1
|
Aguilar GR, Vidal B, Ji H, Evenblij J, Liao CP, Ji H, Valperga G, Fang-Yen C, Hobert O. Functional analysis of conserved C. elegans bHLH family members uncovers lifespan control by a peptidergic hub neuron. PLoS Biol 2025; 23:e3002979. [PMID: 39761329 PMCID: PMC11703107 DOI: 10.1371/journal.pbio.3002979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of 5 Caenorhabditis elegans bHLH genes, falling into 3 phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system. We show (a) that 2 orthologs of the vertebrate bHLHe22/e23 genes, called hlh-17 and hlh-32, function redundantly to specify the identity of a single head interneuron class (AUA), as well as an individual motor neuron (VB2); (b) that the PTF1a ortholog hlh-13 acts as a terminal selector to control terminal differentiation and function of the sole octopaminergic neuron class in C. elegans, RIC; and (c) that the NHLH1/2 ortholog hlh-15 controls terminal differentiation and function of the peptidergic AVK head interneuron class, a known neuropeptidergic signaling hub in the animal. Strikingly, through null mutant analysis and cell-specific rescue experiments, we find that loss of hlh-15/NHLH in the peptidergic AVK neurons and the resulting abrogation of neuropeptide secretion from these neurons causes a substantially extended lifespan of the animal, which we propose to be akin to hypothalamic control of lifespan in vertebrates. Our functional analysis reveals themes of bHLH gene function during terminal differentiation that are complementary to the earlier lineage specification roles of other bHLH family members. However, such late functions are much more sparsely employed by members of the bHLH transcription factor family, compared to the function of the much more broadly employed homeodomain transcription factor family.
Collapse
Affiliation(s)
- G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Hongzhu Ji
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Joke Evenblij
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
- Technische Universität, Braunschweig, Germany
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Hongfei Ji
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Giulio Valperga
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Christopher Fang-Yen
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
2
|
Liu D, Pu Z, Li B, Tan G, Xie T, Shen Y. Chrdl1-mediated BMP4 inhibition disrupts the balance between retinal neurons and Müller Glia. Cell Death Discov 2024; 10:367. [PMID: 39152126 PMCID: PMC11329631 DOI: 10.1038/s41420-024-02129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Chordin-like 1 (CHRDL1) is a secreted protein that serves as an endogenous antagonist of bone morphogenetic proteins (BMPs). In the developing retina, Bmp4 has been demonstrated to be essential for sustaining the proliferation of progenitor cells and facilitating the differentiation of glial cells. Despite these efforts, the precise effects of Bmp4 inhibition on the developing retina are yet to be fully understood. We sought to address this question by overexpressing Chrdl1 in the developing retina. In this study, we explored the impact of Bmp4 inhibition on the developing mouse retina by conditionally overexpressing the Bmp4 inhibitor Chrdl1. Initially, we characterized the expression patterns of Bmp4 and Chrdl1 in the developing mouse retina from E10.5 to P12.5. Additionally, we utilized various molecular markers to demonstrate that Bmp4 inhibition disrupts both neuronal and Müller glial differentiation in the developing mouse retina. Moreover, through the application of RNA-seq analysis, distinctively expressed retinal genes under the modulation of Bmp4 signaling were discerned, encompassing the upregulation of Id1/2/3/4 and Hes1/5, as well as the downregulation of Neurod1/2/4 and Bhlhe22/23. Lastly, electroretinogram (ERG) and optomotor response (OMR) assays were conducted to illustrate that Bmp4 inhibition impairs the functional connectivity of various cells in the retina and consequently affects visual function. Collectively, this study demonstrates that inhibiting Bmp4 promotes the differentiation of retinal neurons over Müller glia by activating the expression of genes associated with neuron specification. These findings offer molecular insights into the role of Bmp4 signaling in mammalian retinal development.
Collapse
Affiliation(s)
- Dongmei Liu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, 710061, P. R. China
| | - Zeyuan Pu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Baige Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Gao Tan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Ting Xie
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, 430060, P. R. China.
| |
Collapse
|
3
|
Aguilar GR, Vidal B, Ji H, Evenblij J, Ji H, Valperga G, Liao CP, Fang-Yen C, Hobert O. Functional analysis of conserved C. elegans bHLH family members uncovers lifespan control by a peptidergic hub neuron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603289. [PMID: 39071424 PMCID: PMC11275782 DOI: 10.1101/2024.07.12.603289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of five C. elegans bHLH genes, falling into three phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system. We show (a) that two orthologs of the vertebrate bHLHb4/b5 genes, called hlh-17 and hlh-32, function redundantly to specify the identity of a single head interneuron (AUA), as well as an individual motor neuron (VB2), (b) that the PTF1a ortholog hlh-13 acts as a terminal selector to control terminal differentiation and function of the sole octopaminergic neuron class in C. elegans, RIC, and (c) that the NHLH1/2 ortholog hlh-15 controls terminal differentiation and function of the peptidergic AVK head interneuron class, a known neuropeptidergic signaling hub in the animal. Strikingly, through null mutant analysis and cell-specific rescue experiments, we find that loss of hlh-15/NHLH in the peptidergic AVK neurons and the resulting abrogation of neuropeptide secretion causes a substantially expanded lifespan of the animal, revealing an unanticipated impact of a central, peptidergic hub neuron in regulating lifespan, which we propose to be akin to hypothalamic control of lifespan in vertebrates. Taken together, our functional analysis reveals themes of bHLH gene function during terminal differentiation that are complementary to the earlier lineage specification roles of other bHLH family members. However, such late functions are much more sparsely employed by members of the bHLH transcription factor family, compared to the function of the much more broadly employed homeodomain transcription factor family.
Collapse
Affiliation(s)
- G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Hongzhu Ji
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Joke Evenblij
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
- Technische Universität, Braunschweig, Germany
| | - Hongfei Ji
- Department of Biomedical Engineering, Ohio State University, Columbus, OH
| | - Giulio Valperga
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | | | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| |
Collapse
|
4
|
Keeley PW, Trod S, Gamboa BN, Coffey PJ, Reese BE. Nfia Is Critical for AII Amacrine Cell Production: Selective Bipolar Cell Dependencies and Diminished ERG. J Neurosci 2023; 43:8367-8384. [PMID: 37775301 PMCID: PMC10711738 DOI: 10.1523/jneurosci.1099-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
The nuclear factor one (NFI) transcription factor genes Nfia, Nfib, and Nfix are all enriched in late-stage retinal progenitor cells, and their loss has been shown to retain these progenitors at the expense of later-generated retinal cell types. Whether they play any role in the specification of those later-generated fates is unknown, but the expression of one of these, Nfia, in a specific amacrine cell type may intimate such a role. Here, Nfia conditional knockout (Nfia-CKO) mice (both sexes) were assessed, finding a massive and largely selective absence of AII amacrine cells. There was, however, a partial reduction in type 2 cone bipolar cells (CBCs), being richly interconnected to AII cells. Counts of dying cells showed a significant increase in Nfia-CKO retinas at postnatal day (P)7, after AII cell numbers were already reduced but in advance of the loss of type 2 CBCs detected by P10. Those results suggest a role for Nfia in the specification of the AII amacrine cell fate and a dependency of the type 2 CBCs on them. Delaying the conditional loss of Nfia to the first postnatal week did not alter AII cell number nor differentiation, further suggesting that its role in AII cells is solely associated with their production. The physiological consequences of their loss were assessed using the ERG, finding the oscillatory potentials to be profoundly diminished. A slight reduction in the b-wave was also detected, attributed to an altered distribution of the terminals of rod bipolar cells, implicating a role of the AII amacrine cells in constraining their stratification.SIGNIFICANCE STATEMENT The transcription factor NFIA is shown to play a critical role in the specification of a single type of retinal amacrine cell, the AII cell. Using an Nfia-conditional knockout mouse to eliminate this population of retinal neurons, we demonstrate two selective bipolar cell dependencies on the AII cells; the terminals of rod bipolar cells become mis-stratified in the inner plexiform layer, and one type of cone bipolar cell undergoes enhanced cell death. The physiological consequence of this loss of the AII cells was also assessed, finding the cells to be a major contributor to the oscillatory potentials in the electroretinogram.
Collapse
Affiliation(s)
- Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Stephanie Trod
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Bruno N Gamboa
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Pete J Coffey
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-5060
| |
Collapse
|
5
|
Wei H, Wu C, Yuan Y, Lai L. Uncovering the Achilles heel of genetic heterogeneity: machine learning-based classification and immunological properties of necroptosis clusters in Alzheimer's disease. Front Aging Neurosci 2023; 15:1249682. [PMID: 37799623 PMCID: PMC10548137 DOI: 10.3389/fnagi.2023.1249682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Background Alzheimer's disease (AD) is an age-associated neurodegenerative disease, and the currently available diagnostic modalities and therapeutic agents are unsatisfactory due to its high clinical heterogeneity. Necroptosis is a common type of programmed cell death that has been shown to be activated in AD. Methods In this study, we first investigated the expression profiles of necroptosis-related genes (NRGs) and the immune landscape of AD based on GSE33000 dataset. Next, the AD samples in the GSE33000 dataset were extracted and subjected to consensus clustering based upon the differentially expressed NRGs. Key genes associated with necroptosis clusters were identified using Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm, and then intersected with the key gene related to AD. Finally, we developed a diagnostic model for AD by comparing four different machine learning approaches. The discrimination performance and clinical relevance of the diagnostic model were assessed using various evaluation metrics, including the nomogram, calibration plot, decision curve analysis (DCA), and independent validation datasets. Results Aberrant expression patterns of NRGs and specific immune landscape were identified in the AD samples. Consensus clustering revealed that patients in the GSE33000 dataset could be classified into two necroptosis clusters, each with distinct immune landscapes and enriched pathways. The Extreme Gradient Boosting (XGB) was found to be the most optimal diagnostic model for the AD based on the predictive ability and reliability of the models constructed by four machine learning approaches. The five most important variables, including ACAA2, BHLHB4, CACNA2D3, NRN1, and TAC1, were used to construct a five-gene diagnostic model. The constructed nomogram, calibration plot, DCA, and external independent validation datasets exhibited outstanding diagnostic performance for AD and were closely related with the pathologic hallmarks of AD. Conclusion This work presents a novel diagnostic model that may serve as a framework to study disease heterogeneity and provide a plausible mechanism underlying neuronal loss in AD.
