1
|
Hassan FU, Safdar M, Younus M, Arain MA. Regulation of energy metabolism by non-coding RNAs in livestock species: a review. J Comp Physiol B 2025; 195:1-12. [PMID: 39638953 DOI: 10.1007/s00360-024-01596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
The optimisation of livestock production relies on efficient energy metabolism. This review focused on elaborate regulatory processes governed by non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). It explores the complex energy metabolism processes in livestock, elucidating the functions of ncRNAs in the expression of genes and pathways. miRNAs have been identified as significant regulators of glycolysis and glucose metabolism, whereas lncRNAs are known to affect adipogenesis and mitochondrial activity. Moreover, circRNAs have a substantial influence on the regulation of energy. In addition, this is not only enriching non-coding RNA-mediated energy control but also sheds light on possible applications. It is derived from its ability to condense complex molecular systems, thereby offering crucial insights to researchers. Through a comprehensive analysis of the intricate relationship between ncRNAs and energy metabolism, the information of this review provides a valuable framework for the implementation of focused interventions that hold the potential to significantly enhance the efficiency of livestock production.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63000, Pakistan.
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63000, Pakistan
| | - Muhammad Younus
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63000, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Water and Marine Sciences, Lasbela University of Agriculture, Uthal, 90150, Balochistan, Pakistan
| |
Collapse
|
2
|
Alharbi KS. Non-coding RNAs as therapeutic targets in Parkinson's Disease: A focus on dopamine. Pathol Res Pract 2024; 263:155641. [PMID: 39395297 DOI: 10.1016/j.prp.2024.155641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Parkinson's Disease is a highly complicated neurological disorder, with a key manifestation of loss of dopaminergic neurons. Despite the plethora of medicines that alleviate the symptoms, there is an urgent need for new treatments acting on the fundamental pathology of PD. Non-coding RNAs are becoming increasingly important in gene regulation and various cellular processes and are found to play a role in PD pathophysiology. This review analyzes the cross-talk of distinct ncRNAs with dopamine signaling. We attempt to constrain the various ncRNA networks that can activate dopamine production. First, we describe the deregulation of miRNAs that target dopamine receptors and have been implicated in PD. Next, we turn to the functions of lncRNAs in dopaminergic neurons and the connections to susceptibility genes for PD. Finally, we will analyze the novel circRNAs, such as ciRS-7, which may modulate dopamine-linked processes and serve as possible PD biomarkers. In this review, we describe recent progress in dopamine neuron revival to treat PD and the therapeutic potential of ncRNA. This review critically evaluates the available data, and we predict the role of some ncRNAs, such as PTBP1, to become candidate treatment targets in the future. Thus, this review aims to summarize the molecular causes for the deficit in dopamine signaling in PD and point to novel ncRNAs-linked therapeutic directions in neuroscience.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, AL Qassim 51452, Saudi Arabia.
| |
Collapse
|
3
|
Lepolard C, Rombaut C, Jaouen F, Borges A, Caccomo-Garcia E, Popa N, Gascon E. Optimized miR-124 reporters uncover differences in miR-124 expression among neuronal populations in vitro. Front Neurosci 2023; 17:1257599. [PMID: 37920296 PMCID: PMC10619730 DOI: 10.3389/fnins.2023.1257599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction Although intensively studied in the last decades, how microRNAs (miRNAs) are expressed across different cell types in the brain remains largely unknown. Materials To address this issue, we sought to develop optimized fluorescence reporters that could be expressed in precise cellular subsets and used to accurately quantify miR contents in vivo. Results Focusing on miR-124, we tested different reporter designs whose efficiency was confirmed in different in vitro settings including cell lines and primary neuronal cultures from different brain structures. Unlike previous reporters, we provide experimental evidence that our optimized designs can faithfully translate miR levels in vitro. Discussion Tools developed here would enable assessing miRNA expression at the single cell resolution and are expected to significantly contribute to future miRNA research in vivo.
Collapse
Affiliation(s)
- Catherine Lepolard
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Cynthia Rombaut
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Florence Jaouen
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
- Neurobiotools Facility (Neurovir), Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Ana Borges
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Elodie Caccomo-Garcia
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Natalia Popa
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Eduardo Gascon
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| |
Collapse
|
4
|
Tsujimura K, Shiohama T, Takahashi E. microRNA Biology on Brain Development and Neuroimaging Approach. Brain Sci 2022; 12:1366. [PMID: 36291300 PMCID: PMC9599180 DOI: 10.3390/brainsci12101366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Proper brain development requires the precise coordination and orchestration of various molecular and cellular processes and dysregulation of these processes can lead to neurological diseases. In the past decades, post-transcriptional regulation of gene expression has been shown to contribute to various aspects of brain development and function in the central nervous system. MicroRNAs (miRNAs), short non-coding RNAs, are emerging as crucial players in post-transcriptional gene regulation in a variety of tissues, such as the nervous system. In recent years, miRNAs have been implicated in multiple aspects of brain development, including neurogenesis, migration, axon and dendrite formation, and synaptogenesis. Moreover, altered expression and dysregulation of miRNAs have been linked to neurodevelopmental and psychiatric disorders. Magnetic resonance imaging (MRI) is a powerful imaging technology to obtain high-quality, detailed structural and functional information from the brains of human and animal models in a non-invasive manner. Because the spatial expression patterns of miRNAs in the brain, unlike those of DNA and RNA, remain largely unknown, a whole-brain imaging approach using MRI may be useful in revealing biological and pathological information about the brain affected by miRNAs. In this review, we highlight recent advancements in the research of miRNA-mediated modulation of neuronal processes that are important for brain development and their involvement in disease pathogenesis. Also, we overview each MRI technique, and its technological considerations, and discuss the applications of MRI techniques in miRNA research. This review aims to link miRNA biological study with MRI analytical technology and deepen our understanding of how miRNAs impact brain development and pathology of neurological diseases.
Collapse
Affiliation(s)
- Keita Tsujimura
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya 4648602, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 4648602, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba 2608677, Japan
| | - Emi Takahashi
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
5
|
Jauhari A, Singh T, Yadav S. Neurodevelopmental Disorders and Neurotoxicity: MicroRNA in Focus. J Chem Neuroanat 2022; 120:102072. [DOI: 10.1016/j.jchemneu.2022.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
6
|
Kakebeen AD, Niswander L. Micronutrient imbalance and common phenotypes in neural tube defects. Genesis 2021; 59:e23455. [PMID: 34665506 PMCID: PMC8599664 DOI: 10.1002/dvg.23455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
Neural tube defects (NTDs) are among the most common birth defects, with a prevalence of close to 19 per 10,000 births worldwide. The etiology of NTDs is complex involving the interplay of genetic and environmental factors. Since nutrient deficiency is a risk factor and dietary changes are the major preventative measure to reduce the risk of NTDs, a more detailed understanding of how common micronutrient imbalances contribute to NTDs is crucial. While folic acid has been the most discussed environmental factor due to the success that population-wide fortification has had on prevention of NTDs, folic acid supplementation does not prevent all NTDs. The imbalance of several other micronutrients has been implicated as risks for NTDs by epidemiological studies and in vivo studies in animal models. In this review, we highlight recent literature deciphering the multifactorial mechanisms underlying NTDs with an emphasis on mouse and human data. Specifically, we focus on advances in our understanding of how too much or too little retinoic acid, zinc, and iron alter gene expression and cellular processes contributing to the pathobiology of NTDs. Synthesis of the discussed literature reveals common cellular phenotypes found in embryos with NTDs resulting from several micronutrient imbalances. The goal is to combine knowledge of these common cellular phenotypes with mechanisms underlying micronutrient imbalances to provide insights into possible new targets for preventative measures against NTDs.
Collapse
Affiliation(s)
- Anneke Dixie Kakebeen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lee Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
7
|
Banerjee AK, Mal C. Underpinning miRNA-miRNA co-functional interaction patterns in the metabolism of Oryza sativa by genome-scale network analysis. Heliyon 2020; 6:e05496. [PMID: 33241156 PMCID: PMC7672285 DOI: 10.1016/j.heliyon.2020.e05496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miRNA) is a class of non-coding small RNAs, which post-transcriptionally regulate a large number of genes and are now known to be important regulators in a wide variety of biological processes including metabolism. Thus, for better understanding these complex biological networks, and to derive their significance and inter-dependency, a systems biology approach enables us to explore and draw vital insights into these molecular network architectures. In this study, we aimed to understand the significance of synergistic miRNA-miRNA interactions in rice by constructing and analysing metabolic networks. The construction of the network involves target gene prediction of experimentally verified miRNAs of rice and then appending associated metabolic pathways to the network. A genome-scale miRNA-miRNA co-functional network (MFSN) is constructed based on co-regulatory interactions among the miRNAs and common target genes by applying transformational procedures. The analysis of the extracted MFSN modules identifies co-regulated target genes that are associated with corresponding interconnected metabolic pathways such as VALDEG-PWY (L-valine degradation I pathway was found to be targeted by multiple miRNA families, such as osa-miR812, osa-miR818, osa-miR821, and osa-miR5799 families while another pathway that was found to be associated with multiple miRNA families was PWY-6952 (glycerophosphodiester degradation pathway), PWY-6952 was found to be targeted by osa-miR812, osa-miR11344 and osa-miR5801 families. Such extensive study will help in systematically elucidating the regulatory networks in metabolism of rice, which in turn can be utilised to devise strategies for crop improvement and novel cultivar development.
