1
|
Mora N, Slot EJ, Lewandowski V, Menafra M, Mallik M, van Lith P, Sijlmans C, van Bakel N, Ignatova Z, Storkebaum E. Glycyl-tRNA sequestration is a unifying mechanism underlying GARS1-associated peripheral neuropathy. Nucleic Acids Res 2025; 53:gkaf201. [PMID: 40119731 PMCID: PMC11928938 DOI: 10.1093/nar/gkaf201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Dominantly inherited mutations in eight cytosolic aminoacyl-tRNA synthetase genes cause hereditary motor and sensory neuropathy, characterized by degeneration of peripheral motor and sensory axons. We previously identified a pathogenic gain-of-toxic function mechanism underlying peripheral neuropathy (PN) caused by heterozygous mutations in the GARS1 gene, encoding glycyl-tRNA synthetase (GlyRS). Specifically, PN-mutant GlyRS variants sequester tRNAGly, which depletes the cellular tRNAGly pool, leading to insufficient glycyl-tRNAGly available to the ribosome and consequently ribosome stalling at glycine codons. Given that GlyRS functions as a homodimer, a subset of PN-GlyRS mutations might alternatively cause peripheral neuropathy through a dominant negative loss-of-function mechanism. To explore this possibility, we here generated three novel PN-GlyRS Drosophila models expressing human PN-GlyRS (hGlyRS) variants that do not alter the overall GlyRS protein charge (S211F and H418R) or the single reported PN-GlyRS variant that renders the GlyRS protein charge more negative (K456Q). High-level expression of hGlyRS-K456Q did not induce peripheral neuropathy and the K456Q variant does not affect aminoacylation activity, suggesting that K456Q is not a pathogenic mutation. Expression of hGlyRS-S211F or hGlyRS-H418R in Drosophila did induce peripheral neuropathy and de novo protein synthesis defects. Genetic and biochemical evidence indicates that these phenotypes were attributable to tRNAGly sequestration rather than a dominant negative mechanism. Our data identify tRNAGly sequestration as a unifying pathogenic mechanism underlying PN-GlyRS. Thus, elevating tRNAGly levels may constitute a therapeutic approach for all PN-GlyRS patients, irrespective of their disease-causing mutation.
Collapse
Affiliation(s)
- Natalia Mora
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Erik F J Slot
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Vanessa Lewandowski
- Department of Biochemistry and Molecular Biology, Hamburg University, 20146 Hamburg, Germany
| | - Maria P Menafra
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Pascal van Lith
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Céline Sijlmans
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Nick van Bakel
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Zoya Ignatova
- Department of Biochemistry and Molecular Biology, Hamburg University, 20146 Hamburg, Germany
| | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| |
Collapse
|
2
|
Simoes FA, Christoforidou E, Cassel R, Dupuis L, Hafezparast M. Severe dynein dysfunction in cholinergic neurons exacerbates ALS-like phenotypes in a new mouse model. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167540. [PMID: 39428001 DOI: 10.1016/j.bbadis.2024.167540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Cytoplasmic dynein 1, a motor protein essential for retrograde axonal transport, is increasingly implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). In this study, we developed a novel mouse model that combines the Legs at odd angles (Loa, F580Y) point mutation in the dynein heavy chain with a cholinergic neuron-specific knockout of the dynein heavy chain. This model, for the first time, allows us to investigate the impact of Loa allele exclusivity in these neurons into adulthood. Our findings reveal that this selective increase in dynein dysfunction exacerbated the phenotypes observed in heterozygous Loa mice including pre-wean survival, reduced body weight and grip strength. Additionally, it induced ALS-like pathology in neuromuscular junctions (NMJs) not seen in heterozygous Loa mice. Notably, we also found a previously unobserved significant increase in neurons displaying TDP-43 puncta in both Loa mutants, suggesting early TDP-43 mislocalisation - a hallmark of ALS. The novel model also exhibited a concurrent rise in p62 puncta that did not co-localise with TDP-43, indicating broader impairments in autophagic clearance mechanisms. Overall, this new model underscores the fact that dynein impairment alone can induce ALS-like pathology and provides a valuable platform to further explore the role of dynein in ALS.