Collapse
Affiliation(s)
- Huangwei Wei
- Department of Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chunle Wu
- Department of Blood Transfusion, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yulin Yuan
- Department of Laboratory, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lichuan Lai
- Department of Laboratory, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
6
|
Yin W, Mao X, Xu M, Chen M, Xue M, Su N, Yuan S, Liu Q. Epigenetic regulation in the commitment of progenitor cells during retinal development and regeneration. Differentiation 2023:S0301-4681(23)00023-3. [PMID: 37069005 DOI: 10.1016/j.diff.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Retinal development is initiated by multipotent retinal progenitor cells, which undergo several rounds of cell divisions and subsequently terminal differentiation. Retinal regeneration is usually considered as the recapitulation of retinal development, which share common mechanisms underlying the cell cycle re-entry of adult retinal stem cells and the differentiation of retinal neurons. However, how proliferative retinal progenitor cells perform a precise transition to postmitotic retinal cell types during the process of development and regeneration remains elusive. It is proposed that both the intrinsic and extrinsic programming are involved in the transcriptional regulation of the spatio-temporal fate commitment. Epigenetic modifications and the regulatory mechanisms at both DNA and chromatin levels are also postulated to play an important role in the timing of differentiation of specific retinal cells. In the present review, we have summarized recent knowledge of epigenetic regulation that underlies the commitment of retinal progenitor cells in the settings of retinal development and regeneration.
Collapse
Affiliation(s)
- Wenjie Yin
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xiying Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Miao Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Mingkang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Mengting Xue
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Na Su
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
7
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
8
|
Petridou E, Godinho L. Cellular and Molecular Determinants of Retinal Cell Fate. Annu Rev Vis Sci 2022; 8:79-99. [DOI: 10.1146/annurev-vision-100820-103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate retina is regarded as a simple part of the central nervous system (CNS) and thus amenable to investigations of the determinants of cell fate. Its five neuronal cell classes and one glial cell class all derive from a common pool of progenitors. Here we review how each cell class is generated. Retinal progenitors progress through different competence states, in each of which they generate only a small repertoire of cell classes. The intrinsic state of the progenitor is determined by the complement of transcription factors it expresses. Thus, although progenitors are multipotent, there is a bias in the types of fates they generate during any particular time window. Overlying these competence states are stochastic mechanisms that influence fate decisions. These mechanisms are determined by a weighted set of probabilities based on the abundance of a cell class in the retina. Deterministic mechanisms also operate, especially late in development, when preprogrammed progenitors solely generate specific fates.
Collapse
Affiliation(s)
- Eleni Petridou
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
- Graduate School of Systemic Neurosciences (GSN), Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
| |
Collapse
|
9
|
Yamasaki S, Tu HY, Matsuyama T, Horiuchi M, Hashiguchi T, Sho J, Kuwahara A, Kishino A, Kimura T, Takahashi M, Mandai M. A Genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. iScience 2022; 25:103657. [PMID: 35024589 PMCID: PMC8733179 DOI: 10.1016/j.isci.2021.103657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023] Open
Abstract
Pluripotent stem cell (PSC)-derived retinal sheet transplanted in vivo can form structured photoreceptor layers, contact with host bipolar cells, and transmit light signals to host retinas. However, a major concern is the presence of graft bipolar cells that may impede host-graft interaction. In this study, we used human ESC-retinas with the deletion of Islet-1 (ISL1) gene to achieve the reduced graft ON-bipolar cells after xenotransplantation into end-stage retinal degeneration model rats. Compared with wild-type graft, ISL1−/− hESC-retinas showed better host-graft contact, with indication of host-graft synapse formation and significant restoration of light responsiveness in host ganglion cells. We further analyzed to find out that improved functional integration of ISL1−/− hESC-retinas seemed attributed by a better host-graft contact and a better preservation of host inner retina. ISL1−/− hESC-retinas are promising for the efficient reconstruction of a degenerated retinal network in future clinical application. Deletion of ISL1 in hESC-retinas resulted in a reduced number of ON-bipolar cells Photoreceptors in ISL1−/− hESC-retinas achieved functional maturation in vivo ISL1−/− hESC-retinas showed better host-graft contact with putative synapses ISL1−/− hESC-retinas better restored RGC light responsiveness in degenerated retina
Collapse
Affiliation(s)
- Suguru Yamasaki
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Matsuri Horiuchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Tomoyo Hashiguchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Junki Sho
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Akiyoshi Kishino
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Toru Kimura
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan.,RIKEN Program for Drug Discovery and Medical Technology Platforms (DMP), RIKEN Cluster for Science, Technology and Innovation Hub., Saitama, 351-0198, Japan
| |
Collapse
|
10
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
11
|
West ER, Cepko CL. Development and diversification of bipolar interneurons in the mammalian retina. Dev Biol 2021; 481:30-42. [PMID: 34534525 DOI: 10.1016/j.ydbio.2021.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
The bipolar interneurons of the mammalian retina have evolved as a diverse set of cells with distinct subtype characteristics, which reflect specialized contributions to visual circuitry. Fifteen subtypes of bipolar interneurons have been identified in the mouse retina, each with characteristic gene expression, morphology, and light responses. This review provides an overview of the developmental events that underlie the generation of the diverse bipolar cell class, summarizing the current knowledge of genetic programs that establish and maintain bipolar subtype fates, as well as the events that shape the final distribution of bipolar subtypes. With much left to be discovered, bipolar interneurons present an ideal model system for studying the interplay between cell-autonomous and non-cell-autonomous mechanisms that influence neuronal subtype development within the central nervous system.
Collapse
Affiliation(s)
- Emma R West
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Matsuyama T, Tu HY, Sun J, Hashiguchi T, Akiba R, Sho J, Fujii M, Onishi A, Takahashi M, Mandai M. Genetically engineered stem cell-derived retinal grafts for improved retinal reconstruction after transplantation. iScience 2021; 24:102866. [PMID: 34409267 PMCID: PMC8361135 DOI: 10.1016/j.isci.2021.102866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/23/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
ESC/iPSC-retinal sheet transplantation, which supplies photoreceptors as well as other retinal cells, has been shown to be able to restore visual function in mice with end-stage retinal degeneration. Here, by introducing a novel type of genetically engineered mouse ESC/iPSC-retinal sheet with reduced numbers of secondary retinal neurons but intact photoreceptor cell layer structure, we reinforced the evidence that ESC/iPSC-retinal sheet transplantation can establish synaptic connections with the host, restore light responsiveness, and reduce aberrant retinal ganglion cell spiking in mice. Furthermore, we show that genetically engineered grafts can substantially improve the outcome of the treatment by improving neural integration. We speculate that this leads to reduced spontaneous activity in the host which in turn contributes to a better visual recovery.
Collapse
Affiliation(s)
- Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jianan Sun
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomoyo Hashiguchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ryutaro Akiba
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Junki Sho
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Momo Fujii
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akishi Onishi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| |
Collapse
|
13
|
Development of the vertebrate retinal direction-selective circuit. Dev Biol 2021; 477:273-283. [PMID: 34118273 DOI: 10.1016/j.ydbio.2021.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
The vertebrate retina contains an array of neural circuits that detect distinct features in visual space. Direction-selective (DS) circuits are an evolutionarily conserved retinal circuit motif - from zebrafish to rodents to primates - specialized for motion detection. During retinal development, neuronal subtypes that wire DS circuits form exquisitely precise connections with each other to shape the output of retinal ganglion cells tuned for specific speeds and directions of motion. In this review, we follow the chronology of DS circuit development in the vertebrate retina, including the cellular, molecular, and activity-dependent mechanisms that regulate the formation of DS circuits, from cell birth and migration to synapse formation and refinement. We highlight recent findings that identify genetic programs critical for specifying neuronal subtypes within DS circuits and molecular interactions essential for responses along the cardinal axes of motion. Finally, we discuss the roles of DS circuits in visual behavior and in certain human visual disease conditions. As one of the best-characterized circuits in the vertebrate retina, DS circuits represent an ideal model system for studying the development of neural connectivity at the level of individual genes, cells, and behavior.
Collapse
|
14
|
Dong X, Yang H, Zhou X, Xie X, Yu D, Guo L, Xu M, Zhang W, Liang G, Gan L. LIM-Homeodomain Transcription Factor LHX4 Is Required for the Differentiation of Retinal Rod Bipolar Cells and OFF-Cone Bipolar Subtypes. Cell Rep 2021; 32:108144. [PMID: 32937137 PMCID: PMC9245082 DOI: 10.1016/j.celrep.2020.108144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 07/13/2020] [Accepted: 08/21/2020] [Indexed: 12/01/2022] Open
Abstract
Retinal bipolar cells (BCs) connect with photoreceptors and relay visual information to retinal ganglion cells (RGCs). Retina-specific deletion of Lhx4 in mice results in a visual defect resembling human congenital stationary night blindness. This visual dysfunction results from the absence of rod bipolar cells (RBCs) and the loss of selective rod-connecting cone bipolar cell (CBC) subtypes and AII amacrine cells (ACs). Inactivation of Lhx4 causes the apoptosis of BCs and cell fate switch from some BCs to ACs, whereas Lhx4 overexpression promotes BC genesis. Moreover, Lhx4 positively regulates Lhx3 expression to drive the fate choice of type 2 BCs over the GABAergic ACs. Lhx4 inactivation ablates Bhlhe23 expression, whereas overexpression of Bhlhe23 partially rescues RBC development in the absence of Lhx4. Thus, by acting upstream of Bhlhe23, Prdm8, Fezf2, Lhx3, and other BC genes, Lhx4, together with Isl1, could play essential roles in regulating the subtype-specific development of RBCs and CBCs. Dong et al. show that the loss of Lhx4 in mice results in the loss of rod bipolar cells and rod-connecting bipolar cells and in a visual defect resembling human congenital stationary night blindness. Lhx4, together with Isl1, acts upstream of Bhlhe23, Prdm8, Fezf2, and Lhx3 to regulate bipolar cell development.
