1
|
Lao G, Feng R, Qi H, Lv Z, Liu Q, Liu C, Zhang Y, Wei H. Coordinate-based neural representation enabling zero-shot learning for fast 3D multiparametric quantitative MRI. Med Image Anal 2025; 102:103530. [PMID: 40069978 DOI: 10.1016/j.media.2025.103530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/26/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025]
Abstract
Quantitative magnetic resonance imaging (qMRI) offers tissue-specific physical parameters with significant potential for neuroscience research and clinical practice. However, lengthy scan times for 3D multiparametric qMRI acquisition limit its clinical utility. Here, we propose SUMMIT, an innovative imaging methodology that includes data acquisition and an unsupervised reconstruction for simultaneous multiparametric qMRI. SUMMIT first encodes multiple important quantitative properties into highly undersampled k-space. It further leverages implicit neural representation incorporated with a dedicated physics model to reconstruct the desired multiparametric maps without needing external training datasets. SUMMIT delivers co-registered T1, T2, T2∗, and subvoxel quantitative susceptibility mapping. Extensive simulations, phantom, and in vivo brain imaging demonstrate SUMMIT's high accuracy. Notably, SUMMIT uniquely unravels microstructural alternations in patients with white matter hyperintense lesions with high sensitivity and specificity. Additionally, the proposed unsupervised approach for qMRI reconstruction also introduces a novel zero-shot learning paradigm for multiparametric imaging applicable to various medical imaging modalities.
Collapse
Affiliation(s)
- Guoyan Lao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Haikun Qi
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Zhenfeng Lv
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Qiangqiang Liu
- Department of Neurosurgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Yan S, Lu J, Duan B, Zhang S, Liu D, Qin Y, Dimov AV, Cho J, Li Y, Zhu W, Wang Y. Potential Separation of Multiple System Atrophy and Parkinson's Disease by Susceptibility-derived Components. Neuroimage 2025:121241. [PMID: 40286829 DOI: 10.1016/j.neuroimage.2025.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Substantial evidence emphasizes the dysregulation of iron homeostasis, demyelination and oxidative stress in the neurodegenerative process of multiple system atrophy (MSA) and Parkinson's disease (PD), although its clinical implications remain unclear. Recent MRI post-processing techniques leveraging magnetic susceptibility properties provide a noninvasive means to characterize iron, myelin content and oxygen metabolism alterations. This study aims to investigate subcortical alterations of susceptibility-derived metrics in these two synucleinopathies. METHODS A cohort comprising 180 patients (122 with PD and 58 with MSA) and 77 healthy controls (HCs) underwent clinical evaluation and multi-echo gradient echo MRI scans. Susceptibility source separation, susceptibility-based oxygen extraction fraction (OEF) mapping and semiautomatic subcortical nuclei segmentation were utilized to derive parametric values of deep gray matter in all subjects. RESULTS MSA patients showed markedly elevated paramagnetic susceptibility values in the putamen, globus pallidus (GP) and thalamus; increased diamagnetic susceptibility values in the putamen and dentate nucleus; and reduced OEF values across all nuclei compared with PD patients and HCs. Whereas PD exhibited increased positive susceptibility values in the substantia nigra and enhancing negative values in the GP, similar to MSA. Notably, age-related reductions in OEF were evident in HCs, which was altered by the MSA pathology. Paramagnetic susceptibility was correlated with disease severity. Moreover, the susceptibility-derived metrics of striatum and midbrain nuclei proved to be effective predictors to distinguish PD from MSA (AUC = 0.833). CONCLUSION Susceptibility-derived metrics could detect pathological involvement distinct to each disease, offering significant potential for differentiating between MSA and PD in clinical settings.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Lu
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, China, 107 North Second Road
| | - Bingfang Duan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexey V Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Zhou X, Deng YY, Qian L, Zhong SS, Zou FY, Shen LS, Luo XW, Yin BY, He YF, Guo RM. Alterations in brain iron and myelination in children with ASD: A susceptibility source separation imaging study. Neuroimage 2025; 310:121128. [PMID: 40057287 DOI: 10.1016/j.neuroimage.2025.121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Autism spectrum disorder (ASD) may have both brain iron and myelin changes, but traditional methods fail to differentiate them. This study utilized an advanced susceptibility source separation technique, APART-QSM (iterAtive magnetic suscePtibility sources sepARaTion), to investigate brain iron and myelination alterations in children with ASD and link neuroimaging findings to clinical symptom severity. Sixty-five school-aged children with ASD and Sixty age- and sex-matched typically developing children were included. By providing enhanced and broader detection capabilities compared to conventional QSM, APART-QSM uncovered reduced iron content across multiple deep gray matters and decreased myelin content in the globus pallidum in ASD. The iron and myelin contents in the globus pallidum and iron content in the substantia nigra were significantly negatively correlated with ASD symptom severity. Coexisting abnormal brain iron and myelin contents in ASD, particularly in the globus pallidus, offer innovative and promising insights into ASD pathology and potential biomarkers.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ya-Yin Deng
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Shuang-Shuang Zhong
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Feng-Yun Zou
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Shan Shen
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Wen Luo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo-Ya Yin
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yi-Fan He
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Mi Guo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Şişman M, Nguyen TD, Roberts AG, Romano DJ, Dimov AV, Kovanlikaya I, Spincemaille P, Wang Y. Microstructure-Informed Myelin Mapping (MIMM) from routine multi-echo gradient echo data using multiscale physics modeling of iron and myelin effects and QSM. Magn Reson Med 2025; 93:1499-1515. [PMID: 39552224 PMCID: PMC11910495 DOI: 10.1002/mrm.30369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE Myelin quantification is used in the study of demyelination in neurodegenerative diseases. A novel noninvasive MRI method, Microstructure-Informed Myelin Mapping (MIMM), is proposed to quantify the myelin volume fraction (MVF) from a routine multi-gradient echo sequence (mGRE) using a multiscale biophysical signal model of the effects of microstructural myelin and iron. THEORY AND METHODS In MIMM, the effects of myelin are modeled based on the Hollow Cylinder Fiber Model accounting for anisotropy, while iron is considered as an isotropic paramagnetic point source. This model is used to create a dictionary of mGRE magnitude signal evolution and total voxel susceptibility using finite elements of size 0.2 μm. Next, voxel-by-voxel stochastic matching pursuit between acquired mGRE data (magnitude+QSM) and the pre-computed dictionary generates quantitative MVF and iron susceptibility maps. Dictionary matching was evaluated under three conditions: (1) without fiber orientation (basic), (2) with fiber orientation obtained using DTI, and (3) with fiber orientation obtained using an atlas (atlas). MIMM was compared with the three-pool complex fitting (3PCF) using T2-relaxometry myelin water fraction (MWF) map as reference. RESULTS The DTI MIMM and atlas MIMM approaches were equally effective in reducing the overestimation of MVF in certain white matter tracts observed in the basic MIMM approach, and they both showed good agreement with T2-relaxometry MWF. MIMM MVF reduced myelin overestimation of globus pallidus observed in 3PCF MWF. CONCLUSION MIMM processing of mGRE data can provide MVF maps from routine clinical scans without requiring special sequences.
