1
|
Benito-Muñoz C, Perona A, Felipe R, Pérez-Siles G, Núñez E, Aragón C, López-Corcuera B. Structural Determinants of the Neuronal Glycine Transporter 2 for the Selective Inhibitors ALX1393 and ORG25543. ACS Chem Neurosci 2021; 12:1860-1872. [PMID: 34003005 PMCID: PMC8691691 DOI: 10.1021/acschemneuro.0c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
![]()
The
neuronal glycine transporter GlyT2 modulates inhibitory glycinergic
neurotransmission by controlling the extracellular concentration of
synaptic glycine and the supply of neurotransmitter to the presynaptic
terminal. Spinal cord glycinergic neurons present in the dorsal horn
diminish their activity in pathological pain conditions and behave
as gate keepers of the touch-pain circuitry. The pharmacological blockade
of GlyT2 reduces the progression of the painful signal to rostral
areas of the central nervous system by increasing glycine extracellular
levels, so it has analgesic action. O-[(2-benzyloxyphenyl-3-fluorophenyl)methyl]-l-serine (ALX1393) and N-[[1-(dimethylamino)cyclopentyl]methyl]-3,5-dimethoxy-4-(phenylmethoxy)benzamide
(ORG25543) are two selective GlyT2 inhibitors with nanomolar affinity
for the transporter and analgesic effects in pain animal models, although
with deficiencies which preclude further clinical development. In
this report, we performed a comparative ligand docking of ALX1393
and ORG25543 on a validated GlyT2 structural model including all ligand
sites constructed by homology with the crystallized dopamine transporter
from Drosophila melanogaster. Molecular dynamics
simulations and energy analysis of the complex and functional analysis
of a series of point mutants permitted to determine the structural
determinants of ALX1393 and ORG25543 discrimination by GlyT2. The
ligands establish simultaneous contacts with residues present in transmembrane
domains 1, 3, 6, and 8 and block the transporter in outward-facing
conformation and hence inhibit glycine transport. In addition, differential
interactions of ALX1393 with the cation bound at Na1 site and ORG25543
with TM10 define the differential sites of the inhibitors and explain
some of their individual features. Structural information about the
interactions with GlyT2 may provide useful tools for new drug discovery.
Collapse
Affiliation(s)
- Cristina Benito-Muñoz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Almudena Perona
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raquel Felipe
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gonzalo Pérez-Siles
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Enrique Núñez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carmen Aragón
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Sasseville LJ, Morin M, Coady MJ, Blunck R, Lapointe JY. The Human Sodium-Glucose Cotransporter (hSGLT1) Is a Disulfide-Bridged Homodimer with a Re-Entrant C-Terminal Loop. PLoS One 2016; 11:e0154589. [PMID: 27137918 PMCID: PMC4854415 DOI: 10.1371/journal.pone.0154589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/17/2016] [Indexed: 11/18/2022] Open
Abstract
Na-coupled cotransporters are proteins that use the trans-membrane electrochemical gradient of Na to activate the transport of a second solute. The sodium-glucose cotransporter 1 (SGLT1) constitutes a well-studied prototype of this transport mechanism but essential molecular characteristics, namely its quaternary structure and the exact arrangement of the C-terminal transmembrane segments, are still debated. After expression in Xenopus oocytes, human SGLT1 molecules (hSGLT1) were labelled on an externally accessible cysteine residue with a thiol-reactive fluorophore (tetramethylrhodamine-C5-maleimide, TMR). Addition of dipicrylamine (DPA, a negatively-charged amphiphatic fluorescence “quencher”) to the fluorescently-labelled oocytes is used to quench the fluorescence originating from hSGLT1 in a voltage-dependent manner. Using this arrangement with a cysteine residue introduced at position 624 in the loop between transmembrane segments 12 and 13, the voltage-dependent fluorescence signal clearly indicated that this portion of the 12–13 loop is located on the external side of the membrane. As the 12–13 loop begins on the intracellular side of the membrane, this suggests that the 12–13 loop is re-entrant. Using fluorescence resonance energy transfer (FRET), we observed that different hSGLT1 molecules are within molecular distances from each other suggesting a multimeric complex arrangement. In agreement with this conclusion, a western blot analysis showed that hSGLT1 migrates as either a monomer or a dimer in reducing and non-reducing conditions, respectively. A systematic mutational study of endogenous cysteine residues in hSGLT1 showed that a disulfide bridge is formed between the C355 residues of two neighbouring hSGLT1 molecules. It is concluded that, 1) hSGLT1 is expressed as a disulfide bridged homodimer via C355 and that 2) a portion of the intracellular 12–13 loop is re-entrant and readily accessible from the extracellular milieu.
Collapse
Affiliation(s)
- Louis J. Sasseville
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de physique, Université de Montréal, Montréal, Québec
| | - Michael Morin
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de physique, Université de Montréal, Montréal, Québec
| | - Michael J. Coady
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de physique, Université de Montréal, Montréal, Québec
| | - Rikard Blunck
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de physique, Université de Montréal, Montréal, Québec
| | - Jean-Yves Lapointe
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de physique, Université de Montréal, Montréal, Québec
- * E-mail:
| |
Collapse
|
3
|
Ribeiro P, Patocka N. Neurotransmitter transporters in schistosomes: Structure, function and prospects for drug discovery. Parasitol Int 2013; 62:629-38. [DOI: 10.1016/j.parint.2013.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 12/23/2022]
|
4
|
Immadisetty K, Geffert LM, Surratt CK, Madura JD. New design strategies for antidepressant drugs. Expert Opin Drug Discov 2013; 8:1399-414. [PMID: 23991860 DOI: 10.1517/17460441.2013.830102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION In spite of research efforts spanning six decades, the most prominent antidepressant drugs to date still carry several adverse effects, often serious enough to warrant discontinuation of the drug. Molecular mechanisms of depression are now better understood such that some of the specific receptors responsible can be targeted for activation or inhibition. This advance, coupled with the recent availability of crystal structures of relevant drug targets or their homologs, has opened the door for new antidepressant therapeutic compounds. AREAS COVERED The authors review the evolution of monoamine-based antidepressant drugs, up to the selective serotonin reuptake inhibitors (SSRIs). The authors discuss classic and contemporary antidepressant drug design strategies, with a focus on virtual screening and fragment-based drug design methods. Furthermore, they discuss the recent advancements in the understanding of the serotonin transporter (SERT) structure/function relationship in the context of recognition of SSRIs and outline a strategy for the use of computational approaches in producing new SSRI lead compounds. EXPERT OPINION The authors suggest that given the long-awaited availability of credible three-dimensional structures for the SERT and related monoamine transporter proteins, cutting-edge computational methods should be the linchpin of future drug discovery efforts regarding monoamine-based antidepressant lead compounds. Because these transporter inhibitors cause a ubiquitous increase in extraneuronal neurotransmitter levels leading to side and adverse therapeutic effects, the drug discovery should extend to appropriate manipulation of the 'downstream' receptors affected by the neurotransmitter boost. Efficient use of new computational strategies will accelerate the drug discovery process and reduce its economic burden.