Collapse
Affiliation(s)
- Xuhui Dong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | - Hua Yang
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA; Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoling Xie
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | - Dongliang Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Luming Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | - Mei Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA; Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Wenjun Zhang
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA; Department of Plastic Surgery, Changzheng Hospital, Shanghai 20003, China
| | - Guoqing Liang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
15
|
Umutoni D, Iwagawa T, Baba Y, Tsuhako A, Honda H, Aihara M, Watanabe S. H3K27me3 demethylase UTX regulates the differentiation of a subset of bipolar cells in the mouse retina. Genes Cells 2020; 25:402-412. [PMID: 32215989 DOI: 10.1111/gtc.12767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/08/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Di- and trimethylation of lysine 27 on histone 3 (H3K27me2/3) is a critical gene repression mechanism. We previously showed that down-regulation of the H3K27 demethylase, Jumonji domain-containing protein 3 (JMJD3), resulted in a reduced number of protein kinase C (PKC)α-positive rod ON-bipolar cells. In this work, we focused on the role of another H3K27 demethylase, ubiquitously transcribed tetratricopeptide repeat X chromosome (UTX), in retinal development. UTX was expressed in the retinal progenitor cells of the embryonic mouse retina and was observed in the inner nuclear layer during late retinal development and in the mature retina. The short hairpin RNA-mediated knockdown of Utx in a mouse retinal explant led to a reduced number of PKCα-positive rod ON-bipolar cells. However, other retinal subtypes were unaffected by this knockdown. Using a retina-specific knockout of Utx in mice, the in vivo effects of UTX down-regulation were examined. Again, the number of PKCα-positive rod ON-bipolar cells was reduced, and no other apparent phenotypes, including retinal progenitor proliferation, apoptosis or differentiation, were observed. Finally, we examined retina-specific Utx and Jmjd3 double-knockout mice and found that although the number of rod ON-bipolar cells was reduced, no additional effects from the loss of Utx and Jmjd3 were observed. Taken together, our data show that UTX contributes to retinal differentiation in a lineage-specific manner.
Collapse
Affiliation(s)
- Daisy Umutoni
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Ophthalmology, University of Tokyo, Tokyo, Japan
| | - Toshiro Iwagawa
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yukihiro Baba
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Asano Tsuhako
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo, Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Seilheimer RL, Sabharwal J, Wu SM. Genetic dissection of rod and cone pathways mediating light responses and receptive fields of ganglion cells in the mouse retina. Vision Res 2020; 167:15-23. [PMID: 31887538 PMCID: PMC7264069 DOI: 10.1016/j.visres.2019.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/14/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
Abstract
Retinal ganglion cells (GCs) are important visual neurons which carry complex spatiotemporal information from the retina to higher visual centers in the brain. By taking advantage of pathway-specific knockout/mutant mice and multi-electrode array (MEA) recording techniques, we analyze contributions of rod and cone pathways to responsiveness, kinetics and receptive field profiles of GCs under scotopic and photopic conditions. Our data suggest: (1) Scotopic responses of some GCs require all three rod pathways, some require only the secondary and tertiary rod pathways, and others require only the tertiary rod pathway. (2) There are more responsive GCs in photopic conditions than responsive GCs in scotopic conditions. (3) Gap junctions slow down GCs' scotopic light responses and increase GCs' ratio of antagonistic to center inputs. (4) Cone pathways do not affect the kinetics but alter the ratio of antagonistic to center inputs of scotopic GC responses, and they speed up GCs photopic responses and alter the ratio of GCs' antagonistic to center synaptic inputs and receptive field profiles. (5) Rod bipolar cells shorten response latency of ON GCs and increase the ratio of GCs' antagonistic to center synaptic inputs. (6) Light adaptation speeds up GCs' temporal processing and tunes GC photopic responses to higher frequencies, and the tertiary rod pathway plays a significant role in adaptation-induced TTP changes in some GCs. (7) GC RF center sizes are partially mediated by AIIACs and GC-GC coupling. (8) Connexin36 gap junctions and cone pathways alter synaptic circuits underlying antagonistic surround inputs to GCs in photopic conditions.
Collapse
Affiliation(s)
- R L Seilheimer
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - J Sabharwal
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - S M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
17
|
He F, Nichols RM, Kailasam L, Wensel TG, Agosto MA. Critical Role for Phosphatidylinositol-3 Kinase Vps34/PIK3C3 in ON-Bipolar Cells. Invest Ophthalmol Vis Sci 2019; 60:2861-2874. [PMID: 31260037 PMCID: PMC6607926 DOI: 10.1167/iovs.19-26586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose Phosphatidylinositol-3-phosphate (PI(3)P), and Vps34, the type III phosphatidylinositol 3-kinase primarily responsible for its production, are important for function and survival of sensory neurons, where they have key roles in membrane processing events, such as autophagy, endosome processing, and fusion of membranes bearing ubiquitinated cargos with lysosomes. We examined their roles in the most abundant class of secondary neurons in the vertebrate retina, the ON-bipolar cells (ON-BCs). Methods A conditional Vps34 knockout mouse line was generated by crossing Vps34 floxed mice with transgenic mice expressing Cre recombinase in ON-BCs. Structural changes in the retina were determined by immunofluorescence and electron microscopy, and bipolar cell function was determined by electroretinography. Results Vps34 deletion led to selective death of ON-BCs, a thinning of the inner nuclear layer, and a progressive decline of electroretinogram b-wave amplitudes. There was no evidence for loss of other retinal neurons, or disruption of rod-horizontal cell contacts in the outer plexiform layer. Loss of Vps34 led to aberrant accumulation of membranes positive for autophagy markers LC3, p62, and ubiquitin, accumulation of endosomal membranes positive for Rab7, and accumulation of lysosomes. Similar effects were observed in Purkinje cells of the cerebellum, leading to severe and progressive ataxia. Conclusions These results support an essential role for PI(3)P in fusion of autophagosomes with lysosomes and in late endosome maturation. The cell death resulting from Vps34 knockout suggests that these processes are essential for the health of ON-BCs.
Collapse
Affiliation(s)
- Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Ralph M Nichols
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States
| | - Lavanya Kailasam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States.,Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States
| | - Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
18
|
Murphy DP, Hughes AEO, Lawrence KA, Myers CA, Corbo JC. Cis-regulatory basis of sister cell type divergence in the vertebrate retina. eLife 2019; 8:e48216. [PMID: 31633482 PMCID: PMC6802965 DOI: 10.7554/elife.48216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022] Open
Abstract
Multicellular organisms evolved via repeated functional divergence of transcriptionally related sister cell types, but the mechanisms underlying sister cell type divergence are not well understood. Here, we study a canonical pair of sister cell types, retinal photoreceptors and bipolar cells, to identify the key cis-regulatory features that distinguish them. By comparing open chromatin maps and transcriptomic profiles, we found that while photoreceptor and bipolar cells have divergent transcriptomes, they share remarkably similar cis-regulatory grammars, marked by enrichment of K50 homeodomain binding sites. However, cell class-specific enhancers are distinguished by enrichment of E-box motifs in bipolar cells, and Q50 homeodomain motifs in photoreceptors. We show that converting K50 motifs to Q50 motifs represses reporter expression in bipolar cells, while photoreceptor expression is maintained. These findings suggest that partitioning of Q50 motifs within cell type-specific cis-regulatory elements was a critical step in the evolutionary divergence of the bipolar transcriptome from that of photoreceptors.
Collapse
Affiliation(s)
- Daniel P Murphy
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Andrew EO Hughes
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Karen A Lawrence
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Connie A Myers
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Joseph C Corbo
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| |
Collapse
|
19
|
Dong X, Xie X, Guo L, Xu J, Xu M, Liang G, Gan L. Generation and characterization of Lhx4 tdT reporter knock-in and Lhx4 loxP conditional knockout mice. Genesis 2019; 57:e23328. [PMID: 31313880 PMCID: PMC6995401 DOI: 10.1002/dvg.23328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 11/06/2022]
Abstract
LHX4 is a LIM-homeodomain transcription factor essential for the development of spinal cord and pituitary gland. Mice with homozygous Lhx4-null mutation suffer early postnatal death from lung defect. In this study, to facilitate the research on Lhx4 function, we designed a targeting construct to generate two novel Lhx4 mouse lines: Lhx4 loxP conditional knockout and Lhx4 tdT reporter knock-in mice. Lhx4 tdT/+ , Lhx4 loxP/+ , and Lhx4 loxP/loxP were viable, fertile, and did not display any gross abnormalities. By breeding Lhx4 loxP line with Cre-expressing mice, the Exon 3 of Lhx4 was efficiently removed, resulting in a shift in the reading frame and the inactivation of Lhx4. The expression of tdTomato knock-in reporter recapitulated the endogenous LHX4 expression and was detected in the retina, spinal cord, pituitary gland, and hindbrain of Lhx4 tdT mice. Thus, Lhx4 tdT and Lhx4 loxP mouse lines provide valuable tools for unraveling the tissue-specific role of Lhx4 at postnatal stages in mice.