Collapse
Affiliation(s)
- Fabio A Simoes
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Eleni Christoforidou
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | | - Luc Dupuis
- University of Strasbourg, INSERM, UMR-S1329, Strasbourg, France
| | - Majid Hafezparast
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
3
|
Zhang H, Ling J. Aminoacyl-tRNA synthetase defects in neurological diseases. IUBMB Life 2025; 77:e2924. [PMID: 39487674 PMCID: PMC11611227 DOI: 10.1002/iub.2924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes to support protein synthesis in all organisms. Recent studies, empowered by advancements in genome sequencing, have uncovered an increasing number of disease-causing mutations in aaRSs. Monoallelic aaRS mutations typically lead to dominant peripheral neuropathies such as Charcot-Marie-Tooth (CMT) disease, whereas biallelic aaRS mutations often impair the central nervous system (CNS) and cause neurodevelopmental disorders. Here, we review recent progress in the disease onsets, molecular basis, and potential therapies for diseases caused by aaRS mutations, with a focus on biallelic mutations in cytoplasmic aaRSs.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMarylandUSA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMarylandUSA
| |
Collapse
|
4
|
Ozes B, Tong L, Moss K, Myers M, Morrison L, Attia Z, Sahenk Z. AAV1.tMCK.NT-3 gene therapy improves phenotype in Sh3tc2-/- mouse model of Charcot-Marie-Tooth Type 4C. Brain Commun 2024; 6:fcae394. [PMID: 39544702 PMCID: PMC11562120 DOI: 10.1093/braincomms/fcae394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/27/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Charcot-Marie-Tooth Type 4C (CMT4C) is associated with mutations in the SH3 domain and tetratricopeptide repeats 2 (SH3TC2) gene, primarily expressed in Schwann cells (SCs). Neurotrophin-3 (NT-3) is an important autocrine factor for SC survival and differentiation, and it stimulates neurite outgrowth and myelination. In this study, scAAV1.tMCK.NT-3 was delivered intramuscularly to 4-week-old Sh3tc2-/- mice, a model for CMT4C, and treatment efficacy was assessed at 6-month post-gene delivery. Efficient transgene production was verified with the detection of NT-3 in serum from the treated cohort. NT-3 gene therapy improved functional and electrophysiological outcomes including rotarod, grip strength and nerve conduction velocity. Qualitative and quantitative histopathological studies showed that hypomyelination of peripheral nerves and denervated status of neuromuscular junctions at lumbrical muscles were also improved in the NT-3-treated mice. Morphometric analysis in mid-sciatic and tibial nerves showed treatment-induced distally prominent regenerative activity in the nerve and an increase in the estimated SC density. This indicates that SC proliferation and differentiation, including the promyelination stage, are normal in the Sh3tc2-/- mice, consistent with the previous findings that Sh3tc2 is not involved in the early stages of myelination. Moreover, in size distribution histograms, the number of myelinated axons within the 3- to 6-µm diameter range increased, suggesting that treatment resulted in continuous radial growth of regenerating axons over time. In conclusion, this study demonstrates the efficacy of AAV1.NT-3 gene therapy in the Sh3tc2-/- mouse model of CMT4C, the most common recessively inherited demyelinating CMT subtype.
Collapse
Affiliation(s)
- Burcak Ozes
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lingying Tong
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kyle Moss
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Morgan Myers
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lilye Morrison
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Zayed Attia
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Zarife Sahenk
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
5
|
Meyer-Schuman R, Cale AR, Pierluissi JA, Jonatzke KE, Park YN, Lenk GM, Oprescu SN, Grachtchouk MA, Dlugosz AA, Beg AA, Meisler MH, Antonellis A. A model organism pipeline provides insight into the clinical heterogeneity of TARS1 loss-of-function variants. HGG ADVANCES 2024; 5:100324. [PMID: 38956874 PMCID: PMC11284558 DOI: 10.1016/j.xhgg.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes that complete the first step of protein translation: ligation of amino acids to cognate tRNAs. Genes encoding ARSs have been implicated in myriad dominant and recessive phenotypes, the latter often affecting multiple tissues but with frequent involvement of the central and peripheral nervous systems, liver, and lungs. Threonyl-tRNA synthetase (TARS1) encodes the enzyme that ligates threonine to tRNATHR in the cytoplasm. To date, TARS1 variants have been implicated in a recessive brittle hair phenotype. To better understand TARS1-related recessive phenotypes, we engineered three TARS1 missense variants at conserved residues and studied these variants in Saccharomyces cerevisiae and Caenorhabditis elegans models. This revealed two loss-of-function variants, including one hypomorphic allele (R433H). We next used R433H to study the effects of partial loss of TARS1 function in a compound heterozygous mouse model (R432H/null). This model presents with phenotypes reminiscent of patients with TARS1 variants and with distinct lung and skin defects. This study expands the potential clinical heterogeneity of TARS1-related recessive disease, which should guide future clinical and genetic evaluations of patient populations.
Collapse
Affiliation(s)
| | - Allison R Cale
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Kira E Jonatzke
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Young N Park
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Asim A Beg
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
7
|
Tadenev ALD, Hatton CL, Burgess RW. Lack of effect from genetic deletion of Hdac6 in a humanized mouse model of CMT2D. J Peripher Nerv Syst 2024; 29:213-220. [PMID: 38551018 PMCID: PMC11209801 DOI: 10.1111/jns.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Inhibition of HDAC6 has been proposed as a broadly applicable therapeutic strategy for Charcot-Marie-Tooth disease (CMT). Inhibition of HDAC6 increases the acetylation of proteins important in axonal trafficking, such as α-tubulin and Miro, and has been shown to be efficacious in several preclinical studies using mouse models of CMT. AIMS Here, we sought to expand on previous preclinical studies by testing the effect of genetic deletion of Hdac6 on mice carrying a humanized knockin allele of Gars1, a model of CMT-type 2D. METHODS Gars1ΔETAQ mice were bred to an Hdac6 knockout strain, and the resulting offspring were evaluated for clinically relevant outcomes. RESULTS The genetic deletion of Hdac6 increased α-tubulin acetylation in the sciatic nerves of both wild-type and Gars1ΔETAQ mice. However, when tested at 5 weeks of age, the Gars1ΔETAQ mice lacking Hdac6 showed no changes in body weight, muscle atrophy, grip strength or endurance, sciatic motor nerve conduction velocity, compound muscle action potential amplitude, or peripheral nerve histopathology compared to Gars1ΔETAQ mice with intact Hdac6. INTERPRETATION Our results differ from those of two previous studies that demonstrated the benefit of the HDAC6 inhibitor tubastatin A in mouse models of CMT2D. While we cannot fully explain the different outcomes, our results offer a counterexample to the benefit of inhibiting HDAC6 in CMT2D, suggesting additional research is necessary.