Collapse
Affiliation(s)
- Kalyan Immadisetty
- Duquesne University, Center for Computational Sciences, Department of Chemistry and Biochemistry , 600 Forbes Ave, 308 Mellon Hall, Pittsburgh, PA 15282 , USA +1 412 396 4129 ; +1 412 396 5683 ;
| | | | | | | |
Collapse
|
5
|
Wang CIA, Shaikh NH, Ramu S, Lewis RJ. A second extracellular site is required for norepinephrine transport by the human norepinephrine transporter. Mol Pharmacol 2012; 82:898-909. [PMID: 22874414 DOI: 10.1124/mol.112.080630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human norepinephrine transporter (NET) is implicated in many neurological disorders and is a target of tricyclic antidepressants and nisoxetine (NX). We used molecular docking simulations to guide the identification of residues likely to affect substrate transport and ligand interactions at NET. Mutations to alanine identified a hydrophobic pocket in the extracellular cavity of NET, comprising residues Thr80, Phe317, and Tyr317, which was critical for efficient norepinephrine (NE) transport. This secondary NE substrate site (NESS-2) overlapped the NX binding site, comprising Tyr84, Phe317, and Tyr317, and was positioned ∼11 Å extracellular to the primary site for NE (NESS-1). Thr80 in NESS-2 appeared to be critical in positioning NE for efficient translocation to NESS-1. Three residues identified as being involved in gating the reverse transport of NE (Arg81, Gln314, and Asp473) did not affect NE affinity for NESS-1. Mutating residues adjacent to NESS-2 abolished NET expression (D75A and L76A) or appeared to affect NET folding (S419A), suggesting important roles in stabilizing NET structure, whereas W308A and F388A at the top of NESS-2 abolished both NE transport and NX binding. Our findings are consistent with a multistep model of substrate transport by NET, for which a second, shallow extracellular NE substrate site (NESS-2) is required for efficient NE transport by NET.
Collapse
Affiliation(s)
- Ching-I A Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
6
|
Manepalli S, Surratt CK, Madura JD, Nolan TL. Monoamine transporter structure, function, dynamics, and drug discovery: a computational perspective. AAPS JOURNAL 2012; 14:820-31. [PMID: 22918625 DOI: 10.1208/s12248-012-9391-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 07/09/2012] [Indexed: 11/30/2022]
Abstract
With the breakthrough crystallization of the bacterial leucine transporter protein LeuT, the first available X-ray structure for the neurotransmitter/sodium symporter family, development of 3-D computational models is suddenly essential for structure-function studies on the plasmalemmal monoamine transporters (MATs). LeuT-based MAT models have been used to guide elucidation of substrate and inhibitor binding pockets, and molecular dynamics simulations using these models are providing insight into conformations involved in the substrate translocation cycle. With credible MAT models finally in hand, structure-based virtual screening for novel ligands is yielding lead compounds toward the development of new medications for psychostimulant dependence, attention deficit hyperactivity, depression, anxiety, schizophrenia, and other disorders associated with dopamine, norepinephrine, or serotonin dysregulation.
Collapse
Affiliation(s)
- Sankar Manepalli
- Department of Chemistry and Biochemistry, Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
7
|
Ho HTB, Xia L, Wang J. Residue Ile89 in human plasma membrane monoamine transporter influences its organic cation transport activity and sensitivity to inhibition by dilazep. Biochem Pharmacol 2012; 84:383-90. [PMID: 22562044 DOI: 10.1016/j.bcp.2012.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 01/11/2023]
Abstract
Plasma membrane monoamine transporter (PMAT) is a polyspecific organic cation transporter belonging to the equilibrative nucleoside transporter (ENT) family. Despite its distinct substrate specificity from the classic nucleoside transporters ENT1 and 2, PMAT appears to share similar protein architecture with ENT1/2 and retains low affinity binding to classic ENT inhibitors such as nitrobenzylmercaptopurine riboside (NBMPR) and the coronary vasodilators dilazep and dipyridamole. Here we investigated the role of residue Ile89, a position known to be important for ENT interaction with dilazep, dipyridamole, and nucleoside substrates, in PMAT transport function and its interaction with classic ENT inhibitors using Madin-Darby canine kidney (MDCK) cells stably expressing human PMAT. Substitution of Ile89 in PMAT with Met, the counterpart residue in ENT1, resulted in normal plasma membrane localization and protein expression. Transport kinetic analysis revealed that I89M mutant had a 2.7-fold reduction in maximal transport velocity (V(max)) with no significant change in apparent binding affinity (K(m)) towards the prototype PMAT substrate 1-methyl-4-phenylpyridinium (MPP+), suggesting that I89 is an important determinant for the catalytic activity of PMAT. Dose-dependent inhibition studies further showed that the I89M mutation significantly increased PMAT's sensitivity to dilazep by 2.5-fold without affecting its sensitivity to dipyridamole and NBMPR. Located at the extracellular end of transmembrane domain 1 of PMAT, I89 may occupy an important position close to the substrate permeation pathway and may be involved in direct interaction with the vasodilator dilazep.
Collapse
Affiliation(s)
- Horace T B Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
8
|
Chang JC, Tomlinson ID, Warnement MR, Iwamoto H, DeFelice LJ, Blakely RD, Rosenthal SJ. A fluorescence displacement assay for antidepressant drug discovery based on ligand-conjugated quantum dots. J Am Chem Soc 2011; 133:17528-31. [PMID: 21970724 DOI: 10.1021/ja204301g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) protein plays a central role in terminating 5-HT neurotransmission and is the most important therapeutic target for the treatment of major depression and anxiety disorders. We report an innovative, versatile, and target-selective quantum dot (QD) labeling approach for SERT in single Xenopus oocytes that can be adopted as a drug-screening platform. Our labeling approach employs a custom-made, QD-tagged indoleamine derivative ligand, IDT318, that is structurally similar to 5-HT and accesses the primary binding site with enhanced human SERT selectivity. Incubating QD-labeled oocytes with paroxetine (Paxil), a high-affinity SERT-specific inhibitor, showed a concentration- and time-dependent decrease in QD fluorescence, demonstrating the utility of our approach for the identification of SERT modulators. Furthermore, with the development of ligands aimed at other pharmacologically relevant targets, our approach may potentially form the basis for a multitarget drug discovery platform.