Collapse
Affiliation(s)
- Ayushman Kumar Banerjee
- Amity Institute of Biotechnology, Amity University Kolkata, Major Arterial Road (South-East), AA II, Newtown, Kolkata, West Bengal, 700135, India
| | - Chittabrata Mal
- Amity Institute of Biotechnology, Amity University Kolkata, Major Arterial Road (South-East), AA II, Newtown, Kolkata, West Bengal, 700135, India
| |
Collapse
|
8
|
De Felice B, Montanino C, Oliva M, Bonavita S, Di Onofrio V, Coppola C. MicroRNA Expression Signature in Mild Cognitive Impairment Due to Alzheimer's Disease. Mol Neurobiol 2020; 57:4408-4416. [PMID: 32737762 PMCID: PMC7515963 DOI: 10.1007/s12035-020-02029-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Mild cognitive impairment (MCI) defines an intermediate state between normal ageing and dementia, including Alzheimer’s disease (AD). Identification of MCI subjects who will progress to AD (MCI-AD) is today of crucial importance, especially in light of the possible development of new pathogenic therapies. Several evidences suggest that miRNAs could play relevant roles in the biogenesis of AD, and the links between selected miRNAs and specific pathogenic aspects have been partly explored. In this study, we analysed the composition of microRNA transcriptome in blood, serum and cerebrospinal fluid samples from MCI-AD subjects, from an enriched small RNA library. Real-time qPCR from MCI-AD and AD patients and normal controls was performed to profile miRNA expression. In particular, four microRNAs, hsa-mir-5588-5p, hsa-mir-3658, hsa-mir-567 and hsa-mir-3908, among all selected microRNAs, are dysregulated. Hsa-mir-567 was found to be differentially expressed in cerebrospinal fluid samples, blood and serum from MCI-AD patients, showing the highest fold change and statistical significance. Target prediction analysis have been performed to evaluate mRNAs whose expression was controlled by miRNAs found to be dysregulated here, showing that hsa-mir-567 target genes are functionally active in neuronal cells. We propose that miRNA profiles found in samples from MCI-AD patients might be relevant for a better understanding of AD-related cognitive decline and could lead to set up suitable and potential biomarkers for MCI-AD progression to AD.
Collapse
Affiliation(s)
- Bruna De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy.
| | - Concetta Montanino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Mariano Oliva
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Valeria Di Onofrio
- Department of Sciences and Technologies, University of Naples "Parthenope", Naples, Italy
| | - Cinzia Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
9
|
Xiao ZH, Wang L, Gan P, He J, Yan BC, Ding LD. Dynamic Changes in miR-126 Expression in the Hippocampus and Penumbra Following Experimental Transient Global and Focal Cerebral Ischemia-Reperfusion. Neurochem Res 2020; 45:1107-1119. [PMID: 32067150 DOI: 10.1007/s11064-020-02986-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
miR-126 which is considered one of the most important miRNAs for maintaining vascular integrity, plays an important role in neuroprotection after cerebral ischemia-reperfusion (I-R). Moreover, vascular endothelial growth factor A (VEGFA), sprouty-related EVH1 domain-containing protein 1 (SPRED1), and Raf-1 are also involved in physiological processes of vascular endothelial cells (ECs). This study investigated how miR-126 changes with reperfusion time in different brain tissues after global cerebral ischemia and focal cerebral ischemia and examined the underlying mechanism miR-126 involving VEGFA, SPRED1, and Raf-1 after I-R. The results indicated decreases in the levels of miR-126-3p and miR-126-5p expression in mice and gerbils after I-R, consistent with the results after oxygen and glucose deprivation and reperfusion (OGD/R) in PC12 cells. Glial cells were activated as neuronal damage gradually increased after I-R. Inhibition of miR-126-3p exacerbated the OGD/R-induced cell death and reduced cell viability. After miR-126-3p inhibition, the levels of SPRED1 and VEGFA expression were increased, and p-Raf-1 expression was decreased after OGD/R. Moreover, based on the intervention of miR-126-3p inhibition, we found that the expression of p-Raf-1 was significantly increased after the intervention of siSPRED1, while it was not statistically significant after intervention of siVEGFA. The reduction of miR-126 expression after global and focal cerebral ischemia exacerbated neuronal death, which was closely related to increasing the SPRED1 activation and inhibiting the Raf-1 expression.
Collapse
Affiliation(s)
- Zhang Hong Xiao
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China
| | - Li Wang
- Department of Neurology, Affiliated Hospital, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Ping Gan
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China
| | - Jing He
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China
| | - Bing Chun Yan
- Department of Neurology, Affiliated Hospital, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| | - Li Dong Ding
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China.
| |
Collapse
|
10
|
Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E, Neri LM. miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells 2020; 9:cells9010220. [PMID: 31952362 PMCID: PMC7016744 DOI: 10.3390/cells9010220] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level, inducing the degradation of the target mRNA or translational repression. MiRNAs are involved in the control of a multiplicity of biological processes, and their absence or altered expression has been associated with a variety of human diseases, including cancer. Recently, extracellular miRNAs (ECmiRNAs) have been described as mediators of intercellular communication in multiple contexts, including tumor microenvironment. Cancer cells cooperate with stromal cells and elements of the extracellular matrix (ECM) to establish a comfortable niche to grow, to evade the immune system, and to expand. Within the tumor microenvironment, cells release ECmiRNAs and other factors in order to influence and hijack the physiological processes of surrounding cells, fostering tumor progression. Here, we discuss the role of miRNAs in the pathogenesis of multicomplex diseases, such as Alzheimer’s disease, obesity, and cancer, focusing on the contribution of both intracellular miRNAs, and of released ECmiRNAs in the establishment and development of cancer niche. We also review growing evidence suggesting the use of miRNAs as novel targets or potential tools for therapeutic applications.
Collapse
Affiliation(s)
- Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
- LTTA—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455940
| |
Collapse
|
11
|
Weldon Furr J, Morales-Scheihing D, Manwani B, Lee J, McCullough LD. Cerebral Amyloid Angiopathy, Alzheimer's Disease and MicroRNA: miRNA as Diagnostic Biomarkers and Potential Therapeutic Targets. Neuromolecular Med 2019; 21:369-390. [PMID: 31586276 DOI: 10.1007/s12017-019-08568-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The protein molecules must fold into unique conformations to acquire functional activity. Misfolding, aggregation, and deposition of proteins in diverse organs, the so-called "protein misfolding disorders (PMDs)", represent the conformational diseases with highly ordered assemblies, including oligomers and fibrils that are linked to neurodegeneration in brain illnesses such as cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Recent studies have revealed several aspects of brain pathology in CAA and AD, but both the classification and underlying mechanisms need to be further refined. MicroRNAs (miRNAs) are critical regulators of gene expression at the post-transcriptional level. Increasing evidence with the advent of RNA sequencing technology suggests possible links between miRNAs and these neurodegenerative disorders. To provide insights on the small RNA-mediated regulatory circuitry and the translational significance of miRNAs in PMDs, this review will discuss the characteristics and mechanisms of the diseases and summarize circulating or tissue-resident miRNAs associated with AD and CAA.
Collapse
Affiliation(s)
- J Weldon Furr
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Diego Morales-Scheihing
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Bharti Manwani
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Juneyoung Lee
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Louise D McCullough
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Choi C, Kim T, Chang KT, Min K. DSCR1-mediated TET1 splicing regulates miR-124 expression to control adult hippocampal neurogenesis. EMBO J 2019; 38:e101293. [PMID: 31304631 PMCID: PMC6627232 DOI: 10.15252/embj.2018101293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/09/2022] Open
Abstract
Whether epigenetic factors such as DNA methylation and microRNAs interact to control adult hippocampal neurogenesis is not fully understood. Here, we show that Down syndrome critical region 1 (DSCR1) protein plays a key role in adult hippocampal neurogenesis by modulating two epigenetic factors: TET1 and miR-124. We find that DSCR1 mutant mice have impaired adult hippocampal neurogenesis. DSCR1 binds to TET1 introns to regulate splicing of TET1, thereby modulating TET1 level. Furthermore, TET1 controls the demethylation of the miRNA-124 promoter to modulate miR-124 expression. Correcting the level of TET1 in DSCR1 knockout mice is sufficient to prevent defective adult neurogenesis. Importantly, restoring DSCR1 level in a Down syndrome mouse model effectively rescued adult neurogenesis and learning and memory deficits. Our study reveals that DSCR1 plays a critical upstream role in epigenetic regulation of adult neurogenesis and provides insights into potential therapeutic strategy for treating cognitive defects in Down syndrome.