Collapse
|
8
|
Rhymes ER, Simkin RL, Qu J, Villarroel-Campos D, Surana S, Tong Y, Shapiro R, Burgess RW, Yang XL, Schiavo G, Sleigh JN. Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy. Neurobiol Dis 2024; 195:106501. [PMID: 38583640 PMCID: PMC11998923 DOI: 10.1016/j.nbd.2024.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Collapse
Affiliation(s)
- Elena R Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca L Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ji Qu
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK.
| |
Collapse
|
9
|
Abati E, Rizzuti M, Anastasia A, Comi GP, Corti S, Rizzo F. Charcot-Marie-Tooth type 2A in vivo models: Current updates. J Cell Mol Med 2024; 28:e18293. [PMID: 38722298 PMCID: PMC11081012 DOI: 10.1111/jcmm.18293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Charcot-Marie-Tooth type 2A (CMT2A) is an inherited sensorimotor neuropathy associated with mutations within the Mitofusin 2 (MFN2) gene. These mutations impair normal mitochondrial functioning via different mechanisms, disturbing the equilibrium between mitochondrial fusion and fission, of mitophagy and mitochondrial axonal transport. Although CMT2A disease causes a significant disability, no resolutive treatment for CMT2A patients to date. In this context, reliable experimental models are essential to precisely dissect the molecular mechanisms of disease and to devise effective therapeutic strategies. The most commonly used models are either in vitro or in vivo, and among the latter murine models are by far the most versatile and popular. Here, we critically revised the most relevant literature focused on the experimental models, providing an update on the mammalian models of CMT2A developed to date. We highlighted the different phenotypic, histopathological and molecular characteristics, and their use in translational studies for bringing potential therapies from the bench to the bedside. In addition, we discussed limitations of these models and perspectives for future improvement.
Collapse
Affiliation(s)
- Elena Abati
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversità degli Studi di MilanoMilanItaly
| | - Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Alessia Anastasia
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversità degli Studi di MilanoMilanItaly
| | - Stefania Corti
- Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversità degli Studi di MilanoMilanItaly
- Neuromuscular and Rare Diseases Unit, Department of NeuroscienceFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Federica Rizzo
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
10
|
Meyer-Schuman R, Cale AR, Pierluissi JA, Jonatzke KE, Park YN, Lenk GM, Oprescu SN, Grachtchouk MA, Dlugosz AA, Beg AA, Meisler MH, Antonellis A. Predictive modeling provides insight into the clinical heterogeneity associated with TARS1 loss-of-function mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586600. [PMID: 38585737 PMCID: PMC10996635 DOI: 10.1101/2024.03.25.586600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes that complete the first step of protein translation: ligation of amino acids to cognate tRNAs. Genes encoding ARSs have been implicated in myriad dominant and recessive phenotypes, the latter often affecting multiple tissues but with frequent involvement of the central and peripheral nervous system, liver, and lungs. Threonyl-tRNA synthetase (TARS1) encodes the enzyme that ligates threonine to tRNATHR in the cytoplasm. To date, TARS1 variants have been implicated in a recessive brittle hair phenotype. To better understand TARS1-related recessive phenotypes, we engineered three TARS1 missense mutations predicted to cause a loss-of-function effect and studied these variants in yeast and worm models. This revealed two loss-of-function mutations, including one hypomorphic allele (R433H). We next used R433H to study the effects of partial loss of TARS1 function in a compound heterozygous mouse model (R433H/null). This model presents with phenotypes reminiscent of patients with TARS1 variants and with distinct lung and skin defects. This study expands the potential clinical heterogeneity of TARS1-related recessive disease, which should guide future clinical and genetic evaluations of patient populations.
Collapse
Affiliation(s)
| | - Allison R. Cale
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Kira E. Jonatzke
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Young N. Park
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Guy M. Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Andrzej A. Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Asim A. Beg
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Rhymes ER, Simkin RL, Qu J, Villarroel-Campos D, Surana S, Tong Y, Shapiro R, Burgess RW, Yang XL, Schiavo G, Sleigh JN. Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.09.536152. [PMID: 38559020 PMCID: PMC10979848 DOI: 10.1101/2023.04.09.536152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Collapse
Affiliation(s)
- Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca L. Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ji Qu
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| |
Collapse
|
12
|
Beijer D, Marte S, Li JC, De Ridder W, Chen JZ, Tadenev ALD, Miers KE, Deconinck T, Macdonell R, Marques W, De Jonghe P, Pratt SL, Meyer-Schuman R, Züchner S, Antonellis A, Burgess RW, Baets J. Dominant NARS1 mutations causing axonal Charcot-Marie-Tooth disease expand NARS1-associated diseases. Brain Commun 2024; 6:fcae070. [PMID: 38495304 PMCID: PMC10943570 DOI: 10.1093/braincomms/fcae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Pathogenic variants in six aminoacyl-tRNA synthetase (ARS) genes are implicated in neurological disorders, most notably inherited peripheral neuropathies. ARSs are enzymes that charge tRNA molecules with cognate amino acids. Pathogenic variants in asparaginyl-tRNA synthetase (NARS1) cause a neurological phenotype combining developmental delay, ataxia and demyelinating peripheral neuropathy. NARS1 has not yet been linked to axonal Charcot-Marie-Tooth disease. Exome sequencing of patients with inherited peripheral neuropathies revealed three previously unreported heterozygous NARS1 variants in three families. Clinical and electrophysiological details were assessed. We further