Collapse
Affiliation(s)
- Jerry C Chang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011; 63:585-640. [PMID: 21752877 DOI: 10.1124/pr.108.000869] [Citation(s) in RCA: 625] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Natural and engineered coding variation in antidepressant-sensitive serotonin transporters. Neuroscience 2011; 197:28-36. [PMID: 21893166 DOI: 10.1016/j.neuroscience.2011.08.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 12/17/2022]
Abstract
The presynaptic serotonin (5-HT) transporter (SERT) is a key regulator of 5-HT signaling and is a major target for antidepressant medications and psychostimulants. In recent years, studies of natural and engineered genetic variation in SERT have provided new opportunities to understand structural dimensions of drug interactions and regulation of the transporter, to explore 5-HT contributions to antidepressant action, and to assess the impact of SERT-mediated 5-HT contributions to neuropsychiatric disorders. Here we review three examples from our recent studies where genetic changes in SERT, identified or engineered, have led to new models, findings, and theories that cast light on new dimensions of 5-HT action in the CNS and periphery. First, we review our work to identify specific residues through which SERT recognizes antagonists, and the conversion of this knowledge to the creation of mice lacking high-affinity antidepressant and cocaine sensitivity. Second, we discuss our studies of functional coding variation in SERT that exists in commonly used strains of inbred mice, and how this variation is beginning to reveal novel 5-HT-associated phenotypes. Third, we review our identification and functional characterization of multiple, hyperactive SERT coding variants in subjects with autism. Each of these activities has driven the development of new model systems that can be further exploited to understand the contribution of 5-HT signaling to risk for neuropsychiatric disorders and their treatment.
Collapse
|
11
|
Hill ER, Huang X, Zhan CG, Ivy Carroll F, Gu HH. Interaction of tyrosine 151 in norepinephrine transporter with the 2β group of cocaine analog RTI-113. Neuropharmacology 2011; 61:112-20. [PMID: 21420984 DOI: 10.1016/j.neuropharm.2011.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 12/27/2022]
Abstract
Cocaine binds and inhibits dopamine transporter (DAT), norepinephrine transporter (NET) and serotonin transporter. The residues forming cocaine binding sites are unknown. RTI-113, a cocaine analog, is 100× more potent at inhibiting DAT than inhibiting NET. Here we show that removing the hydroxyl group from residue Tyr151 in NET by replacing it with Phe, the corresponding residue in DAT, increased the sensitivity of NET to RTI-113, while the reverse mutation in DAT decreased the sensitivity of DAT to RTI-113. In contrast, RTI-31, another cocaine analog having the same structure as RTI-113 but with the phenyl group at the 2β position replaced by a methyl group, inhibits the transporter mutants equally well whether a hydroxyl group is present at the residue or not. The data suggest that this residue contributes to cocaine binding site and is close to the 2β position of cocaine analogs. These results are consistent with our previously proposed cocaine-DAT binding model where cocaine initially binds to a site that does not overlap with, but is close to, the dopamine-binding site. Computational modeling and molecular docking yielded a binding model that explains the observed changes in RTI-113 inhibition potencies.
Collapse
Affiliation(s)
- Erik R Hill
- Ohio State Biochemistry Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
12
|
Torres-Altoro MI, Kuntz CP, Nichols DE, Barker EL. Structural analysis of the extracellular entrance to the serotonin transporter permeation pathway. J Biol Chem 2010; 285:15369-15379. [PMID: 20304925 DOI: 10.1074/jbc.m109.088138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitter transporters are responsible for removal of biogenic amine neurotransmitters after release into the synapse. These transporters are the targets for many clinically relevant drugs, such as antidepressants and psychostimulants. A high resolution crystal structure for the monoamine transporters has yet to be solved. We have developed a homology model for the serotonin transporter (SERT) based on the crystal structure of the leucine transporter (LeuT(Aa)) from Aquifex aeolicus. The objective of the present studies is to identify the structural determinants forming the entrance to the substrate permeation pathway based on predictions from the SERT homology model. Using the substituted cysteine accessibility method, we identified residues predicted to reside at the entrance to the substrate permeation pathway that were reactive with methanethiosulfonate (MTS) reagents. Of these residues, Gln(332) in transmembrane helix (TMH) VI was protected against MTS inactivation in the presence of serotonin. Surprisingly, the reactivity of Gln(332) to MTS reagents was enhanced in the presence of cocaine. Bifunctional MTS cross-linkers also were used to examine the distances between helices predicted to form the entrance into the substrate and ion permeation pathway. Our studies suggest that substrate and ligand binding may induce conformational shifts in TMH I and/or VI, providing new opportunities to refine existing homology models of SERT and related monoamine transporters.
Collapse
Affiliation(s)
- Melissa I Torres-Altoro
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy and Pharmaceutical Sciences, West Lafayette, Indiana 47907-2091
| | - Charles P Kuntz
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy and Pharmaceutical Sciences, West Lafayette, Indiana 47907-2091
| | - David E Nichols
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy and Pharmaceutical Sciences, West Lafayette, Indiana 47907-2091
| | - Eric L Barker
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy and Pharmaceutical Sciences, West Lafayette, Indiana 47907-2091.
| |
Collapse
|
13
|
Gedeon PC, Indarte M, Surratt CK, Madura JD. Molecular dynamics of leucine and dopamine transporter proteins in a model cell membrane lipid bilayer. Proteins 2010; 78:797-811. [PMID: 19899168 DOI: 10.1002/prot.22601] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dopamine transporter (DAT) operates via facilitated diffusion, harnessing an inward Na(+) gradient to drive dopamine from the extracellular synaptic cleft to the neuron interior. The DAT is relevant to central nervous system disorders such as Parkinson disease and attention-deficit hyperactivity disorder and is the primary site of action for the abused psychostimulants cocaine and amphetamines. Crystallization of a DAT homolog, the bacterial leucine transporter LeuT, provided the first reliable 3-D DAT template. Here, the LeuT crystal structure and the DAT molecular model have been combined with their respective substrates, leucine and dopamine, in lipid bilayer molecular dynamics simulations toward tracking substrate movement along the protein's substrate/ion permeation pathway. Specifically, movement of residue pairs that comprise the "external gate" was followed as a function of substrate presence. The transmembrane (TM) 1 arginine-TM 10 aspartate strut formed less readily in DAT compared with LeuT, with or without substrate present. For LeuT but not DAT, the addition of substrate enhanced the chances of forming the TM 1-10 bridge. Also, movement of the fourth extracellular loop EL-4 in the presence of substrate was more pronounced for DAT, the EL-4 unwinding to a degree. The overall similarity between the LeuT and DAT molecular dynamics simulations indicated that LeuT was a legitimate model to guide DAT structure-function predictions. There were, nevertheless, differences significant enough to allow for DAT-unique insights, which may include how cocaine, methylphenidate (Ritalin, NIDA Drug Supply, Rockville, MD), and other DAT blockers are not recognized as substrates even though they can access the primary substrate binding pocket. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Patrick C Gedeon
- Department of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
14
|
Wang CIA, Lewis RJ. Emerging structure-function relationships defining monoamine NSS transporter substrate and ligand affinity. Biochem Pharmacol 2009; 79:1083-91. [PMID: 19954741 DOI: 10.1016/j.bcp.2009.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/16/2009] [Accepted: 11/23/2009] [Indexed: 11/15/2022]
Abstract
Monoamine transporters are a group of transmembrane neurotransmitter sodium symporter (NSS) transporters that play a crucial role in regulating biogenic monoamine concentrations at peripheral and central synapses. Given the key role played by serotonin, dopamine and noradrenaline in addictive and disease states, structure-function studies have been conducted to help guide the development of improved central nervous system therapeutics. Extensive pharmacological, immunological and biochemical studies, in conjunction with three-dimensional homology modeling, have been performed to structurally and functionally characterise the monoamine transporter substrate permeation pathway, substrate selectivity, and binding sites for ions, substrates and inhibitors at the molecular level. However, only recently has it been possible to start to construct an accurate molecular interaction network for the monoamine transporters and their corresponding substrates and inhibitors. Crystal structures of Aquifex aeolicus leucine transporter (LeuT(Aa)), a homologous protein to monoamine transporters that has been experimentally demonstrated to share similar structural folds with monoamine transporters, have been determined in complex with amino acids and inhibitors. The molecular interactions of leucine and tricyclic antidepressants (TCA) has supported many of the predictions based on the mutational studies. Models constructed from LeuT(Aa) are now allowing a rational approach to further clarify the molecular determinants of NSS transporter-ligand complexes, and potentially the ability to better manipulate drug specificity and affinity. In this review, we compare the structure-function relationships of other SLC6 NSS family transporters with monoamine transporters, and discuss possible mechanisms involved in substrate binding and transport, and modes of inhibition by TCAs.