Collapse
Affiliation(s)
- Mert Şişman
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York
- Department of Radiology, Weill Cornel Medicine, New York, New York
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornel Medicine, New York, New York
| | - Alexandra G. Roberts
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York
- Department of Radiology, Weill Cornel Medicine, New York, New York
| | - Dominick J. Romano
- Department of Radiology, Weill Cornel Medicine, New York, New York
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Alexey V. Dimov
- Department of Radiology, Weill Cornel Medicine, New York, New York
| | | | | | - Yi Wang
- Department of Radiology, Weill Cornel Medicine, New York, New York
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
5
|
Li Z, Liu Q, Xu T, Zhang M, Li L, Chen Z, Tang Y, Jiang L, Lu Y, Yan F, Zhang Y, Xu J, Wei H. Paramagnetic susceptibility measured by magnetic resonance imaging as an in vivo biomarker for iron pathology in epilepsy. SCIENCE ADVANCES 2025; 11:eads8149. [PMID: 40117350 PMCID: PMC11927622 DOI: 10.1126/sciadv.ads8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Epilepsy, a neurological disorder marked by recurrent, unprovoked seizures, is often linked to dysregulated iron metabolism, resulting in iron overload and subsequent cellular dysfunction or death within epileptogenic regions. We proposed a specific, noninvasive technique using paramagnetic susceptibility imaging via magnetic resonance imaging to quantify in vivo brain iron levels, aiming to enhance our understanding of epilepsy pathology and improve diagnostic accuracy. Our imaging and histopathological studies demonstrated that paramagnetic susceptibility is a sensitive biomarker for iron quantification in epilepsy. This method effectively detects iron abnormality from various causes and highlights that iron alters within epileptogenic zones, indicating the presence of potentially salvageable tissue. Furthermore, iron accumulation was observed to disrupt cortical laminar structures in epileptogenic zones and was associated with the proliferation of central nervous system cells, particularly astrocytes. Paramagnetic susceptibility imaging provides previously unknown insights into epilepsy, offering potential applications in diagnostics, monitoring, and personalized treatment strategies.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangqiang Liu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongtong Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhangpeng Chen
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaohui Tang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jiang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiwen Xu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Essex CA, Overson DK, Merenstein JL, Truong TK, Madden DJ, Bedggood MJ, Morgan C, Murray HC, Holdsworth SJ, Stewart AW, Faull RLM, Hume P, Theadom A, Pedersen M. Mild traumatic brain injury increases cortical iron: evidence from individual susceptibility mapping. Brain Commun 2025; 7:fcaf110. [PMID: 40161218 PMCID: PMC11954555 DOI: 10.1093/braincomms/fcaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Quantitative susceptibility mapping has been applied to map brain iron distribution after mild traumatic brain injury to understand properties of neural tissue which may be related to cellular dyshomeostasis. However, this is a heterogeneous injury associated with microstructural brain changes, and 'traditional' group-wise statistical approaches may lead to a loss of clinically relevant information, as subtle alterations at the individual level can be obscured by averages and confounded by within-group variability. More precise and individualized approaches are needed to characterize mild traumatic brain injury better and elucidate potential cellular mechanisms to improve intervention and rehabilitation. To address this issue, we use quantitative MRI to build individualized profiles of regional positive (iron-related) magnetic susceptibility across 34 bilateral cortical ROIs following mild traumatic brain injury. Healthy population templates were constructed for each cortical area using standardized Z-scores derived from 25 age-matched male controls aged between 16 and 32 years (M = 21.10, SD = 4.35), serving as a reference against which Z-scores of 35 males with acute (<14 days) sports-related mild traumatic brain injury were compared [M = 21.60 years (range: 16-33), SD = 4.98]. Secondary analyses sensitive to cortical depth and curvature were also generated to approximate the location of iron accumulation in the cortical laminae and the effect of gyrification. Primary analyses indicated that approximately one-third (11/35; 31%) of injured participants exhibited elevated positive susceptibility indicative of abnormal iron profiles relative to the healthy population, a finding that was mainly concentrated in regions within the temporal lobe. Injury severity was significantly higher (P = 0.02) for these participants than their iron-normal counterparts, suggesting a link between injury severity, symptom burden, and elevated cortical iron. Secondary exploratory analyses of cortical depth and curvature profiles revealed abnormal iron accumulation in 83% (29/35) of mild traumatic brain injury participants, enabling better localization of injury-related changes in iron content to specific loci within each region and identifying effects that may be more subtle and lost in region-wise averaging. Our findings suggest that individualized approaches can further elucidate the clinical relevance of iron in mild head injury. Differences in injury severity between iron-normal and iron-abnormal mild traumatic brain injury participants identified in our primary analysis highlight not only why precise investigation is required to understand the link between objective changes in the brain and subjective symptomatology, but also identify iron as a candidate biomarker for tissue pathology after mild traumatic brain injury.
Collapse
Affiliation(s)
- Christi A Essex
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Mayan J Bedggood
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Catherine Morgan
- Center for Advanced MRI, The University of Auckland, Auckland 1023, New Zealand
- School of Psychology, The University of Auckland, Auckland 1142, New Zealand
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Helen C Murray
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Samantha J Holdsworth
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
- Mātai Medical Research Institute, Gisborne 4010, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Ashley W Stewart
- Center for Advanced Imaging, The University of Queensland, Queensland 4067, Australia
| | - Richard L M Faull
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Patria Hume
- School of Sport and Recreation, Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland 0627, New Zealand
| | - Alice Theadom
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| |
Collapse
|
7
|
Gkotsoulias DG, Rullmann M, Schmitt S, Bujanow A, Zientek F, Messerschmidt K, Pampel A, Büttner AP, Schildan A, Sabri O, Müller-Vahl K, Barthel H, Möller HE. Abnormalities of iron homeostasis and the dopaminergic system in Tourette syndrome revealed by 7T MRI and PET. Brain Commun 2025; 7:fcaf104. [PMID: 40177529 PMCID: PMC11961303 DOI: 10.1093/braincomms/fcaf104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
While the implication of a dysfunctional dopaminergic system in Tourette syndrome (TS) is well established, the underlying pathophysiological mechanisms remain unclear. Apart from neurotransmitters, disturbed iron homeostasis and iron regulatory mechanisms are also suspected. Iron is a trace element of fundamental biological importance and is involved in the synthesis and metabolism of dopamine and its receptors and transporters. The goal of the current pre-registered, multi-modal, cross-sectional study was to investigate the relationship between potential iron homeostasis imbalances and dopaminergic system disturbances in patients with TS. Susceptibility-sensitive MRI at 7 Tesla was used to obtain surrogate measures for local brain iron in 25 patients with TS (age 30 ± 9 years, 6 female) and 40 matched control subjects. Additionally, dopamine D1 receptor availability was investigated with [11C]SCH23390 PET in a subgroup of 20 patients and 20 controls. Significantly reduced sub-cortical magnetic susceptibility, indicating reduced iron levels, was observed in TS patients in the caudate, pallidum, sub-thalamic nucleus, thalamus, red nucleus and substantia nigra. These reductions were accompanied by significant reductions of the [11C]SCH23390 binding potential indicating reduced availability of D1 receptors in the dorsal striatum. The D1 receptor abnormality correlated with tic severity. These results point to alterations of intra-synaptic dopamine release and reduced striatal D1 receptor binding, supporting the notion of disruption in multiple functional elements of the dopaminergic system. Such dopaminergic abnormalities appear to be associated with disturbances in iron homeostasis.
Collapse
Affiliation(s)
| | - Michael Rullmann
- Department of Nuclear Medicine, Leipzig University Medical Center, Leipzig 04103, Germany
| | - Simon Schmitt
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover 30625, Germany
| | - Anna Bujanow
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Franziska Zientek
- Department of Nuclear Medicine, Leipzig University Medical Center, Leipzig 04103, Germany
| | | | - André Pampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | | | - Andreas Schildan
- Department of Nuclear Medicine, Leipzig University Medical Center, Leipzig 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Medical Center, Leipzig 04103, Germany
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover 30625, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Center, Leipzig 04103, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Felix Bloch Institute for Solid State Physics, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
8
|
Essex CA, Merenstein JL, Overson DK, Truong TK, Madden DJ, Bedggood MJ, Murray H, Holdsworth SJ, Stewart AW, Morgan C, Faull RLM, Hume P, Theadom A, Pedersen M. Characterizing positive and negative quantitative susceptibility values in the cortex following mild traumatic brain injury: a depth- and curvature-based study. Cereb Cortex 2025; 35:bhaf059. [PMID: 40099836 PMCID: PMC11915090 DOI: 10.1093/cercor/bhaf059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Evidence has linked head trauma to increased risk factors for neuropathology, including mechanical deformation of the sulcal fundus and, later, perivascular accumulation of hyperphosphorylated tau adjacent to these spaces related to chronic traumatic encephalopathy. However, little is known about microstructural abnormalities and cellular dyshomeostasis in acute mild traumatic brain injury in humans, particularly in the cortex. To address this gap, we designed the first architectonically motivated quantitative susceptibility mapping study to assess regional patterns of net positive (iron-related) and net negative (myelin-, calcium-, and protein-related) magnetic susceptibility across 34 cortical regions of interest following mild traumatic brain injury. Bilateral, between-group analyses sensitive to cortical depth and curvature were conducted between 25 males with acute (<14 d) sports-related mild traumatic brain injury and 25 age-matched male controls. Results suggest a trauma-induced increase in net positive susceptibility focal to superficial, perivascular-adjacent spaces in the parahippocampal sulcus. Decreases in net negative susceptibility values in distinct voxel populations within the same region indicate a potential dual pathology of neural substrates. These mild traumatic brain injury-related patterns were distinct from age-related processes revealed by correlation analyses. Our findings suggest depth- and curvature-specific deposition of biological substrates in cortical tissue convergent with features of misfolded proteins in trauma-related neurodegeneration.
