1
|
Gao Q, Zhou Y, Chen Y, Hu W, Jin W, Zhou C, Yuan H, Li J, Lin Z, Lin W. Role of iron in brain development, aging, and neurodegenerative diseases. Ann Med 2025; 57:2472871. [PMID: 40038870 PMCID: PMC11884104 DOI: 10.1080/07853890.2025.2472871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
It is now understood that iron crosses the blood-brain barrier via a complex metabolic regulatory network and participates in diverse critical biological processes within the central nervous system, including oxygen transport, energy metabolism, and the synthesis and catabolism of myelin and neurotransmitters. During brain development, iron is distributed throughout the brain, playing a pivotal role in key processes such as neuronal development, myelination, and neurotransmitter synthesis. In physiological aging, iron can selectively accumulate in specific brain regions, impacting cognitive function and leading to intracellular redox imbalance, mitochondrial dysfunction, and lipid peroxidation, thereby accelerating aging and associated pathologies. Furthermore, brain iron accumulation may be a primary contributor to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Comprehending the role of iron in brain development, aging, and neurodegenerative diseases, utilizing iron-sensitive Magnetic Resonance Imaging (MRI) technology for timely detection or prediction of abnormal neurological states, and implementing appropriate interventions may be instrumental in preserving normal central nervous system function.
Collapse
Affiliation(s)
- Qiqi Gao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Zhou
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Hu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Jin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunting Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Yuan
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshun Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Qin J, Wu H, Wu C, Guo T, Zhou C, Duanmu X, Tan S, Wen J, Zheng Q, Yuan W, Zhu Z, Chen J, Wu J, He C, Ma Y, Liu C, Xu X, Guan X, Zhang M. Robust computation of subcortical functional connectivity guided by quantitative susceptibility mapping: An application in Parkinson's disease diagnosis. Neuroimage 2025; 314:121256. [PMID: 40347998 DOI: 10.1016/j.neuroimage.2025.121256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/19/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
Previous resting state functional MRI (rs-fMRI) analyses of the basal ganglia in Parkinson's disease heavily relied on T1-weighted imaging (T1WI) atlases. However, subcortical structures are characterized by subtle contrast differences, making their accurate delineation challenging on T1WI. In this study, we aimed to introduce and validate a method that incorporates quantitative susceptibility mapping (QSM) into the rs-fMRI analytical pipeline to achieve precise subcortical nuclei segmentation and improve the stability of RSFC measurements in Parkinson's disease. A total of 321 participants (148 patients with Parkinson's Disease and 173 normal controls) were enrolled. We performed cross-modal registration at the individual level for rs-fMRI to QSM (FUNC2QSM) and T1WI (FUNC2T1), respectively.The consistency and accuracy of resting state functional connectivity (RSFC) measurements in two registration approaches were assessed by intraclass correlation coefficient and mutual information. Bootstrap analysis was performed to validate the stability of the RSFC differences between Parkinson's disease and normal controls. RSFC-based machine learning models were constructed for Parkinson's disease classification, using optimized hyperparameters (RandomizedSearchCV with 5-fold cross-validation). The consistency of RSFC measurements between the two registration methods was poor, whereas the QSM-guided approach showed better mutual information values, suggesting higher registration accuracy. The disruptions of RSFC identified with the QSM-guided approach were more stable and reliable, as confirmed by bootstrap analysis. In classification models, the QSM-guided method consistently outperformed the T1WI-guided method, achieving higher test-set ROC-AUC values (FUNC2QSM: 0.87-0.90, FUNC2T1: 0.67-0.70). The QSM-guided approach effectively enhanced the accuracy of subcortical segmentation and the stability of RSFC measurement, thus facilitating future biomarker development in Parkinson's disease.
Collapse
Affiliation(s)
- Jianmei Qin
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Haoting Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Chenqing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xiaojie Duanmu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Sijia Tan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Jiaqi Wen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Qianshi Zheng
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Weijin Yuan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zihao Zhu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Jingwen Chen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Chenyu He
- State Key Laboratory of Computer-aided Design & Computer Graphics, Zhejiang University College of Computer Science and technology, Hangzhou, PR China
| | - Yiran Ma
- State Key Laboratory of Industrial Control Technology, Zhejiang University College of Control Science and Engineering, Hangzhou, PR China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| |
Collapse
|
3
|
Zhang R, Lin M, Cho J, Yu X, Jiaerken Y, Wang S, Hong H, Guan X, Zhang Y, Xie L, Liu L, Cui L, Zhang M, Biessels GJ, Siero JCW, Huang P. Oxygen extraction fraction in small vessel disease: relationship to disease burden and progression. Brain 2025:awae383. [PMID: 40323889 DOI: 10.1093/brain/awae383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/17/2024] [Accepted: 10/24/2024] [Indexed: 05/07/2025] Open
Abstract
Chronic hypoperfusion has been considered a major mechanism of cerebral small vessel disease. Nonetheless, brain tissue may increase oxygen extraction fraction to mitigate hypoxia and delay parenchymal damage. This study aims to investigate oxygen extraction fraction in cerebral small vessel disease and understand its relationship to disease burden and progression. We retrospectively included 195 patients with cerebral small vessel disease and 178 normal controls. Cerebral blood flow was measured by arterial spin labelling. Oxygen extraction fraction was estimated by quantitative susceptibility mapping plus quantitative blood oxygen-level dependence imaging. We compared baseline cerebral blood flow and oxygen extraction fraction in the whole white matter, normal-appearing white matter and white matter hyperintensities between the patient and control groups. Then, we studied whether cerebral blood flow and oxygen extraction fraction differed among patients with varying disease burdens. Longitudinally, we used linear mixed models to evaluate whether cerebral blood flow and oxygen extraction fraction could together predict the progression of white matter hyperintensities or free water (mean follow-up time = 2.6 years) in a subset of 47 patients. Compared to the control group, the patient group exhibited reduced cerebral blood flow in the whole white matter, normal-appearing white matter and white matter hyperintensities. Additionally, the oxygen extraction fraction increased in normal-appearing white matter but decreased in white matter hyperintensities. Notably, the white matter oxygen extraction fraction was elevated in patients with mild-to-moderate disease burden but decreased in those with the most severe disease burden. Longitudinal analyses revealed that adding oxygen extraction fraction measurements to cerebral blood flow measurements can improve the prediction of disease progression. Higher baseline values of cerebral blood flow and oxygen extraction fraction in the white matter were both linked to a slower increase in free water. In summary, oxygen extraction fraction exhibited an 'increase-then-decrease' pattern in patients with cerebral small vessel disease. Together, oxygen extraction fraction and cerebral blood flow can predict disease progression. Non-invasive MRI assessment of oxygen extraction fraction may provide valuable tools for future research on cerebral small vessel disease.
