthy children and adolescents underwent structural MRI examinations and the Tower of London (ToL) task. A multiple regression analysis revealed that the cortical thickness of the right caudal middle frontal gyrus (cMFG) was a significant predictor of planning performance. Neither the cortical thickness of any other prefrontal area nor gender were significantly associated with performance in the ToL task. The results of the present exploratory study suggest that the cortical thickness of the right, but not the left cMFG, is positively correlated with performance in the ToL task. We, therefore, conclude that increased cortical thickness may be more beneficial for higher-order processes, such as information integration, than for lower-order processes, such as the analysis of external information.
Collapse
Affiliation(s)
- Kathrin Kollndorfer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Developmental and Interventional Imaging (DIN) Lab, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Astrid Novak
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Karl-Heinz Nenning
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Computational Imaging Research Lab (CIR), Vienna, Austria
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Florian Ph S. Fischmeister
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Developmental and Interventional Imaging (DIN) Lab, Vienna, Austria
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Computational Imaging Research Lab (CIR), Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| |
Collapse
|
17
|
Willbrand EH, Ferrer E, Bunge SA, Weiner KS. Development of Human Lateral Prefrontal Sulcal Morphology and Its Relation to Reasoning Performance. J Neurosci 2023; 43:2552-2567. [PMID: 36828638 PMCID: PMC10082454 DOI: 10.1523/jneurosci.1745-22.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Previous findings show that the morphology of folds (sulci) of the human cerebral cortex flatten during postnatal development. However, previous studies did not consider the relationship between sulcal morphology and cognitive development in individual participants. Here, we fill this gap in knowledge by leveraging cross-sectional morphologic neuroimaging data in the lateral PFC (LPFC) from individual human participants (6-36 years old, males and females; N = 108; 3672 sulci), as well as longitudinal morphologic and behavioral data from a subset of child and adolescent participants scanned at two time points (6-18 years old; N = 44; 2992 sulci). Manually defining thousands of sulci revealed that LPFC sulcal morphology (depth, surface area, and gray matter thickness) differed between children (6-11 years old)/adolescents (11-18 years old) and young adults (22-36 years old) cross-sectionally, but only cortical thickness showed differences across childhood and adolescence and presented longitudinal changes during childhood and adolescence. Furthermore, a data-driven approach relating morphology and cognition identified that longitudinal changes in cortical thickness of four left-hemisphere LPFC sulci predicted longitudinal changes in reasoning performance, a higher-level cognitive ability that relies on LPFC. Contrary to previous findings, these results suggest that sulci may flatten either after this time frame or over a longer longitudinal period of time than previously presented. Crucially, these results also suggest that longitudinal changes in the cortex within specific LPFC sulci are behaviorally meaningful, providing targeted structures, and areas of the cortex, for future neuroimaging studies examining the development of cognitive abilities.SIGNIFICANCE STATEMENT Recent work has shown that individual differences in neuroanatomical structures (indentations, or sulci) within the lateral PFC are behaviorally meaningful during childhood and adolescence. Here, we describe how specific lateral PFC sulci develop at the level of individual participants for the first time: from both cross-sectional and longitudinal perspectives. Further, we show, also for the first time, that the longitudinal morphologic changes in these structures are behaviorally relevant. These findings lay the foundation for a future avenue to precisely study the development of the cortex and highlight the importance of studying the development of sulci in other cortical expanses and charting how these changes relate to the cognitive abilities those areas support at the level of individual participants.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Department of Psychology
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Emilio Ferrer
- Department of Psychology
- Center for Mind and Brain, University of California-Davis, Davis, California 95616
| | - Silvia A Bunge
- Department of Psychology
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Kevin S Weiner
- Department of Psychology
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
18
|
Wittmann MK, Scheuplein M, Gibbons SG, Noonan MP. Local and global reward learning in the lateral frontal cortex show differential development during human adolescence. PLoS Biol 2023; 21:e3002010. [PMID: 36862726 PMCID: PMC10013901 DOI: 10.1371/journal.pbio.3002010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 03/14/2023] [Accepted: 01/20/2023] [Indexed: 03/03/2023] Open
Abstract
Reward-guided choice is fundamental for adaptive behaviour and depends on several component processes supported by prefrontal cortex. Here, across three studies, we show that two such component processes, linking reward to specific choices and estimating the global reward state, develop during human adolescence and are linked to the lateral portions of the prefrontal cortex. These processes reflect the assignment of rewards contingently to local choices, or noncontingently, to choices that make up the global reward history. Using matched experimental tasks and analysis platforms, we show the influence of both mechanisms increase during adolescence (study 1) and that lesions to lateral frontal cortex (that included and/or disconnected both orbitofrontal and insula cortex) in human adult patients (study 2) and macaque monkeys (study 3) impair both local and global reward learning. Developmental effects were distinguishable from the influence of a decision bias on choice behaviour, known to depend on medial prefrontal cortex. Differences in local and global assignments of reward to choices across adolescence, in the context of delayed grey matter maturation of the lateral orbitofrontal and anterior insula cortex, may underlie changes in adaptive behaviour.