Collapse
Affiliation(s)
- Christi A Essex
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - Mayan J Bedggood
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| | - Helen Murray
- Center for Brain Research, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Samantha J Holdsworth
- Mātai Medical Research Institute, 466 Childers Road, Te Hapara, Gisborne 4010, New Zealand
| | - Ashley W Stewart
- Center for Advanced Imaging, The University of Queensland, Building 57 of, University Dr, St Lucia QLD 4067, Australia
| | - Catherine Morgan
- Center for Advanced MRI, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Richard L M Faull
- Center for Brain Research, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Patria Hume
- Sports Performance Research Institute New Zealand, Auckland University of Technology, 17 Antares Place, Rosedale, Auckland 0632, New Zealand
| | - Alice Theadom
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| | - Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| |
Collapse
|
9
|
Kim J, Kim M, Ji S, Min K, Jeong H, Shin HG, Oh C, Fox RJ, Sakaie KE, Lowe MJ, Oh SH, Straub S, Kim SG, Lee J. In-vivo high-resolution χ-separation at 7T. Neuroimage 2025; 308:121060. [PMID: 39884410 DOI: 10.1016/j.neuroimage.2025.121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
A recently introduced quantitative susceptibility mapping (QSM) technique, χ-separation, offers the capability to separate paramagnetic (χpara) and diamagnetic (χdia) susceptibility distribution within the brain. In-vivo high-resolution mapping of iron and myelin distribution, estimated by χ-separation, could provide a deeper understanding of brain substructures, assisting the investigation of their functions and alterations. This can be achieved using 7T MRI, which benefits from a high signal-to-noise ratio and susceptibility effects. However, applying χ-separation at 7T presents difficulties due to the requirement of an R2 map, coupled with issues such as high specific absorption rate (SAR), large B1 transmit field inhomogeneities, and prolonged scan time. To address these challenges, we developed a novel deep neural network, R2PRIMEnet7T, designed to convert a 7T R2* map into a 3T R2' map. Building on this development, we present a new pipeline for χ-separation at 7T, enabling us to generate high-resolution χ-separation maps from multi-echo gradient-echo data. The proposed method is compared with alternative pipelines, such as an end-to-end network and linearly-scaled R2', and is validated against χ-separation maps at 3T, demonstrating its accuracy. The 7T χ-separation maps generated by the proposed method exhibit similar contrasts to those from 3T, while 7T high-resolution maps offer enhanced clarity and detail. Quantitative analysis confirms that the proposed method surpasses the alternative pipelines. The proposed method results well delineate the detailed brain structures associated with iron and myelin. This new pipeline holds promise for analyzing iron and myelin concentration changes in various neurodegenerative diseases through precise structural examination.
Collapse
Affiliation(s)
- Jiye Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Minjun Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Sooyeon Ji
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea; Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin, South Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hwihun Jeong
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea; Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Chungseok Oh
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Robert J Fox
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Ken E Sakaie
- Imaging Sciences, Diagnostics Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark J Lowe
- Imaging Sciences, Diagnostics Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Se-Hong Oh
- Imaging Sciences, Diagnostics Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, South Korea
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
10
|
Zhou Y, Zhao B, Moore J, Zong X. Automatic segmentation and diameter measurement of deep medullary veins. Magn Reson Med 2025; 93:1380-1393. [PMID: 39481043 DOI: 10.1002/mrm.30341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE As one of the pathogenic factors of cerebral small vessel disease, venous collagenosis may result in the occlusion or stenosis of deep medullary veins (DMVs). Although numerous DMVs can be observed in susceptibility-weighted MRI images, their diameters are usually smaller than the MRI resolution, making it difficult to segment them and quantify their sizes. We aim to automatically segment DMVs and measure their diameters from gradient-echo images. METHODS A neural network model was trained for DMV segmentation based on the gradient-echo magnitude and phase images of 20 subjects at 7 T. The diameters of DMVs were obtained by fitting measured complex images with model images that accounted for the DMV-induced magnetic field and point spread function. A phantom study with graphite rods of different diameters was conducted to validate the proposed method. Simulation was carried out to evaluate the voxel-size dependence of measurement accuracy for a typical DMV size. RESULTS The automatically segmented DMV masks had Dice similarity coefficients of 0.68 ± 0.03 (voxel level) and 0.83 ± 0.04 (cluster level). The fitted graphite-rod diameters closely matched their true values. In simulation, the fitted diameters closely matched the true value when voxel size was ≤ 0.45 mm, and 92.2% of DMVs had diameters between 90 μm and 200 μm with a peak at about 120 μm, which agreed well with an earlier ex vivo report. CONCLUSION The proposed methods enabled efficient and quantitative study of DMVs, which may help illuminate the role of DMVs in the etiopathogenesis of cerebral small vessel disease.
Collapse
Affiliation(s)
- Yichen Zhou
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Bingbing Zhao
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Julia Moore
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiaopeng Zong
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
11
|
Kiersnowski OC, Mattioli P, Argenti L, Avanzino L, Calizzano F, Diociasi A, Falcitano L, Liu C, Losa M, Massa F, Morbelli S, Orso B, Pelosin E, Raffa S, Pardini M, Arnaldi D, Roccatagliata L, Costagli M. Magnetic susceptibility components reveal different aspects of neurodegeneration in alpha-synucleinopathies. Sci Rep 2025; 15:4186. [PMID: 39905067 PMCID: PMC11794440 DOI: 10.1038/s41598-024-83593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Nigrostriatal dopaminergic degeneration in alpha-synucleinopathies is indirectly reflected by low dopamine transporter (DaT) uptake through [123I]FP-CIT-SPECT. Bulk magnetic susceptibility (χ) in the substantia nigra, from MRI-based quantitative susceptibility mapping (QSM), is a potential biomarker of nigrostriatal degeneration, however, QSM cannot disentangle paramagnetic (e.g. iron) and diamagnetic (e.g. myelin) sources. Using the susceptibility source-separation technique DECOMPOSE, paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS) were studied in prodromal and overt alpha-synucleinopathies, and their relationships with DaT-SPECT specific binding ratio (SBR) and clinical scores. 78 participants were included (23 controls, 30 prodromal and 25 overt alpha-synucleinopathies). Prodromal patients were subdivided into groups with positive or negative DaT-SPECT (SBR Z-scores below or above -1, respectively). Correlations of putamen and caudate SBR Z-scores with PCS and DCS in the substantia nigra, putamen, and caudate were investigated. Increased PCS was observed in the substantia nigra of prodromal alpha-synucleinopathy patients with positive DaT-SPECT compared to controls and prodromal patients with negative DaT-SPECT. SBR Z-scores in the putamen correlated with increased PCS in the substantia nigra and reduced |DCS| in the putamen, which may reflect dopaminergic degeneration ascribable to iron accumulation and nigrostriatal neuron axonal loss, respectively.