Collapse
Affiliation(s)
- Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Miao Lin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Junghun Cho
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yao Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Linyun Xie
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lingyun Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lei Cui
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Geert Jan Biessels
- Department of Neurology, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Center for Image Sciences, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam 1105 BK, The Netherlands
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
4
|
Zhu Z, Wen J, Duanmu X, Yuan W, Zheng Q, Guo T, Wu C, Wu H, Zhou C, Zeng Q, Qin J, Wu J, Chen J, Fang Y, Zhu B, Yan Y, Tian J, Zhang B, Zhang M, Guan X, Xu X. Identifying brain degeneration patterns in early-stage Parkinson's disease: a multimodal MRI study. NPJ Parkinsons Dis 2025; 11:93. [PMID: 40280955 PMCID: PMC12032125 DOI: 10.1038/s41531-025-00975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/20/2025] [Indexed: 04/29/2025] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous neurodegenerative disorder. This study aimed to identify different patterns of early brain degeneration in PD patients and investigate their clinical relevance. 179 early-stage PD patients and 115 healthy controls were included. We assessed cortical morphology, white matter microstructure, and subcortical iron metabolism using multimodal magnetic resonance imaging and employed clustering techniques to identify subtypes. Two subtypes were identified: the early-deterioration subtype, characterized by fronto-temporal atrophy, parietal thickening, widespread reductions in fractional anisotropy (FA) values, and increased subcortical iron content, which exhibited more severe baseline symptoms and a trend of faster memory decline; and the early-compensatory subtype, characterized by rostral middle frontal atrophy, parietal-occipital thickening, increased FA values, and normal iron content, which exhibited milder symptoms initially but experienced faster progression of both motor and non-motor symptoms. These discoveries provided new insights into disease heterogeneity and facilitated the exploration of early neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Zihao Zhu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijin Yuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianshi Zheng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuelin Fang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingting Zhu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Qiu H, Hu M, Jiang C, Wu J, Huang Z, Liang J, Sha R, Zeng W, Wu C, Chu J, Zhao J. Altered Brain Iron Depositions of Spinocerebellar Ataxia Type 3: From Pre-Symptomatic to Symptomatic Stage. Eur J Neurol 2025; 32:e70127. [PMID: 40207891 PMCID: PMC11983486 DOI: 10.1111/ene.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/13/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3) is a rare hereditary neurodegeneration disease. The iron distribution of SCA3 is poorly understood, yet quantitative susceptibility mapping (QSM) has rarely been used in SCA3. METHODS We prospectively investigated QSM of SCA3 (19 pre-symptomatic and 41 symptomatic) and 37 healthy controls (HCs) recruited from 2018.05 to 2021.01. Group susceptibility was cross-sectionally compared, and the associations between altered brain iron deposition and clinical symptoms, neurofilament light chain (Nfl), and fractional anisotropy of the bilateral corticospinal tracts and cerebellar peduncles were explored. 12 SCA3 participants were followed for at least a year. RESULTS Compared to HCs, bilateral SN were observed with significantly increased susceptibility in pre-symptomatic SCA3. Most of the supratentorial nuclei and the right dental nucleus had increased susceptibility in symptomatic than in pre-symptomatic stage and were partially correlated with symptomatic severity, disease duration, and damaged cerebellar peduncles (p < 0.05) but not Nfl (p > 0.05). The left substantia nigra (SN) demonstrated the highest diagnostic efficacy in identifying pre- (AUC = 0.904) and symptomatic SCA3 (AUC = 0.938). The longitudinal study also confirmed the significant change in the left SN (p < 0.01). CONCLUSIONS Our in vivo QSM evidence demonstrates disease-specific patterns for brain iron depositions in SCA3. Brain iron deposition abnormality is an early event of the SCA3's occurrence and development. The left SN might be a critical site for the disease's start and development.