Collapse
Affiliation(s)
- Xuhui Dong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaoling Xie
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
| | - Luming Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiadong Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
| | - Mei Xu
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guoqing Liang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
| |
Collapse
|
20
|
Kawamura Y, Yamanaka K, Poh B, Kuribayashi H, Koso H, Watanabe S. The role of Zhx2 transcription factor in bipolar cell differentiation during mouse retinal development. Biochem Biophys Res Commun 2018; 503:3023-3030. [PMID: 30146259 DOI: 10.1016/j.bbrc.2018.08.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/12/2018] [Indexed: 11/29/2022]
Abstract
We found that the Zhx2 gene (whose product is known to act as a tumor suppressor in hepatocellular carcinoma) is expressed in embryonic retinal progenitors and in developing cone bipolar cells in the postnatal retina, as well as in Müller glia in the mature retina. To examine the functions of Zhx2 protein during retinal development, we performed loss- and gain-of-function analyses using a retinal explant culture system. We introduced a plasmid encoding Zhx2 shRNA into isolated mouse retinas at E17.5, and the retinas were cultured as explants. After 3 days of culture, proliferation was slightly enhanced, leading to retinas thicker than in the control, but this phenomenon was observed only transiently. After 14 days of the culture, the thickness and gross morphology of retinas expressing sh-Zhx2 were indistinguishable from those of the control. The numbers of rod cells, amacrine cells, and Müller glia were the same in both groups. However, although the total number of bipolar cells was the same, the experimental group saw an increased population of ON bipolar cells, and decreased numbers of a subset of OFF bipolar cells. We also examined the effects of overexpression of Zhx2. Although Zhx2 acts as a tumor suppressor, its overexpression in developing retinas did not lead to any discernible difference in retinal thickness, suggesting that proliferation activity was not affected. After 14 days of explant culture, the total number of bipolar cells decreased, and subset composition was altered. Taken together, these results suggest that Zhx2 plays roles in the regulation of bipolar cell subset fate determination during retinal development.
Collapse
Affiliation(s)
- Yuichi Kawamura
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kyohei Yamanaka
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Boonmin Poh
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroshi Kuribayashi
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hideto Koso
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
21
|
Suzuki-Kerr H, Iwagawa T, Sagara H, Mizota A, Suzuki Y, Watanabe S. Pivotal roles of Fezf2 in differentiation of cone OFF bipolar cells and functional maturation of cone ON bipolar cells in retina. Exp Eye Res 2018; 171:142-154. [DOI: 10.1016/j.exer.2018.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
|
22
|
Kautzman AG, Keeley PW, Borhanian S, Ackley CR, Reese BE. Genetic Control of Rod Bipolar Cell Number in the Mouse Retina. Front Neurosci 2018; 12:285. [PMID: 29867309 PMCID: PMC5954209 DOI: 10.3389/fnins.2018.00285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022] Open
Abstract
Genetic variants modulate the numbers of various retinal cell types in mice. For instance, there is minimal variation in the number of rod bipolar cells (RBCs) in two inbred strains of mice (A/J and C57BL/6J), yet their F1 offspring contain significantly more RBCs than either parental strain. To investigate the genetic source of this variation, we mapped the variation in the number of RBCs across 24 genetically distinct recombinant inbred (RI) strains (the AXB/BXA strain-set), seeking to identify quantitative trait loci (QTL). We then sought to identify candidate genes and potential casual variants at those genomic loci. Variation in RBC number mapped to three genomic loci, each modulating cell number in excess of one-third of the range observed across the RI strains. At each of these loci, we identified candidate genes containing variants that might alter gene function or expression. The latter genes were also analyzed using a transcriptome database, revealing a subset for which expression correlated with variation in RBC number. Using an electroporation strategy, we demonstrate that early postnatal expression of one of them, Ggct (gamma-glutamyl cyclotransferase), modulates bipolar cell number. We identify candidate regulatory variants for this gene, finding a large structural variant (SV) in the putative promoter that reduces expression using a luciferase assay. This SV reducing Ggct expression in vitro is likely the causal variant within the gene associated with the variation in Ggct expression in vivo, implicating it as a quantitative trait variant (QTV) participating in the control of RBC number.
Collapse
Affiliation(s)
- Amanda G Kautzman
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Cellular, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sarra Borhanian
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Cellular, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Caroline R Ackley
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Cellular, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
23
|
Woods SM, Mountjoy E, Muir D, Ross SE, Atan D. A comparative analysis of rod bipolar cell transcriptomes identifies novel genes implicated in night vision. Sci Rep 2018; 8:5506. [PMID: 29615777 PMCID: PMC5883057 DOI: 10.1038/s41598-018-23901-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
In the mammalian retina, rods and a specialised rod-driven signalling pathway mediate visual responses under scotopic (dim light) conditions. As rods primarily signal to rod bipolar cells (RBCs) under scoptic conditions, disorders that affect rod or RBC function are often associated with impaired night vision. To identify novel genes expressed by RBCs and, therefore, likely to be involved in night vision, we took advantage of the adult Bhlhe23−/− mouse retina (that lacks RBCs) to derive the RBC transcriptome. We found that genes expressed by adult RBCs are mainly involved in synaptic structure and signalling, whereas genes that influence RBC development are also involved in the cell cycle and transcription/translation. By comparing our data with other published retinal and bipolar cell transcriptomes (where we identify RBCs by the presence of Prkca and/or Pcp2 transcripts), we have derived a consensus for the adult RBC transcriptome. These findings ought to facilitate further research into physiological mechanisms underlying mammalian night vision as well as proposing candidate genes for patients with inherited causes of night blindness.
Collapse
Affiliation(s)
- Sasha M Woods
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK.
| | - Edward Mountjoy
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Duncan Muir
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK
| | - Sarah E Ross
- Departments of Neurobiology and Anesthesiology and the Center for Pain Research, University of Pittsburgh, Pittsburgh, 15213-2536, USA
| | - Denize Atan
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
24
|
Ianov L, De Both M, Chawla MK, Rani A, Kennedy AJ, Piras I, Day JJ, Siniard A, Kumar A, Sweatt JD, Barnes CA, Huentelman MJ, Foster TC. Hippocampal Transcriptomic Profiles: Subfield Vulnerability to Age and Cognitive Impairment. Front Aging Neurosci 2017; 9:383. [PMID: 29276487 PMCID: PMC5727020 DOI: 10.3389/fnagi.2017.00383] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 01/11/2023] Open
Abstract
The current study employed next-generation RNA sequencing to examine gene expression differences related to brain aging, cognitive decline, and hippocampal subfields. Young and aged rats were trained on a spatial episodic memory task. Hippocampal regions CA1, CA3, and the dentate gyrus were isolated. Poly-A mRNA was examined using two different sequencing platforms, Illumina, and Ion Proton. The Illumina platform was used to generate seed lists of genes that were statistically differentially expressed across regions, ages, or in association with cognitive function. The gene lists were then retested using the data from the Ion Proton platform. The results indicate hippocampal subfield differences in gene expression and point to regional differences in vulnerability to aging. Aging was associated with increased expression of immune response-related genes, particularly in the dentate gyrus. For the memory task, impaired performance of aged animals was linked to the regulation of Ca2+ and synaptic function in region CA1. Finally, we provide a transcriptomic characterization of the three subfields regardless of age or cognitive status, highlighting and confirming a correspondence between cytoarchitectural boundaries and molecular profiling.
Collapse
Affiliation(s)
- Lara Ianov
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matt De Both
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Monica K Chawla
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Asha Rani
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew J Kennedy
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States
| | - Ignazio Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jeremy J Day
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States
| | - Ashley Siniard
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ashok Kumar
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - J David Sweatt
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States.,Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ, United States
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States.,Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Thomas C Foster
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
25
|
Park KU, Randazzo G, Jones KL, Brzezinski JA. Gsg1, Trnp1, and Tmem215 Mark Subpopulations of Bipolar Interneurons in the Mouse Retina. Invest Ophthalmol Vis Sci 2017; 58:1137-1150. [PMID: 28199486 PMCID: PMC5317276 DOI: 10.1167/iovs.16-19767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose How retinal bipolar cell interneurons are specified and assigned to specialized subtypes is only partially understood. In part, this is due to a lack of early pan- and subtype-specific bipolar cell markers. To discover these factors, we identified genes that were upregulated in Blimp1 (Prdm1) mutant retinas, which exhibit precocious bipolar cell development. Methods Postnatal day (P)2 retinas from Blimp1 conditional knock-out (CKO) mice and controls were processed for RNA sequencing. Genes that increased at least 45% and were statistically different between conditions were considered candidate bipolar-specific factors. Candidates were further evaluated by RT-PCR, in situ hybridization, and immunohistochemistry. Knock-in Tmem215-LacZ mice were used to better trace retinal expression. Results A comparison between Blimp1 CKO and control RNA-seq datasets revealed approximately 40 significantly upregulated genes. We characterized the expression of three genes that have no known function in the retina, Gsg1 (germ cell associated gene), Trnp1 (TMF-regulated nuclear protein), and Tmem215 (a predicted transmembrane protein). Germ cell associated gene appeared restricted to a small subset of cone bipolars while Trnp1 was seen in all ON type bipolar cells. Using Tmem215-LacZ heterozygous knock-in mice, we observed that β-galactosidase expression started early in bipolar cell development. In adults, Tmem215 was expressed by a subset of ON and OFF cone bipolar cells. Conclusions We have identified Gsg1, Tmem215, and Trnp1 as novel bipolar subtype-specific genes. The spatial and temporal pattern of their expression is consistent with a role in controlling bipolar subtype fate choice, differentiation, or physiology.