Collapse
Affiliation(s)
| | - Pietro Mattioli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Lucia Argenti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Francesco Calizzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | | | - Chunlei Liu
- University of California Berkeley, Berkeley, United States of America
| | - Mattia Losa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Federico Massa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Silvia Morbelli
- Department of Nuclear Medicine, University of Turin, Turin, Italy
| | - Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elisa Pelosin
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Stefano Raffa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Pardini
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Dario Arnaldi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Luca Roccatagliata
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences, University of Genova, Genova, Italy.
| | - Mauro Costagli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
12
|
Kim M, Ji S, Kim J, Min K, Jeong H, Youn J, Kim T, Jang J, Bilgic B, Shin H, Lee J. χ-sepnet: Deep Neural Network for Magnetic Susceptibility Source Separation. Hum Brain Mapp 2025; 46:e70136. [PMID: 39835664 PMCID: PMC11748151 DOI: 10.1002/hbm.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation (R 2 ' = R 2 * - R 2 $$ {R}_2^{\prime }={R}_2^{\ast }-{R}_2 $$ ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition forR 2 $$ {R}_2 $$ (e.g., multi-echo spin-echo) in addition to multi-echo GRE data forR 2 * $$ {R}_2^{\ast } $$ . To address these challenges, we develop a new deep learning network, χ-sepnet, and propose two deep learning-based susceptibility source separation pipelines, χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ for inputs with multi-echo GRE and multi-echo spin-echo (or turbo spin-echo) and χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ for input with multi-echo GRE only. The neural network is trained using multiple head orientation data that provide streaking artifact-free labels, generating high-quality χ-separation maps. The evaluation of the pipelines encompasses both qualitative and quantitative assessments in healthy subjects, and visual inspection of lesion characteristics in multiple sclerosis patients. The susceptibility source-separated maps of the proposed pipelines delineate detailed brain structures with substantially reduced artifacts compared to those from the conventional regularization-based reconstruction methods. In quantitative analysis, χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ achieves the best outcomes followed by χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ , outperforming the conventional methods. When the lesions of multiple sclerosis patients are classified into subtypes, most lesions are identified as the same subtype in the maps from χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ and χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ (paramagnetic susceptibility: 99.6% and diamagnetic susceptibility: 98.4%; both out of 250 lesions). The χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ pipeline, which only requires multi-echo GRE data, has demonstrated its potential to offer broad clinical and scientific applications, although further evaluations for various diseases and pathological conditions are necessary.
Collapse
Affiliation(s)
- Minjun Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Sooyeon Ji
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
- Division of Computer EngineeringHankuk University of Foreign StudiesYonginRepublic of Korea
| | - Jiye Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Hwihun Jeong
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Jonghyo Youn
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Taechang Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Jinhee Jang
- Department of RadiologySeoul St Mary's Hospital, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Institute for Precision HealthUniversity of CaliforniaIrvineCaliforniaUSA
| | - Berkin Bilgic
- Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Hyeong‐Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
13
|
Ghaderi S, Mohammadi S, Fatehi F. Diamagnetic Signature of Beta-Amyloid (Aβ) and Tau (τ) Tangle Pathology in Alzheimer's Disease: A Review. Aging Med (Milton) 2025; 8:e70006. [PMID: 39949469 PMCID: PMC11817029 DOI: 10.1002/agm2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/18/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The complex interplay between diamagnetic and paramagnetic substances within the brain, particularly in the context of Alzheimer's disease (AD), offers a rich landscape for investigation using advanced quantitative neuroimaging techniques. Although conventional approaches have focused on the paramagnetic properties of iron, emerging and promising research has highlighted the significance of diamagnetic signatures associated with beta-amyloid (Aβ) plaques and Tau (τ) protein aggregates. Quantitative susceptibility mapping (QSM) is a complex post-processing technique that visualizes and characterizes these subtle alterations in brain border tissue composition, such as the gray-white matter interface. Through voxel-wise separation of the contributions of diamagnetic and paramagnetic sources, QSM enabled the identification and quantification of Aβ and τ aggregates, even in the presence of iron. However, several challenges remain in utilizing diamagnetic signatures of Aβ and τ for clinical applications. These include the relatively small magnitude of the diamagnetic signal compared to paramagnetic iron, the need for high-resolution imaging and sophisticated analysis techniques, and the standardization of QSM acquisition and analysis protocols. Further research is necessary to refine QSM techniques, optimize acquisition parameters, and develop robust analysis pipelines to improve the sensitivity and specificity of detecting the diamagnetic nature of Aβ and τ aggregates. As our understanding of the diamagnetic properties of Aβ and τ continues to evolve, QSM is expected to play a pivotal role in advancing our knowledge of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
14
|
Xie Y, Zhang Y, Wu S, Zhang S, Zhu H, Zhu W, Wang Y. Atrophy-Independent and Dependent Iron and Myelin Changes in Deep Gray Matter of Multiple Sclerosis: A Longitudinal Study Using χ-Separation Imaging. Acad Radiol 2025; 32:988-999. [PMID: 39084936 DOI: 10.1016/j.acra.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
RATIONALE AND OBJECTIVES To investigate iron and myelin changes in deep gray matter (DGM) of relapsing-remitting multiple sclerosis (RRMS) patients and their relationship to atrophy by χ-separation imaging. MATERIALS AND METHODS 33 RRMS patients and 34 healthy controls (HC) were included in this study. The χ-separation map reconstructed from a 3D multi-echo gradient echo scan was used to measure the positive susceptibility (χpos) and negative susceptibility (χneg) of DGM. To take into account the effect of atrophy, susceptibility mass of DGM was calculated by multiplying volume by the mean bulk susceptibility. Differences in MRI metrics between baseline patients, follow-up patients, and HC were compared respectively. RESULTS Compared to HC, χpos of basal ganglia were significantly increased in follow-up patients (P < 0.05). The χpos of pallidum was significantly higher in follow-up patients than that in baseline patients (P = 0.006). The χneg of caudate, pallidum and hippocampus in baseline and follow-up patients was significantly higher than that in HC (P < 0.05). When taking into account the effect of atrophy, there was a significant decrease in χpos mass and a significant increase in χneg mass of thalamus, accumbens and amygdala in follow-up patients compared to HC (P < 0.05). The χpos mass of the thalamus was further decreased in follow-up patients compared to baseline patients (P = 0.006). CONCLUSION χ-separation imaging could generate independent information on iron and myelin changes in RRMS patients, showing atrophy-dependent iron increase in basal ganglia and atrophy-independent iron and myelin decrease in thalamus.