Collapse
Affiliation(s)
- Haishan Qiu
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPR China
| | - Manshi Hu
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPR China
| | - Chao Jiang
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPR China
| | - Jiale Wu
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPR China
| | - Zihuan Huang
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPR China
| | - Jiahui Liang
- Department of Medical ImagingSun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhouPR China
| | - Runhua Sha
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPR China
| | - Wenting Zeng
- Department of RadiologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chao Wu
- Department of NeurologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPR China
| | - Jianping Chu
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPR China
| | - Jing Zhao
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPR China
| |
Collapse
|
6
|
Wen J, Guo T, Duanmu X, Wu C, Wu H, Zhou C, Zheng Q, Yuan W, Qin J, Zhu Z, Wu J, Chen J, Xu J, Yan Y, Tian J, Zhang B, He H, Zhang M, Guan X, Xu X. Gradients of Nigrostriatal Iron Deposition in Healthy Aging and Synucleinopathies. CNS Neurosci Ther 2025; 31:e70359. [PMID: 40130468 PMCID: PMC11933852 DOI: 10.1111/cns.70359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
AIMS To investigate the gradients of nigrostriatal iron deposition in aging, Parkinson's disease (PD), and multiple system atrophy (MSA). METHODS This study included 100 young healthy controls, 171 old healthy controls (OHC), 231 PD, and 24 MSA patients. The brain iron content was quantified by quantitative susceptibility mapping. A spatial function method was employed to map the iron gradient along the principal axis of the subcortical structure. General linear models were used to compare differences in iron gradients between groups. Partial correlation was used to analyze the relationship between iron content and symptoms of synucleinopathies. RESULTS Nigrostriatal iron deposition in all gradient directions was observed during aging (p < 0.05). Compared to OHC, iron deposition was significant in nearly all substantia nigra (SN) segments in both PD and MSA (p < 0.05). MSA showed significant iron deposition in the posterolateral putamen compared to PD (p < 0.05). Iron deposition in the SN in PD and putamen in MSA correlated with disease severity. CONCLUSION Iron deposition in all gradient directions occurred in the nigrostriatal system during healthy aging, and this was more evident in the SN in both PD and MSA, with MSA displaying additional iron deposition in the posterolateral putamen.
Collapse
Affiliation(s)
- Jiaqi Wen
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojie Duanmu
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenqing Wu
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haoting Wu
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qianshi Zheng
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Weijin Yuan
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianmei Qin
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zihao Zhu
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Xu
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yaping Yan
- Department of Neurology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jun Tian
- Department of Neurology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Minming Zhang
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
7
|
Perrotta I. Live and let die: analyzing ultrastructural features in cell death. Ultrastruct Pathol 2025; 49:1-19. [PMID: 39552095 DOI: 10.1080/01913123.2024.2428703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Cell death is an important process that supports morphogenesis during development and tissue homeostasis during adult life by removing damaged or unwanted cells and its dysregulation is associated with numerous disease states. There are different pathways through which a cell can undergo cell death, each relying on peculiar molecular mechanisms and morpho-ultrastructural features. To date, however, while molecular and genetic approaches have been successfully integrated into the field, cell death studies rarely incorporate ultrastructural data from electron microscopy. This review article reports a gallery of original transmission electron microscopy images to describe the ultrastructural features of cells undergoing different types of cell death programs, including necrosis, apoptosis, autophagy, mitotic catastrophe, ferroptosis, methuosis, and paraptosis. TEM has been an important technology in cell biology for well over 50 years and still continues to offer significant advantages in the area of cell death research. TEM allows detailed characterization of the ultrastructural changes within the cell, such as the alteration of organelles and subcellular structures, the nuclear reorganization, and the loss of membrane integrity that enable a distinction between the different forms of cell death based on morphological criteria. Possible pitfalls are also described.
Collapse
Affiliation(s)
- Ida Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2) Transmission Electron Microscopy Laboratory, University of Calabria, Cosenza, Italy
| |
Collapse
|
8
|
Lu W, Song T, Zang Z, Li J, Zhang Y, Lu J. Relaxometry network based on MRI R 2⁎ mapping revealing brain iron accumulation patterns in Parkinson's disease. Neuroimage 2024; 303:120943. [PMID: 39571643 DOI: 10.1016/j.neuroimage.2024.120943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/12/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Excessive iron accumulation in the brain has been implicated in Parkinson's disease (PD). However, the patterns and probable sequences of iron accumulation across the PD brain remain largely unknown. This study aimed to explore the sequence of iron accumulation across the PD brain using R2* mapping and a relaxometry covariance network (RCN) approach. METHODS R2* quantification maps were obtained from PD patients (n = 34) and healthy controls (n = 25). RCN was configured on R2* maps to identify covariance differences in iron levels between the two groups. Regions with excessive iron accumulation and large covariance changes in PD patients compared to controls were defined as propagators of iron. In the PD group, causal RCN analysis was performed on the R2* maps sequenced according to disease duration to investigate the dynamics of iron accumulations from the propagators. The associations between individual connections of the RCN and clinical information were analyzed in PD patients. RESULTS The left substantia nigra pars reticulata (SNpr), left substantia nigra pars compacta (SNpc), and lobule VII of the vermis (VER7) were identified as primary regions for iron accumulation and propagation (propagator). As the disease duration increased, iron accumulation in these three propagators demonstrated positive causal effects on the bilateral pallidum, bilateral gyrus rectus, right middle frontal gyrus, and medial and anterior orbitofrontal cortex (OFC). Furthermore, individual connections of VER7 with the left gyrus rectus and anterior OFC were positively associated with disease duration. CONCLUSIONS Our results indicate that the aberrant iron accumulation in PD involves several regions, mainly starts from the SN and cerebellum and extends to the pallidum and cortices. These findings provide preliminary information on sequences of iron accumulation in PD, which may advance our understanding of the disease.
Collapse
Affiliation(s)
- Weizhao Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Xuanwu Hospital, Beijing, 100053, China
| | - Tianbin Song
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Xuanwu Hospital, Beijing, 100053, China
| | - Zhenxiang Zang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Xuanwu Hospital, Beijing, 100053, China.