characterized all three variants in a yeast complementation model and used a knock-in mouse model to study variant p.Ser461Phe. All three variants (p.Met236del, p.Cys342Tyr and p.Ser461Phe) co-segregate with the sensorimotor axonal neuropathy phenotype. Yeast complementation assays show that none of the three NARS1 variants support wild-type yeast growth when tested in isolation (i.e. in the absence of a wild-type copy of NARS1), consistent with a loss-of-function effect. Similarly, the homozygous knock-in mouse model (p.Ser461Phe/Ser472Phe in mouse) also demonstrated loss-of-function characteristics. We present three previously unreported NARS1 variants segregating with a sensorimotor neuropathy phenotype in three families. Functional studies in yeast and mouse support variant pathogenicity. Thus, NARS1 is the seventh ARS implicated in dominant axonal Charcot-Marie-Tooth disease, further stressing that all dimeric ARSs should be evaluated for Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, B-2610, Belgium
- Department for Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Sheila Marte
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jiaxin C Li
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Willem De Ridder
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, B-2610, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, B-2610, Belgium
| | - Jessie Z Chen
- Department of Neurology, Austin Health, Melbourne, VIC 3084, Australia
| | | | | | - Tine Deconinck
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, B-2650, Belgium
| | - Richard Macdonell
- Department of Neurology, Austin Health, Melbourne, VIC 3084, Australia
| | - Wilson Marques
- Department of Neurosciences and Behavior Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, SP, 14051-140, Brazil
| | - Peter De Jonghe
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, B-2610, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, B-2610, Belgium
| | - Samia L Pratt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | | | - Stephan Züchner
- Department for Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, B-2610, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, B-2610, Belgium
| |
Collapse
|
13
|
Morant L, Petrovic-Erfurth ML, Jordanova A. An Adapted GeneSwitch Toolkit for Comparable Cellular and Animal Models: A Proof of Concept in Modeling Charcot-Marie-Tooth Neuropathy. Int J Mol Sci 2023; 24:16138. [PMID: 38003325 PMCID: PMC10670994 DOI: 10.3390/ijms242216138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Investigating the impact of disease-causing mutations, their affected pathways, and/or potential therapeutic strategies using disease modeling often requires the generation of different in vivo and in cellulo models. To date, several approaches have been established to induce transgene expression in a controlled manner in different model systems. Several rounds of subcloning are, however, required, depending on the model organism used, thus bringing labor-intensive experiments into the technical approach and analysis comparison. The GeneSwitch™ technology is an adapted version of the classical UAS-GAL4 inducible system, allowing the spatial and temporal modulation of transgene expression. It consists of three components: a plasmid encoding for the chimeric regulatory pSwitch protein, Mifepristone as an inducer, and an inducible plasmid. While the pSwitch-containing first plasmid can be used both in vivo and in cellulo, the inducible second plasmid can only be used in cellulo. This requires a specific subcloning strategy of the inducible plasmid tailored to the model organism used. To avoid this step and unify gene expression in the transgenic models generated, we replaced the backbone vector with standard pUAS-attB plasmid for both plasmids containing either the chimeric GeneSwitch™ cDNA sequence or the transgene cDNA sequence. We optimized this adapted system to regulate transgene expression in several mammalian cell lines. Moreover, we took advantage of this new system to generate unified cellular and fruit fly models for YARS1-induced Charco-Marie-Tooth neuropathy (CMT). These new models displayed the expected CMT-like phenotypes. In the N2a neuroblastoma cells expressing YARS1 transgenes, we observed the typical "teardrop" distribution of the synthetase that was perturbed when expressing the YARS1CMT mutation. In flies, the ubiquitous expression of YARS1CMT induced dose-dependent developmental lethality and pan-neuronal expression caused locomotor deficit, while expression of the wild-type allele was harmless. Our proof-of-concept disease modeling studies support the efficacy of the adapted transgenesis system as a powerful tool allowing the design of studies with optimal data comparability.
Collapse
Affiliation(s)
- Laura Morant
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Maria-Luise Petrovic-Erfurth
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Albena Jordanova
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
14
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
15
|
Navarro-Martínez A, Vicente-García C, Carvajal JJ. NMJ-related diseases beyond the congenital myasthenic syndromes. Front Cell Dev Biol 2023; 11:1216726. [PMID: 37601107 PMCID: PMC10436495 DOI: 10.3389/fcell.2023.1216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Neuromuscular junctions (NMJs) are a special type of chemical synapse that transmits electrical stimuli from motor neurons (MNs) to their innervating skeletal muscle to induce a motor response. They are an ideal model for the study of synapses, given their manageable size and easy accessibility. Alterations in their morphology or function lead to neuromuscular disorders, such as the congenital myasthenic syndromes, which are caused by mutations in proteins located in the NMJ. In this review, we highlight novel potential candidate genes that may cause or modify NMJs-related pathologies in humans by exploring the phenotypes of hundreds of mouse models available in the literature. We also underscore the fact that NMJs may differ between species, muscles or even sexes. Hence the importance of choosing a good model organism for the study of NMJ-related diseases: only taking into account the specific features of the mammalian NMJ, experimental results would be efficiently translated to the clinic.