Collapse
Affiliation(s)
- Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolong Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA; Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
15
|
Ghaderi S, Mohammadi S, Ahmadzadeh AM, Darmiani K, Arab Bafrani M, Jashirenezhad N, Helfi M, Alibabaei S, Azadi S, Heidary S, Fatehi F. Thalamic Magnetic Susceptibility (χ) Alterations in Neurodegenerative Diseases: A Systematic Review and Meta-Analysis of Quantitative Susceptibility Mapping Studies. J Magn Reson Imaging 2025. [PMID: 39832811 DOI: 10.1002/jmri.29698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Quantitative Susceptibility Mapping (QSM) provides a non-invasive post-processing method to investigate alterations in magnetic susceptibility (χ), reflecting iron content within brain regions implicated in neurodegenerative diseases (NDDs). PURPOSE To investigate alterations in thalamic χ in patients with NDDs using QSM. STUDY TYPE Systematic review and meta-analysis. POPULATION A total of 696 patients with NDDs and 760 healthy controls (HCs) were included in 27 studies. FIELD STRENGTH/SEQUENCE Three-dimensional multi-echo gradient echo sequence for QSM at mostly 3 Tesla. ASSESSMENT Studies reporting QSM values in the thalamus of patients with NDDs were included. Following PRISMA 2020, we searched the four major databases including PubMed, Scopus, Web of Science, and Embase for peer-reviewed studies published until October 2024. STATISTICAL TESTS Meta-analysis was conducted using a random-effects model to calculate the standardized mean difference (SMD) between patients and HCs. RESULTS The pooled SMD indicated a significant increase in thalamic χ in NDDs compared to HCs (SMD = 0.42, 95% CI: 0.05-0.79; k = 27). Notably, amyotrophic lateral sclerosis patients showed a significant increase in thalamic χ (1.09, 95% CI: 0.65-1.53, k = 2) compared to HCs. Subgroup analyses revealed significant χ alterations in younger patients (mean age ≤ 62 years; 0.56, 95% CI: 0.10-1.02, k = 11) and studies using greater coil channels (coil channels > 16; 0.64, 95% CI: 0.28-1.00, k = 9). Publication bias was not detected and quality assessment indicated that studies with a lower risk of bias presented more reliable findings (0.75, 95% CI: 0.32-1.18, k = 9). Disease type was the primary driver of heterogeneity, while other factors, such as coil type and geographic location, also contributed to variability. DATA CONCLUSION Our findings support the potential of QSM for investigating thalamic involvement in NDDs. Future research should focus on disease-specific patterns, thalamic-specific nucleus analysis, and temporal evolution. PLAIN LANGUAGE SUMMARY Our research investigated changes in iron levels within the thalamus, a brain region crucial for motor and cognitive functions, in patients with various neurodegenerative diseases (NDDs). The study utilized a specific magnetic resonance imaging technique called Quantitative Susceptibility Mapping (QSM) to measure iron content. It identified a significant increase in thalamic iron levels in NDD patients compared to healthy individuals. This increase was particularly prominent in patients with Amyotrophic Lateral Sclerosis, younger individuals, and studies employing advanced imaging equipment. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Darmiani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Arab Bafrani
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Jashirenezhad
- The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Helfi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Sanaz Alibabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sareh Azadi
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sahar Heidary
- Health Institute, Medical Physics Department, Yeditepe University, Istanbul, Turkey
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
16
|
Min K, Sohn B, Kim WJ, Park CJ, Song S, Shin DH, Chang KW, Shin NY, Kim M, Shin HG, Lee PH, Lee J. A human brain atlas of χ-separation for normative iron and myelin distributions. NMR IN BIOMEDICINE 2024; 37:e5226. [PMID: 39162295 DOI: 10.1002/nbm.5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024]
Abstract
Iron and myelin are primary susceptibility sources in the human brain. These substances are essential for a healthy brain, and their abnormalities are often related to various neurological disorders. Recently, an advanced susceptibility mapping technique, which is referred to as χ-separation (pronounced as "chi"-separation), has been proposed, successfully disentangling paramagnetic iron from diamagnetic myelin. This method provided a new opportunity for generating high-resolution iron and myelin maps of the brain. Utilizing this technique, this study constructs a normative χ-separation atlas from 106 healthy human brains. The resulting atlas provides detailed anatomical structures associated with the distributions of iron and myelin, clearly delineating subcortical nuclei, thalamic nuclei, and white matter fiber bundles. Additionally, susceptibility values in a number of regions of interest are reported along with age-dependent changes. This atlas may have direct applications such as localization of subcortical structures for deep brain stimulation or high-intensity focused ultrasound and also serve as a valuable resource for future research.
Collapse
Affiliation(s)
- Kyeongseon Min
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Sohn
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Woo Jung Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Chae Jung Park
- Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | | | | | - Kyung Won Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Na-Young Shin
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minjun Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyeong-Geol Shin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Phil Hyu Lee
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Yao J, Li Z, Zhou Z, Bao A, Wang Z, Wei H, He H. Distinct regional vulnerability to Aβ and iron accumulation in post mortem AD brains. Alzheimers Dement 2024; 20:6984-6997. [PMID: 39175425 PMCID: PMC11485316 DOI: 10.1002/alz.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION The paramagnetic iron, diamagnetic amyloid beta (Aβ) plaques and their interaction are crucial in Alzheimer's disease (AD) pathogenesis, complicating non-invasive magnetic resonance imaging for prodromal AD detection. METHODS We used a state-of-the-art sub-voxel quantitative susceptibility mapping method to simultaneously measure Aβ and iron levels in post mortem human brains, validated by histology. Further transcriptomic analysis using Allen Human Brain Atlas elucidated the underlying biological processes. RESULTS Regional increased paramagnetic and diamagnetic susceptibility were observed in medial prefrontal, medial parietal, and para-hippocampal cortices associated with iron deposition (R = 0.836, p = 0.003) and Aβ accumulation (R = 0.853, p = 0.002) in AD brains. Higher levels of gene expression relating to cell cycle, post-translational protein modifications, and cellular response to stress were observed. DISCUSSION These findings provide quantitative insights into the variable vulnerability of cortical regions to higher levels of Aβ aggregation, iron overload, and subsequent neurodegeneration, indicating changes preceding clinical symptoms. HIGHLIGHTS The vulnerability of distinct brain regions to amyloid beta (Aβ) and iron accumulation varies. Histological validation was performed on stained sections of ex-vivo human brains. Regional variations in susceptibility were linked to gene expression profiles. Iron and Aβ levels in ex-vivo brains were simultaneously quantified.
Collapse
Affiliation(s)
- Junye Yao
- Center for Brain Imaging Science and TechnologyZhejiang UniversityHangzhouChina
- College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Zhenghao Li
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Zihan Zhou
- Center for Brain Imaging Science and TechnologyZhejiang UniversityHangzhouChina
- Stanford University Graduate School of EducationDepartment of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Aimin Bao
- National Human Brain Bank for Health and DiseaseSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouChina
| | - Zheng Wang
- School of Psychological and Cognitive SciencesBeijing Key Laboratory of Behavior and Mental HealthIDG/McGovern Institute for Brain ResearchPeking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- School of Biomedical EngineeringHainan UniversityHaikouChina
| | - Hongjiang Wei
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Hongjian He
- Center for Brain Imaging Science and TechnologyZhejiang UniversityHangzhouChina
- School of PhysicsZhejiang UniversityHangzhouChina
- State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
| |
Collapse
|
18
|
Mohammadi S, Ghaderi S, Fatehi F. Quantitative Susceptibility Mapping Values Quantification in Deep Gray Matter Structures for Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-Analysis. Brain Behav 2024; 14:e70093. [PMID: 39415615 PMCID: PMC11483550 DOI: 10.1002/brb3.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND/OBJECTIVES This systematic review and meta-analysis aimed to investigate the role of magnetic susceptibility (χ) in deep gray matter (DGM) structures, including the putamen (PUT), globus pallidus (GP), caudate nucleus (CN), and thalamus, in the most common types of multiple sclerosis (MS) and relapsing-remitting MS (RRMS), using quantitative susceptibility mapping (QSM). METHODS The literature was systematically reviewed up to November 2023, adhering to PRISMA guidelines. This study was conducted using a random-effects model to calculate the standardized mean difference (SMD) in QSM values between patients with RRMS and healthy controls (HCs). Publication bias and risk of bias were also assessed. RESULTS Nine studies involving 1074 RRMS patients with RRMS and 640 HCs were included in the meta-analysis. The results showed significantly higher QSM (χ) values in the PUT (SMD = 0.40, 95% confidence interval [CI] = 0.22-0.59, p = .000), GP (SMD = 0.60, 95% CI = 0.50-0.70, p = .00), and CN (SMD = 0.40, 95% CI = 0.15-0.66, p = .005) of RRMS patients compared to HCs. However, there were no significant differences in the QSM values in the thalamus between patients with RRMS and HCs (SMD = -0.33, 95% CI -0.67-0.01, p = .026). Age- and sex-based subgroup analysis demonstrated that younger patients (< 40 years) in the PUT, GP, and CN groups and larger male populations (> 25%) in the PUT and GP groups had more significant χ. Interestingly, thalamic QSM values were found to decrease in RRMS patients over 40 years of age and in higher male populations. Sex-based subgroup analysis indicated higher iron levels in the PUT and GP of RRMS patients regardless of sex. QSM values were higher in certain brain regions (PUT, GP, and CN) during the early stages (disease duration < 9.6 years) of RRMS, but lower in the thalamus during the later stages (disease duration > 9.6 years) than HCs. DISCUSSION/CONCLUSION QSM may serve as a biomarker for understanding χ value alterations such as iron dysregulation and its contribution to neurodegeneration in RRMS, especially in the basal ganglia nuclei including PUT, GP, and CN.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