| |
Collapse
|
9
|
Hervouin A, Bézy-Wendling J, Noury F. How to accurately quantify brain magnetic susceptibility in the context of Parkinson's disease: Validation on phantoms and healthy volunteers at 1.5 and 3 T. NMR IN BIOMEDICINE 2024; 37:e5182. [PMID: 38993048 DOI: 10.1002/nbm.5182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024]
Abstract
Currently, brain iron content represents a new neuromarker for understanding the physiopathological mechanisms leading to Parkinson's disease (PD). In vivo quantification of biological iron is possible by reconstructing magnetic susceptibility maps obtained using quantitative susceptibility mapping (QSM). Applying QSM is challenging, as up to now, no standardization of acquisition protocols and phase image processing has emerged from referenced studies. Our objectives were to compare the accuracy and the sensitivity of 10 QSM pipelines built from algorithms from the literature, applied on phantoms data and on brain data. Two phantoms, with known magnetic susceptibility ranges, were created from several solutions of gadolinium chelate. Twenty healthy volunteers from two age groups were included. Phantoms and brain data were acquired at 1.5 and 3 T, respectively. Susceptibility-weighted images were obtained using a 3D multigradient-recalled-echo sequence. For brain data, 3D anatomical T1- and T2-weighted images were also acquired to segment the deep gray nuclei of interest. Concerning in vitro data, the linear dependence of magnetic susceptibility versus gadolinium concentration and deviations from the theoretically expected values were calculated. For brain data, the accuracy and sensitivity of the QSM pipelines were evaluated in comparison with results from the literature and regarding the expected magnetic susceptibility increase with age, respectively. A nonparametric Mann-Whitney U-test was used to compare the magnetic susceptibility quantification in deep gray nuclei between the two age groups. Our methodology enabled quantifying magnetic susceptibility in human brain and the results were consistent with those from the literature. Statistically significant differences were obtained between the two age groups in all cerebral regions of interest. Our results show the importance of optimizing QSM pipelines according to the application and the targeted magnetic susceptibility range, to achieve accurate quantification. We were able to define the optimal QSM pipeline for future applications on patients with PD.
Collapse
Affiliation(s)
| | | | - Fanny Noury
- Univ Rennes, Inserm, LTSI-UMR 1099, Rennes, France
| |
Collapse
|
10
|
Mohammadi S, Ghaderi S, Fatehi F. Putamen iron quantification in diseases with neurodegeneration: a meta-analysis of the quantitative susceptibility mapping technique. Brain Imaging Behav 2024; 18:1239-1255. [PMID: 38758278 DOI: 10.1007/s11682-024-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Quantitative susceptibility mapping (QSM) is an MRI technique that accurately measures iron concentration in brain tissues. This meta-analysis synthesized evidence from 30 studies that used QSM to quantify the iron levels in the putamen. The PRISMA statement was adhered to when conducting the systematic reviews and meta-analyses. We conducted a meta-analysis using a random-effects model, as well as subgroup analyses (disease type, geographic region, field strength, coil, disease type, age, and sex) and sensitivity analysis. A total of 1247 patients and 1035 controls were included in the study. Pooled results showed a standardized mean difference (SMD) of 0.41 (95% CI 0.19 to 0.64), with the strongest effect seen in Alzheimer's disease (AD) at 1.01 (95% CI 0.50 to 1.52). Relapsing-remitting multiple sclerosis (RRMS) also showed increased putaminal iron at 0.37 (95% CI 0.177 to 0.58). No significant differences were observed in Parkinson's disease (PD). No significant differences were found between subgroups based on geographic region, field strength, coil, disease type, age, and sex. The studies revealed significant heterogeneity, with field strength as the primary source, while other factors, such as disease type, location, age, sex, and coil type, may have contributed. The sensitivity analysis showed that these factors did not have a significant influence on the overall results. In summary, this meta-analysis supports abnormalities in putaminal iron content across different diseases with neurodegeneration, especially AD and RRMS, as measured by QSM. This highlights the potential of QSM as an imaging biomarker to better understand disease mechanisms involving disturbances in brain iron homeostasis.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
11
|
Spence H, Mengoa-Fleming S, Sneddon AA, McNeil CJ, Waiter GD. Associations between sex, systemic iron and inflammatory status and subcortical brain iron. Eur J Neurosci 2024; 60:5069-5085. [PMID: 39113267 DOI: 10.1111/ejn.16467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Brain iron increases in several neurodegenerative diseases are associated with disease progression. However, the causes of increased brain iron remain unclear. This study investigates relationships between subcortical iron, systemic iron and inflammatory status. Brain magnetic resonance imaging (MRI) scans and blood plasma samples were collected from cognitively healthy females (n = 176, mean age = 61.4 ± 4.5 years, age range = 28-72 years) and males (n = 152, mean age = 62.0 ± 5.1 years, age range = 32-74 years). Regional brain iron was quantified using quantitative susceptibility mapping. To assess systemic iron, haematocrit, ferritin and soluble transferrin receptor were measured, and total body iron index was calculated. To assess systemic inflammation, C-reactive protein (CRP), neutrophil:lymphocyte ratio (NLR), macrophage colony-stimulating factor 1 (MCSF), interleukin 6 (IL6) and interleukin 1β (IL1β) were measured. We demonstrated that iron levels in the right hippocampus were higher in males compared with females, while iron in the right caudate was higher in females compared with males. There were no significant associations observed between subcortical iron levels and blood markers of iron and inflammatory status indicating that such blood measures are not markers of brain iron. These results suggest that brain iron may be regulated independently of blood iron and so directly targeting global iron change in the treatment of neurodegenerative disease may have differential impacts on blood and brain iron.