Collapse
Affiliation(s)
- Chiyeol Choi
- Department of Biological SciencesSchool of Life SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- National Creative Research Initiative Center for ProteostasisUlsan National Institute of Science and TechnologyUlsanKorea
| | - Taehoon Kim
- Department of Biological SciencesSchool of Life SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- National Creative Research Initiative Center for ProteostasisUlsan National Institute of Science and TechnologyUlsanKorea
| | - Karen T Chang
- Zilkha Neurogenetic InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Kyung‐Tai Min
- Department of Biological SciencesSchool of Life SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- National Creative Research Initiative Center for ProteostasisUlsan National Institute of Science and TechnologyUlsanKorea
| |
Collapse
|
13
|
Zhou XM, Liu J, Wang Y, Zhang SL, Zhao X, Xu X, Pei J, Zhang MH. Retracted: microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats. J Cell Biochem 2019; 120:6908-6919. [PMID: 29377229 DOI: 10.1002/jcb.26704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 02/02/2023]
Abstract
Our study aims to elucidate the mechanisms how microRNA-129-5p (miR-129-5p) involved in the neuroprotective effect of dexmedetomidine (DEX) on hypoxic-ischemic brain injury (HIBI) by targeting the type III procollagen gene (COL3A1) through the Wnt/β-catenin signaling pathway in neonatal rats. A total of 120 rats were obtained, among which 15 rats were selected as sham group and rest rats as model, DEX, DEX + negative control (DEX + NC), DEX + miR-129-5p mimics, DEX + miR-129-5p inhibitors, DEX + XAV-939, and DEX + miR-129-5p inhibitors + XAV-939 groups. A dual-luciferase reporter assay was performed for the target relationship between miR-129-5p and COL3A1. Weight rate and water content of cerebral hemisphere were detected. Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to detect miR-129-5p expression and expressions of COL3A1, E-cadherin, T-cell factor (TCF)- 4, and β-catenin. The DEX, DEX + miR-129-5p mimics, DEX + XAV-939 groups had increased weight rate of the cerebral hemisphere, but decreased water content of left cerebral hemisphere, levels of COL3A1, β-catenin, TCF-4, and E-cadherin in the hippocampus compared with the model and DEX + miR-129-5p inhibitors groups. COL3A1 was verified as the target gene of the miR-129-5p. Compared with the DEX + NC and DEX + miR-129-5p inhibitors + XAV-939 groups, the DEX + XAV-939 and DEX + miR-129-5p mimics groups had elevated weight rate of the cerebral hemisphere, but reduced water content of left cerebral hemisphere, levels of COL3A1, β-catenin, TCF-4, and E-cadherin in the hippocampus. Our findings demonstrate that miR-129-5p improves the neuroprotective role of DEX in HIBI by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats.
Collapse
Affiliation(s)
- Xiu-Min Zhou
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Jie Liu
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Ying Wang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Shu-Li Zhang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Xin Zhao
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Man-He Zhang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
14
|
Ru Q, Li WL, Xiong Q, Chen L, Tian X, Li CY. Voltage-gated potassium channel blocker 4-aminopyridine induces glioma cell apoptosis by reducing expression of microRNA-10b-5p. Mol Biol Cell 2018. [PMID: 29514931 PMCID: PMC5921578 DOI: 10.1091/mbc.e17-02-0120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Accumulating evidence has demonstrated that voltage-gated potassium channels (Kv channels) were associated with regulating cell proliferation and apoptosis in tumor cells. Our previous study proved that the Kv channel blocker 4-aminopyridine (4-AP) could inhibit cell proliferation and induce apoptosis in glioma. However, the precise mechanisms were not clear yet. MicroRNAs (miRNAs) are small noncoding RNAs that act as key mediators in the progression of tumor, so the aim of this study was to investigate the role of miRNAs in the apoptosis-promoting effect of 4-AP in glioma cells. Using a microRNA array, we found that 4-AP altered the miRNA expression in glioma cells, and the down-regulation of miR-10b-5p induced by 4-AP was verified by real-time PCR. Transfection of miR-10b-5p mimic significantly inhibited 4-AP-induced caspases activation and apoptosis. Moreover, we verified that apoptosis-related molecule Apaf-1 was the direct target of miR-10b-5p. Furthermore, miR-10b-5p mimic significantly inhibited 4-AP-induced up-regulation of Apaf-1 and its downstream apoptosis-related proteins, such as cleaved caspase-3. In conclusion, Kv channel blocker 4-AP may exert its anti-tumor effect by down-regulating the expression of miR-10b-5p and then raised expression of Apaf-1 and its downstream apoptosis-related proteins. Current data provide evidence that miRNAs play important roles in Kv channels-mediated cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Wei-Ling Li
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Xiang Tian
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Chao-Ying Li
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| |
Collapse
|
15
|
Ankasha SJ, Shafiee MN, Wahab NA, Ali RAR, Mokhtar NM. Post-transcriptional regulation of microRNAs in cancer: From prediction to validation. Oncol Rev 2018; 12:344. [PMID: 29989022 PMCID: PMC6037043 DOI: 10.4081/oncol.2018.344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/01/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miRNA) is a small non-coding RNA with an established function to regulate genes at the post-transcriptional level leading to suppression or degradation of its messenger RNA expression (mRNA). Its dysregulation plays a vital role in a variety of biological and pathological processes including cancer. A lot of algorithms have been established to predict the target sites of miRNA, but experimentally identifying and validating its target region is still lacking. Guidance in experimental procedures is really needed to find genuine miRNA targets. Therefore, in this review, we provide an outline on the workflow in predicting and validating the targeted sites of miRNA using several methods as a guideline for the scientists. The final outcome of this type of experiment is essential to explore the major impact of miRNAmRNA interaction involved in the biological processes and to assist miRNA-based drug development in the future.
Collapse
Affiliation(s)
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University Kebangsaan
| | | | - Raja Affendi Raja Ali
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, University Kebangsaan, Malaysia
| | | |
Collapse
|
16
|
Abstract
Epigenetics is a growing field of knowledge that is changing our understanding of pathologic processes. For many cerebellar disorders, recent discoveries of epigenetic mechanisms help us to understand their pathophysiology. In this chapter, a short explanation of each epigenetic mechanism (including methylation, histone modification, and miRNA) is followed by references to those cerebellar disorders in which relevant epigenetic advances have been made. The importance of normal timing and distribution of methylation during neurodevelopment is explained. Abnormal methylation and altered gene expression in the developing cerebellum have been related to neurodevelopmental disorders such as autism, Rett syndrome, and fragile X syndrome. DNA packaging by histones is another important epigenetic mechanism in cerebellar functioning. Current knowledge of histone abnormalities in cerebellar diseases such as Friedreich ataxia and spinocerebellar ataxias is reviewed, including implications for new therapeutic approaches to these degenerative diseases. Finally, micro RNAs, the third mechanism to modulate DNA expression, and their role in normal cerebellar development and disease are described. Understanding how genetic and epigenetic mechanisms interact not only in normal cerebellar development but also in disease is a great challenge. However, such understanding will lead to promising new therapeutic possibilities as is already occurring in other areas of medicine.
Collapse
Affiliation(s)
- Mercedes Serrano
- Pediatric Neurology Department and Pediatric Institute for Genetic Medicine and Rare Diseases, Hospital Sant Joan de Déu; and Centre for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
17
|
Wang SS, Mu RH, Li CF, Dong SQ, Geng D, Liu Q, Yi LT. microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:417-425. [PMID: 28764913 DOI: 10.1016/j.pnpbp.2017.07.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/15/2017] [Accepted: 07/28/2017] [Indexed: 11/18/2022]
Abstract
Dysregulation of microRNA (miRNA) has been shown to be involved in early observations of depression. MicroRNA-124-3p (miR-124) is the most abundant microRNA in the brain. Previous studies have shown that miR-124 plays a major role in depression. Here we showed that miR-124 directly targeted glucocorticoid receptor (GR) in HEK 293 cells. In addition, inhibition of miR-124 by its antagomir (2nmol/every two days) could reverse the decrease of sucrose preference and the increase of immobility time in mice exposed to chronic corticosterone (CORT, 40mg/kg) injection. Moreover, these effects on behavioral improvement were coupled to the activation of brain-derived neurotrophic factor (BDNF), TrkB, ERK, and CREB, as well as the induction of synaptogenesis and neuronal proliferation. Altogether, our study suggests that miR-124 can be served as a biomarker for depression and a novel target for drug development, and demonstrates that inhibition of miR-124 may be a strategy for treating depression by activating BDNF-TrkB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Shuang-Shuang Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Rong-Hao Mu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian Province, PR China
| | - Shu-Qi Dong
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Di Geng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
18
|
Retinoic acid-induced upregulation of miR-219 promotes the differentiation of embryonic stem cells into neural cells. Cell Death Dis 2017; 8:e2953. [PMID: 28749472 PMCID: PMC5550877 DOI: 10.1038/cddis.2017.336] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/21/2017] [Accepted: 06/14/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) regulate critical cell processes, such as apoptosis, proliferation, and development. However, the role of miRNAs in embryonic stem cell (ESC) neural differentiation induced by retinoic acid (RA) and factors that govern neural directional differentiation remain poorly understood. In this study, we demonstrated that miR-219 is sufficient in promoting mouse ESCs to undergo neural differentiation. We discovered that Foxj3 and Zbtb18, two target genes of miR-219, are not able to determine the process of RA-induced differentiation, however they prevent ESCs from differentiating into neural cells. We identified four downstream genes, namely, Olig1, Zic5, Erbb2, and Olig2, which are essential to the gene interaction networks for neural differentiation. These data explain the mechanism of RA-induced neural differentiation of mESCs on the basis of miRNAs and support the crucial role of miR-219 in neurodevelopment.