19
|
Mohammadi S, Ghaderi S, Fatehi F. Iron accumulation/overload and Alzheimer's disease risk factors in the precuneus region: A comprehensive narrative review. Aging Med (Milton) 2024; 7:649-667. [PMID: 39507230 PMCID: PMC11535174 DOI: 10.1002/agm2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Early cerebral and body iron dysregulation and accumulation interact with AD pathology, particularly in the precuneus, a crucial functional hub in cognitive functions. Quantitative susceptibility mapping (QSM), a novel post-processing approach, provides insights into tissue iron levels and cerebral oxygen metabolism and reveals abnormal iron accumulation early in AD. Increased iron deposition in the precuneus can lead to oxidative stress, neuroinflammation, and accelerated neurodegeneration. Metabolic disorders (diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity), genetic factors, and small vessel pathology contribute to abnormal iron accumulation in the precuneus. Therefore, in line with the growing body of literature in the precuneus region of patients with AD, QSM as a neuroimaging method could serve as a non-invasive biomarker to track disease progression, complement other imaging modalities, and aid in early AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
20
|
Mohammadi S, Ghaderi S, Fatehi F. Putamen iron quantification in diseases with neurodegeneration: a meta-analysis of the quantitative susceptibility mapping technique. Brain Imaging Behav 2024; 18:1239-1255. [PMID: 38758278 DOI: 10.1007/s11682-024-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Quantitative susceptibility mapping (QSM) is an MRI technique that accurately measures iron concentration in brain tissues. This meta-analysis synthesized evidence from 30 studies that used QSM to quantify the iron levels in the putamen. The PRISMA statement was adhered to when conducting the systematic reviews and meta-analyses. We conducted a meta-analysis using a random-effects model, as well as subgroup analyses (disease type, geographic region, field strength, coil, disease type, age, and sex) and sensitivity analysis. A total of 1247 patients and 1035 controls were included in the study. Pooled results showed a standardized mean difference (SMD) of 0.41 (95% CI 0.19 to 0.64), with the strongest effect seen in Alzheimer's disease (AD) at 1.01 (95% CI 0.50 to 1.52). Relapsing-remitting multiple sclerosis (RRMS) also showed increased putaminal iron at 0.37 (95% CI 0.177 to 0.58). No significant differences were observed in Parkinson's disease (PD). No significant differences were found between subgroups based on geographic region, field strength, coil, disease type, age, and sex. The studies revealed significant heterogeneity, with field strength as the primary source, while other factors, such as disease type, location, age, sex, and coil type, may have contributed. The sensitivity analysis showed that these factors did not have a significant influence on the overall results. In summary, this meta-analysis supports abnormalities in putaminal iron content across different diseases with neurodegeneration, especially AD and RRMS, as measured by QSM. This highlights the potential of QSM as an imaging biomarker to better understand disease mechanisms involving disturbances in brain iron homeostasis.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
21
|
Feng W, Ding Z, Chen Q, She H, Du YP. Whole brain multiparametric mapping in two minutes using a dual-flip-angle stack-of-stars blipped multi-gradient-echo acquisition. Neuroimage 2024; 297:120689. [PMID: 38880311 DOI: 10.1016/j.neuroimage.2024.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024] Open
Abstract
A new MRI technique is presented for three-dimensional fast simultaneous whole brain mapping of myelin water fraction (MWF), T1, proton density (PD), R2*, magnetic susceptibility (QSM), and B1 transmit field (B1+). Phantom and human (N = 9) datasets were acquired using a dual-flip-angle blipped multi-gradient-echo (DFA-mGRE) sequence with a stack-of-stars (SOS) trajectory. Images were reconstructed using a subspace-based algorithm with a locally low-rank constraint. A novel joint-sparsity-constrained multicomponent T2*-T1 spectrum estimation (JMSE) algorithm is proposed to correct for the T1 saturation effect and B1+/B1- inhomogeneities in the quantification of MWF. A tissue-prior-based B1+ estimation algorithm was adapted for B1 correction in the mapping of T1 and PD. In the phantom study, measurements obtained at an acceleration factor (R) of 12 using prospectively under-sampled SOS showed good consistency (R2 > 0.997) with Cartesian reference for R2*/T1app/M0app. In the in vivo study, results of retrospectively under-sampled SOS with R = 6, 12, 18, showed good quality (structure similarity index measure > 0.95) compared with those of fully-sampled SOS. Besides, results of prospectively under-sampled SOS with R = 12 showed good consistency (intraclass correlation coefficient > 0.91) with Cartesian reference for T1/PD/B1+/MWF/QSM/R2*, and good reproducibility (coefficient of variation < 7.0 %) in the test-retest analysis for T1/PD/B1+/MWF/R2*. This study has demonstrated the feasibility of simultaneous whole brain multiparametric mapping with a two-minute scan using the DFA-mGRE SOS sequence, which may overcome a major obstacle for neurological applications of multiparametric MRI.
Collapse
Affiliation(s)
- Wenlong Feng
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zekang Ding
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Chen
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huajun She
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yiping P Du
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
McWilliams S, Hill O, Ipsiroglu OS, Clemens S, Weber AM, Chen M, Connor J, Felt BT, Manconi M, Mattman A, Silvestri R, Simakajornboon N, Smith SM, Stockler S. Iron Deficiency and Sleep/Wake Behaviors: A Scoping Review of Clinical Practice Guidelines-How to Overcome the Current Conundrum? Nutrients 2024; 16:2559. [PMID: 39125438 PMCID: PMC11314179 DOI: 10.3390/nu16152559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Current evidence suggests that iron deficiency (ID) plays a key role in the pathogenesis of conditions presenting with restlessness such as attention deficit hyperactivity disorder (ADHD) and restless legs syndrome (RLS). In clinical practice, ID and iron supplementation are not routinely considered in the diagnostic work-up and/or as a treatment option in such conditions. Therefore, we conducted a scoping literature review of ID guidelines. Of the 58 guidelines included, only 9 included RLS, and 3 included ADHD. Ferritin was the most frequently cited biomarker, though cutoff values varied between guidelines and depending on additional factors such as age, sex, and comorbidities. Recommendations surrounding measurable iron biomarkers and cutoff values varied between guidelines; moreover, despite capturing the role of inflammation as a concept, most guidelines often did not include recommendations for how to assess this. This lack of harmonization on the interpretation of iron and inflammation biomarkers raises questions about the applicability of current guidelines in clinical practice. Further, the majority of ID guidelines in this review did not include the ID-associated disorders, ADHD and RLS. As ID can be associated with altered movement patterns, a novel consensus is needed for investigating and interpreting iron status in the context of different clinical phenotypes.
Collapse
Affiliation(s)
- Scout McWilliams
- H-Behaviours Research Lab (Previously Sleep/Wake-Behaviours Research Lab), BC Children’s Hospital Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (S.M.); (O.H.); (S.S.)
| | - Olivia Hill
- H-Behaviours Research Lab (Previously Sleep/Wake-Behaviours Research Lab), BC Children’s Hospital Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (S.M.); (O.H.); (S.S.)
| | - Osman S. Ipsiroglu
- H-Behaviours Research Lab (Previously Sleep/Wake-Behaviours Research Lab), BC Children’s Hospital Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (S.M.); (O.H.); (S.S.)
- Divisions of Developmental Pediatrics, Child and Adolescent Psychiatry and Respirology, BC Children’s Hospital, Department of Pediatrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Alexander Mark Weber
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Michael Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.C.); (A.M.)
| | - James Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA;
| | - Barbara T. Felt
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of the Southern Switzerland, Regional Hospital of Lugano, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
- Department of Neurology, University of Bern, 3012 Bern, Switzerland
| | - Andre Mattman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.C.); (A.M.)
| | - Rosalia Silvestri
- Department of Clinical and Experimental Medicine, Sleep Medicine Center, University of Messina, Azienda Ospedaliera Universitaria “Gaetano Martino”, 98122 Messina, Italy;
| | - Narong Simakajornboon
- Sleep Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Susan M. Smith
- Department of Nutrition, UNC-Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA;
| | - Sylvia Stockler
- H-Behaviours Research Lab (Previously Sleep/Wake-Behaviours Research Lab), BC Children’s Hospital Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (S.M.); (O.H.); (S.S.)