Collapse
Affiliation(s)
- Holly Spence
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Stephanie Mengoa-Fleming
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Christopher J McNeil
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
12
|
Chen X, Zhang X, Wu Y, Wang Z, Yu T, Chen P, Tong P, Gao J, Chen H. The Iron Binding Ability Maps the Fate of Food-Derived Transferrins: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17771-17781. [PMID: 39087686 DOI: 10.1021/acs.jafc.4c04827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
As the demand for lactoferrin increases, the search for cost-effective alternative proteins becomes increasingly important. Attention naturally turns to other members of the transferrin family such as ovotransferrin. The iron-binding abilities of these proteins influence their characteristics, although the underlying mechanisms remain unclear. This overview systematically summarizes the effects of the iron-binding ability on the fate of food-derived transferrins (lactoferrin and ovotransferrin) and their potential applications. The findings indicate that iron-binding ability significantly influences the structure of food-derived transferrins, particularly their tertiary structure. Changes in structure influence their physicochemical properties, which, in turn, lead to different behaviors in response to environmental variations. Thus, these proteins exhibit distinct digestive characteristics by the time they reach the small intestine, ultimately performing varied physiological functions in vivo. Consequently, food-derived transferrins with different iron-binding states may find diverse applications. Understanding this capability is essential for developing food-derived transferrins and driving innovation in lactoferrin-related industries.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Tian Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Pingduo Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| |
Collapse
|
13
|
Rubin M, Pagani E, Preziosa P, Meani A, Storelli L, Margoni M, Filippi M, Rocca MA. Cerebrospinal Fluid-In Gradient of Cortical and Deep Gray Matter Damage in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200271. [PMID: 38896808 PMCID: PMC11197989 DOI: 10.1212/nxi.0000000000200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND OBJECTIVES A CSF-in gradient in cortical and thalamic gray matter (GM) damage has been found in multiple sclerosis (MS). We concomitantly explored the patterns of cortical, thalamic, and caudate microstructural abnormalities at progressive distances from CSF using a multiparametric MRI approach. METHODS For this cross-sectional study, from 3T 3D T1-weighted scans, we sampled cortical layers at 25%-50%-75% depths from pial surface and thalamic and caudate bands at 2-3-4 voxels from the ventricular-GM interface. Using linear mixed models, we tested between-group comparisons of magnetization transfer ratio (MTR) and R2* layer-specific z-scores, CSF-in across-layer z-score changes, and their correlations with clinical (disease duration and disability) and structural (focal lesions, brain, and choroid plexus volume) MRI measures. RESULTS We enrolled 52 patients with MS (33 relapsing-remitting [RRMS], 19 progressive [PMS], mean age: 46.4 years, median disease duration: 15.1 years, median: EDSS 2.0) and 70 controls (mean age 41.5 ± 12.8). Compared with controls, RRMS showed lower MTR values in the outer and middle cortical layers (false-discovery rate [FDR]-p ≤ 0.025) and lower R2* values in all 3 cortical layers (FDR-p ≤ 0.016). PMS had lower MTR values in the outer and middle cortical (FDR-p ≤ 0.016) and thalamic (FDR-p ≤ 0.048) layers, and in the outer caudate layer (FDR-p = 0.024). They showed lower R2* values in the outer cortical layer (FDR-p = 0.003) and in the outer thalamic layer (FDR-p = 0.046) and higher R2* values in all 3 caudate layers (FDR-p ≤ 0.031). Both RRMS and PMS had a gradient of damage, with lower values closer to the CSF, for cortical (FDR-p ≤ 0.002) and thalamic (FDR-p ≤ 0.042) MTR. PMS showed a gradient of damage for cortical R2* (FDR-p = 0.005), thalamic R2* (FDR-p = 0.004), and caudate MTR (FDR-p ≤ 0.013). Lower MTR and R2* of outer cortical, thalamic, and caudate layers and steeper gradient of damage toward the CSF were significantly associated with older age, higher T2-hyperintense white matter lesion volume, higher thalamic lesion volume, and lower brain volume (β ≥ 0.08, all FDR-p ≤ 0.040). Lower MTR of outer caudate layer was associated with more severe disability (β = -0.26, FDR-p = 0.040). No correlations with choroid plexus volume were found. DISCUSSION CSF-in damage gradients are heterogeneous among different GM regions and through MS course, possibly reflecting different dynamics of demyelination and iron loss/accumulation.
Collapse
Affiliation(s)
- Martina Rubin
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
He Y, Dong N, Wang X, Lv RJ, Yu Q, Yue HM. Obstructive sleep apnea affects cognition: dual effects of intermittent hypoxia on neurons. Sleep Breath 2024; 28:1051-1065. [PMID: 38308748 DOI: 10.1007/s11325-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder. Multiple organs, especially the central nervous system (CNS), are damaged, and dysfunctional when intermittent hypoxia (IH) occurs during sleep for a long time. The quality of life of individuals with OSA is significantly impacted by cognitive decline, which also escalates the financial strain on their families. Consequently, the development of novel therapies becomes imperative. IH induces oxidative stress, endoplasmic reticulum stress, iron deposition, and neuroinflammation in neurons. Synaptic dysfunction, reactive gliosis, apoptosis, neuroinflammation, and inhibition of neurogenesis can lead to learning and long-term memory impairment. In addition to nerve injury, the role of IH in neuroprotection was also explored. While causing neuron damage, IH activates the neuronal self-repairing mechanism by regulating antioxidant capacity and preventing toxic protein deposition. By stimulating the proliferation and differentiation of neural stem cells (NSCs), IH has the potential to enhance the ratio of neonatal neurons and counteract the decline in neuron numbers. This review emphasizes the perspectives and opportunities for the neuroprotective effects of IH and informs novel insights and therapeutic strategies in OSA.