Collapse
|
19
|
Ma Q, Dasgupta C, Li Y, Huang L, Zhang L. MicroRNA-210 Suppresses Junction Proteins and Disrupts Blood-Brain Barrier Integrity in Neonatal Rat Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2017; 18:ijms18071356. [PMID: 28672801 PMCID: PMC5535849 DOI: 10.3390/ijms18071356] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022] Open
Abstract
Cerebral edema, primarily caused by disruption of the blood-brain barrier (BBB), is one of the serious complications associated with brain injury in neonatal hypoxic-ischemic encephalopathy (HIE). Our recent study demonstrated that the hypoxic-ischemic (HI) treatment significantly increased microRNA-210 (miR-210) in the neonatal rat brain and inhibition of miR-210 provided neuroprotection in neonatal HI brain injury. The present study aims to determine the role of miR-210 in the regulation of BBB integrity in the developing brain. miR-210 mimic was administered via intracerebroventricular injection (i.c.v.) into the brain of rat pups. Forty-eight hours after the injection, a modified Rice-Vannucci model was conducted to produce HI brain injury. Post-assays included cerebral edema analysis, western blotting, and immunofluorescence staining for serum immunoglobulin G (IgG) leakage. The results showed that miR-210 mimic exacerbated cerebral edema and IgG leakage into the brain parenchyma. In contrast, inhibition of miR-210 with its complementary locked nucleic acid oligonucleotides (miR-210-LNA) significantly reduced cerebral edema and IgG leakage. These findings suggest that miR-210 negatively regulates BBB integrity i n the neonatal brain. Mechanistically, the seed sequences of miR-210 were identified complementary to the 3' untranslated region (3' UTR) of the mRNA transcripts of tight junction protein occludin and adherens junction protein β-catenin, indicating downstream targets of miR-210. This was further validated by in vivo data showing that miR-210 mimic significantly reduced the expression of these junction proteins in rat pup brains. Of importance, miR-210-LNA preserved the expression of junction proteins occludin and β-catenin from neonatal HI insult. Altogether, the present study reveals a novel mechanism of miR-210 in impairing BBB integrity that contributes to cerebral edema formation after neonatal HI insult, and provides new insights in miR-210-LNA mediated neuroprotection in neonatal HI brain injury.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Neonatal Biology, Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Chiranjib Dasgupta
- Center for Neonatal Biology, Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Yong Li
- Center for Neonatal Biology, Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Lei Huang
- Center for Neonatal Biology, Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Lubo Zhang
- Center for Neonatal Biology, Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
20
|
Abidin SZ, Leong JW, Mahmoudi M, Nordin N, Abdullah S, Cheah PS, Ling KH. In Silico Prediction and Validation of Gfap as an miR-3099 Target in Mouse Brain. Neurosci Bull 2017; 33:373-382. [PMID: 28597341 DOI: 10.1007/s12264-017-0143-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/17/2017] [Indexed: 01/24/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that play crucial roles in the regulation of gene expression and protein synthesis during brain development. MiR-3099 is highly expressed throughout embryogenesis, especially in the developing central nervous system. Moreover, miR-3099 is also expressed at a higher level in differentiating neurons in vitro, suggesting that it is a potential regulator during neuronal cell development. This study aimed to predict the target genes of miR-3099 via in-silico analysis using four independent prediction algorithms (miRDB, miRanda, TargetScan, and DIANA-micro-T-CDS) with emphasis on target genes related to brain development and function. Based on the analysis, a total of 3,174 miR-3099 target genes were predicted. Those predicted by at least three algorithms (324 genes) were subjected to DAVID bioinformatics analysis to understand their overall functional themes and representation. The analysis revealed that nearly 70% of the target genes were expressed in the nervous system and a significant proportion were associated with transcriptional regulation and protein ubiquitination mechanisms. Comparison of in situ hybridization (ISH) expression patterns of miR-3099 in both published and in-house-generated ISH sections with the ISH sections of target genes from the Allen Brain Atlas identified 7 target genes (Dnmt3a, Gabpa, Gfap, Itga4, Lxn, Smad7, and Tbx18) having expression patterns complementary to miR-3099 in the developing and adult mouse brain samples. Of these, we validated Gfap as a direct downstream target of miR-3099 using the luciferase reporter gene system. In conclusion, we report the successful prediction and validation of Gfap as an miR-3099 target gene using a combination of bioinformatics resources with enrichment of annotations based on functional ontologies and a spatio-temporal expression dataset.
Collapse
Affiliation(s)
- Shahidee Zainal Abidin
- NeuroBiology and Genetics Group, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Medical Genetics Unit, Department of Biomedical Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jia-Wen Leong
- NeuroBiology and Genetics Group, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Marzieh Mahmoudi
- NeuroBiology and Genetics Group, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Norshariza Nordin
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Medical Genetics Unit, Department of Biomedical Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Syahril Abdullah
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Medical Genetics Unit, Department of Biomedical Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- NeuroBiology and Genetics Group, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- NeuroBiology and Genetics Group, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Medical Genetics Unit, Department of Biomedical Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
21
|
Li SH, Chen L, Pang XM, Su SY, Zhou X, Chen CY, Huang LG, Li JP, Liu JL. Decreased miR-146a expression in acute ischemic stroke directly targets the Fbxl10 mRNA and is involved in modulating apoptosis. Neurochem Int 2017; 107:156-167. [PMID: 28202285 DOI: 10.1016/j.neuint.2017.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/14/2017] [Accepted: 01/20/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND miR-146a, a strong pro-apoptotic factor in some pathophysiological processes, is reported to be involved in ischemic stroke (IS), though its role remains unclear. Fbxl10 is an active anti-apoptotic factor and a predicted target of miR-146a. We hypothesized that dysregulation of miR-146a contributes to ischemic injury by targeting Fbxl10. METHODS Circulating miRNAs were detected by miRNA microarray and qRT-PCR. miR-146a targets were predicted using bioinformatics and confirmed with a dual luciferase reporter assay. We used an in vitro ischemic model of oxygen-glucose deprivation and reperfusion (OGD/R) to mimic cerebral ischemia/reperfusion (I/R) conditions. Expression of miR-146a, Fbxl10 and Bcl2l2 mRNAs, and Fbxl10 and Bcl2l2 proteins was verified by qRT-PCR and Western blotting. The effects of miR-146a on neuronal cell apoptosis were evaluated by flow cytometry. RESULTS A significant reduction in miR-146a expression was observed in acute ischemic stroke (AIS). A dual-luciferase reporter assay showed that Fbxl10, but not Bcl2l2, is a target of miR-146a. Transfection with miR-146a mimics promoted apoptosis in SK-N-SH cells and significantly reduced expression of Fbxl10. Conversely, miR-146a inhibition attenuated OGD/R-induced neuronal cell death and significantly up-regulated Fbxl10 expression. CONCLUSIONS miR-146a expression was significantly down-regulated in AIS, and Fbxl10 was identified as a target of miR-146a. Moreover, up-regulation of Fbxl10, a miR-146a target, likely protects neurons from ischemic death.
Collapse
Affiliation(s)
- Sheng-Hua Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China.
| | - Lan Chen
- Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Xiao-Min Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Sheng-You Su
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Chun-Yong Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Li-Gang Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jing-Pin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jing-Li Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China.
| |
Collapse
|
22
|
MiR-218 Induces Neuronal Differentiation of ASCs in a Temporally Sequential Manner with Fibroblast Growth Factor by Regulation of the Wnt Signaling Pathway. Sci Rep 2017; 7:39427. [PMID: 28045049 PMCID: PMC5206743 DOI: 10.1038/srep39427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
Differentiation of neural lineages from mesenchymal stem cells has raised the hope of generating functional cells as seed cells for nerve tissue engineering. As important gene regulators, microRNAs (miRNAs) have been speculated to play a vital role in accelerating stem cell differentiation and repairing neuron damage. However, miRNA roles in directing differentiation of stem cells in current protocols are underexplored and the mechanisms of miRNAs as regulators of neuronal differentiation remain ambiguous. In this study, we have determined that miR-218 serves as crucial constituent regulator in neuronal differentiation of adipose stem cells (ASCs) through Wnt signaling pathway based on comprehensive annotation of miRNA sequencing data. Moreover, we have also discovered that miR-218 and Fibroblast Growth Factor-2 (FGF2) modulate neuronal differentiation in a sequential manner. These findings provide additional understanding of the mechanisms regulating stem cell neuronal differentiation as well as a new method for neural lineage differentiation of ASCs.
Collapse
|
23
|
Roy A, Bhattacharyya M. Identifying microRNAs related to Alzheimer's disease from differential methylation signatures. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
The roles of non-coding RNAs in Parkinson's disease. Mol Biol Rep 2016; 43:1193-1204. [PMID: 27492082 DOI: 10.1007/s11033-016-4054-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is considered as a high prevalence neurodegenerative disorders worldwide. Pathologically, the demise of dopamine-producing cells, in large part due to an abnormal accumulation of the α-synuclein in the substantia nigra, is one of the main causes of the disease. Up until now, many de novo investigations have been conducted to disclose the mechanisms underlying in PD. Among them, impacts of non-coding RNAs (ncRNAs) on the pathogenesis and/or progression of PD need to be highlighted. microRNAs (miRNAs) and long ncRNAs (lncRNAs) are more noteworthy in this context. miRNAs are small ncRNAs (with 18-25 nucleotide in length) that control the expression of multiple genes at post-transcriptional level, while lncRNAs have longer size (over 200 nucleotides) and are involved in some key biological processes through various mechanisms. Involvement of miRNAs has been well documented in the development of PD, particularly gene expression. Hence, in this current review, we will discuss the impacts of miRNAs in regulation of the expression of PD-related genes and the role of lncRNAs in the pathogenesis of PD.
Collapse
|
25
|
Moncini S, Lunghi M, Valmadre A, Grasso M, Del Vescovo V, Riva P, Denti MA, Venturin M. The miR-15/107 Family of microRNA Genes Regulates CDK5R1/p35 with Implications for Alzheimer's Disease Pathogenesis. Mol Neurobiol 2016; 54:4329-4342. [PMID: 27343180 DOI: 10.1007/s12035-016-0002-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) encodes p35, the main activatory subunit of cyclin-dependent kinase 5 (CDK5). The p35/CDK5 active complex plays a fundamental role in brain development and functioning, but its deregulated activity has also been implicated in various neurodegenerative disorders, including Alzheimer's disease (AD). CDK5R1 displays a large and highly evolutionarily conserved 3'-untranslated region (3'-UTR), a fact that has suggested a role for this region in the post-transcriptional control of CDK5R1 expression. Our group has recently demonstrated that two miRNAs, miR-103 and miR-107, regulate CDK5R1 expression and affect the levels of p35. MiR-103 and miR-107 belong to the miR-15/107 family, a group of evolutionarily conserved miRNAs highly expressed in human cerebral cortex. In this work, we tested the hypothesis that other members of this group of miRNAs, in addition to miR-103 and miR-107, were able to modulate CDK5R1 expression. We provide evidence that several miRNAs belonging to the miR-15/107 family regulate p35 levels. BACE1 expression levels were also found to be modulated by different members of this family. Furthermore, overexpression of these miRNAs led to reduced APP phosphorylation levels at the CDK5-specific Thr668 residue. We also show that miR-15/107 miRNAs display reduced expression levels in hippocampus and temporal cortex, but not in cerebellum, of AD brains. Moreover, increased CDK5R1 mRNA levels were observed in AD hippocampus tissues. Our results suggest that the downregulation of the miR-15/107 family might have a role in the pathogenesis of AD by increasing the levels of CDK5R1/p35 and consequently enhancing CDK5 activity.