Collapse
Affiliation(s)
- Ching-I Anderson Wang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Australia
| | | |
Collapse
|
15
|
Andersen J, Olsen L, Hansen KB, Taboureau O, Jørgensen FS, Jørgensen AM, Bang-Andersen B, Egebjerg J, Strømgaard K, Kristensen AS. Mutational mapping and modeling of the binding site for (S)-citalopram in the human serotonin transporter. J Biol Chem 2009; 285:2051-63. [PMID: 19892699 DOI: 10.1074/jbc.m109.072587] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serotonin transporter (SERT) regulates extracellular levels of the neurotransmitter serotonin (5-hydroxytryptamine) in the brain by facilitating uptake of released 5-hydroxytryptamine into neuronal cells. SERT is the target for widely used antidepressant drugs, including imipramine, fluoxetine, and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of structural data on SERT. Here, we present a characterization of the (S)-citalopram binding pocket in human SERT (hSERT) using mutational and computational approaches. Comparative modeling and ligand docking reveal that (S)-citalopram fits into the hSERT substrate binding pocket, where (S)-citalopram can adopt a number of different binding orientations. We find, however, that only one of these binding modes is functionally relevant from studying the effects of 64 point mutations around the putative substrate binding site. The mutational mapping also identify novel hSERT residues that are crucial for (S)-citalopram binding. The model defines the molecular determinants for (S)-citalopram binding to hSERT and demonstrates that the antidepressant binding site overlaps with the substrate binding site.
Collapse
Affiliation(s)
- Jacob Andersen
- Department of Medicinal Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hahn MK, Steele A, Couch RS, Stein MA, Krueger JJ. Novel and functional norepinephrine transporter protein variants identified in attention-deficit hyperactivity disorder. Neuropharmacology 2009; 57:694-701. [PMID: 19698724 DOI: 10.1016/j.neuropharm.2009.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/21/2009] [Accepted: 08/11/2009] [Indexed: 11/24/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a highly heritable disorder of impaired behavioral inhibition, increased motor activity, and inattention. The norepinephrine transporter (NET, SLC6A2) represents an important candidate gene for contribution to ADHD because it regulates catecholamine extracellular and tissue concentrations and contributes to executive functions disrupted in ADHD, and NET is a target for most effective ADHD therapeutics. We identified four NET coding single nucleotide polymorphisms (SNPs) in two ADHD sample sets; two SNPs produce protein variants (T283M, V245I), one of which, T283M, is a novel variant. Examination of the maternal family members through whom the T283M mutation was transmitted, provided no additional ADHD diagnoses. Given the previous identification of a NET mutation that contributes to a familial tachycardia syndrome, we examined autonomic function to reveal in the proband the highest standing-induced increase in heart rate among the ADHD subjects examined. We measured [3H]NE and [3H]dopamine transport for T283M, V245I, and a previously identified NET variant, T283R. T283M and V245I demonstrated decreased substrate transport, as did T283R, suggesting that the T283 residue is sensitive to mutation. Identification of polymorphic sites within NET, specifically those that produce functional consequences, is one critical step in elucidating the genetic variation contributing to the heritable component of diseases such as ADHD.
Collapse
Affiliation(s)
- Maureen K Hahn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
17
|
Castagna M, Bossi E, Sacchi VF. Molecular physiology of the insect K-activated amino acid transporter 1 (KAAT1) and cation-anion activated amino acid transporter/channel 1 (CAATCH1) in the light of the structure of the homologous protein LeuT. INSECT MOLECULAR BIOLOGY 2009; 18:265-279. [PMID: 19389142 DOI: 10.1111/j.1365-2583.2009.00881.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
K-activated amino acid transporter 1 (KAAT1) and cation-anion-activated amino acid transporter/channel 1 (CAATCH1) are amino acid cotransporters, belonging to the Na/Cl-dependent neurotransmitter transporter family (also called SLC6/NSS), that have been cloned from Manduca sexta midgut. They have been thoroughly studied by expression in Xenopus laevis oocytes, and structure/function analyses have made it possible to identify the structural determinants of their cation and amino acid selectivity. About 40 mutants of these proteins have been studied by measuring amino acid uptake and current/voltage relationships. The results obtained since the cloning of KAAT1 and CAATCH1 are here discussed in the light of the 3D model of the first crystallized member of the family, the leucine transporter LeuT.
Collapse
Affiliation(s)
- M Castagna
- Institute of General Physiology and Biological Chemistry 'G. Esposito', University of Milan, Milano, Italy
| | | | | |
Collapse
|
18
|
Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat Struct Mol Biol 2009; 16:652-7. [PMID: 19430461 DOI: 10.1038/nsmb.1602] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/07/2009] [Indexed: 11/08/2022]
Abstract
Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP) in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.
Collapse
|
19
|
Andersen J, Kristensen AS, Bang-Andersen B, Strømgaard K. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters. Chem Commun (Camb) 2009:3677-92. [PMID: 19557250 DOI: 10.1039/b903035m] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biogenic monoamine transporters are integral membrane proteins that perform active transport of extracellular dopamine, serotonin and norepinephrine into cells. These transporters are targets for therapeutic agents such as antidepressants, as well as addictive substances such as cocaine and amphetamine. Seminal advances in the understanding of the structure and function of this transporter family have recently been accomplished by structural studies of a bacterial transporter, as well as medicinal chemistry and pharmacological studies of mammalian transporters. This feature article focuses on antidepressant drugs that act on the serotonin and/or the norepinephrine transporters. Specifically, we focus on structure-activity relationships of these drugs with emphasis on relationships between their molecular properties and the current knowledge of transporter structure.