Collapse
Affiliation(s)
- Yao He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Na Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ren-Jun Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qin Yu
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hong-Mei Yue
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
15
|
Ashraf AA, Aljuhani M, Hubens CJ, Jeandriens J, Parkes HG, Geraki K, Mahmood A, Herlihy AH, So PW. Inflammation subsequent to mild iron excess differentially alters regional brain iron metabolism, oxidation and neuroinflammation status in mice. Front Aging Neurosci 2024; 16:1393351. [PMID: 38836051 PMCID: PMC11148467 DOI: 10.3389/fnagi.2024.1393351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
Iron dyshomeostasis and neuroinflammation, characteristic features of the aged brain, and exacerbated in neurodegenerative disease, may induce oxidative stress-mediated neurodegeneration. In this study, the effects of potential priming with mild systemic iron injections on subsequent lipopolysaccharide (LPS)-induced inflammation in adult C57Bl/6J mice were examined. After cognitive testing, regional brain tissues were dissected for iron (metal) measurements by total reflection X-ray fluorescence and synchrotron radiation X-Ray fluorescence-based elemental mapping; and iron regulatory, ferroptosis-related, and glia-specific protein analysis, and lipid peroxidation by western blotting. Microglial morphology and astrogliosis were assessed by immunohistochemistry. Iron only treatment enhanced cognitive performance on the novel object location task compared with iron priming and subsequent LPS-induced inflammation. LPS-induced inflammation, with or without iron treatment, attenuated hippocampal heme oxygenase-1 and augmented 4-hydroxynonenal levels. Conversely, in the cortex, elevated ferritin light chain and xCT (light chain of System Xc-) were observed in response to LPS-induced inflammation, without and with iron-priming. Increased microglial branch/process lengths and astrocyte immunoreactivity were also increased by combined iron and LPS in both the hippocampus and cortex. Here, we demonstrate iron priming and subsequent LPS-induced inflammation led to iron dyshomeostasis, compromised antioxidant function, increased lipid peroxidation and altered neuroinflammatory state in a brain region-dependent manner.
Collapse
Affiliation(s)
- Azhaar Ahmad Ashraf
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Manal Aljuhani
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chantal J Hubens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jérôme Jeandriens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Human Biology and Toxicology, Faculty of Medicine, University of Mons, Mons, Belgium
| | - Harold G Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Ayesha Mahmood
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Lee S, Kovacs GG. The Irony of Iron: The Element with Diverse Influence on Neurodegenerative Diseases. Int J Mol Sci 2024; 25:4269. [PMID: 38673855 PMCID: PMC11049980 DOI: 10.3390/ijms25084269] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Iron accumulation in the brain is a common feature of many neurodegenerative diseases. Its involvement spans across the main proteinopathies involving tau, amyloid-beta, alpha-synuclein, and TDP-43. Accumulating evidence supports the contribution of iron in disease pathologies, but the delineation of its pathogenic role is yet challenged by the complex involvement of iron in multiple neurotoxicity mechanisms and evidence supporting a reciprocal influence between accumulation of iron and protein pathology. Here, we review the major proteinopathy-specific observations supporting four distinct hypotheses: (1) iron deposition is a consequence of protein pathology; (2) iron promotes protein pathology; (3) iron protects from or hinders protein pathology; and (4) deposition of iron and protein pathology contribute parallelly to pathogenesis. Iron is an essential element for physiological brain function, requiring a fine balance of its levels. Understanding of disease-related iron accumulation at a more intricate and systemic level is critical for advancements in iron chelation therapies.
Collapse
Affiliation(s)
- Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
17
|
Guan X, Lancione M, Ayton S, Dusek P, Langkammer C, Zhang M. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping. Neuroimage 2024; 289:120547. [PMID: 38373677 DOI: 10.1016/j.neuroimage.2024.120547] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/21/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and apart from a few rare genetic causes, its pathogenesis remains largely unclear. Recent scientific interest has been captured by the involvement of iron biochemistry and the disruption of iron homeostasis, particularly within the brain regions specifically affected in PD. The advent of Quantitative Susceptibility Mapping (QSM) has enabled non-invasive quantification of brain iron in vivo by MRI, which has contributed to the understanding of iron-associated pathogenesis and has the potential for the development of iron-based biomarkers in PD. This review elucidates the biochemical underpinnings of brain iron accumulation, details advancements in iron-sensitive MRI technologies, and discusses the role of QSM as a biomarker of iron deposition in PD. Despite considerable progress, several challenges impede its clinical application after a decade of QSM studies. The initiation of multi-site research is warranted for developing robust, interpretable, and disease-specific biomarkers for monitoring PD disease progression.
Collapse
Affiliation(s)
- Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Scott Ayton
- Florey Institute, The University of Melbourne, Australia
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia; Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Auenbruggerplatz 22, Prague 8036, Czechia
| | | | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China.
| |
Collapse
|
18
|
Ghaderi S, Mohammadi S, Nezhad NJ, Karami S, Sayehmiri F. Iron quantification in basal ganglia: quantitative susceptibility mapping as a potential biomarker for Alzheimer's disease - a systematic review and meta-analysis. Front Neurosci 2024; 18:1338891. [PMID: 38469572 PMCID: PMC10925682 DOI: 10.3389/fnins.2024.1338891] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Alzheimer's disease (AD), characterized by distinctive pathologies such as amyloid-β plaques and tau tangles, also involves deregulation of iron homeostasis, which may accelerate neurodegeneration. This meta-analysis evaluated the use of quantitative susceptibility mapping (QSM) to detect iron accumulation in the deep gray matter (DGM) of the basal ganglia in AD, contributing to a better understanding of AD progression, and potentially leading to new diagnostic and therapeutic approaches. Methods Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched the PubMed, Scopus, Web of Sciences, and Google Scholar databases up to October 2023 for studies employing QSM in AD research. Eligibility criteria were based on the PECO framework, and we included studies assessing alterations in magnetic susceptibility indicative of iron accumulation in the DGM of patients with AD. After initial