Collapse
Affiliation(s)
- Silvia Moncini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy
| | - Marta Lunghi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy
| | - Alice Valmadre
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy
| | - Margherita Grasso
- Centre for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, 38123, Povo, (TN), Italy
| | - Valerio Del Vescovo
- Centre for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, 38123, Povo, (TN), Italy
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy
| | - Michela Alessandra Denti
- Centre for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, 38123, Povo, (TN), Italy.,Istituto di Neuroscienze, CNR, Viale Giuseppe Colombo 3, 35121, Padova, Italy
| | - Marco Venturin
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy.
| |
Collapse
|
26
|
Targeting MicroRNAs Involved in the BDNF Signaling Impairment in Neurodegenerative Diseases. Neuromolecular Med 2016; 18:540-550. [DOI: 10.1007/s12017-016-8407-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
|
27
|
Tapocik JD, Ceniccola K, Mayo CL, Schwandt ML, Solomon M, Wang BD, Luu TV, Olender J, Harrigan T, Maynard TM, Elmer GI, Lee NH. MicroRNAs Are Involved in the Development of Morphine-Induced Analgesic Tolerance and Regulate Functionally Relevant Changes in Serpini1. Front Mol Neurosci 2016; 9:20. [PMID: 27047334 PMCID: PMC4805586 DOI: 10.3389/fnmol.2016.00020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/29/2016] [Indexed: 12/23/2022] Open
Abstract
Long-term opioid treatment results in reduced therapeutic efficacy and in turn leads to an increase in the dose required to produce equivalent pain relief and alleviate break-through or insurmountable pain. Altered gene expression is a likely means for inducing long-term neuroadaptations responsible for tolerance. Studies conducted by our laboratory (Tapocik et al., 2009) revealed a network of gene expression changes occurring in canonical pathways involved in neuroplasticity, and uncovered miRNA processing as a potential mechanism. In particular, the mRNA coding the protein responsible for processing miRNAs, Dicer1, was positively correlated with the development of analgesic tolerance. The purpose of the present study was to test the hypothesis that miRNAs play a significant role in the development of analgesic tolerance as measured by thermal nociception. Dicer1 knockdown, miRNA profiling, bioinformatics, and confirmation of high value targets were used to test the proposition. Regionally targeted Dicer1 knockdown (via shRNA) had the anticipated consequence of eliminating the development of tolerance in C57BL/6J (B6) mice, thus supporting the involvement of miRNAs in the development of tolerance. MiRNA expression profiling identified a core set of chronic morphine-regulated miRNAs (miR's 27a, 9, 483, 505, 146b, 202). Bioinformatics approaches were implemented to identify and prioritize their predicted target mRNAs. We focused our attention on miR27a and its predicted target serpin peptidase inhibitor clade I (Serpini1) mRNA, a transcript known to be intricately involved in dendritic spine density regulation in a manner consistent with chronic morphine's consequences and previously found to be correlated with the development of analgesic tolerance. In vitro reporter assay confirmed the targeting of the Serpini1 3'-untranslated region by miR27a. Interestingly miR27a was found to positively regulate Serpini1 mRNA and protein levels in multiple neuronal cell lines. Lastly, Serpini1 knockout mice developed analgesic tolerance at a slower rate than wild-type mice thus confirming a role for the protein in analgesic tolerance. Overall, these results provide evidence to support a specific role for miR27a and Serpini1 in the behavioral response to chronic opioid administration (COA) and suggest that miRNA expression and mRNA targeting may underlie the neuroadaptations that mediate tolerance to the analgesic effects of morphine.
Collapse
Affiliation(s)
- Jenica D. Tapocik
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Kristin Ceniccola
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Cheryl L. Mayo
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of MedicineBaltimore, MD, USA
| | - Melanie L. Schwandt
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Matthew Solomon
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Bi-Dar Wang
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Truong V. Luu
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Jacqueline Olender
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Thomas Harrigan
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Thomas M. Maynard
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Greg I. Elmer
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of MedicineBaltimore, MD, USA
| | - Norman H. Lee
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| |
Collapse
|
28
|
Ma Q, Dasgupta C, Li Y, Bajwa NM, Xiong F, Harding B, Hartman R, Zhang L. Inhibition of microRNA-210 provides neuroprotection in hypoxic-ischemic brain injury in neonatal rats. Neurobiol Dis 2016; 89:202-12. [PMID: 26875527 DOI: 10.1016/j.nbd.2016.02.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/12/2016] [Accepted: 02/09/2016] [Indexed: 11/24/2022] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is associated with high neonatal mortality and severe long-term neurologic morbidity. Yet the mechanisms of brain injury in infants with HIE remain largely elusive. The present study determined a novel mechanism of microRNA-210 (miR-210) in silencing endogenous neuroprotection and increasing hypoxic-ischemic brain injury in neonatal rats. The study further revealed a potential therapeutic effect of miR-210 inhibition using complementary locked nucleic acid oligonucleotides (miR-210-LNA) in 10-day-old neonatal rats in the Rice-Vannucci model. The underlying mechanisms were investigated with intracerebroventricular injection (i.c.v) of miR-210 mimic, miR-210-LNA, glucocorticoid receptor (GR) agonist and antagonist. Luciferase reporter gene assay was conducted for identification of miR-210 targeting GR 3'untranslated region. The results showed that the HI treatment significantly increased miR-210 levels in the brain, and miR-210 mimic significantly decreased GR protein abundance and exacerbated HI brain injury in the pups. MiR-210-LNA administration via i.c.v. 4h after the HI insult significantly decreased brain miR-210 levels, increased GR protein abundance, reduced HI-induced neuronal death and brain infarct size, and improved long-term neurological function recovery. Of importance, the intranasal delivery of miR-210-LNA 4h after the HI insult produced similar effects in decreasing HI-induced neonatal brain injury and improving neurological function later in life. Altogether, the present study provides evidence of a novel mechanism of miR-210 in a neonatal HI brain injury model, and suggests a potential therapeutic approach of miR-210 inhibition in the treatment of neonatal HIE.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yong Li
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nikita M Bajwa
- Department of Psychology, Loma Linda University, Loma Linda, CA, USA
| | - Fuxia Xiong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Benjamin Harding
- Department of Neonatology, Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Richard Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
29
|
Heyer MP, Kenny PJ. Corticostriatal microRNAs in addiction. Brain Res 2015; 1628:2-16. [DOI: 10.1016/j.brainres.2015.07.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/11/2015] [Accepted: 07/25/2015] [Indexed: 01/28/2023]
|
30
|
Gupta S, Verma S, Mantri S, Berman NE, Sandhir R. Targeting MicroRNAs in Prevention and Treatment of Neurodegenerative Disorders. Drug Dev Res 2015; 76:397-418. [PMID: 26359796 DOI: 10.1002/ddr.21277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preclinical Research microRNAs (miRNAs) are small noncoding RNAs (ncRNAs) that are key regulators of gene expression. They act on wide range of targets by binding to mRNA via imperfect complementarity at 3' UTR. Evidence suggests that miRNAs regulate many biological processes including neuronal development, differentiation, and disease. Altered expression of several miRNAs has been reported in many neurodegenerative disorders (NDDs). Many miRNAs are altered in these diseases, but miRNA 15, miRNA 21, and miRNA 146a have been shown to play critical role in many neurodegenerative conditions. As these miRNAs regulate many genes, miRNA targeted approaches would allow concurrently targeting of multiple effectors of pathways that regulate disease progression. In this review, we describe the role of miRNAs in various NDDs and their potential as therapeutic tools in prevention and treatment of neurological conditions.
Collapse
Affiliation(s)
- Smriti Gupta
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Savita Verma
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Shrikant Mantri
- Computational Biology Laboratory, National Agri-Food Biotechnology Institute, Mohali, Punjab, 160071, India
| | - Nancy E Berman
- Department of Anatomy & Cell Biology, Kansas University Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
31
|
Cao SE, Tian J, Chen S, Zhang X, Zhang Y. Role of miR-34c in ketamine-induced neurotoxicity in neonatal mice hippocampus. Cell Biol Int 2015; 39:164-8. [PMID: 25052764 DOI: 10.1002/cbin.10349] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/05/2014] [Indexed: 01/24/2023]
Abstract
Ketamine is a commonly used pediatric anesthetic, but it might affect development, or even induce neurotoxicity in the neonatal brain. We have used an in vivo neonatal mouse model to induce ketamine-related neurotoxicity in the hippocampus, and found that miR-34c, a microRNA associated with pathogenesis of Alzheimer's disease, was significantly upregulated during ketamine-induced hippocampal neurodegeneration. Functional assay of silencing miR-34c demonstrated that downregulation of miR-34c activated PKC-ERK pathway, upregulated anti-apoptotic protein BCL2, and ameliorated ketamine-induced apoptosis in the hippocampus. Cognitive examination with the Morris water maze test showed that ketamine-induced memory impairment was significantly improved by miR-34c downregulation. Thus, miR-34c is important in regulating ketamine-induced neurotoxicity in hippocampus.