Collapse
Affiliation(s)
- Jacob Andersen
- Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
20
|
Prasad HC, Steiner JA, Sutcliffe JS, Blakely RD. Enhanced activity of human serotonin transporter variants associated with autism. Philos Trans R Soc Lond B Biol Sci 2009; 364:163-73. [PMID: 18957375 DOI: 10.1098/rstb.2008.0143] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rare, functional, non-synonymous variants in the human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT) gene (SLC6A4) have been identified in both autism and obsessive-compulsive disorder (OCD). Within autism, rare hSERT coding variants associate with rigid-compulsive traits, suggesting both phenotypic overlap with OCD and a shared relationship with disrupted 5-HT signalling. Here, we document functional perturbations of three of these variants: Ile425Leu; Phe465Leu; and Leu550Val. In transiently transfected HeLa cells, the three variants confer a gain of 5-HT transport phenotype. Specifically, enhanced SERT activity was also observed in lymphoblastoid lines derived from mutation carriers. In contrast to previously characterized Gly56Ala, where increased transport activity derives from catalytic activation, the three novel variants exhibit elevated surface density as revealed through both surface antagonist-binding and biotinylation studies. Unlike Gly56Ala, mutants Ile425Leu, Phe465Leu and Leu550Val retain a capacity for acute PKG and p38 MAPK regulation. However, both Gly56Ala and Ile425Leu demonstrate markedly reduced sensitivity to PP2A antagonists, suggesting that deficits in trafficking and catalytic modulation may derive from a common basis in perturbed phosphatase regulation. When expressed stably from the same genomic locus in CHO cells, both Gly56Ala and Ile425Leu display catalytic activation, accompanied by a striking loss of SERT protein.
Collapse
Affiliation(s)
- Harish C Prasad
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | | | | | | |
Collapse
|
21
|
Kaufmann KW, Dawson ES, Henry LK, Field JR, Blakely RD, Meiler J. Structural determinants of species-selective substrate recognition in human and Drosophila serotonin transporters revealed through computational docking studies. Proteins 2009; 74:630-42. [PMID: 18704946 DOI: 10.1002/prot.22178] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To identify potential determinants of substrate selectivity in serotonin (5-HT) transporters (SERT), models of human and Drosophila serotonin transporters (hSERT, dSERT) were built based on the leucine transporter (LeuT(Aa)) structure reported by Yamashita et al. (Nature 2005;437:215-223), PBDID 2A65. Although the overall amino acid identity between SERTs and the LeuT(Aa) is only 17%, it increases to above 50% in the first shell of the putative 5-HT binding site, allowing de novo computational docking of tryptamine derivatives in atomic detail. Comparison of hSERT and dSERT complexed with substrates pinpoints likely structural determinants for substrate binding. Forgoing the use of experimental transport and binding data of tryptamine derivatives for construction of these models enables us to critically assess and validate their predictive power: A single 5-HT binding mode was identified that retains the amine placement observed in the LeuT(Aa) structure, matches site-directed mutagenesis and substituted cysteine accessibility method (SCAM) data, complies with support vector machine derived relations activity relations, and predicts computational binding energies for 5-HT analogs with a significant correlation coefficient (R = 0.72). This binding mode places 5-HT deep in the binding pocket of the SERT with the 5-position near residue hSERT A169/dSERT D164 in transmembrane helix 3, the indole nitrogen next to residue Y176/Y171, and the ethylamine tail under residues F335/F327 and S336/S328 within 4 A of residue D98. Our studies identify a number of potential contacts whose contribution to substrate binding and transport was previously unsuspected.
Collapse
Affiliation(s)
- Kristian W Kaufmann
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, USA
| | | | | | | | | | | |
Collapse
|
22
|
Andersen J, Taboureau O, Hansen KB, Olsen L, Egebjerg J, Strømgaard K, Kristensen AS. Location of the antidepressant binding site in the serotonin transporter: importance of Ser-438 in recognition of citalopram and tricyclic antidepressants. J Biol Chem 2009; 284:10276-84. [PMID: 19213730 DOI: 10.1074/jbc.m806907200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serotonin transporter (SERT) regulates extracellular levels of serotonin (5-hydroxytryptamine, 5HT) in the brain by transporting 5HT into neurons and glial cells. The human SERT (hSERT) is the primary target for drugs used in the treatment of emotional disorders, including depression. hSERT belongs to the solute carrier 6 family that includes a bacterial leucine transporter (LeuT), for which a high resolution crystal structure has become available. LeuT has proved to be an excellent model for human transporters and has advanced the understanding of solute carrier 6 transporter structure-function relationships. However, the precise structural mechanism by which antidepressants inhibit hSERT and the location of their binding pockets are still elusive. We have identified a residue (Ser-438) located within the 5HT-binding pocket in hSERT to be a critical determinant for the potency of several antidepressants, including the selective serotonin reuptake inhibitor citalopram and the tricyclic antidepressants imipramine, clomipramine, and amitriptyline. A conservative mutation of Ser-438 to threonine (S438T) selectively increased the K(i) values for these antidepressants up to 175-fold. The effects of introducing a protein methyl group into the 5HT-binding pocket by S438T were absent or reduced for analogs of these antidepressants lacking a single methyl group. This suggests that these antidepressants interact directly with Ser-438 during binding to hSERT, implying an overlapping localization of substrate- and inhibitor-binding sites in hSERT suggesting that antidepressants function by a mechanism that involves direct occlusion of the 5HT-binding site.
Collapse
Affiliation(s)
- Jacob Andersen
- Department of Medicinal Chemistry, University of Copenhagen, DK-2100 Copenhagen, BioCentrum-DTU, Technical University of Denmark
| | | | | | | | | | | | | |
Collapse
|
23
|
Jørgensen AM, Tagmose L, Jørgensen AMM, Bøgesø KP, Peters GH. Molecular dynamics simulations of Na+/Cl(-)-dependent neurotransmitter transporters in a membrane-aqueous system. ChemMedChem 2008; 2:827-40. [PMID: 17436258 DOI: 10.1002/cmdc.200600243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have performed molecular dynamics simulations of a homology model of the human serotonin transporter (hSERT) in a membrane environment and in complex with either the natural substrate 5-HT or the selective serotonin reuptake inhibitor escitalopram. We have also included a transporter homologue, the Aquifex aeolicus leucine transporter (LeuT), in our study to evaluate the applicability of a simple and computationally attractive membrane system. Fluctuations in LeuT extracted from simulations are in good agreement with crystallographic B factors. Furthermore, key interactions identified in the X-ray structure of LeuT are maintained throughout the simulations indicating that our simple membrane system is suitable for studying the transmembrane protein hSERT in complex with 5-HT or escitalopram. For these transporter complexes, only relatively small fluctuations are observed in the ligand-binding cleft. Specific interactions responsible for ligand recognition, are identified in the hSERT-5HT and hSERT-escitalopram complexes. Our findings are in good agreement with predictions from mutagenesis studies.