Collapse
Affiliation(s)
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, Spain
| | | |
Collapse
|
16
|
Liu H, Tang M, Yu H, Liu T, Cui Q, Gu L, Wu ZY, Sheng N, Yang XL, Zeng L, Bai G. CMT2D neuropathy is influenced by vitamin D-mediated environmental pathway. J Mol Cell Biol 2023; 15:mjad029. [PMID: 37118880 PMCID: PMC10612142 DOI: 10.1093/jmcb/mjad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/15/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023] Open
Affiliation(s)
- Huaqing Liu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Mingmin Tang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain–Machine Integration, State Key Laboratory of Brain–Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Hualin Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Tongfei Liu
- The Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Qinqin Cui
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain–Machine Integration, State Key Laboratory of Brain–Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Linfan Gu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhi-Ying Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Ge Bai
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain–Machine Integration, State Key Laboratory of Brain–Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| |
Collapse
|
17
|
Meyer-Schuman R, Marte S, Smith TJ, Feely SME, Kennerson M, Nicholson G, Shy ME, Koutmou KS, Antonellis A. A humanized yeast model reveals dominant-negative properties of neuropathy-associated alanyl-tRNA synthetase mutations. Hum Mol Genet 2023; 32:2177-2191. [PMID: 37010095 PMCID: PMC10281750 DOI: 10.1093/hmg/ddad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate tRNA molecules to cognate amino acids. Heterozygosity for missense variants or small in-frame deletions in six ARS genes causes dominant axonal peripheral neuropathy. These pathogenic variants reduce enzyme activity without significantly decreasing protein levels and reside in genes encoding homo-dimeric enzymes. These observations raise the possibility that neuropathy-associated ARS variants exert a dominant-negative effect, reducing overall ARS activity below a threshold required for peripheral nerve function. To test such variants for dominant-negative properties, we developed a humanized yeast assay to co-express pathogenic human alanyl-tRNA synthetase (AARS1) mutations with wild-type human AARS1. We show that multiple loss-of-function AARS1 mutations impair yeast growth through an interaction with wild-type AARS1, but that reducing this interaction rescues yeast growth. This suggests that neuropathy-associated AARS1 variants exert a dominant-negative effect, which supports a common, loss-of-function mechanism for ARS-mediated dominant peripheral neuropathy.
Collapse
Affiliation(s)
- Rebecca Meyer-Schuman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sheila Marte
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tyler J Smith
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shawna M E Feely
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Garth Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Mike E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Jourdain J, Barasc H, Faraut T, Calgaro A, Bonnet N, Marcuzzo C, Suin A, Barbat A, Hozé C, Besnard F, Taussat S, Grohs C, Kuchly C, Iampietro C, Donnadieu C, Pinton A, Boichard D, Capitan A. Large-scale detection and characterization of interchromosomal rearrangements in normozoospermic bulls using massive genotype and phenotype data sets. Genome Res 2023; 33:957-971. [PMID: 37414574 PMCID: PMC10519396 DOI: 10.1101/gr.277787.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/19/2023] [Indexed: 07/08/2023]
Abstract
In this paper, we developed a highly sensitive approach to detect interchromosomal rearrangements in cattle by searching for abnormal linkage disequilibrium patterns between markers located on different chromosomes in large paternal half-sib families genotyped as part of routine genomic evaluations. We screened 5571 families of artificial insemination sires from 15 breeds and revealed 13 putative interchromosomal rearrangements, 12 of which were validated by cytogenetic analysis and long-read sequencing. These consisted of one Robertsonian fusion, 10 reciprocal translocations, and the first case of insertional translocation reported in cattle. Taking advantage of the wealth of data available in cattle, we performed a series of complementary analyses to define the exact nature of these rearrangements, investigate their origins, and search for factors that may have favored their occurrence. We also evaluated the risks to the livestock industry and showed significant negative effects on several traits in the sires and in their balanced or aneuploid progeny compared with wild-type controls. Thus, we present the most comprehensive and thorough screen for interchromosomal rearrangements compatible with normal spermatogenesis in livestock species. This approach is readily applicable to any population that benefits from large genotype data sets, and will have direct applications in animal breeding. Finally, it also offers interesting prospects for basic research by allowing the detection of smaller and rarer types of chromosomal rearrangements than GTG banding, which are interesting models for studying gene regulation and the organization of genome structure.
Collapse
Affiliation(s)
- Jeanlin Jourdain
- Eliance, 75012 Paris, France;
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Harmonie Barasc
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Anne Calgaro
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Nathalie Bonnet
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Camille Marcuzzo
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Amandine Suin
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Anne Barbat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Chris Hozé
- Eliance, 75012 Paris, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Florian Besnard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
- Idele, 75012 Paris, France
| | - Sébastien Taussat
- Eliance, 75012 Paris, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Cécile Grohs
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Carole Iampietro
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Cécile Donnadieu
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Alain Pinton
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Aurélien Capitan
- Eliance, 75012 Paris, France;
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| |
Collapse
|
19