screening and quality assessment using the Newcastle-Ottawa Scale, a meta-analysis was conducted to compare iron levels between patients with AD and healthy controls (HCs) using a random-effects model. Results The meta-analysis included nine studies comprising 267 patients with AD and 272 HCs. There were significantly higher QSM values, indicating greater iron deposition, in the putamen (standardized mean difference (SMD) = 1.23; 95% CI: 0.62 to 1.84; p = 0.00), globus pallidus (SMD = 0.79; 95% CI: 0.07 to 1.52; p = 0.03), and caudate nucleus (SMD = 0.72; 95% CI: 0.39 to 1.06; p = 0.00) of AD patients compared to HCs. However, no significant differences were found in the thalamus (SMD = 1.00; 95% CI: -0.42 to 2.43; p = 0.17). The sensitivity analysis indicated that no single study impacted the overall results. Age was identified as a major contributor to heterogeneity across all basal ganglia nuclei in subgroup analysis. Older age (>69 years) and lower male percentage (≤30%) were associated with greater putamen iron increase in patients with AD. Conclusion The study suggests that excessive iron deposition is linked to the basal ganglia in AD, especially the putamen. The study underscores the complex nature of AD pathology and the accumulation of iron, influenced by age, sex, and regional differences, necessitating further research for a comprehensive understanding.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Jashire Nezhad
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
19
|
Duanmu X, Wen J, Tan S, Guo T, Zhou C, Wu H, Wu J, Cao Z, Liu X, Chen J, Wu C, Qin J, Gu L, Yan Y, Zhang B, Zhang M, Guan X, Xu X. Aberrant dentato-rubro-thalamic pathway in action tremor but not rest tremor: A multi-modality magnetic resonance imaging study. CNS Neurosci Ther 2023; 29:4160-4171. [PMID: 37408389 PMCID: PMC10651946 DOI: 10.1111/cns.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/14/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
AIMS The purpose of this study was to clarify the dentato-rubro-thalamic (DRT) pathway in action tremor in comparison to normal controls (NC) and disease controls (i.e., rest tremor) by using multi-modality magnetic resonance imaging (MRI). METHODS This study included 40 essential tremor (ET) patients, 57 Parkinson's disease (PD) patients (29 with rest tremor, 28 without rest tremor), and 41 NC. We used multi-modality MRI to comprehensively assess major nuclei and fiber tracts of the DRT pathway, which included decussating DRT tract (d-DRTT) and non-decussating DRT tract (nd-DRTT), and compared the differences in DRT pathway components between action and rest tremor. RESULTS Bilateral dentate nucleus (DN) in the ET group had excessive iron deposition compared with the NC group. Compared with the NC group, significantly decreased mean diffusivity and radial diffusivity were observed in the left nd-DRTT in the ET group, which were negatively correlated with tremor severity. No significant difference in each component of the DRT pathway was observed between the PD subgroup or the PD and NC. CONCLUSION Aberrant changes in the DRT pathway may be specific to action tremor and were indicating that action tremor may be related to pathological overactivation of the DRT pathway.
Collapse
Affiliation(s)
- Xiaojie Duanmu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sijia Tan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haoting Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Luyan Gu
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yaping Yan
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
20
|
Mieling M, Meier H, Bunzeck N. Structural degeneration of the nucleus basalis of Meynert in mild cognitive impairment and Alzheimer's disease - Evidence from an MRI-based meta-analysis. Neurosci Biobehav Rev 2023; 154:105393. [PMID: 37717861 DOI: 10.1016/j.neubiorev.2023.105393] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/17/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Recent models of Alzheimer's disease (AD) suggest that neuropathological changes of the medial temporal lobe, especially entorhinal cortex, are preceded by degenerations of the cholinergic Nucleus basalis of Meynert (NbM). Evidence from imaging studies in humans, however, is limited. Therefore, we performed an activation-likelihood estimation meta-analysis on whole brain voxel-based morphometry (VBM) MRI data from 54 experiments and 2581 subjects in total. It revealed, compared to healthy older controls, reduced gray matter in the bilateral NbM in AD, but only limited evidence for such an effect in patients with mild cognitive impairment (MCI), which typically precedes AD. Both patient groups showed less gray matter in the amygdala and hippocampus, with hints towards more pronounced amygdala effects in AD. We discuss our findings in the context of studies that highlight the importance of the cholinergic basal forebrain in learning and memory throughout the lifespan, and conclude that they are partly compatible with pathological staging models suggesting initial and pronounced structural degenerations within the NbM in the progression of AD.
Collapse
Affiliation(s)
- Marthe Mieling
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hannah Meier
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
21
|
Bordin V, Pirastru A, Bergsland N, Cazzoli M, Baselli G, Baglio F. Optimal echo times for quantitative susceptibility mapping: A test-retest study on basal ganglia and subcortical brain nuclei. Neuroimage 2023; 278:120272. [PMID: 37437701 DOI: 10.1016/j.neuroimage.2023.120272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
Quantitative Susceptibility Mapping (QSM) is a recent MRI-technique able to quantify the bulk magnetic susceptibility of myelin, iron, and calcium in the brain. Its variability across different acquisition parameters has prompted the need for standardisation across multiple centres and MRI vendors. However, a high level of agreement between repeated imaging acquisitions is equally important. With this study we aimed to assess the inter-scan repeatability of an optimised multi-echo GRE sequence in 28 healthy volunteers. We extracted and compared the susceptibility measures from the scan and rescan acquisitions across 7 bilateral brain regions (i.e., 14 regions of interest (ROIs)) relevant for neurodegeneration. Repeatability was first assessed while reconstructing QSM with a fixed number of echo times (i.e., 8). Excellent inter-scan repeatability was found for putamen, globus pallidus and caudate nucleus, while good performance characterised the remaining structures. An increased variability was instead noted for small ROIs like red nucleus and substantia nigra. Secondly, we assessed the impact exerted on repeatability by the number of echoes used to derive QSM maps. Results were impacted by this parameter, especially in smaller regions. Larger brain structures, on the other hand, showed more consistent performance. Nevertheless, with either 8 or 7 echoes we managed to obtain good inter-scan repeatability on almost all ROIs. These findings indicate that the designed acquisition/reconstruction protocol has wide applicability, particularly in clinical or research settings involving longitudinal acquisitions (e.g. rehabilitation studies).