Collapse
Affiliation(s)
- Anne Marie Jørgensen
- MEMPHYS-Center for Biomembrane Physics, Department of Chemistry, Technical University of Denmark, Building 206, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
24
|
Jarończyk M, Chilmonczyk Z, Mazurek AP, Nowak G, Ravna AW, Kristiansen K, Sylte I. The molecular interactions of buspirone analogues with the serotonin transporter. Bioorg Med Chem 2008; 16:9283-94. [PMID: 18812261 DOI: 10.1016/j.bmc.2008.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/26/2008] [Accepted: 09/02/2008] [Indexed: 11/18/2022]
Abstract
A major problem with the selective serotonin reuptake inhibitors (SSRIs) is the delayed onset of action. A reason for that may be that the initial SSRI-induced increase in serotonin levels activates somatodendritic 5-HT(1A) autoreceptors, causing a decrease in serotonin release in major forebrain areas. It has been suggested that compounds combining inhibition of the serotonin transport protein with antagonistic effects on the 5-HT(1A) receptor will shorten the onset time. The anxiolytic drug buspirone is known as 5-HT(1A) partial agonist. In the present work, we are studying the inhibition of the serotonin transporter protein by a series of buspirone analogues by molecular modelling and by experimental affinity measurements. Models of the transporter protein were constructed using the crystal structure of the Escherichia coli major facilitator family transporter-LacY and the X-ray structure of the neurotransmitter symporter family (NSS) transporter-LeuT(Aa) as templates. The buspirone analogues were docked into both SERT models and the interactions with amino acids within the protein were analyzed. Two putative binding sites were identified on the LeuT(Aa) based model, one suggested to be a high-affinity site, and the other suggested to be a low-affinity binding site. Molecular dynamic simulations of the LacY based model in complex with ligands did not induce a helical architecture of the LacY based model into an arrangement more similar to that of the LeuT(Aa) based model.
Collapse
|
25
|
Xhaard H, Backström V, Denessiouk K, Johnson MS. Coordination of Na+ by Monoamine Ligands in Dopamine, Norepinephrine, and Serotonin Transporters. J Chem Inf Model 2008; 48:1423-37. [DOI: 10.1021/ci700255d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henri Xhaard
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| | - Vera Backström
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| | - Konstantin Denessiouk
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| | - Mark S. Johnson
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| |
Collapse
|
26
|
Steiner JA, Carneiro AMD, Blakely RD. Going with the flow: trafficking-dependent and -independent regulation of serotonin transport. Traffic 2008; 9:1393-402. [PMID: 18445122 DOI: 10.1111/j.1600-0854.2008.00757.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antidepressant-, cocaine- and 3,4-methylenedioxymethamphetamine-sensitive serotonin (5-hydroxytryptamine, 5-HT) transporters (SERTs) are expressed on presynaptic membranes of 5-HT-secreting neurons to provide efficient uptake of the biogenic amine after release. SERTs also support 5-HT transport across platelet, placental, gastrointestinal and pulmonary membranes and thus play a critical role in central nervous system and peripheral nervous system 5-HT signaling. SERTs are subject to multiple levels of posttranslational regulation that can rapidly alter 5-HT uptake and clearance rates. Specific cell surface receptors are now known to regulate SERT trafficking and/or catalytic function, with pathways activating protein kinase C, protein kinase G and p38 mitogen-activated protein kinase receiving the greatest attention. Remarkably, disease-associated mutations in SERT not only impact basal SERT activity but also selectively impact one or more SERT regulatory pathway(s). In this review, we describe both trafficking-dependent and trafficking-independent modes of SERT regulation and also the suspected roles played in regulation by SERT-associated proteins. Elucidation of the SERT 'regulome' provides important depth to our understanding of the likely origins of 5-HT-associated disorders and may help orient research to develop novel therapeutics.
Collapse
Affiliation(s)
- Jennifer A Steiner
- Graduate Training Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | | | | |
Collapse
|
27
|
Kniazeff J, Shi L, Loland CJ, Javitch JA, Weinstein H, Gether U. An intracellular interaction network regulates conformational transitions in the dopamine transporter. J Biol Chem 2008; 283:17691-701. [PMID: 18426798 DOI: 10.1074/jbc.m800475200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitter:sodium symporters (NSS)(1) mediate sodium-dependent reuptake of neurotransmitters from the synaptic cleft and are targets for many psychoactive drugs. The crystal structure of the prokaryotic NSS protein, LeuT, was recently solved at high resolution; however, the mechanistic details of regulation of the permeation pathway in this class of proteins remain unknown. Here we combine computational modeling and experimental probing in the dopamine transporter (DAT) to demonstrate the functional importance of a conserved intracellular interaction network. Our data suggest that a salt bridge between Arg-60 in the N terminus close to the cytoplasmic end of transmembrane segment (TM) 1 and Asp-436 at the cytoplasmic end of TM8 is stabilized by a cation-pi interaction between Arg-60 and Tyr-335 at the cytoplasmic end of TM6. Computational probing illustrates how the interactions may determine the flexibility of the permeation pathway, and mutagenesis within the network and results from assays of transport, as well as the state-dependent accessibility of a substituted cysteine in TM3, support the role of this network in regulating access between the substrate binding site and the intracellular milieu. The mechanism that emerges from these findings may be unique to the NSS family, where the local disruption of ionic interactions modulates the transition of the transporter between the outward- and inward-facing conformations.
Collapse
Affiliation(s)
- Julie Kniazeff
- Molecular Neuropharmacology Group and Center for Pharmacogenomics, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
28
|
Indarte M, Madura JD, Surratt CK. Dopamine transporter comparative molecular modeling and binding site prediction using the LeuT(Aa) leucine transporter as a template. Proteins 2008; 70:1033-46. [PMID: 17847094 DOI: 10.1002/prot.21598] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pharmacological and behavioral studies indicate that binding of cocaine and the amphetamines by the dopamine transporter (DAT) protein is principally responsible for initiating the euphoria and addiction associated with these drugs. The lack of an X-ray crystal structure for the DAT or any other member of the neurotransmitter:sodium symporter (NSS) family has hindered understanding of psychostimulant recognition at the atomic level; structural information has been obtained largely from mutagenesis and biophysical studies. The recent publication of a crystal structure for the bacterial leucine transporter LeuT(Aa), a distantly related NSS family homolog, provides for the first time a template for three-dimensional comparative modeling of NSS proteins. A novel computational modeling approach using the capabilities of the Molecular Operating Environment program MOE 2005.06 in conjunction with other comparative modeling servers generated the LeuT(Aa)-directed DAT model. Probable dopamine and amphetamine binding sites were identified within the DAT model using multiple docking approaches. Binding sites for the substrate ligands (dopamine and amphetamine) overlapped substantially with the analogous region of the LeuT(Aa) crystal structure for the substrate leucine. The docking predictions implicated DAT side chains known to be critical for high affinity ligand binding and suggest novel mutagenesis targets in elucidating discrete substrate and inhibitor binding sites. The DAT model may guide DAT ligand QSAR studies, and rational design of novel DAT-binding therapeutics.