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Division of Biochemical Diseases, Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
23
|
Kan H, Uchida Y, Kawaguchi S, Kasai H, Hiwatashi A, Ueki Y. Quantitative susceptibility mapping for susceptibility source separation with adaptive relaxometric constant estimation (QSM-ARCS) from solely gradient-echo data. Neuroimage 2024; 296:120676. [PMID: 38852804 DOI: 10.1016/j.neuroimage.2024.120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
To separate the contributions of paramagnetic and diamagnetic sources within a voxel, a magnetic susceptibility source separation method based solely on gradient-echo data has been developed. To measure the opposing susceptibility sources more accurately, we propose a novel single-orientation quantitative susceptibility mapping method with adaptive relaxometric constant estimation (QSM-ARCS) for susceptibility source separation. Moreover, opposing susceptibilities and their anisotropic effects were determined in healthy volunteers in the white matter. Multiple spoiled gradient echo and diffusion tensor imaging of ten healthy volunteers was obtained using a 3 T magnetic resonance scanner. After the opposing susceptibility and fractional anisotropy (FA) maps had been reconstructed, the parametric maps were spatially normalized. To evaluate the agreements of QSM-ARCS against the susceptibility source separation method using R2 and R2* maps (χ-separation) by Bland-Altman plots, the opposing susceptibility values were measured using white and deep gray matter atlases. We then evaluated the relationships between the opposing susceptibilities and FAs in the white matter and used a field-to-fiber angle to assess the fiber orientation dependencies of the opposing susceptibilities. The susceptibility maps in QSM-ARCS were successfully reconstructed without large artifacts. In the Bland-Altman analyses, the opposing QSM-ARCS susceptibility values excellently agreed with the χ-separation maps. Significant inverse and proportional correlations were observed between FA and the negative and positive susceptibilities estimated by QSM-ARCS. The fiber orientation dependencies of the negative susceptibility represented a nonmonotonic feature. Conversely, the positive susceptibility increased linearly with the fiber angle with respect to the B0 field. The QSM-ARCS could accurately estimate the opposing susceptibilities, which were identical values of χ-separation, even using gradient echo alone. The opposing susceptibilities might offer direct biomarkers for assessment of the myelin and iron content in glial cells and, through the underlying magnetic sources, provide biologic insights toward clinical transition.
Collapse
Affiliation(s)
- Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan.
| | - Yuto Uchida
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Japan
| | | | - Harumasa Kasai
- Department of Radiology, Nagoya City University Hospital, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
24
|
Zhang M, Feng R, Li Z, Feng J, Wu Q, Zhang Z, Ma C, Wu J, Yan F, Liu C, Zhang Y, Wei H. A subject-specific unsupervised deep learning method for quantitative susceptibility mapping using implicit neural representation. Med Image Anal 2024; 95:103173. [PMID: 38657424 DOI: 10.1016/j.media.2024.103173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.
Collapse
Affiliation(s)
- Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Wu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiyong Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chengxin Ma
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Lee J, Ji S, Oh SH. So You Want to Image Myelin Using MRI: Magnetic Susceptibility Source Separation for Myelin Imaging. Magn Reson Med Sci 2024; 23:291-306. [PMID: 38644201 PMCID: PMC11234950 DOI: 10.2463/mrms.rev.2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
In MRI, researchers have long endeavored to effectively visualize myelin distribution in the brain, a pursuit with significant implications for both scientific research and clinical applications. Over time, various methods such as myelin water imaging, magnetization transfer imaging, and relaxometric imaging have been developed, each carrying distinct advantages and limitations. Recently, an innovative technique named as magnetic susceptibility source separation has emerged, introducing a novel surrogate biomarker for myelin in the form of a diamagnetic susceptibility map. This paper comprehensively reviews this cutting-edge method, providing the fundamental concepts of magnetic susceptibility, susceptibility imaging, and the validation of the diamagnetic susceptibility map as a myelin biomarker that indirectly measures myelin content. Additionally, the paper explores essential aspects of data acquisition and processing, offering practical insights for readers. A comparison with established myelin imaging methods is also presented, and both current and prospective clinical and scientific applications are discussed to provide a holistic understanding of the technique. This work aims to serve as a foundational resource for newcomers entering this dynamic and rapidly expanding field.
Collapse
Affiliation(s)
- Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Sooyeon Ji
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Se-Hong Oh
- Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Korea
| |
Collapse
|
26
|
Morandini HAE, Watson PA, Barbaro P, Rao P. Brain iron concentration in childhood ADHD: A systematic review of neuroimaging studies. J Psychiatr Res 2024; 173:200-209. [PMID: 38547742 DOI: 10.1016/j.jpsychires.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Iron deficiency may play a role in the pathophysiology of Attention Deficit/Hyperactivity Disorder (ADHD). Due to its preponderant function in monoamine catecholamine and myelin synthesis, brain iron concentration may be of primary interest in the investigation of iron dysregulation in ADHD. This study reviewed current evidence of brain iron abnormalities in children and adolescents with ADHD using magnetic resonance imaging methods, such as relaxometry and quantitative susceptibility mapping, to assess brain iron estimates. The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A literature search was performed for studies published between January 1, 2008 and July 7, 2023 in Medline, Scopus and Proquest. Regions of interest, brain iron index values and phenotypical information were extracted from the relevant studies. Risk of bias was assessed using a modified version of the National Heart, Lung, and Blood Institute quality assessment tool. Seven cross-sectional studies comparing brain iron estimates in children with ADHD with neurotypical children were included. Significantly reduced brain iron content in medication-naïve children with ADHD was a consistent finding. Two studies found psychostimulant use may increase and normalize brain iron concentration in children with ADHD. The findings were consistent across the studies despite differing methodologies and may lay the early foundation for the recognition of a potential biomarker in ADHD, although longitudinal prospective neuroimaging studies using larger sample sizes are required. Lastly, the effects of iron supplementation on brain iron concentration in children with ADHD need to be elucidated.
Collapse
Affiliation(s)
- Hugo A E Morandini
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia; Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia.