Collapse
Affiliation(s)
- Ko Uoon Park
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States
| | - Grace Randazzo
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States
| | - Kenneth L Jones
- Department of Pediatrics, Section Hematology/Oncology, University of Colorado Denver, Aurora, Colorado, United States
| | - Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States
| |
Collapse
|
26
|
Lagali PS, Medina CF, Zhao BYH, Yan K, Baker AN, Coupland SG, Tsilfidis C, Wallace VA, Picketts DJ. Retinal interneuron survival requires non-cell-autonomous Atrx activity. Hum Mol Genet 2016; 25:4787-4803. [PMID: 28173139 DOI: 10.1093/hmg/ddw306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 01/13/2023] Open
Abstract
ATRX is a chromatin remodeling protein that is mutated in several intellectual disability disorders including alpha-thalassemia/mental retardation, X-linked (ATR-X) syndrome. We previously reported the prevalence of ophthalmological defects in ATR-X syndrome patients, and accordingly we find morphological and functional visual abnormalities in a mouse model harboring a mutation occurring in ATR-X patients. The visual system abnormalities observed in these mice parallels the Atrx-null retinal phenotype characterized by interneuron defects and selective loss of amacrine and horizontal cells. The mechanisms that underlie selective neuronal vulnerability and neurodegeneration in the central nervous system upon Atrx mutation or deletion are unknown. To interrogate the cellular specificity of Atrx for its retinal neuroprotective functions, we employed a combination of temporal and lineage-restricted conditional ablation strategies to generate five different conditional knockout mouse models, and subsequently identified a non-cell-autonomous requirement for Atrx in bipolar cells for inhibitory interneuron survival in the retina. Atrx-deficient retinal bipolar cells exhibit functional, structural and molecular alterations consistent with impairments in neuronal activity and connectivity. Gene expression changes in the Atrx-null retina indicate defective synaptic structure and neuronal circuitry, suggest excitotoxic mechanisms of neurodegeneration, and demonstrate that common targets of ATRX in the forebrain and retina may contribute to similar neuropathological processes underlying cognitive impairment and visual dysfunction in ATR-X syndrome.
Collapse
Affiliation(s)
- Pamela S Lagali
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Chantal F Medina
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Brandon Y H Zhao
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Adam N Baker
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Stuart G Coupland
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Ophthalmology, University of Ottawa, Ottawa, ON K1H 8M5, Canada,,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Catherine Tsilfidis
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Ophthalmology, University of Ottawa, Ottawa, ON K1H 8M5, Canada,,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Valerie A Wallace
- Vision Research Division, Krembil Research Institute, Toronto, Ontario, Canada M5T 2S8,,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada,,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
27
|
Dinet V, Ciccotosto GD, Delaunay K, Borras C, Ranchon-Cole I, Kostic C, Savoldelli M, El Sanharawi M, Jonet L, Pirou C, An N, Abitbol M, Arsenijevic Y, Behar-Cohen F, Cappai R, Mascarelli F. Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. Mol Brain 2016; 9:64. [PMID: 27267879 PMCID: PMC4897877 DOI: 10.1186/s13041-016-0245-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/30/2016] [Indexed: 12/03/2022] Open
Abstract
Background Amyloid precursor protein knockout mice (APP-KO) have impaired differentiation of amacrine and horizontal cells. APP is part of a gene family and its paralogue amyloid precursor-like protein 2 (APLP2) has both shared as well as distinct expression patterns to APP, including in the retina. Given the impact of APP in the retina we investigated how APLP2 expression affected the retina using APLP2 knockout mice (APLP2-KO). Results Using histology, morphometric analysis with noninvasive imaging technique and electron microscopy, we showed that APLP2-KO retina displayed abnormal formation of the outer synaptic layer, accompanied with greatly impaired photoreceptor ribbon synapses in adults. Moreover, APLP2-KO displayed a significant decease in ON-bipolar, rod bipolar and type 2 OFF-cone bipolar cells (36, 21 and 63 %, respectively). Reduction of the number of bipolar cells was accompanied with disrupted dendrites, reduced expression of metabotropic glutamate receptor 6 at the dendritic tips and alteration of axon terminals in the OFF laminae of the inner plexiform layer. In contrast, the APP-KO photoreceptor ribbon synapses and bipolar cells were intact. The APLP2-KO retina displayed numerous phenotypic similarities with the congenital stationary night blindness, a non-progressive retinal degeneration disease characterized by the loss of night vision. The pathological phenotypes in the APLP2-KO mouse correlated to altered transcription of genes involved in pre- and postsynatic structure/function, including CACNA1F, GRM6, TRMP1 and Gα0, and a normal scotopic a-wave electroretinogram amplitude, markedly reduced scotopic electroretinogram b-wave and modestly reduced photopic cone response. This confirmed the impaired function of the photoreceptor ribbon synapses and retinal bipolar cells, as is also observed in congenital stationary night blindness. Since congenital stationary night blindness present at birth, we extended our analysis to retinal differentiation and showed impaired differentiation of different bipolar cell subtypes and an altered temporal sequence of development from OFF to ON laminae in the inner plexiform layer. This was associated with the altered expression patterns of bipolar cell generation and differentiation factors, including MATH3, CHX10, VSX1 and OTX2. Conclusions These findings demonstrate that APLP2 couples retina development and synaptic genes and present the first evidence that APLP2 expression may be linked to synaptic disease. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0245-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginie Dinet
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Giuseppe D Ciccotosto
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Kimberley Delaunay
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Céline Borras
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Isabelle Ranchon-Cole
- Laboratoire de Biophysique Sensorielle, Université Clermont 1, Clermont-Ferrand, France
| | - Corinne Kostic
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Michèle Savoldelli
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Mohamed El Sanharawi
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Caroline Pirou
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Na An
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Marc Abitbol
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Yvan Arsenijevic
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Roberto Cappai
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Frédéric Mascarelli
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
28
|
Li X, Gaillard F, Monckton EA, Glubrecht DD, Persad ARL, Moser M, Sauvé Y, Godbout R. Loss of AP-2delta reduces retinal ganglion cell numbers and axonal projections to the superior colliculus. Mol Brain 2016; 9:62. [PMID: 27259519 PMCID: PMC4893287 DOI: 10.1186/s13041-016-0244-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/29/2016] [Indexed: 11/10/2022] Open
Abstract
Background AP-2δ is the most divergent member of the Activating Protein-2 (TFAP2) family of transcription factors. AP-2δ is restricted to specific regions of the CNS, including a subset of ganglion cells in the retina. Retinal ganglion cells (RGCs), the only output neurons of the retina, are responsible for transmitting the visual signal to the brain. Results AP-2δ knockout results in loss of Brn3c (Pou4f3) expression in AP-2δ -positive RGCs. While AP-2δ-/- mice have morphologically normal retinas at birth, there is a significant reduction in retinal ganglion cell numbers by P21, after eye opening. Chromatin immunoprecipitation indicates that Brn3c is a target of AP-2δ in the retina. Using fluorochrome-conjugated cholera toxin subunit B to trace ganglion cell axons from the eye to the major visual pathways in the brain, we found 87 % and 32 % decreases in ipsilateral and contralateral projections, respectively, to the superior colliculus in AP-2δ-/- mice. In agreement with anatomical data, visually evoked responses recorded from the brain confirmed that retinal outputs to the brain are compromised. Conclusions AP-2δ is important for the maintenance of ganglion cell numbers in the retina. Loss of AP-2δ alters retinal axonal projections to visual centers of the brain, with ipsilaterial projections to the superior colliculus being the most dramatically affected. Our results have important implications for integration of the visual signal at the superior colliculus. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0244-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Frédéric Gaillard
- Department of Physiology, University of Alberta, 11560 University Avenue, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, 11560 University Avenue, Edmonton, AB, Canada
| | - Elizabeth A Monckton
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Darryl D Glubrecht
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Amit R L Persad
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Markus Moser
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Yves Sauvé
- Department of Physiology, University of Alberta, 11560 University Avenue, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, 11560 University Avenue, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.
| |
Collapse
|
29
|
Transitional Progenitors during Vertebrate Retinogenesis. Mol Neurobiol 2016; 54:3565-3576. [PMID: 27194297 DOI: 10.1007/s12035-016-9899-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
The retina is a delicate neural tissue responsible for light signal capturing, modulating, and passing to mid-brain. The brain then translated the signals into three-dimensional vision. The mature retina is composed of more than 50 subtypes of cells, all of which are developed from a pool of early multipotent retinal progenitors, which pass through sequential statuses of oligopotent, bipotent, and unipotent progenitors, and finally become terminally differentiated retinal cells. A transitional progenitor model is proposed here to describe how intrinsic developmental programs, along with environmental cues, control the step-by-step differentiation during retinogenesis. The model could elegantly explain many current findings as well as predict roles of intrinsic factors during retinal development.
Collapse
|
30
|
Cowan CS, Abd-El-Barr M, van der Heijden M, Lo EM, Paul D, Bramblett DE, Lem J, Simons DL, Wu SM. Connexin 36 and rod bipolar cell independent rod pathways drive retinal ganglion cells and optokinetic reflexes. Vision Res 2016; 119:99-109. [PMID: 26718442 PMCID: PMC5052632 DOI: 10.1016/j.visres.2015.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 11/25/2022]
Abstract
Rod pathways are a parallel set of synaptic connections which enable night vision by relaying and processing rod photoreceptor light responses. We use dim light stimuli to isolate rod pathway contributions to downstream light responses then characterize these contributions in knockout mice lacking rod transducin-α (Trα), or certain pathway components associated with subsets of rod pathways. These comparisons reveal that rod pathway driven light sensitivity in retinal ganglion cells (RGCs) is entirely dependent on Trα, but partially independent of connexin 36 (Cx36) and rod bipolar cells. Pharmacological experiments show that rod pathway-driven and Cx36-independent RGC ON responses are also metabotropic glutamate receptor 6-dependent. To validate the RGC findings in awake, behaving animals we measured optokinetic reflexes (OKRs), which are sensitive to changes in ON pathways. Scotopic OKR contrast sensitivity was lost in Trα(-/-) mice, but indistinguishable from controls in Cx36(-/-) and rod bipolar cell knockout mice. Mesopic OKRs were also altered in mutant mice: Trα(-/-) mice had decreased spatial acuity, rod BC knockouts had decreased sensitivity, and Cx36(-/-) mice had increased sensitivity. These results provide compelling evidence against the complete Cx36 or rod BC dependence of night vision's ON component. Further, the findings suggest the parallel nature of rod pathways provides considerable redundancy to scotopic light sensitivity but distinct contributions to mesopic responses through complicated interactions with cone pathways.