Collapse
Affiliation(s)
- Marco K. Wittmann
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Department of Experimental Psychology, University College London, London, United Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, United Kingdom
| | - Maximilian Scheuplein
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands
| | - Sophie G. Gibbons
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - MaryAnn P. Noonan
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Department of Psychology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Plachti A, Baaré WFC, Johansen LB, Thompson WK, Siebner HR, Madsen KS. Stability of associations between neuroticism and microstructural asymmetry of the cingulum during late childhood and adolescence: Insights from a longitudinal study with up to 11 waves. Hum Brain Mapp 2023; 44:1548-1564. [PMID: 36426846 PMCID: PMC9921236 DOI: 10.1002/hbm.26157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Adolescence is characterized by significant brain development and marks a period of the life span with an increased incidence of mood disorders, especially in females. The risk of developing mood disorders is also higher in individuals scoring high on neuroticism, a personality trait characterized by a tendency to experience negative and anxious emotions. We previously found in a cross-sectional study that neuroticism is associated with microstructural left-right asymmetry of the fronto-limbic white matter involved in emotional processing, with opposite effects in female and male adolescents. We now have extended this work collecting longitudinal data in 76 typically developing children and adolescents aged 7-18 years, including repeated MRI sampling up to 11 times. This enabled us, for the first time, to address the critical question, whether the association between neuroticism and frontal-limbic white matter asymmetry changes or remains stable across late childhood and adolescence. Neuroticism was assessed up to four times and showed good intraindividual stability and did not significantly change with age. Conforming our cross-sectional results, females scoring high on neuroticism displayed increased left-right cingulum fractional anisotropy (FA), while males showed decreased left-right cingulum FA asymmetry. Despite ongoing age-related increases in FA in cingulum, the association between neuroticism and cingulum FA asymmetry was already expressed in females in late childhood and remained stable across adolescence. In males, the association appeared to become more prominent during adolescence. Future longitudinal studies need to cover an earlier age span to elucidate the time point at which the relationship between neuroticism and cingulum FA asymmetry arises.
Collapse
Affiliation(s)
- Anna Plachti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Louise Baruël Johansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Wesley K Thompson
- Department of Radiology and Division of Biostatistics, Population Neuroscience and Genetics Lab, University of California San Diego, San Diego School of Medicine, La Jolla, California, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.,Radiography, Department of Technology, University College Copenhagen, Denmark
| |
Collapse
|
20
|
Schwarze SA, Laube C, Khosravani N, Lindenberger U, Bunge SA, Fandakova Y. Does prefrontal connectivity during task switching help or hinder children's performance? Dev Cogn Neurosci 2023; 60:101217. [PMID: 36807013 PMCID: PMC9969289 DOI: 10.1016/j.dcn.2023.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The ability to flexibly switch between tasks is key for goal-directed behavior and continues to improve across childhood. Children's task switching difficulties are thought to reflect less efficient engagement of sustained and transient control processes, resulting in lower performance on blocks that intermix tasks (sustained demand) and trials that require a task switch (transient demand). Sustained and transient control processes are associated with frontoparietal regions, which develop throughout childhood and may contribute to task switching development. We examined age differences in the modulation of frontoparietal regions by sustained and transient control demands in children (8-11 years) and adults. Children showed greater performance costs than adults, especially under sustained demand, along with less upregulation of sustained and transient control activation in frontoparietal regions. Compared to adults, children showed increased connectivity between the inferior frontal junction (IFJ) and lateral prefrontal cortex (lPFC) from single to mixed blocks. For children whose sustained activation was less adult-like, increased IFJ-lPFC connectivity was associated with better performance. Children with more adult-like sustained activation showed the inverse effect. These results suggest that individual differences in task switching in later childhood at least partly depend on the recruitment of frontoparietal regions in an adult-like manner.