Collapse
Affiliation(s)
- Shu-e Cao
- Department of Anesthesiology, The First Affiliated Hospital of XinXiang Medical College, WeiHui, HeNan Province, 453100, China
| | | | | | | | | |
Collapse
|
32
|
Ginsberg SD, Che S. Methods and compositions for amplification and detection of microRNAs (miRNAs) and noncoding RNAs (ncRNAs) using the signature sequence amplification method (SSAM). ACTA ACUST UNITED AC 2015; 8:2-9. [PMID: 25564022 DOI: 10.2174/2352092208666141001154206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/17/2022]
Abstract
The signature sequence amplification method (SSAM) described herein is an approach for amplifying noncoding RNA (ncRNA), microRNA (miRNA), and small polynucleotide sequences. A key point of the SSAM technology is the generation of signature sequences. The signature sequences include target sequences (miRNA, ncRNA, and/or any small polynucleotide sequence) flanked by two DNA fragments. Target sequences can be amplified through DNA synthesis, RNA synthesis, or the combination of DNA and RNA synthesis. The amplification of signature sequences provides an efficient and reproducible mechanism to determine the presence or absence of the target miRNAs/ncRNAs, to analyze the quantities of the miRNAs in biological samples, and for miRNA/ncRNA profiling.
Collapse
Affiliation(s)
| | - Shaoli Che
- Center for Dementia Research, Nathan Kline Institute, NYU Langone Medical Center, 140 Old Orangeburg Road, Orangeburg, NY 10962, 845-398-2170, USA.
| |
Collapse
|
33
|
Zhang J, Banerjee B. Role of MicroRNA in Visceral Pain. J Neurogastroenterol Motil 2015; 21:159-71. [PMID: 25843071 PMCID: PMC4398244 DOI: 10.5056/jnm15027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 12/30/2022] Open
Abstract
The long-lasting nociceptive transmission under various visceral pain conditions involves transcriptional and/or translational alteration in neurotransmitter and receptor expression as well as modification of neuronal function, morphology and synaptic connections. Although it is largely unknown how such changes in posttranscriptional expression induce visceral pain, recent evidence strongly suggests an important role for microRNAs (miRNAs, small non-coding RNAs) in the cellular plasticity underlying chronic visceral pain. MicroRNAs are small noncoding RNA endogenously produced in our body and act as a major regulator of gene expression by either through cleavage or translational repression of the target gene. This regulation is essential for the normal physiological function but when disturbed can result in pathological conditions. Usually one miRNA has multiple targets and target mRNAs are regulated in a combinatorial fashion by multiple miRNAs. In recent years, many studies have been performed to delineate the posttranscriptional regulatory role of miRNAs in different tissues under various nociceptive stimuli. In this review, we intend to discuss the recent development in miRNA research with special emphases on miRNAs and their targets responsible for long term sensitization in chronic pain conditions. In addition, we review miRNAs expression and function data for different animal pain models and also the recent progress in research on miRNA-based therapeutic targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jian Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin Milwaukee, WI , USA
| | - Banani Banerjee
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin Milwaukee, WI , USA
| |
Collapse
|
34
|
Huang F, Zhang L, Long Z, Chen Z, Hou X, Wang C, Peng H, Wang J, Li J, Duan R, Xia K, Chuang DM, Tang B, Jiang H. miR-25 alleviates polyQ-mediated cytotoxicity by silencing ATXN3. FEBS Lett 2014; 588:4791-8. [PMID: 25451224 PMCID: PMC6370487 DOI: 10.1016/j.febslet.2014.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/29/2014] [Accepted: 11/11/2014] [Indexed: 01/28/2023]
Abstract
MicroRNAs (miRNAs) have been reported to play significant roles in the pathogenesis of various polyQ diseases. This study aims to investigate the regulation of ATXN3 gene expression by miRNA. We found that miR-25 reduced both wild-type and polyQ-expanded mutant ataxin-3 protein levels by interacting with the 3'UTR of ATXN3 mRNA. miR-25 also increased cell viability, decreased early apoptosis, and downregulated the accumulation of mutant ataxin-3 protein aggregates in SCA3/MJD cells. These novel results shed light on the potential role of miR-25 in the pathogenesis of SCA3/MJD, and provide a possible therapeutic intervention for this disorder.
Collapse
Affiliation(s)
- Fengzhen Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology & Institute of Translational Medicine at University of South China, The First People's Hospital of Chenzhou, Chenzhou, PR China
| | - Li Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhe Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Chunrong Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jiada Li
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan 410078, PR China
| | - Ranhui Duan
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan 410078, PR China
| | - Kun Xia
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan 410078, PR China
| | - De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, PR China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
35
|
Qiu J, Zhou XY, Zhou XG, Li Y, Cheng R, Liu HY. MicroRNA-210 knockdown contributes to apoptosis caused by oxygen glucose deprivation in PC12 cells. Mol Med Rep 2014; 11:719-23. [PMID: 25323830 DOI: 10.3892/mmr.2014.2651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 08/08/2014] [Indexed: 11/06/2022] Open
Abstract
It was previously demonstrated that microRNA-210 (miR-210) exhibited neuroprotective effects in a murine model of hypoxic-ischemic encephalopathy via inhibition of apoptosis. The aim of the present study was to further elucidate the effect of miR-210 on apoptosis in PC12 cells following transfection with miR-210 inhibitors and exposure to oxygen glucose deprivation (OGD). The expression levels of miR-210 were identified using reverse transcription-quantitative polymerase chain reaction analysis. Apoptosis was investigated using Annexin V-fluorescein isothiocyanate assays. Apoptosis-related protein expression levels were studied with western blot analysis. The results showed that the expression levels of miR-210 were upregulated in PC12 cells following a 4-h exposure to OGD, relative to those in normoxic control cells. miR-210 knockdown increased cell apoptosis by inducing caspase activity and regulating the balance between Bcl-2 and Bax levels. The present study demonstrated that miR-210 knockdown induced cell apoptosis using an ex vivo model of ischemic hypoxia (IH). Knockdown of miR-210 represents a potential novel therapeutic approach to combat neonatal IH.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Newborn Infants, Nanjing Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Yu Zhou
- Department of Newborn Infants, Nanjing Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Guang Zhou
- Department of Newborn Infants, Nanjing Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yong Li
- Department of Newborn Infants, Nanjing Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Rui Cheng
- Department of Newborn Infants, Nanjing Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Hai-Ying Liu
- Department of Newborn Infants, Nanjing Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
36
|
Sun E, Shi Y. MicroRNAs: Small molecules with big roles in neurodevelopment and diseases. Exp Neurol 2014; 268:46-53. [PMID: 25128264 DOI: 10.1016/j.expneurol.2014.08.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that play important roles in the development and functions of the brain. Extensive studies have revealed critical roles for miRNAs in brain development and function. Dysregulation or altered expression of miRNAs is associated with abnormal brain development and pathogenesis of neurodevelopmental diseases. This review serves to highlight the versatile roles of these small RNA molecules in normal brain development and their association with neurodevelopmental disorders, in particular, two closely related neuropsychiatric disorders of neurodevelopmental origin, schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Emily Sun
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yanhong Shi
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
37
|
MicroRNA-103-1 selectively downregulates brain NCX1 and its inhibition by anti-miRNA ameliorates stroke damage and neurological deficits. Mol Ther 2014; 22:1829-38. [PMID: 24954474 DOI: 10.1038/mt.2014.113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022] Open
Abstract
Na(+)/Ca2+ exchanger (NCX) is a plasma membrane transporter that, by regulating Ca2+ and Na(+) homeostasis, contributes to brain stroke damage. The objectives of this study were to investigate whether there might be miRNAs in the brain able to regulate NCX1 expression and, thereafter, to set up a valid therapeutic strategy able to reduce stroke-induced brain damage by regulating NCX1 expression. Thus, we tested whether miR-103-1, a microRNA belonging to the miR-103/107 family that on the basis of sequence analysis might be a potential NCX1 regulator, could control NCX1 expression. The role of miR-103-1 was assessed in a rat model of transient cerebral ischemia by evaluating the effect of the correspondent antimiRNA on both brain infarct volume and neurological deficits. NCX1 expression was dramatically reduced when cortical neurons were exposed to miR-103-1. This alleged tight regulation of NCX1 by miR-103-1 was further corroborated by luciferase assay. Notably, antimiR-103-1 prevented NCX1 protein downregulation induced by the increase in miR-103-1 after brain ischemia, thereby reducing brain damage and neurological deficits. Overall, the identification of a microRNA able to selectively regulate NCX1 in the brain clarifies a new important molecular mechanism of NCX1 regulation in the brain and offers the opportunity to develop a new therapeutic strategy for stroke.
Collapse
|
38
|
Muslimov IA, Tuzhilin A, Tang TH, Wong RKS, Bianchi R, Tiedge H. Interactions of noncanonical motifs with hnRNP A2 promote activity-dependent RNA transport in neurons. ACTA ACUST UNITED AC 2014; 205:493-510. [PMID: 24841565 PMCID: PMC4033767 DOI: 10.1083/jcb.201310045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+-dependent RNA–protein interactions enable activity-inducible RNA transport in dendrites. A key determinant of neuronal functionality and plasticity is the targeted delivery of select ribonucleic acids (RNAs) to synaptodendritic sites of protein synthesis. In this paper, we ask how dendritic RNA transport can be regulated in a manner that is informed by the cell’s activity status. We describe a molecular mechanism in which inducible interactions of noncanonical RNA motif structures with targeting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 form the basis for activity-dependent dendritic RNA targeting. High-affinity interactions between hnRNP A2 and conditional GA-type RNA targeting motifs are critically dependent on elevated Ca2+ levels in a narrow concentration range. Dendritic transport of messenger RNAs that carry such GA motifs is inducible by influx of Ca2+ through voltage-dependent calcium channels upon β-adrenergic receptor activation. The combined data establish a functional correspondence between Ca2+-dependent RNA–protein interactions and activity-inducible RNA transport in dendrites. They also indicate a role of genomic retroposition in the phylogenetic development of RNA targeting competence.