Collapse
Affiliation(s)
- Cameron S Cowan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States.
| | - Muhammad Abd-El-Barr
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | | | - Eric M Lo
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - David Paul
- Department of Neurobiology, Harvard University, Boston, MA, United States
| | - Debra E Bramblett
- Department of Medical Education, Paul L. Foster School of Medicine-TTUHSC, El Paso, TX, United States
| | - Janis Lem
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, United States
| | - David L Simons
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Samuel M Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
31
|
Li H, Richardson WD. Evolution of the CNS myelin gene regulatory program. Brain Res 2015; 1641:111-121. [PMID: 26474911 DOI: 10.1016/j.brainres.2015.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
32
|
Transcription factor PRDM8 is required for rod bipolar and type 2 OFF-cone bipolar cell survival and amacrine subtype identity. Proc Natl Acad Sci U S A 2015; 112:E3010-9. [PMID: 26023183 DOI: 10.1073/pnas.1505870112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Retinal bipolar (BP) cells mediate the earliest steps in image processing in the visual system, but the genetic pathways that regulate their development and function are incompletely known. We identified PRDI-BF1 and RIZ homology domain containing 8 (PRDM8) as a highly conserved transcription factor that is abundantly expressed in mouse retina. During development and in maturity, PRDM8 is expressed strongly in BP cells and a fraction of amacrine and ganglion cells. To determine whether Prdm8 is essential to BP cell development or physiology, we targeted the gene in mice. Prdm8(EGFP/EGFP) mice showed nonprogressive b-wave deficits on electroretinograms, consistent with compromised BP cell function or circuitry resembling the incomplete form of human congenital stationary night blindness (CSNB). BP cell specification was normal in Prdm8(EGFP/EGFP) retina as determined by VSX2(+) cell numbers and retinal morphology at postnatal day 6. BP subtype differentiation was impaired, however, as indicated by absent or diminished expression of BP subtype-specific markers, including the putative PRDM8 regulatory target PKCα (Prkca) and its protein. By adulthood, rod bipolar (RB) and type 2 OFF-cone bipolar (CB) cells were nearly absent from Prdm8-null mice. Although no change was detected in total amacrine cell (AC) numbers, increased PRKCA(+) and cholinergic ACs and decreased GABAergic ACs were seen, suggesting an alteration in amacrine subtype identity. These findings establish that PRDM8 is required for RB and type 2 OFF-CB cell survival and amacrine subtype identity, and they present PRDM8 as a candidate gene for human CSNB.
Collapse
|
33
|
Iida A, Iwagawa T, Baba Y, Satoh S, Mochizuki Y, Nakauchi H, Furukawa T, Koseki H, Murakami A, Watanabe S. Roles of histone H3K27 trimethylase Ezh2 in retinal proliferation and differentiation. Dev Neurobiol 2015; 75:947-60. [PMID: 25556712 DOI: 10.1002/dneu.22261] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/06/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
The histone modification H3K27me3 regulates transcription negatively, and Jmjd3 and Ezh2 demethylate and methylate H3K27me3 and H3K27, respectively. We demonstrated previously that Jmjd3 plays pivotal roles in the differentiation of subsets of bipolar (BP) cells by regulating H3K27me3 levels at the Bhlhb4 and Vsx1 loci, both of which are transcription factors essential for the maturation of BP cell subsets. In this study, we examined the role of Ezh2 in retinal development using retina-specific Ezh2 conditional knockout mice (Ezh2-CKO). The eyes of the Ezh2-CKO mice were microphthalemic, and the proliferation of retinal cells was diminished postnatally in Ezh2-CKO. Differentiation of all examined retinal subsets was observed with higher proportion of BP cell subsets, which was determined by immunostaining using specific retinal markers. The onsets of Müller glia and rod photoreceptor differentiation were accelerated. The expression of Bhlhb4 was increased in postnatal retinas, which was accompanied by the loss of H3K27me3 modifications at these genetic loci. Decreased expression of proneural genes in postnatal stage was observed. As reported previously in other Ezh2-KO tissues, increased expression of Arf/Ink4a was observed in the Ezh2-CKO retinas. The ectopic expression of Arf or Ink4a in the retina suppressed proliferation and increased apoptosis. In addition, earlier onset of Müller glia differentiation was observed in Ink4a-expressing cells. These results support an important role for histone H3K27me3 modification in regulating the proliferation and maturation of certain subsets of interneurons in the retina.
Collapse
Affiliation(s)
- Atsumi Iida
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo
| | - Toshiro Iwagawa
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo
| | - Yukihiro Baba
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo
| | - Shinya Satoh
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo
| | - Yujin Mochizuki
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo.,Department of Ophthalmology, Graduate School of Medicine, Juntendo University, Tokyo
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Allergy and Immunology, Kanagawa
| | - Akira Murakami
- Department of Ophthalmology, Graduate School of Medicine, Juntendo University, Tokyo
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo
| |
Collapse
|
34
|
Ribic A, Liu X, Crair MC, Biederer T. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. J Comp Neurol 2014; 522:900-20. [PMID: 23982969 DOI: 10.1002/cne.23452] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 11/11/2022]
Abstract
Adhesive interactions in the retina instruct the developmental specification of inner retinal layers. However, potential roles of adhesion in the development and function of photoreceptor synapses remain incompletely understood. This contrasts with our understanding of synapse development in the CNS, which can be guided by select adhesion molecules such as the Synaptic Cell Adhesion Molecule 1 (SynCAM 1/CADM1/nectin-like 2 protein). This immunoglobulin superfamily protein modulates the development and plasticity of classical excitatory synapses. We show here by immunoelectron microscopy and immunoblotting that SynCAM 1 is expressed on mouse rod photoreceptors and their terminals in the outer nuclear and plexiform layers in a developmentally regulated manner. Expression of SynCAM 1 on rods is low in early postnatal stages (P3-P7) but increases after eye opening (P14). In support of functional roles in the photoreceptors, electroretinogram recordings demonstrate impaired responses to light stimulation in SynCAM 1 knockout (KO) mice. In addition, the structural integrity of synapses in the OPL requires SynCAM 1. Quantitative ultrastructural analysis of SynCAM 1 KO retina measured fewer fully assembled, triadic rod ribbon synapses. Furthermore, rod synapse ribbons are shortened in KO mice, and protein levels of Ribeye, a major structural component of ribbons, are reduced in SynCAM 1 KO retina. Together, our results implicate SynCAM 1 in the synaptic organization of the rod visual pathway and provide evidence for novel roles of synaptic adhesion in the structural and functional integrity of ribbon synapses.
Collapse
Affiliation(s)
- Adema Ribic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520-8024
| | | | | | | |
Collapse
|
35
|
A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina. Dev Cell 2014; 30:513-27. [PMID: 25155555 PMCID: PMC4304698 DOI: 10.1016/j.devcel.2014.07.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/16/2014] [Accepted: 07/21/2014] [Indexed: 12/12/2022]
Abstract
Gene regulatory networks (GRNs) regulate critical events during development. In complex tissues, such as the mammalian central nervous system (CNS), networks likely provide the complex regulatory interactions needed to direct the specification of the many CNS cell types. Here, we dissect a GRN that regulates a binary fate decision between two siblings in the murine retina, the rod photoreceptor and bipolar interneuron. The GRN centers on Blimp1, one of the transcription factors (TFs) that regulates the rod versus bipolar cell fate decision. We identified a cis-regulatory module (CRM), B108, that mimics Blimp1 expression. Deletion of genomic B108 by CRISPR/Cas9 in vivo using electroporation abolished the function of Blimp1. Otx2 and RORβ were found to regulate Blimp1 expression via B108, and Blimp1 and Otx2 were shown to form a negative feedback loop that regulates the level of Otx2, which regulates the production of the correct ratio of rods and bipolar cells.
Collapse
|
36
|
Tse DY, Chung I, Wu SM. Possible roles of glutamate transporter EAAT5 in mouse cone depolarizing bipolar cell light responses. Vision Res 2014; 103:63-74. [PMID: 24972005 DOI: 10.1016/j.visres.2014.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/11/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
A remarkable feature of neuronal glutamate transporters (EAATs) is their dual functions of classical carriers and ligand-gated chloride (Cl(-)) channels. Cl(-) conductance is rapidly activated by glutamate in subtype EAAT5, which mediates light responses in depolarizing bipolar cells (DBC) in retinae of lower vertebrates. In this study, we examine whether EAAT5 also mediates the DBC light response in mouse. We took advantage of an infrared illuminated micro-injection system, and studied the effects of the EAAT blocker (TBOA) and a glutamate receptor agonist (LAP4) on the mouse electroretinogram (ERG) b-wave responses. Our results showed that TBOA and LAP4 shared similar temporal patterns of inhibition: both inhibited the ERG b-wave shortly after injection and recovered with similar time courses. TBOA inhibited the b-wave completely at mesopic light intensity with an IC50 value about 1 log unit higher than that of LAP4. The inhibitory effects of TBOA and LAP4 were found to be additive in the photopic range. Furthermore, TBOA alone inhibited the b-wave in the cone operative range in knockout mice lacking DBCRs at a low concentration that did not alter synaptic glutamate clearance activity. It also produced a stronger inhibition than that of LAP4 on the cone-driven b-wave measured with a double flash method in wildtype mice. These electrophysiological data suggest a significant role for EAAT5 in mediating cone-driven DBC light responses. Our immunohistochemistry data indicated the presence of postsynaptic EAAT5 on some DBCCs and some DBCRs, providing an anatomical basis for EAAT5's role in DBC light responses.