Collapse
Affiliation(s)
- Sina A. Schwarze
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany,Correspondence to: Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
| | - Corinna Laube
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany,Fresenius University of Applied Sciences, Jägerstraße 32, 10117 Berlin, Germany
| | - Neda Khosravani
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, WC1B 5EH London, UK
| | - Silvia A. Bunge
- Department of Psychology and Helen Wills Neuroscience Institute, University of California at Berkeley, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
21
|
Cortes Hidalgo AP, Tiemeier H, Metcalf SA, Monninger M, Meyer-Lindenberg A, Aggensteiner PM, Bakermans‑Kranenburg MJ, White T, Banaschewski T, van IJzendoorn MH, Holz NE. No robust evidence for an interaction between early-life adversity and protective factors on global and regional brain volumes. Dev Cogn Neurosci 2022; 58:101166. [PMID: 36327649 PMCID: PMC9636055 DOI: 10.1016/j.dcn.2022.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 01/13/2023] Open
Abstract
Childhood adversity is associated with brain morphology and poor psychological outcomes, and evidence of protective factors counteracting childhood adversity effects on neurobiology is scarce. We examined the interplay of childhood adversity with protective factors in relation to brain morphology in two independent longitudinal cohorts, the Generation R Study (N = 3008) and the Mannheim Study of Children at Risk (MARS) (N = 179). Cumulative exposure to 12 adverse events was assessed across childhood until age 9 years in Generation R and 11 years in MARS. Protective factors (temperament, cognition, self-esteem, maternal sensitivity, friendship quality) were assessed at various time-points during childhood. Global brain volumes and volumes of amygdala, hippocampus, and the anterior cingulate, medial orbitofrontal and rostral middle frontal cortices were assessed with anatomical scans at 10 years in Generation R and at 25 years in MARS. Childhood adversity was related to smaller cortical grey matter, cerebral white matter, and cerebellar volumes in children. Also, no buffering effects of protective factors on the association between adversity and the brain outcomes survived multiple testing correction. We found no robust evidence for an interaction between protective factors and childhood adversity on broad brain structural measures. Small interaction effects observed in one cohort only warrant further investigation.
Collapse
Affiliation(s)
- Andrea P. Cortes Hidalgo
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands,Correspondence to: Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, 3000 CB Rotterdam, the Netherlands.
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands,Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Stephen A. Metcalf
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands,Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Maximilian Monninger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pascal-M. Aggensteiner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marian J. Bakermans‑Kranenburg
- Department of Clinical Child and Family Studies, and Amsterdam Public Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marinus H. van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands,Department of Clinical, Educational and Health Psychology, UCL, University of London, London, UK
| | - Nathalie E. Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Donders Institute, Radboud University, Nijmegen, the Netherlands,Radboud University Medical Centre, Nijmegen, the Netherlands,Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
22
|
Wise Jr JP. The intersection between toxicology and aging research: A toxic aging coin perspective. FRONTIERS IN AGING 2022; 3:1014675. [PMID: 36213344 PMCID: PMC9532842 DOI: 10.3389/fragi.2022.1014675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
We are imminently faced with the challenges of an increasingly aging population and longer lifespans due to improved health care. Concomitantly, we are faced with ubiquitous environmental pollution linked with various health effects and age-related diseases which contribute to increased morbidity with age. Geriatric populations are rarely considered in the development of environmental regulations or in toxicology research. Today, life expectancy is often into one's 80s or beyond, which means multiple decades living as a geriatric individual. Hence, adverse health effects and late-onset diseases might be due to environmental exposures as a geriatric, and we currently have no way of knowing. Considering aging from a different perspective, the term "gerontogen" was coined in 1987 to describe chemicals that accelerate biological aging but has largely been left out of toxicology research. Thus, we are challenged with a two-faced problem that we can describe as a "toxic aging coin"; on one side we consider how age affects the toxic outcome of chemicals, whereas on the other side we consider how chemicals accelerate aging (i.e. how chemicals act as gerontogens). Conveniently, both sides of this coin can be tackled with a single animal study that considers multiple age groups and assesses basic toxicology of the chemical(s) tested and aging-focused endpoints. Here, I introduce the concept of this toxic aging coin and some key considerations for how it applies to toxicology research. My discussion of this concept will focus on the brain, my area of expertise, but could be translated to any organ system.
Collapse
|