Collapse
Affiliation(s)
- Ilham A Muslimov
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Aliya Tuzhilin
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Thean Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysi, 13200 Kepala Batas, Penang, Malaysia
| | - Robert K S Wong
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Riccardo Bianchi
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Henri Tiedge
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| |
Collapse
|
39
|
Amyloid precursor protein regulates neurogenesis by antagonizing miR-574-5p in the developing cerebral cortex. Nat Commun 2014; 5:3330. [PMID: 24584353 DOI: 10.1038/ncomms4330] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/27/2014] [Indexed: 01/18/2023] Open
Abstract
Amyloid precursor protein (APP) is a transmembrane glycoprotein proteolytically processed to release amyloid beta, a pathological hallmark of Alzheimer's disease. APP is expressed throughout the developing and mature brain; however, the primary function of this protein is unknown. We previously demonstrated that APP deficiency enhances neurogenesis, but the mechanisms underlying this process are not known. Here we show that APP regulates the expression of microRNAs in the cortex and in neural progenitors, specifically repressing miR-574-5p. We also show that overexpression of miR-574-5p promotes neurogenesis, but reduces the neural progenitor pool. In contrast, the reduced expression of miR-574-5p inhibits neurogenesis and stimulates proliferation in vitro and in utero. We further demonstrate that the inhibition of miR-574-5p in APP-knockout mice rescues the phenotypes associated with APP deficiency in neurogenesis. Taken together, these results reveal a mechanism in which APP regulates the neurogenesis through miRNA-mediated post-transcriptional regulation.
Collapse
|
40
|
Elramah S, Landry M, Favereaux A. MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms. Front Cell Neurosci 2014; 8:31. [PMID: 24574967 PMCID: PMC3920573 DOI: 10.3389/fncel.2014.00031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/22/2014] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are emerging as master regulators of gene expression in the nervous system where they contribute not only to brain development but also to neuronal network homeostasis and plasticity. Their function is the result of a cascade of events including miRNA biogenesis, target recognition, and translation inhibition. It has been suggested that miRNAs are major switches of the genome owing to their ability to regulate multiple genes at the same time. This regulation is essential for normal neuronal activity and, when affected, can lead to drastic pathological conditions. As an example, we illustrate how deregulation of miRNAs can affect neuronal plasticity leading to chronic pain. The origin of pain and its dual role as a key physiological function and a debilitating disease has been highly debated until now. The incidence of chronic pain is estimated to be 20-25% worldwide, thus making it a public health problem. Chronic pain can be considered as a form of maladaptive plasticity. Long-lasting modifications develop as a result of global changes in gene expression, and are thus likely to be controlled by miRNAs. Here, we review the literature on miRNAs and their targets responsible for maladaptive plasticity in chronic pain conditions. In addition, we conduct a retrospective analysis of miRNA expression data published for different pain models, taking into account recent progress in our understanding of the role of miRNAs in neuronal plasticity.
Collapse
Affiliation(s)
- Sara Elramah
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux Bordeaux, France ; Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique Bordeaux, France
| | - Marc Landry
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux Bordeaux, France ; Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique Bordeaux, France
| | - Alexandre Favereaux
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux Bordeaux, France ; Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique Bordeaux, France
| |
Collapse
|
41
|
Di Liegro CM, Schiera G, Di Liegro I. Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review). Int J Mol Med 2014; 33:747-62. [PMID: 24452120 PMCID: PMC3976132 DOI: 10.3892/ijmm.2014.1629] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control of mRNA trafficking and metabolism plays a critical role in the actualization and fine tuning of the genetic program of cells, both in development and in differentiated tissues. Cis-acting signals, responsible for post-transcriptional regulation, reside in the RNA message itself, usually in untranslated regions, 5′ or 3′ to the coding sequence, and are recognized by trans-acting factors: RNA-binding proteins (RBPs) and/or non-coding RNAs (ncRNAs). ncRNAs bind short mRNA sequences usually present in the 3′-untranslated (3′-UTR) region of their target messages. RBPs recognize specific nucleotide sequences and/or secondary/tertiary structures. Most RBPs assemble on mRNA at the moment of transcription and shepherd it to its destination, somehow determining its final fate. Regulation of mRNA localization and metabolism has a particularly important role in the nervous system where local translation of pre-localized mRNAs has been implicated in developing axon and dendrite pathfinding, and in synapse formation. Moreover, activity-dependent mRNA trafficking and local translation may underlie long-lasting changes in synaptic efficacy, responsible for learning and memory. This review focuses on the role of RBPs in neuronal development and plasticity, as well as possible connections between ncRNAs and RBPs.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, I-90127 Palermo, Italy
| |
Collapse
|
42
|
Tanase CP, Enciu AM, Mihai S, Neagu AI, Calenic B, Cruceru ML. Anti-cancer Therapies in High Grade Gliomas. CURR PROTEOMICS 2013; 10:246-260. [PMID: 24228024 PMCID: PMC3821381 DOI: 10.2174/1570164611310030007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/10/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022]
Abstract
High grade gliomas represent one of the most aggressive and treatment-resistant types of human cancer, with only 1–2 years median survival rate for patients with grade IV glioma. The treatment of glioblastoma is a considerable therapeutic challenge; combination therapy targeting multiple pathways is becoming a fast growing area of research. This review offers an up-to-date perspective of the literature about current molecular therapy targets in high grade glioma, that include angiogenic signals, tyrosine kinase receptors, nodal signaling proteins and cancer stem cells related approaches. Simultaneous identification of proteomic signatures could provide biomarker panels for diagnostic and personalized treatment of different subsets of glioblastoma. Personalized medicine is starting to gain importance in clinical care, already having recorded a series of successes in several types of cancer; nonetheless, in brain tumors it is still at an early stage.
Collapse
Affiliation(s)
- Cristiana Pistol Tanase
- Victor Babes National Institute of Pathology, Department of Biochemistry-Proteomics, no 99-101 Splaiul Inde-pendentei, 050096 sect 5 Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
43
|
Varela MA, Roberts TC, Wood MJA. Epigenetics and ncRNAs in brain function and disease: mechanisms and prospects for therapy. Neurotherapeutics 2013; 10:621-31. [PMID: 24068583 PMCID: PMC3805859 DOI: 10.1007/s13311-013-0212-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The most fundamental roles of non-coding RNAs (ncRNAs) and epigenetic mechanisms are the guidance of cellular differentiation in development and the regulation of gene expression in adult tissues. In brain, both ncRNAs and the various epigenetic gene regulatory mechanisms play a fundamental role in neurogenesis and normal neuronal function. Thus, epigenetic chromatin remodelling can render coding sites transcriptionally inactive by DNA methylation, histone modifications or antisense RNA interactions. On the other hand, microRNAs (miRNAs) are ncRNA molecules that can regulate the expression of hundreds of genes post-transcriptionally, typically recognising binding sites in the 3' untranslated region (UTR) of mRNA transcripts. Furthermore, there are a myriad of interactions in the interface of miRNAs and epigenetics. For example, epigenetic mechanisms can silence miRNA coding sites, and miRNAs can be the effectors of transcriptional gene silencing, targeting complementary promoters or silencing the expression of epigenetic modifier genes like MECP2 and EZH2 leading to global changes in the epigenome. Alterations in this regulatory machinery play a key role in the pathology of complex disorders including cancer and neurological diseases. For example, miRNA genes are frequently inactivated by epimutations in gliomas. Here we describe the interactions between epigenetic and ncRNA regulatory systems and discuss therapeutic potential, with an emphasis on tumors, cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel A. Varela
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Thomas C. Roberts
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- />Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Matthew J. A. Wood
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|
44
|
Tapocik JD, Luu TV, Mayo CL, Wang BD, Doyle E, Lee AD, Lee NH, Elmer GI. Neuroplasticity, axonal guidance and micro-RNA genes are associated with morphine self-administration behavior. Addict Biol 2013; 18:480-95. [PMID: 22804800 DOI: 10.1111/j.1369-1600.2012.00470.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuroadaptations in the ventral striatum (VS) and ventral midbrain (VMB) following chronic opioid administration are thought to contribute to the pathogenesis and persistence of opiate addiction. In order to identify candidate genes involved in these neuroadaptations, we utilized a behavior-genetics strategy designed to associate contingent intravenous drug self-administration with specific patterns of gene expression in inbred mice differentially predisposed to the rewarding effects of morphine. In a Yoked-control paradigm, C57BL/6J mice showed clear morphine-reinforced behavior, whereas DBA/2J mice did not. Moreover, the Yoked-control paradigm revealed the powerful consequences of self-administration versus passive administration at the level of gene expression. Morphine self-administration in the C57BL/6J mice uniquely up- or down-regulated 237 genes in the VS and 131 genes in the VMB. Interestingly, only a handful of the C57BL/6J self-administration genes (<3%) exhibited a similar expression pattern in the DBA/2J mice. Hence, specific sets of genes could be confidently assigned to regional effects of morphine in a contingent- and genotype-dependent manner. Bioinformatics analysis revealed that neuroplasticity, axonal guidance and micro-RNAs (miRNAs) were among the key themes associated with drug self-administration. Noteworthy were the primary miRNA genes H19 and micro-RNA containing gene (Mirg), processed, respectively, to mature miRNAs miR-675 and miR-154, because they are prime candidates to mediate network-like changes in responses to chronic drug administration. These miRNAs have postulated roles in dopaminergic neuron differentiation and mu-opioid receptor regulation. The strategic approach designed to focus on reinforcement-associated genes provides new insight into the role of neuroplasticity pathways and miRNAs in drug addiction.