Collapse
Affiliation(s)
- Dennis Y Tse
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Inyoung Chung
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; Department of Ophthalmology, Gyeongsang National University, Jinju, Republic of Korea
| | - Samuel M Wu
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
37
|
Histone demethylase Jmjd3 is required for the development of subsets of retinal bipolar cells. Proc Natl Acad Sci U S A 2014; 111:3751-6. [PMID: 24572572 DOI: 10.1073/pnas.1311480111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) is an important gene repression mechanism. H3K27me2/3-specific demethylase, Jmjd3, was expressed in the inner nuclear layer during late retinal development. In contrast, H3K27 methyltransferase, Ezh2, was highly expressed in the embryonic retina but its expression decreased rapidly after birth. Jmjd3 loss of function in the developing retina resulted in failed differentiation of PKC-positive bipolar cell subsets (rod-ON-BP) and reduced transcription factor Bhlhb4 expression, which is critical for the differentiation of rod-ON-BP cells. Overexpression of Bhlhb4, but not of other BP cell-related genes, such as transcription factors Neurod and Chx10, in Jmjd3-knockdown retina rescued loss of PKC-positive BP cells. Populations of other retinal cell subsets were not significantly affected. In addition, proliferation activity and apoptotic cell number during retinal development were not affected by the loss of Jmjd3. Levels of histone H3 trimethyl Lys27 (H3K27me3) in the Bhlhb4 locus were lower in Islet-1-positive BP cells and amacrine cells than in the Islet-1-negative cell fraction. The Islet-1-negative cell fraction consisted mainly of photoreceptors, suggestive of lineage-specific demethylation of H3K27me3 in the Bhlhb4 locus. We propose that lineage-specific H3K27me3 demethylation of critical gene loci by spatiotemporal-specific Jmjd3 expression is required for appropriate maturation of retinal cells.
Collapse
|
38
|
Abstract
The b-wave is a major component of the electroretinogram that reflects the activity of depolarizing bipolar cells (DBCs). The b-wave is used diagnostically to identify patients with defects in DBC signaling or in transmission from photoreceptors to DBCs. In mouse models, an abnormal b-wave has been used to demonstrate a critical role of a particular protein in the release of glutamate from photoreceptor terminals, in establishing the structure of the photoreceptor-to-DBC synapse, in DBC signal transduction, and also in DBC development, survival, or metabolic support. The purpose of this review is to summarize these models and how they have advanced our understanding of outer retinal function.
Collapse
|
39
|
Expression of LIM-homeodomain transcription factors in the developing and mature mouse retina. Gene Expr Patterns 2013; 14:1-8. [PMID: 24333658 DOI: 10.1016/j.gep.2013.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 01/08/2023]
Abstract
LIM-homeodomain (LIM-HD) transcription factors have been extensively studied for their role in the development of the central nervous system. Their function is key to several developmental events like cell proliferation, differentiation and subtype specification. However, their roles in retinal neurogenesis remain largely unknown. Here we report a detailed expression study of LIM-HD transcription factors LHX9 and LHX2, LHX3 and LHX4, and LHX6 in the developing and mature mouse retina using immunohistochemistry and in situ hybridization techniques. We show that LHX9 is expressed during the early stages of development in the retinal ganglion cell layer and the inner nuclear layer. We also show that LHX9 is expressed in a subset of amacrine cells in the adult retina. LHX2 is known to be expressed in retinal progenitor cells during development and in Müller glial cells and a subset of amacrine cells in the adult retina. We found that the LHX2 subset of amacrine cells is not cholinergic and that a very few of LHX2 amacrine cells express calretinin. LHX3 and LHX4 are expressed in a subset of bipolar cells in the adult retina. LHX6 is expressed in cells in the ganglion cell layer and the neuroblast layer starting at embryonic stage 13.5 (E13.5) and continues to be expressed in cells in the ganglion cell layer and inner nuclear layer, postnatally, suggesting its likely expression in amacrine cells or a subset thereof. Taken together, our comprehensive assay of expression patterns of LIM-HD transcription factors during mouse retinal development will help further studies elucidating their biological functions in the differentiation of retinal cell subtypes.
Collapse
|
40
|
Laguna A, Barallobre MJ, Marchena MÁ, Mateus C, Ramírez E, Martínez-Cue C, Delabar JM, Castelo-Branco M, de la Villa P, Arbonés ML. Triplication of DYRK1A causes retinal structural and functional alterations in Down syndrome. Hum Mol Genet 2013; 22:2775-84. [PMID: 23512985 DOI: 10.1093/hmg/ddt125] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Down syndrome (DS) results from the triplication of approximately 300 human chromosome 21 (Hsa21) genes and affects almost all body organs. Children with DS have defects in visual processing that may have a negative impact on their daily life and cognitive development. However, there is little known about the genes and pathogenesis underlying these defects. Here, we show morphometric in vivo data indicating that the neural retina is thicker in DS individuals than in the normal population. A similar thickening specifically affecting the inner part of the retina was also observed in a trisomic model of DS, the Ts65Dn mouse. Increased retinal size and cellularity in this model correlated with abnormal retinal function and resulted from an impaired caspase-9-mediated apoptosis during development. Moreover, we show that mice bearing only one additional copy of Dyrk1a have the same retinal phenotype as Ts65Dn mice and normalization of Dyrk1a gene copy number in Ts65Dn mice completely rescues both, morphological and functional phenotypes. Thus, triplication of Dyrk1a is necessary and sufficient to cause the retinal phenotype described in the trisomic model. Our data demonstrate for the first time the implication of DYRK1A overexpression in a developmental alteration of the central nervous system associated with DS, thereby providing insights into the aetiology of neurosensorial dysfunction in a complex disease.
Collapse
Affiliation(s)
- Ariadna Laguna
- Department of Developmental Biology, Institut de Biologia Molecular de Barcelona IBMB-CSIC, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xiang M. Intrinsic control of mammalian retinogenesis. Cell Mol Life Sci 2012; 70:2519-32. [PMID: 23064704 DOI: 10.1007/s00018-012-1183-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 01/18/2023]
Abstract
The generation of appropriate and diverse neuronal and glial types and subtypes during development constitutes the critical first step toward assembling functional neural circuits. During mammalian retinogenesis, all seven neuronal and glial cell types present in the adult retina are specified from multipotent progenitors by the combined action of various intrinsic and extrinsic factors. Tremendous progress has been made over the past two decades in uncovering the complex molecular mechanisms that control retinal cell diversification. Molecular genetic studies coupled with bioinformatic approaches have identified numerous transcription factors and cofactors as major intrinsic regulators leading to the establishment of progenitor multipotency and eventual differentiation of various retinal cell types and subtypes. More recently, non-coding RNAs have emerged as another class of intrinsic factors involved in generating retinal cell diversity. These intrinsic regulatory factors are found to act in different developmental processes to establish progenitor multipotency, define progenitor competence, determine cell fates, and/or specify cell types and subtypes.
Collapse
Affiliation(s)
- Mengqing Xiang
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
42
|
Nfonsam LE, Cano C, Mudge J, Schilkey FD, Curtiss J. Analysis of the transcriptomes downstream of Eyeless and the Hedgehog, Decapentaplegic and Notch signaling pathways in Drosophila melanogaster. PLoS One 2012; 7:e44583. [PMID: 22952997 PMCID: PMC3432130 DOI: 10.1371/journal.pone.0044583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 08/09/2012] [Indexed: 01/22/2023] Open
Abstract
Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans.
Collapse
Affiliation(s)
- Landry E. Nfonsam
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Carlos Cano
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Jennifer Curtiss
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
43
|
Yu CT, Tang K, Suh JM, Jiang R, Tsai SY, Tsai MJ. COUP-TFII is essential for metanephric mesenchyme formation and kidney precursor cell survival. Development 2012; 139:2330-9. [PMID: 22669823 DOI: 10.1242/dev.076299] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of the metanephric kidney in mammals requires complex reciprocal tissue interactions between the ureteric epithelium and the mesenchyme. It is believed that Gdnf, produced in the metanephric mesenchyme, activates Ret signaling in the Wolffian duct to initiate the formation of the metanephros. However, the molecular mechanism for induction of Gdnf in the metanephric mesenchyme is not completely defined. Previous studies demonstrated that during the early stages of kidney development, loss of Osr1, Eya1, Pax2 or Wt1 gene function in the metanephric mesenchyme compromises the formation of the kidney. Moreover, it has been shown that the Hox11-Eya1-Pax2 complex activates the expression of Six2 and Gdnf in the metanephric mesenchyme to drive nephrogenesis. Here, we demonstrate that the orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII, also known as Nr2f2) is required for the specification of the metanephric mesenchyme. Deletion of COUP-TFII at E7.5 results in improper differentiation of the metanephric mesenchyme and absence of essential developmental regulators, such as Eya1, Six2, Pax2 and Gdnf. Importantly, we show that COUP-TFII directly regulates the expression of both Eya1 and Wt1 in the metanephric mesenchyme. Our findings reveal, for the first time, that COUP-TFII plays a central role in the specification of metanephric fate and in the maintenance of metanephric mesenchyme proliferation and survival by acting as a crucial regulator of Eya1 and Wt1 expression.