| | - Prue A Watson
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia
| | - Parma Barbaro
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia
| | - Pradeep Rao
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia; Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia; Telethon Kids Institute, Perth, Australia
| |
Collapse
|
27
|
Mohammadi S, Ghaderi S. Parkinson's disease and Parkinsonism syndromes: Evaluating iron deposition in the putamen using magnetic susceptibility MRI techniques - A systematic review and literature analysis. Heliyon 2024; 10:e27950. [PMID: 38689949 PMCID: PMC11059419 DOI: 10.1016/j.heliyon.2024.e27950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic resonance imaging (MRI) techniques, such as quantitative susceptibility mapping (QSM) and susceptibility-weighted imaging (SWI), can detect iron deposition in the brain. Iron accumulation in the putamen (PUT) can contribute to the pathogenesis of Parkinson's disease (PD) and atypical Parkinsonian disorders. This systematic review aimed to synthesize evidence on iron deposition in the PUT assessed by MRI susceptibility techniques in PD and Parkinsonism syndromes. The PubMed and Scopus databases were searched for relevant studies. Thirty-four studies from January 2007 to October 2023 that used QSM, SWI, or other MRI susceptibility methods to measure putaminal iron in PD, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and healthy controls (HCs) were included. Most studies have found increased putaminal iron levels in PD patients versus HCs based on higher quantitative susceptibility. Putaminal iron accumulation correlates with worse motor scores and cognitive decline in patients with PD. Evidence regarding differences in susceptibility between PD and atypical Parkinsonism is emerging, with several studies showing greater putaminal iron deposition in PSP and MSA than in PD patients. Alterations in putaminal iron levels help to distinguish these disorders from PD. Increased putaminal iron levels appear to be associated with increased disease severity and progression. Thus, magnetic susceptibility MRI techniques can detect abnormal iron accumulation in the PUT of patients with Parkinsonism. Moreover, quantifying putaminal susceptibility may serve as an MRI biomarker to monitor motor and cognitive changes in PD and aid in the differential diagnosis of Parkinsonian disorders.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Mohammadi S, Ghaderi S, Sayehmiri F, Fathi M. Quantitative susceptibility mapping for iron monitoring of multiple subcortical nuclei in type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1331831. [PMID: 38510699 PMCID: PMC10950952 DOI: 10.3389/fendo.2024.1331831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Iron accumulation in the brain has been linked to diabetes, but its role in subcortical structures involved in motor and cognitive functions remains unclear. Quantitative susceptibility mapping (QSM) allows the non-invasive quantification of iron deposition in the brain. This systematic review and meta-analysis examined magnetic susceptibility measured by QSM in the subcortical nuclei of patients with type 2 diabetes mellitus (T2DM) compared with controls. Methods PubMed, Scopus, and Web of Science databases were systematically searched [following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines] for studies reporting QSM values in the deep gray matter (DGM) regions of patients with T2DM and controls. Pooled standardized mean differences (SMDs) for susceptibility were calculated using fixed-effects meta-analysis models, and heterogeneity was assessed using I2. Sensitivity analyses were conducted, and publication bias was evaluated using Begg's and Egger's tests. Results Six studies including 192 patients with T2DM and 245 controls were included. This study found a significant increase in iron deposition in the subcortical nuclei of patients with T2DM compared to the control group. The study found moderate increases in the putamen (SMD = 0.53, 95% CI 0.33 to 0.72, p = 0.00) and dentate nucleus (SMD = 0.56, 95% CI 0.27 to 0.85, p = 0.00) but weak associations between increased iron levels in the caudate nucleus (SMD = 0.32, 95% CI 0.13 to 0.52, p = 0.00) and red nucleus (SMD = 0.22, 95% CI 0.00 0.44, p = 0.05). No statistical significance was found for iron deposition alterations in the globus pallidus (SMD = 0.19; 95% CI -0.01 to 0.38; p = 0.06) and substantia nigra (SMD = 0.12, 95% CI -0.10, 0.34, p = 0.29). Sensitivity analysis showed that the findings remained unaffected by individual studies, and consistent increases were observed in multiple subcortical areas. Discussion QSM revealed an increase in iron in the DGM/subcortical nuclei in T2DM patients versus controls, particularly in the motor and cognitive nuclei, including the putamen, dentate nucleus, caudate nucleus, and red nucleus. Thus, QSM may serve as a potential biomarker for iron accumulation in T2DM patients. However, further research is needed to validate these findings.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Mohammadi S, Ghaderi S. Advanced magnetic resonance neuroimaging techniques: feasibility and applications in long or post-COVID-19 syndrome - a review. Ann Med Surg (Lond) 2024; 86:1584-1589. [PMID: 38463042 PMCID: PMC10923379 DOI: 10.1097/ms9.0000000000001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Long-term or post-COVID-19 syndrome (PCS) is a condition that affects people infected with SARS‑CoV‑2, the virus that causes COVID-19. PCS is characterized by a wide range of persistent or new symptoms that last months after the initial infection, such as fatigue, shortness of breath, cognitive dysfunction, and pain. Advanced magnetic resonance (MR) neuroimaging techniques can provide valuable information on the structural and functional changes in the brain associated with PCS as well as potential biomarkers for diagnosis and prognosis. In this review, we discuss the feasibility and applications of various advanced MR neuroimaging techniques in PCS, including perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), functional MR imaging (fMRI), diffusion tensor imaging (DTI), and tractography. We summarize the current evidence on neuroimaging findings in PCS, the challenges and limitations of these techniques, and the future directions for research and clinical practice. Although still uncertain, advanced MRI techniques show promise for gaining insight into the pathophysiology and guiding the management of COVID-19 syndrome, pending larger validation studies.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Lao G, Liu Q, Li Z, Guan X, Xu X, Zhang Y, Wei H. Sub-voxel quantitative susceptibility mapping for assessing whole-brain magnetic susceptibility from ages 4 to 80. Hum Brain Mapp 2023; 44:5953-5971. [PMID: 37721369 PMCID: PMC10619378 DOI: 10.1002/hbm.26487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
The evolution of magnetic susceptibility of the brain is mainly determined by myelin in white matter (WM) and iron deposition in deep gray matter (DGM). However, existing imaging techniques have limited abilities to simultaneously quantify the myelination and iron deposition within a voxel throughout brain development and aging. For instance, the temporal trajectories of iron in the brain WM and myelination in DGM have not been investigated during the aging process. This study aimed to map the age-related iron and myelin changes in the whole brain, encompassing myelin in DGM and iron deposition in WM, using a novel sub-voxel quantitative susceptibility mapping (QSM) method. To achieve this, a cohort of 494 healthy adults (18-80 years old) was studied. The sub-voxel QSM method was employed to obtain the paramagnetic and diamagnetic susceptibility based on the approximatedR 2 ' map from acquiredR 2 * map. The linear relationship betweenR 2 * andR 2 ' maps was established from the regression coefficients on a small cohort data acquired with both 3D gradient recalled echo data andR 2 mapping. Large cohort sub-voxel susceptibility maps were used to create longitudinal and age-specific atlases via group-wise registration. To explore the differential developmental trajectories in the DGM and WM, we employed nonlinear models including exponential and Poisson functions, along with generalized additive models. The constructed atlases reveal the iron accumulation in the posterior part of the putamen and the gradual myelination process in the globus pallidus with aging. Interestingly, the developmental trajectories show that the rate of myelination differs among various DGM regions. Furthermore, the process of myelin synthesis is paralleled by an associated pattern of iron accumulation in the primary WM fiber bundles. In summary, our study offers significant insights into the distinctive developmental trajectories of iron in the brain's WM and myelination/demyelination in the DGM in vivo. These findings highlight the potential of using sub-voxel QSM to uncover new perspectives in neuroscience and improve our understanding of whole-brain myelination and iron deposit processes across the lifespan.
Collapse
Affiliation(s)
- Guoyan Lao
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Qiangqiang Liu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhenghao Li
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
| | - Yuyao Zhang
- School of Information and Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Hongjiang Wei
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
31
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|
32
|
Xie F, Mao T, Tang J, Zhao L, Guo J, Lin H, Wang D, Zhou G. Evaluation of iron deposition in the motor CSTC loop of a Chinese family with paroxysmal kinesigenic dyskinesia using quantitative susceptibility mapping. Front Neurol 2023; 14:1164600. [PMID: 37483438 PMCID: PMC10358764 DOI: 10.3389/fneur.2023.1164600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Previous studies have revealed structural, functional, and metabolic changes in brain regions inside the cortico-striatal-thalamo-cortical (CSTC) loop in patients with paroxysmal kinesigenic dyskinesia (PKD), whereas no quantitative susceptibility mapping (QSM)-related studies have explored brain iron deposition in these areas. Methods A total of eight familial PKD patients and 10 of their healthy family members (normal controls) were recruited and underwent QSM on a 3T magnetic resonance imaging system. Magnetic susceptibility maps were reconstructed using a multi-scale dipole inversion algorithm. Thereafter, we specifically analyzed changes in local mean susceptibility values in cortical regions and subcortical nuclei inside the motor CSTC loop. Results Compared with normal controls, PKD patients had altered brain iron levels. In the cortical gray matter area involved with the motor CSTC loop, susceptibility values were generally elevated, especially in the bilateral M1 and PMv regions. In the subcortical nuclei regions involved with the motor CSTC loop, susceptibility values were generally lower, especially in the bilateral substantia nigra regions. Conclusion Our results provide new evidence for the neuropathogenesis of PKD and suggest that an imbalance in brain iron levels may play a role in PKD.
Collapse
Affiliation(s)
- Fangfang Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Tang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Zhao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiuqing Guo
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, GE Healthcare, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gaofeng Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Wei H, Guan X, Cao P, Zhang Y. Editorial: Quantitative susceptibility mapping: technical advances and clinical applications. Front Neurosci 2023; 17:1228061. [PMID: 37404463 PMCID: PMC10315895 DOI: 10.3389/fnins.2023.1228061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Affiliation(s)
- Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Peng Cao
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yuyao Zhang
- School of Information and Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|