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Dominant aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182845. [PMID: 37274211 PMCID: PMC10234151 DOI: 10.3389/fnins.2023.1182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Recessive aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182874. [PMID: 37274208 PMCID: PMC10234152 DOI: 10.3389/fnins.2023.1182874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Protein synthesis is a fundamental process that underpins almost every aspect of cellular functioning. Intriguingly, despite their common function, recessive mutations in aminoacyl-tRNA synthetases (ARSs), the family of enzymes that pair tRNA molecules with amino acids prior to translation on the ribosome, cause a diverse range of multi-system disorders that affect specific groups of tissues. Neurological development is impaired in most ARS-associated disorders. In addition to central nervous system defects, diseases caused by recessive mutations in cytosolic ARSs commonly affect the liver and lungs. Patients with biallelic mutations in mitochondrial ARSs often present with encephalopathies, with variable involvement of peripheral systems. Many of these disorders cause severe disability, and as understanding of their pathogenesis is currently limited, there are no effective treatments available. To address this, accurate in vivo models for most of the recessive ARS diseases are urgently needed. Here, we discuss approaches that have been taken to model recessive ARS diseases in vivo, highlighting some of the challenges that have arisen in this process, as well as key results obtained from these models. Further development and refinement of animal models is essential to facilitate a better understanding of the pathophysiology underlying recessive ARS diseases, and ultimately to enable development and testing of effective therapies.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
21
|
Cui H, Diedrich JK, Wu DC, Lim JJ, Nottingham RM, Moresco JJ, Yates JR, Blencowe BJ, Lambowitz AM, Schimmel P. Arg-tRNA synthetase links inflammatory metabolism to RNA splicing and nuclear trafficking via SRRM2. Nat Cell Biol 2023; 25:592-603. [PMID: 37059883 DOI: 10.1038/s41556-023-01118-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/27/2023] [Indexed: 04/16/2023]
Abstract
Cells respond to perturbations such as inflammation by sensing changes in metabolite levels. Especially prominent is arginine, which has known connections to the inflammatory response. Aminoacyl-tRNA synthetases, enzymes that catalyse the first step of protein synthesis, can also mediate cell signalling. Here we show that depletion of arginine during inflammation decreased levels of nuclear-localized arginyl-tRNA synthetase (ArgRS). Surprisingly, we found that nuclear ArgRS interacts and co-localizes with serine/arginine repetitive matrix protein 2 (SRRM2), a spliceosomal and nuclear speckle protein, and that decreased levels of nuclear ArgRS correlated with changes in condensate-like nuclear trafficking of SRRM2 and splice-site usage in certain genes. These splice-site usage changes cumulated in the synthesis of different protein isoforms that altered cellular metabolism and peptide presentation to immune cells. Our findings uncover a mechanism whereby an aminoacyl-tRNA synthetase cognate to a key amino acid that is metabolically controlled during inflammation modulates the splicing machinery.
Collapse
Affiliation(s)
- Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Douglas C Wu
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX, USA
| | - Justin J Lim
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin J Blencowe
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX, USA.
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
Ozes B, Tong L, Myers M, Moss K, Ridgley A, Sahenk Z. AAV1.NT-3 gene therapy prevents age-related sarcopenia. Aging (Albany NY) 2023; 15:1306-1329. [PMID: 36897179 PMCID: PMC10042697 DOI: 10.18632/aging.204577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Sarcopenia is progressive loss of muscle mass and strength, occurring during normal aging with significant consequences on the quality of life for elderly. Neurotrophin 3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulating axon regeneration and myelination. NT-3 is involved in the maintenance of neuromuscular junction (NMJ) integrity, restoration of impaired radial growth of muscle fibers through activation of the Akt/mTOR pathway. We tested the efficacy of NT-3 gene transfer therapy in wild type (WT)-aged C57BL/6 mice, a model for natural aging and sarcopenia, via intramuscular injection 1 × 1011 vg AAV1.tMCK.NT-3, at 18 months of age. The treatment efficacy was assessed at 6 months post-injection using run to exhaustion and rotarod tests, in vivo muscle contractility assay, and histopathological studies of the peripheral nervous system, including NMJ connectivity and muscle. AAV1.NT-3 gene therapy in WT-aged C57BL/6 mice resulted in functional and in vivo muscle physiology improvements, supported by quantitative histology from muscle, peripheral nerves and NMJ. Hindlimb and forelimb muscles in the untreated cohort showed the presence of a muscle- and sex-dependent remodeling and fiber size decrease with aging, which was normalized toward values obtained from 10 months old WT mice with treatment. The molecular studies assessing the NT-3 effect on the oxidative state of distal hindlimb muscles, accompanied by western blot analyses for mTORC1 activation were in accordance with the histological findings. Considering the cost and quality of life to the individual, we believe our study has important implications for management of age-related sarcopenia.
Collapse
Affiliation(s)
- Burcak Ozes
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lingying Tong
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Morgan Myers
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kyle Moss
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Alicia Ridgley
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Zarife Sahenk
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH 43205, USA
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
23
|
Cui Q, Bi H, Lv Z, Wu Q, Hua J, Gu B, Huo C, Tang M, Chen Y, Chen C, Chen S, Zhang X, Wu Z, Lao Z, Sheng N, Shen C, Zhang Y, Wu ZY, Jin Z, Yang P, Liu H, Li J, Bai G. Diverse CMT2 neuropathies are linked to aberrant G3BP interactions in stress granules. Cell 2023; 186:803-820.e25. [PMID: 36738734 DOI: 10.1016/j.cell.2022.12.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023]
Abstract
Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Bi
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Zhanyun Lv
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qigui Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Hua
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Bokai Gu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Huo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingmin Tang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmaceutical Sciences, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Yanqin Chen
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Chongjiu Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sihan Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinrui Zhang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhangrui Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengkai Lao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming 650201, China
| | - Chengyong Shen
- Department of Neurobiology, The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Yongdeng Zhang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhi-Ying Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Huaqing Liu