Collapse
Affiliation(s)
| | - Truong V. Luu
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Cheryl L. Mayo
- Department of Psychiatry; Maryland Psychiatric Research Center; University of Maryland School of Medicine; Baltimore; MD; USA
| | - Bi-Dar Wang
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Erin Doyle
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Alec D. Lee
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Norman H. Lee
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Greg I. Elmer
- Department of Psychiatry; Maryland Psychiatric Research Center; University of Maryland School of Medicine; Baltimore; MD; USA
| |
Collapse
|
45
|
Sotelo JR, Canclini L, Kun A, Sotelo-Silveira JR, Xu L, Wallrabe H, Calliari A, Rosso G, Cal K, Mercer JA. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons. PLoS One 2013; 8:e61905. [PMID: 23626749 PMCID: PMC3633983 DOI: 10.1371/journal.pone.0061905] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/15/2013] [Indexed: 01/30/2023] Open
Abstract
To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration.
Collapse
Affiliation(s)
- José R. Sotelo
- Department of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- * E-mail: (JRS); (JAM)
| | - Lucía Canclini
- Department of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Alejandra Kun
- Department of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Biochemistry Section, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - José R. Sotelo-Silveira
- Department of Genetics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Cell Biology Department, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lei Xu
- McLaughlin Research Institute, Great Falls, Montana, United States of America
| | - Horst Wallrabe
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Aldo Calliari
- Biophysics Area, Department of Biochemistry, Molecular and Cell Biology, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Rosso
- Department of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Karina Cal
- Department of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - John A. Mercer
- McLaughlin Research Institute, Great Falls, Montana, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, India
- * E-mail: (JRS); (JAM)
| |
Collapse
|
46
|
Chen SM, Chen HC, Chen SJ, Huang CY, Chen PY, Wu TWE, Feng LY, Tsai HC, Lui TN, Hsueh C, Wei KC. MicroRNA-495 inhibits proliferation of glioblastoma multiforme cells by downregulating cyclin-dependent kinase 6. World J Surg Oncol 2013; 11:87. [PMID: 23594394 PMCID: PMC3655862 DOI: 10.1186/1477-7819-11-87] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 03/26/2013] [Indexed: 12/18/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most aggressive type of glioma and carries the poorest chances of survival. There is therefore an urgent need to understand the mechanisms of glioma tumorigenesis and develop or improve therapeutics. The aim of this study was to assess the possible prognostic value of cyclin-dependent kinase 6 (CDK6) and the effects of microRNA-495 (miR-495) manipulation on CDK6 expression and cell survival in glioma cells. Methods Analyses of clinical specimens from GBM patients were used. Expression of CDK6 was analyzed by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemistry. Expression of CDK6 was also analyzed after over-expression of miR-495 in T98 cells; both cell proliferation and RB phosphorylation were examined. Cell proliferation, cell cycle distribution, and RB phosphorylation were also examined after knockdown of CDK6 in U87-MG and T98 cells. Results Analyses of clinical specimens from GBM patients identified that CDK6 is significantly expressed in gliomas. CDK6 antigen expression was higher in tumor cores and margins than in adjacent normal brain tissues, and higher levels of CDK6 expression in the tumor margin correlated with decreased survival. Over-expression of miR-495 in T98 cells downregulated the expression of CDK6 and inhibited retinoblastoma phosphorylation, and knockdown of CDK6 in U87-MG and T98 cells by siRNAs resulted in cell cycle arrest at the G1/S transition and inhibition of cell proliferation. Conclusions This study revealed miR-495 is down-regulated in glioma tissues. Furthermore, miR-495 regulated CDK6 expression and involved in glioma cell growth inhibition, which indicated the possible role of miR-495 in tumor progression.
Collapse
Affiliation(s)
- Shu-Mei Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, No.259 Wen-Hwa 1st Rd, Kweishan 333, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
QIU JIE, ZHOU XIAOYU, ZHOU XIAOGUANG, CHENG RUI, LIU HAIYING, LI YONG. Neuroprotective effects of microRNA-210 against oxygen-glucose deprivation through inhibition of apoptosis in PC12 cells. Mol Med Rep 2013; 7:1955-9. [DOI: 10.3892/mmr.2013.1431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/10/2013] [Indexed: 11/06/2022] Open
|
48
|
Lukiw WJ, Andreeva TV, Grigorenko AP, Rogaev EI. Studying micro RNA Function and Dysfunction in Alzheimer's Disease. Front Genet 2013; 3:327. [PMID: 23390425 PMCID: PMC3565163 DOI: 10.3389/fgene.2012.00327] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/28/2012] [Indexed: 01/18/2023] Open
Abstract
Alzheimer’s disease (AD) is a tragic, progressive, age-related neurological dysfunction, representing one of the most prevalent neurodegenerative disorders in industrialized societies. Globally, 5 million new cases of AD are diagnosed annually, with one new AD case being reported every 7 s. Most recently there has been a surge in the study of the regulatory mechanisms of the AD process, and the particular significance of small non-coding ∼22 ribonucleotide RNAs called micro RNAs (miRNAs). Abundant data have profiled miRNA patterns in healthy, aging brain, in mild cognitive impairment (MCI), and in the moderate- and late-stages of AD. The major mode of action of miRNA is to interact, via base-pair complementarity, with ribonucleotides located within the 3′ untranslated region (3′-UTR) of multiple target messenger RNAs (mRNAs), and in doing so decrease the capability of that specific mRNA to be expressed. Many miRNAs are highly cell- and tissue-specific. The human brain appears to use only a highly specific fraction of all known human miRNAs, whose speciation and complexity are defined as a discrete subset of all known small non-coding RNAs (sncRNAs) in the brain. In general, in contrast to normally, aging human brain, in AD a family of pathogenically up-regulated miRNAs appear to be down-regulating the expression certain brain-essential mRNA targets, including key regulatory genes involved interactively in neuroinflammation, synaptogenesis, neurotrophic functions, and amyloidogenesis. These up-regulated, NF-kB-sensitive miRNAs, involved in the innate immune and inflammatory response and synaptic, neurotrophic, and amyloidogenic functions include miRNA-9, miRNA-125b, miRNA-146a, and miRNA-155. Other miRNAs of the miRNA-15/107 family, miRNA-153 and miRNA-190, and others, will be discussed. Overall, this manuscript will review the known contribution of miRNAs to aging brain function and the role they appear to play in the incidence and progression of AD.
Collapse
Affiliation(s)
- Walter J Lukiw
- Department of Neurology, LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Ophthalmology, LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | | | | | | |
Collapse
|
49
|
Zhang H, Shykind B, Sun T. Approaches to manipulating microRNAs in neurogenesis. Front Neurosci 2013; 6:196. [PMID: 23335878 PMCID: PMC3547386 DOI: 10.3389/fnins.2012.00196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Abstract
Neurogenesis in the nervous system is regulated by both protein coding genes and non-coding RNA molecules. microRNAs (miRNAs) are endogenous small non-coding RNAs and usually negatively regulate gene expression by binding to the 3′ untranslated region (3′UTR) of target messenger RNAs (mRNAs). miRNAs have been shown to play an essential role in neurogenesis, regulating neuronal proliferation, differentiation, maturation, and migration. An important strategy used to reveal miRNA function is the manipulation of their expression levels and patterns in specific regions and cell types in the nervous system. In this review we will systemically highlight established and new approaches used to achieve gain-of-function and loss-of-function of miRNAs in vitro and in vivo, and will also summarize miRNA delivery techniques. As the development of these leading edge techniques come online, more exciting discoveries of the roles miRNAs play in neural development and function will be uncovered.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University New York, NY, USA
| | | | | |
Collapse
|
50
|
Hougland MT, Harrison BJ, Magnuson DSK, Rouchka EC, Petruska JC. The Transcriptional Response of Neurotrophins and Their Tyrosine Kinase Receptors in Lumbar Sensorimotor Circuits to Spinal Cord Contusion is Affected by Injury Severity and Survival Time. Front Physiol 2013; 3:478. [PMID: 23316162 PMCID: PMC3540763 DOI: 10.3389/fphys.2012.00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in changes to the anatomical, neurochemical, and physiological properties of cells in the central and peripheral nervous system. Neurotrophins, acting by binding to their cognate Trk receptors on target cell membranes, contribute to modulation of anatomical, neurochemical, and physiological properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin signaling is associated with many post-SCI changes including maladaptive plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced locomotor improvement. Here we characterize expression of mRNA for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation that differed with tissue, injury severity, and survival time, including reversals of regulation between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in the spinal cord may continue for months after birth. Our assessments determined that a coordination of gene expression emerged at the 12-week post-SCI time point and bioinformatic analyses address possible mechanisms. These data can inform studies meant to determine the role of the neurotrophin signaling system in post-SCI function and plasticity, and studies using this signaling system as a therapeutic approach.
Collapse
Affiliation(s)
- M Tyler Hougland
- Department of Anatomical Sciences and Neurobiology, University of Louisville Louisville, KY, USA ; Laboratory of Neural Physiology and Plasticity, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery Louisville, KY, USA
| | | | | | | | | |
Collapse
|