Collapse
Affiliation(s)
- Cheng-Tai Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
44
|
Bhlhb5 and Prdm8 form a repressor complex involved in neuronal circuit assembly. Neuron 2012; 73:292-303. [PMID: 22284184 DOI: 10.1016/j.neuron.2011.09.035] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2011] [Indexed: 01/21/2023]
Abstract
Although transcription factors that repress gene expression play critical roles in nervous system development, their mechanism of action remains to be understood. Here, we report that the Olig-related transcription factor Bhlhb5 (also known as Bhlhe22) forms a repressor complex with the PR/SET domain protein, Prdm8. We find that Bhlhb5 binds to sequence-specific DNA elements and then recruits Prdm8, which mediates the repression of target genes. This interaction is critical for repressor function since mice lacking either Bhlhb5 or Prdm8 have strikingly similar cellular and behavioral phenotypes, including axonal mistargeting by neurons of the dorsal telencephalon and abnormal itch-like behavior. We provide evidence that Cadherin-11 functions as target of the Prdm8/Bhlhb5 repressor complex that must be repressed for proper neural circuit formation to occur. These findings suggest that Prdm8 is an obligate partner of Bhlhb5, forming a repressor complex that directs neural circuit assembly in part through the precise regulation of Cadherin-11.
Collapse
|
45
|
Oyallon J, Apitz H, Miguel-Aliaga I, Timofeev K, Ferreira L, Salecker I. Regulation of locomotion and motoneuron trajectory selection and targeting by the Drosophila homolog of Olig family transcription factors. Dev Biol 2012; 369:261-76. [PMID: 22796650 PMCID: PMC3464432 DOI: 10.1016/j.ydbio.2012.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/12/2023]
Abstract
During the development of locomotion circuits it is essential that motoneurons with distinct subtype identities select the correct trajectories and target muscles. In vertebrates, the generation of motoneurons and myelinating glia depends on Olig2, one of the five Olig family bHLH transcription factors. We investigated the so far unknown function of the single Drosophila homolog Oli. Combining behavioral and genetic approaches, we demonstrate that oli is not required for gliogenesis, but plays pivotal roles in regulating larval and adult locomotion, and axon pathfinding and targeting of embryonic motoneurons. In the embryonic nervous system, Oli is primarily expressed in postmitotic progeny, and in particular, in distinct ventral motoneuron subtypes. oli mediates axonal trajectory selection of these motoneurons within the ventral nerve cord and targeting to specific muscles. Genetic interaction assays suggest that oli acts as part of a conserved transcription factor ensemble including Lim3, Islet and Hb9. Moreover, oli is expressed in postembryonic leg-innervating motoneuron lineages and required in glutamatergic neurons for walking. Finally, over-expression of vertebrate Olig2 partially rescues the walking defects of oli-deficient flies. Thus, our findings reveal a remarkably conserved role of Drosophila Oli and vertebrate family members in regulating motoneuron development, while the steps that require their function differ in detail.
Collapse
Affiliation(s)
- Justine Oyallon
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | | | |
Collapse
|
46
|
Zaghloul NA, Yan B, Moody SA. Step-wise specification of retinal stem cells during normal embryogenesis. Biol Cell 2012; 97:321-37. [PMID: 15836431 DOI: 10.1042/bc20040521] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The specification of embryonic cells to produce the retina begins at early embryonic stages as a multi-step process that gradually restricts fate potentials. First, a subset of embryonic cells becomes competent to form retina by their lack of expression of endo-mesoderm-specifying genes. From these cells, a more restricted subset is biased to form retina by virtue of their close proximity to sources of bone morphogenetic protein antagonists during neural induction. During gastrulation, the definitive RSCs (retinal stem cells) are specified as the eye field by interactions with underlying mesoderm and the expression of a network of retina-specifying genes. As the eye field is transformed into the optic vesicle and optic cup, a heterogeneous population of RPCs (retinal progenitor cells) forms to give rise to the different domains of the retina: the optic stalk, retinal pigmented epithelium and neural retina. Further diversity of RPCs appears to occur under the influences of cell-cell interactions, cytokines and combinations of regulatory genes, leading to the differentiation of a multitude of different retinal cell types. This review examines what is known about each sequential step in retinal specification during normal vertebrate development, and how that knowledge will be important to understand how RSCs might be manipulated for regenerative therapies to treat retinal diseases.
Collapse
Affiliation(s)
- Norann A Zaghloul
- Department of Anatomy and Cell Biology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA
| | | | | |
Collapse
|
47
|
Abstract
Although retinal bipolar cells represent a morphologically well defined population of retinal interneurons, very little is known about the developmental mechanisms that regulate their processing. Furthermore, the identity of specific bipolar cell types that function in distinct visual circuits remains poorly understood. Here, we show that the homeobox gene Vsx1 is expressed in Type 7 ON bipolar cells. In the absence of Vsx1, Type 7 bipolar cells exhibit proper morphological specification but show defects in terminal gene expression. Vsx1 is required for the repression of bipolar cell-specific markers, including Calcium-binding protein 5 and Chx10. This contrasts its genetic requirement as an activator of gene expression in OFF bipolar cells. To assess possible ON signaling defects in Vsx1-null mice, we recorded specifically from ON-OFF directionally selective ganglion cells (DSGCs), which cofasciculate with Type 7 bipolar cell terminals. Vsx1-null ON-OFF DSGCs received more sustained excitatory synaptic input, possibly due to Type 7 bipolar cell defects. Interestingly, in Vsx1-null mice, the directionally selective circuit is functional but compromised. Together, these findings indicate that Vsx1 regulates terminal gene expression in Type 7 bipolar cells and is necessary for proper ON visual signaling within a directionally selective circuit.
Collapse
|
48
|
Pang JJ, Gao F, Wu SM. Physiological characterization and functional heterogeneity of narrow-field mammalian amacrine cells. J Physiol 2011; 590:223-34. [PMID: 22083601 DOI: 10.1113/jphysiol.2011.222141] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Light-evoked responses of 106 morphologically identified narrow-field amacrine cells (ACs) were studied in dark-adapted mouse retinal slices. Forty-five cells exhibit AIIAC morphology, 55% of which show characteristic AIIAC physiological properties (AIIAC1s) and the remaining 45% display different physiological responses, suggesting that AIIACs are functionally heterogeneous. Moreover, we found that 42 cells exhibit morphology that resembles the seven morphological types of glycine-positive ACs (GlyAC1-7) reported in the rat retina, and for the first time assigned light response and function properties to these morphological types of glycinergic ACs in the mouse retina. In addition, five narrow-field ACs exhibited morphology resembling that of the GlyAC5 or GlyAC7 but with different physiological responses (GlyAC5(#) and GlyAC7(#)). Therefore, the eight morphological types of narrow-field ACs exhibit 12 classes of physiological responses. Furthermore, we found ACs whose physiological responses were indistinguishable from those of GlyAC3 or GlyAC4s but with different morphology (GlyAC3* or GlyAC4*). These observations suggest that although the majority of narrow-field mammalian ACs forms discrete functional groups that correlate with their morphology, a significant number of these cells with similar morphology do not display the same light responses, and some with similar light responses do not exhibit the same morphology.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
49
|
Zhang X, Serb JM, Greenlee MHW. Mouse retinal development: a dark horse model for systems biology research. Bioinform Biol Insights 2011; 5:99-113. [PMID: 21698072 PMCID: PMC3118678 DOI: 10.4137/bbi.s6930] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The developing retina is an excellent model to study cellular fate determination and differentiation in the context of a complex tissue. Over the last decade, many basic principles and key genes that underlie these processes have been experimentally identified. In this review, we construct network models to summarize known gene interactions that underlie determination and fundamentally affect differentiation of each retinal cell type. These networks can act as a scaffold to assemble subsequent discoveries. In addition, these summary networks provide a rational segue to systems biology approaches necessary to understand the many events leading to appropriate cellular determination and differentiation in the developing retina and other complex tissues.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | | | | |
Collapse
|
50
|
Cherry TJ, Wang S, Bormuth I, Schwab M, Olson J, Cepko CL. NeuroD factors regulate cell fate and neurite stratification in the developing retina. J Neurosci 2011; 31:7365-79. [PMID: 21593321 PMCID: PMC3135085 DOI: 10.1523/jneurosci.2555-10.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 02/14/2011] [Accepted: 03/07/2011] [Indexed: 01/10/2023] Open
Abstract
Members of the basic helix-loop-helix (bHLH) family of transcription factors have been shown to control critical aspects of development in many tissues. To identify bHLH genes that might regulate specific aspects of retinal cell development, we investigated the expression of bHLH genes in single, developing mouse retinal cells, with particular emphasis on the NeuroD family. Two of these factors, NeuroD2 and NeuroD6/NEX, had not been previously reported as expressed in the retina. A series of loss- and gain-of-function experiments was performed, which suggested that NeuroD genes have both similarities and differences in their activities. Notably, misexpression of NeuroD genes can direct amacrine cell processes to two to three specific sublaminae in the inner plexiform layer. This effect is specific to cell type and NeuroD gene, as the AII amacrine cell type is refractory to the effects of NeuroD1 and NeuroD6, but uniquely sensitive to the effect of NeuroD2 on neurite targeting. Additionally, NeuroD2 is endogenously expressed in AII amacrine cells, among others, and loss of NeuroD2 function results in a partial loss of AII amacrine cells. The effects of misexpressing NeuroD genes on retinal cell fate determination also suggested shared and divergent functions. Remarkably, NeuroD2 misexpression induced ganglion cell production even after the normal developmental window of ganglion cell genesis. Together, these data suggest that members of the NeuroD family are important for neuronal cell type identity and may be involved in several cell type-specific aspects of retinal development, including fate determination, differentiation, morphological development, and circuit formation.
Collapse
Affiliation(s)
- Timothy J. Cherry
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Sui Wang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Howard Hughes Medical Institute
| | - Ingo Bormuth
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Campus Mitte, D-10098 Berlin, Germany
| | - Markus Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - James Olson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, and
| | - Constance L. Cepko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Howard Hughes Medical Institute
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|