- Department of Pharmaceutical Sciences, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ge Bai
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Jennings MJ, Kagiava A, Vendredy L, Spaulding EL, Stavrou M, Hathazi D, Grüneboom A, De Winter V, Gess B, Schara U, Pogoryelova O, Lochmüller H, Borchers CH, Roos A, Burgess RW, Timmerman V, Kleopa KA, Horvath R. NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain 2022; 145:3999-4015. [PMID: 35148379 PMCID: PMC9679171 DOI: 10.1093/brain/awac055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular markers scalable for clinical use are critical for the development of effective treatments and the design of clinical trials. Here, we identify proteins in sera of patients and mouse models with Charcot-Marie-Tooth disease (CMT) with characteristics that make them suitable as biomarkers in clinical practice and therapeutic trials. We collected serum from mouse models of CMT1A (C61 het), CMT2D (GarsC201R, GarsP278KY), CMT1X (Gjb1-null), CMT2L (Hspb8K141N) and from CMT patients with genotypes including CMT1A (PMP22d), CMT2D (GARS), CMT2N (AARS) and other rare genetic forms of CMT. The severity of neuropathy in the patients was assessed by the CMT Neuropathy Examination Score (CMTES). We performed multitargeted proteomics on both sample sets to identify proteins elevated across multiple mouse models and CMT patients. Selected proteins and additional potential biomarkers, such as growth differentiation factor 15 (GDF15) and cell free mitochondrial DNA, were validated by ELISA and quantitative PCR, respectively. We propose that neural cell adhesion molecule 1 (NCAM1) is a candidate biomarker for CMT, as it was elevated in Gjb1-null, Hspb8K141N, GarsC201R and GarsP278KY mice as well as in patients with both demyelinating (CMT1A) and axonal (CMT2D, CMT2N) forms of CMT. We show that NCAM1 may reflect disease severity, demonstrated by a progressive increase in mouse models with time and a significant positive correlation with CMTES neuropathy severity in patients. The increase in NCAM1 may reflect muscle regeneration triggered by denervation, which could potentially track disease progression or the effect of treatments. We found that member proteins of the complement system were elevated in Gjb1-null and Hspb8K141N mouse models as well as in patients with both demyelinating and axonal CMT, indicating possible complement activation at the impaired nerve terminals. However, complement proteins did not correlate with the severity of neuropathy measured on the CMTES scale. Although the complement system does not seem to be a prognostic biomarker, we do show complement elevation to be a common disease feature of CMT, which may be of interest as a therapeutic target. We also identify serum GDF15 as a highly sensitive diagnostic biomarker, which was elevated in all CMT genotypes as well as in Hspb8K141N, Gjb1-null, GarsC201R and GarsP278KY mouse models. Although we cannot fully explain its origin, it may reflect increased stress response or metabolic disturbances in CMT. Further large and longitudinal patient studies should be performed to establish the value of these proteins as diagnostic and prognostic molecular biomarkers for CMT.
Collapse
Affiliation(s)
- Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexia Kagiava
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Marina Stavrou
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Dortmund, Germany
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Burkhard Gess
- Department of Neurology, University Hospital Aachen, Aachen, Germany
| | - Ulrike Schara
- Centre for Neuromuscular Disorders in Children, University of Duisburg-Essen, Essen, Germany
| | - Oksana Pogoryelova
- Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andreas Roos
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Kleopas A Kleopa
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Kim SY, Ko S, Kang H, Kim MJ, Moon J, Lim BC, Kim KJ, Choi M, Choi HJ, Chae JH. Fatal systemic disorder caused by biallelic variants in FARSA. Orphanet J Rare Dis 2022; 17:306. [PMID: 35918773 PMCID: PMC9344665 DOI: 10.1186/s13023-022-02457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background Aminoacyl tRNA transferases play an essential role in protein biosynthesis, and variants of these enzymes result in various human diseases. FARSA, which encodes the α subunit of cytosolic phenylalanyl-tRNA synthetase, was recently reported as a suspected causal gene for multiorgan disorder. This study aimed to validate the pathogenicity of variants in the FARSA gene. Results Exome sequencing revealed novel compound heterozygous variants in FARSA, P347L and R475Q, from a patient who initially presented neonatal-onset failure to thrive, liver dysfunction, and frequent respiratory infections. His developmental milestones were nearly arrested, and the patient died at 28 months of age as a result of progressive hepatic and respiratory failure. The P347L variant was predicted to disrupt heterodimer interaction and failed to form a functional heterotetramer by structural and biochemical analyses. R475 is located at a highly conserved site and is reported to be involved in phenylalanine activation and transfer to tRNA. The R475Q mutant FARSA were co-purified with FARSB, but the mutant enzyme showed an approximately 36% reduction in activity in our assay relative to the wild-type protein. Additional functional analyses on variants from previous reports (N410K, F256L, R404C, E418D, and F277V) were conducted. The R404C variant from a patient waiting for organ transplantation also failed to form tetramers but the E418D, N410K, F256L, and F277V variants did not affect tetramer formation. In the functional assay, the N410K located at the phenylalanine-binding site exhibited no catalytic activity, whereas other variants (E418D, F256L and F277V) exhibited lower ATPase activity than wild-type FARSA at low phenylalanine concentrations. Conclusions Our data demonstrated the pathogenicity of biallelic variants in FARSA and suggested the implication of hypomorphic variants in severe phenotypes. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02457-9.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Genomic Medicine, Rare Disease Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, 110-744, Korea
| | - Saebom Ko
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hyunook Kang
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Rare Disease Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, 110-744, Korea
| | - Jangsup Moon
- Department of Genomic Medicine, Rare Disease Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, 110-744, Korea
| | - Byung Chan Lim
- Department Pediatrics, Pediatric Neuroscience Center, Seoul National University, Seoul, Korea
| | - Ki Joong Kim
- Department Pediatrics, Pediatric Neuroscience Center, Seoul National University, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hee-Jung Choi
- School of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Jong-Hee Chae
- Department of Genomic Medicine, Rare Disease Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, 110-744, Korea. .,Department Pediatrics, Pediatric Neuroscience Center, Seoul National University, Seoul, Korea.