Collapse
Affiliation(s)
- Martín Indarte
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | |
Collapse
|
29
|
Identification, characterization and cloning of SLC6A8C, a novel splice variant of the creatine transporter gene. Gene 2008; 418:53-9. [PMID: 18515020 DOI: 10.1016/j.gene.2008.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/04/2008] [Accepted: 04/07/2008] [Indexed: 02/03/2023]
Abstract
SLC6A8 deficiency is caused by mutations in the X-linked creatine transporter gene (SLC6A8), which leads to cerebral creatine deficiency, mental retardation, speech and language delay, autistic-like behaviour and epilepsy. Insight in the mechanism of how the transporter is regulated is largely unknown and it is of importance for the development of successful treatment strategies of cerebral creatine deficient syndromes. Our goal was to characterize CRT2 (SLC6A8B), a published splice variant of the creatine transporter. Surprisingly, using RT-PCR we found a novel splice variant, SLC6A8C, which is predominantly found in human tissues with a high energy requirement such as brain, kidney, heart, small intestines and skeletal muscle, where SLC6A8 transporter is most required. The 5' untranslated region (UTR) of the SLC6A8C mRNA was identified using the Smart Race cDNA amplification kit. The SLC6A8C mRNA contains intron 4 and exons 5 through 13 of SLC6A8, including part of the 3' UTR. An open reading frame was found, which predicts a truncated protein identical to the SLC6A8 transporter, comprising the five last C-terminal transmembrane domains of the SLC6A8 transporter. SLC6A8C open reading frame was cloned as a fusion protein with EGFP and the SLC6A8C protein expression was detected by Western Blot. RT-PCR and sequence analysis showed that this splice variant is conserved in evolution, since we also detected it in mouse. This study reveals the presence of a novel SLC6A8 splice variant, SLC6A8C in human and mouse.
Collapse
|
30
|
Celik L, Sinning S, Severinsen K, Hansen CG, Møller MS, Bols M, Wiborg O, Schiøtt B. Binding of serotonin to the human serotonin transporter. Molecular modeling and experimental validation. J Am Chem Soc 2008; 130:3853-65. [PMID: 18314975 DOI: 10.1021/ja076403h] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular modeling and structure-activity relationship studies were performed to propose a model for binding of the neurotransmitter serotonin (5-HT) to the human serotonin transporter (hSERT). Homology models were constructed using the crystal structure of a bacterial homologue, the leucine transporter from Aquifex aeolicus, as the template and three slightly different sequence alignments. Induced fit docking of 5-HT into hSERT homology models resulted in two different binding modes. Both show a salt bridge between Asp98 and the charged primary amine of 5-HT, and both have the 5-HT C6 position of the indole ring pointing toward Ala173. The difference between the two orientations of 5-HT is an enantiofacial discrimination of the indole ring, resulting in the 5-hydroxyl group of 5-HT being vicinal to either Ser438/Thr439 or Ala169/Ile172/Ala173. To assess the binding experimentally, binding affinities for 5-HT and 17 analogues toward wild type and 13 single point mutants of hSERT were measured using an approach termed paired mutant-ligand analogue complementation (PaMLAC). The proposed ligand-protein interaction was systematically examined by disrupting it through site-directed mutagenesis and re-establishing another interaction via a ligand analogue matching the mutated residue, thereby minimizing the risk of identifying indirect effects. The interactions between Asp98 and the primary amine of 5-HT and the interaction between the C6-position of 5-HT and hSERT position 173 was confirmed using PaMLAC. The measured binding affinities of various mutants and 5-HT analogues allowed for a distinction between the two proposed binding modes of 5-HT and biochemically support the model for 5-HT binding in hSERT where the 5-hydroxyl group is in close proximity to Thr439.
Collapse
Affiliation(s)
- Leyla Celik
- The iNANO and inSPIN Centers, the Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Murphy DL, Lesch KP. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 2008; 9:85-96. [DOI: 10.1038/nrn2284] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Palló A, Bencsura Á, Héja L, Beke T, Perczel A, Kardos J, Simon Á. Major human γ-aminobutyrate transporter: In silico prediction of substrate efficacy. Biochem Biophys Res Commun 2007; 364:952-8. [DOI: 10.1016/j.bbrc.2007.10.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 11/24/2022]
|
33
|
Mason JN, Deecher DC, Richmond RL, Stack G, Mahaney PE, Trybulski E, Winneker RC, Blakely RD. Desvenlafaxine succinate identifies novel antagonist binding determinants in the human norepinephrine transporter. J Pharmacol Exp Ther 2007; 323:720-9. [PMID: 17673606 DOI: 10.1124/jpet.107.125716] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Desvenlafaxine succinate (DVS) is a recently introduced antagonist of the human norepinephrine and serotonin transporters (hNET and hSERT, respectively), currently in clinical development for use in the treatment of major depressive disorder and vasomotor symptoms associated with menopause. Initial evaluation of the pharmacological properties of DVS (J Pharmacol Exp Ther 318:657-665, 2006) revealed significantly reduced potency for the hNET expressed in membranes compared with whole cells when competing for [(3)H]nisoxetine (NIS) binding. Using hNET in transfected human embryonic kidney-293 cells, this difference in potency for DVS at sites labeled by [(3)H]NIS was found to distinguish DVS, the DVS analog rac-(1-[1-(3-chloro-phenyl)-2-(4-methylpiperazin-1-yl)-ethyl]cyclohexanol (WY-46824), methylphenidate, and the cocaine analog 3beta-(4-iodophenyl)tropane-2beta-carboxylic acid methyl ester (RTI-55) from other hNET antagonists, such as NIS, mazindol, tricyclic antidepressants, and cocaine. These differences seem not to arise from preparation-specific perturbations of ligand intrinsic affinity or antagonist-specific surface trafficking but rather from protein conformational alterations that perturb the relationships between distinct hNET binding sites. In an initial search for molecular features that differentially define antagonist binding determinants, we document that Val148 in hNET transmembrane domain 3 selectively disrupts NIS binding but not that of DVS.
Collapse
Affiliation(s)
- John N Mason
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Creatine and phosphocreatine provide an intracellular, high-energy phosphate buffering system, essential to maintain ATP levels in tissues with high energy demands. A specific plasma membrane creatine transporter (CRT) is required for the cellular uptake of creatine. This transporter is related to the gamma-aminobutyric acid (GAT) and norepinephrine (NET) transporters and is part of a large gene family of Na(+) - and Cl(-) -dependent neurotransmitter transporters, now known as solute carrier family 6 (SLC6). CRT is essential for normal brain function as mutations in the CRT gene (SLC6A8) result in X-linked mental retardation, associated with the almost complete lack of creatine in the brain, severe speech and language delay, epilepsy, and autistic behaviour. Insight into the structure and function of the CRT has come from studies of creatine transport by tissues and cells, in vitro studies of CRT mutations, identification of mutations associated with CRT deficiency, and from the recent high resolution structure of a prokaryotic homologue of the SLC6 transporters. CRT antibodies have been developed enabling the localization of creatine uptake sites in the brain, retina, muscle and other tissues. These tools in conjunction with the use of appropriate cell models should allow further progress in our knowledge on the regulation and cellular trafficking of the CRT. Development of suitable mouse models may allow improved understanding of the importance of the CRT for normal brain function and how the transporter is regulated in vivo.