Collapse
Affiliation(s)
- Valentina Bordin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Alice Pirastru
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Niels Bergsland
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Marta Cazzoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | |
Collapse
|
22
|
Long H, Zhu W, Wei L, Zhao J. Iron homeostasis imbalance and ferroptosis in brain diseases. MedComm (Beijing) 2023; 4:e298. [PMID: 37377861 PMCID: PMC10292684 DOI: 10.1002/mco2.298] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
Brain iron homeostasis is maintained through the normal function of blood-brain barrier and iron regulation at the systemic and cellular levels, which is fundamental to normal brain function. Excess iron can catalyze the generation of free radicals through Fenton reactions due to its dual redox state, thus causing oxidative stress. Numerous evidence has indicated brain diseases, especially stroke and neurodegenerative diseases, are closely related to the mechanism of iron homeostasis imbalance in the brain. For one thing, brain diseases promote brain iron accumulation. For another, iron accumulation amplifies damage to the nervous system and exacerbates patients' outcomes. In addition, iron accumulation triggers ferroptosis, a newly discovered iron-dependent type of programmed cell death, which is closely related to neurodegeneration and has received wide attention in recent years. In this context, we outline the mechanism of a normal brain iron metabolism and focus on the current mechanism of the iron homeostasis imbalance in stroke, Alzheimer's disease, and Parkinson's disease. Meanwhile, we also discuss the mechanism of ferroptosis and simultaneously enumerate the newly discovered drugs for iron chelators and ferroptosis inhibitors.
Collapse
Affiliation(s)
- Haining Long
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| | - Wangshu Zhu
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| | - Liming Wei
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| | - Jungong Zhao
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| |
Collapse
|
23
|
Huang C, Li J, Liu C, Zhang Y, Tang Q, Lv X, Ruan M, Deng K. Investigation of brain iron levels in Chinese patients with Alzheimer's disease. Front Aging Neurosci 2023; 15:1168845. [PMID: 37284016 PMCID: PMC10239950 DOI: 10.3389/fnagi.2023.1168845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction We aimed (i) to explore the diagnostic value of deep gray matter magnetic susceptibility in Alzheimer's disease (AD) in China and (ii) to analyze its correlation with neuropsychiatric scales. Moreover, we conducted subgroup analysis based on the presence of the APOE-ε4 gene to improve the diagnosis of AD. Methods From the prospective studies of the China Aging and Neurodegenerative Initiative (CANDI), a total of 93 subjects who could undergo complete quantitative magnetic susceptibility imaging and APOE-ε4 gene detection were selected. Differences in quantitative susceptibility mapping (QSM) values between and within groups, including AD patients, individuals with mild cognitive impairment (MCI), and healthy controls (HCs), both APOE-ε4 carriers and non-carriers, were analyzed. Results In primary analysis, the magnetic susceptibility values of the bilateral caudate nucleus and right putamen in the AD group and of the right caudate nucleus in the MCI group were significantly higher than those in the HCs group (P < 0.05). In APOE-ε4 non-carriers, there were significant differences in more regions between the AD, MCI, and HCs groups, such as the left putamen and the right globus pallidus (P < 0.05). In subgroup analysis, the correlation between QSM values in some brain regions and neuropsychiatric scales was even stronger. Discussion Exploration of the correlation between deep gray matter iron levels and AD may provide insight into the pathogenesis of AD and facilitate early diagnosis in elderly Chinese. Further subgroup analysis based on the presence of the APOE-ε4 gene may further improve the diagnostic efficiency and sensitivity.
Collapse
Affiliation(s)
- Chuanbin Huang
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
- Fuyang Hospital of TCM, Fuyang, Anhui, China
| | - Jing Li
- Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Chang Liu
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | | | - Qiqiang Tang
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Xinyi Lv
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Mengyue Ruan
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Kexue Deng
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| |
Collapse
|
24
|
Xu X, Zhou M, Wu X, Zhao F, Luo X, Li K, Zeng Q, He J, Cheng H, Guan X, Huang P, Zhang M, Liu K. Increased iron deposition in nucleus accumbens associated with disease progression and chronicity in migraine. BMC Med 2023; 21:136. [PMID: 37024948 PMCID: PMC10080952 DOI: 10.1186/s12916-023-02855-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Migraine is one of the world's most prevalent and disabling diseases. Despite huge advances in neuroimaging research, more valuable neuroimaging markers are still urgently needed to provide important insights into the brain mechanisms that underlie migraine symptoms. We therefore aim to investigate the regional iron deposition in subcortical nuclei of migraineurs as compared to controls and its association with migraine-related pathophysiological assessments. METHODS A total of 200 migraineurs (56 chronic migraine [CM], 144 episodic migraine [EM]) and 41 matched controls were recruited. All subjects underwent MRI and clinical variables including frequency/duration of migraine, intensity of migraine, 6-item Headache Impact Test (HIT-6), Migraine Disability Assessment (MIDAS), and Pittsburgh Sleep Quality Index (PSQI) were recorded. Quantitative susceptibility mapping was employed to quantify the regional iron content in subcortical regions. Associations between clinical variables and regional iron deposition were studied as well. RESULTS Increased iron deposition in the putamen, caudate, and nucleus accumbens (NAC) was observed in migraineurs more than controls. Meanwhile, patients with CM had a significantly higher volume of iron deposits compared to EM in multiple subcortical nuclei, especially in NAC. Volume of iron in NAC can be used to distinguish patients with CM from EM with a sensitivity of 85.45% and specificity of 71.53%. As the most valuable neuroimaging markers in all of the subcortical nuclei, higher iron deposition in NAC was significantly associated with disease progression, and higher HIT-6, MIDAS, and PSQI. CONCLUSIONS These findings provide evidence that iron deposition in NAC may be a biomarker for migraine chronicity and migraine-related dysfunctions, thus may help to understand the underlying vascular and neural mechanisms of migraine. TRIAL REGISTRATION ClinicalTrials.gov, number NCT04939922.
Collapse
Affiliation(s)
- Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Mengting Zhou
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Fangling Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Jiahui He
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Hongrong Cheng
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China.
| | - Kaiming Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China.
| |
Collapse
|