Collapse
Affiliation(s)
- David L Christie
- Molecular, Cell and Developmental Biology Section, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
35
|
Jørgensen AM, Tagmose L, Jørgensen AMM, Topiol S, Sabio M, Gundertofte K, Bøgesø KP, Peters GH. Homology Modeling of the Serotonin Transporter: Insights into the Primary Escitalopram-binding Site. ChemMedChem 2007; 2:815-26. [PMID: 17405130 DOI: 10.1002/cmdc.200600242] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The serotonin transporter (SERT) is one of the neurotransmitter transporters that plays a critical role in the regulation of endogenous amine concentrations and therefore is an important target for therapeutic agents affecting the central nervous system. The recently published, high resolution X-ray structure of the closely related amino acid transporter, Aquifex aeolicus leucine transporter (LeuT), provides an opportunity to develop a three-dimensional model of the structure of SERT. We present herein a homology model of SERT using LeuT as the template and containing escitalopram as a bound ligand. Our model explains selectivities known from mutational studies and varying ligand data, which are discussed and illustrated in the paper.
Collapse
Affiliation(s)
- Anne Marie Jørgensen
- MEMPHYS-Center for Biomembrane Physics, Department of Chemistry, Technical University of Denmark, Building 206, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dodd JR, Christie DL. Selective Amino Acid Substitutions Convert the Creatine Transporter to a γ-Aminobutyric Acid Transporter. J Biol Chem 2007; 282:15528-33. [PMID: 17400549 DOI: 10.1074/jbc.m611705200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The creatine transporter (CRT) is a member of a large family of sodium-dependent neurotransmitter and amino acid transporters. The CRT is closely related to the gamma-aminobutyric acid (GABA) transporter, GAT-1, yet GABA is not an effective substrate for the CRT. The high resolution structure of a prokaryotic homologue, LeuT has revealed precise details of the substrate binding site for leucine (Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005) Nature 437, 215-223). We have now designed mutations based on sequence comparisons of the CRT with GABA transporters and the LeuT structural template in an attempt to alter the substrate specificity of the CRT. Combinations of two or three amino acid substitutions at four selected positions resulted in the loss of creatine transport activity and gain of a specific GABA transport function. GABA transport by the "gain of function" mutants was sensitive to nipecotic acid, a competitive inhibitor of GABA transporters. Our results show LeuT to be a good structural model to identify amino acid residues involved in the substrate and inhibitor selectivity of eukaryotic sodium-dependent neurotransmitter and amino acid transporters. However, modification of the binding site alone appears to be insufficient for efficient substrate translocation. Additional residues must mediate the conformational changes required for the diffusion of substrate from the binding site to the cytoplasm.
Collapse
Affiliation(s)
- Joanna R Dodd
- Molecular, Cellular, and Developmental Biology Section, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | | |
Collapse
|
37
|
Patocka N, Ribeiro P. Characterization of a serotonin transporter in the parasitic flatworm, Schistosoma mansoni: cloning, expression and functional analysis. Mol Biochem Parasitol 2007; 154:125-33. [PMID: 17582522 DOI: 10.1016/j.molbiopara.2007.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 03/14/2007] [Accepted: 03/19/2007] [Indexed: 11/23/2022]
Abstract
The biogenic amine serotonin (5-hydroxytryptamine: 5HT) is a widely distributed neuroactive substance of vertebrates and invertebrates. Among parasitic flatworms, in particularly the bloodfluke, Schistosoma mansoni, 5HT is an important modulator of neuromuscular function and metabolism. Previous work has shown that schistosomes take up 5HT from host blood via a carrier mediated mechanism. This transport is thought to contribute to the control of schistosome motility in the bloodstream and is essential for survival of the parasite. Here we provide the first molecular evidence for the existence of a 5HT transporter in S. mansoni. A cDNA showing high homology with plasma membrane serotonin transporters (SERT) from other species was cloned and characterized by heterologous expression in cultured HEK293 cells. Functional studies showed that the recombinant schistosome transporter (SmSERT) mediates specific and saturable [(3)H]-5HT transport with a K(t)=1.30+/-0.05 microM. The heterologously expressed protein was inhibited by classic SERT blockers (clomipramine, fluoxetine, citalopram) and the same drugs also inhibited [(3)H]-5HT uptake by intact schistosomula in culture, suggesting that SmSERT may be responsible for this transport. Conventional (end-point) and real-time quantitative RT-PCR analyses determined that SmSERT is expressed both in the free-living stage (cercaria) and parasitic forms of S. mansoni but the expression level is significantly higher in the parasites. These results suggest that SmSERT is upregulated following cercarial transformation, possibly to mediate the recruitment of exogenous 5HT from the host.
Collapse
Affiliation(s)
- Nicholas Patocka
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | | |
Collapse
|
38
|
Abstract
This review investigates some key aspects of transport mechanisms and recent advances in our understanding of this ubiquitous cellular process. The prevailing model of cotransport is the alternating access model, which suggests that large conformational changes in the transporter protein accompany cotransport. This model rests on decades of research and has received substantial support because many transporter characteristics are explained using its premises. New experiments, however, have revealed the existence of channels in transporters, an idea that is in conflict with traditional models. The alternating access model is the subject of previous detailed reviews. Here we concentrate on the relatively recent data that document primarily the channel properties of transporters. In some cases, namely, the observation of single-transporter currents, the evidence is direct. In other cases the evidence--for example, from fluctuation analysis or transporter currents too large to be described as anything other than channel-like--is indirect. Although the existence of channels in transporters is not in doubt, we are far from understanding the significance of this property. In the online Supplemental Material , we review some pertinent aspects of ion channel theory and cotransport physiology to provide background for the channels and transporters presented here. We discuss the existence of channels in transporters, and we speculate on the biological significance of this newly unveiled property of transport proteins.
Collapse
Affiliation(s)
- Louis J DeFelice
- Department of Pharmacology and Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
39
|
Beuming T, Shi L, Javitch JA, Weinstein H. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol Pharmacol 2006; 70:1630-42. [PMID: 16880288 DOI: 10.1124/mol.106.026120] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recently elucidated crystal structure of a prokaryotic member of the neurotransmitter/sodium symporter (NSS) family (Yamashita et al., 2005) is a major advance toward understanding structure-function relationships in this important class of transporters. To aid in the generalization of these results, we present here a comprehensive sequence alignment of all known prokaryotic and eukaryotic NSS proteins, based on the crystal structure of the leucine transporter from Aquifex aeolicus (LeuT). Regions of low sequence identity between prokaryotic and eukaryotic transporters were aligned with the aid of a number of bioinformatics tools, and the resulting alignments were validated by comparison with experimental data. In a number of regions, including the transmembrane segments 4, 5, and 9 as well as extracellular loops 2, 3, and 4, our alignment differs from the one proposed previously [Nature (Lond) 437: 215-223, 2005]. Important similarities and differences among the sequences of NSS proteins in regions likely to determine selectivity in substrate binding and mechanisms of transport regulation are discussed in the context of the LeuT structure and the alignment.
Collapse
Affiliation(s)
- Thijs Beuming
- Department of Physiology and Biophysics, and HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|