| |
Collapse
|
26
|
Jeong HS, Kim HJ, Kim DH, Chung KW, Choi BO, Lee JE. Therapeutic Potential of CKD-504, a Novel Selective Histone Deacetylase 6 Inhibitor, in a Zebrafish Model of Neuromuscular Junction Disorders. Mol Cells 2022; 45:231-242. [PMID: 35356895 PMCID: PMC9001154 DOI: 10.14348/molcells.2022.5005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/19/2021] [Accepted: 12/25/2021] [Indexed: 11/27/2022] Open
Abstract
The neuromuscular junction (NMJ), which is a synapse for signal transmission from motor neurons to muscle cells, has emerged as an important region because of its association with several peripheral neuropathies. In particular, mutations in GARS that affect the formation of NMJ result in Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. These disorders are mainly considered to be caused by neuronal axon abnormalities; however, no treatment is currently available. Therefore, in order to determine whether the NMJ could be targeted to treat neurodegenerative disorders, we investigated the NMJ recovery effect of HDAC6 inhibitors, which have been used in the treatment of several peripheral neuropathies. In the present study, we demonstrated that HDAC6 inhibition was sufficient to enhance movement by restoring NMJ impairments observed in a zebrafish disease model. We found that CKD-504, a novel HDAC6 inhibitor, was effective in repairing NMJ defects, suggesting that treatment of neurodegenerative diseases via NMJ targeting is possible.
Collapse
Affiliation(s)
- Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Hye Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
27
|
Rossor AM, Kapoor M, Wellington H, Spaulding E, Sleigh JN, Burgess RW, Laura M, Zetterberg H, Bacha A, Wu X, Heslegrave A, Shy ME, Reilly MM. A longitudinal and cross-sectional study of plasma neurofilament light chain concentration in Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2022; 27:50-57. [PMID: 34851050 DOI: 10.1111/jns.12477] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022]
Abstract
Advances in genetic technology and small molecule drug development have paved the way for clinical trials in Charcot-Marie-Tooth disease (CMT); however, the current FDA-approved clinical trial outcome measures are insensitive to detect a meaningful clinical response. There is, therefore, a need to identify sensitive outcome measures or clinically relevant biomarkers. The aim of this study was to further evaluate plasma neurofilament light chain (NFL) as a disease biomarker in CMT. Plasma NFL was measured using SIMOA technology in both a cross-sectional study of a US cohort of CMT patients and longitudinally over 6 years in a UK CMT cohort. In addition, plasma NFL was measured longitudinally in two mouse models of CMT2D. Plasma concentrations of NFL were increased in a US cohort of patients with CMT1B, CMT1X and CMT2A but not CMT2E compared with controls. In a separate UK cohort, over a 6-year interval, there was no significant change in plasma NFL concentration in CMT1A or HSN1, but a small but significant reduction in patients with CMT1X. Plasma NFL was increased in wild type compared to GARSC201R mice. There was no significant difference in plasma NFL in GARSP278KY compared to wild type mice. In patients with CMT1A, the small difference in cross-sectional NFL concentration vs healthy controls and the lack of change over time suggests that plasma NFL may lack sufficient sensitivity to detect a clinically meaningful treatment response in adulthood.
Collapse
Affiliation(s)
| | - Mahima Kapoor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Henny Wellington
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Emily Spaulding
- The Jackson Laboratory, Bar Harbor, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| | - James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, The Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alexa Bacha
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Xingyao Wu
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
28
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
29
|
Smith AS, Kim JH, Chun C, Gharai A, Moon HW, Kim EY, Nam SH, Ha N, Song JY, Chung KW, Doo HM, Hesson J, Mathieu J, Bothwell M, Choi BO, Kim DH. HDAC6 Inhibition Corrects Electrophysiological and Axonal Transport Deficits in a Human Stem Cell-Based Model of Charcot-Marie-Tooth Disease (Type 2D). Adv Biol (Weinh) 2022; 6:e2101308. [PMID: 34958183 PMCID: PMC8849597 DOI: 10.1002/adbi.202101308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 02/03/2023]
Abstract
Charcot-Marie-Tooth disease type 2D (CMT2D), is a hereditary peripheral neuropathy caused by mutations in the gene encoding glycyl-tRNA synthetase (GARS1). Here, human induced pluripotent stem cell (hiPSC)-based models of CMT2D bearing mutations in GARS1 and their use for the identification of predictive biomarkers amenable to therapeutic efficacy screening is described. Cultures containing spinal cord motor neurons generated from this line exhibit network activity marked by significant deficiencies in spontaneous action potential firing and burst fire behavior. This result matches clinical data collected from a patient bearing a GARS1P724H mutation and is coupled with significant decreases in acetylated α-tubulin levels and mitochondrial movement within axons. Treatment with histone deacetylase 6 inhibitors, tubastatin A and CKD504, improves mitochondrial movement and α-tubulin acetylation in these cells. Furthermore, CKD504 treatment enhances population-level electrophysiological activity, highlighting its potential as an effective treatment for CMT2D.
Collapse
Affiliation(s)
| | | | - Changho Chun
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ava Gharai
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hyo Won Moon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Nam
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Nina Ha
- CKD Research Institute, Yongin, 16995, Republic of Korea
| | - Ju Yong Song
- CKD Research Institute, Yongin, 16995, Republic of Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea
| | - Hyun Myung Doo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark Bothwell
- Department of Physiology and Biophysics, University of Washington, Seattle WA 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Byung-Ok Choi
- Authors share corresponding authorship: To whom correspondence should be addressed: Dr. Deok-Ho Kim, Department of Biomedical Engineering, The Johns Hopkins University, Ross Research Building, 724B, 720 Rutland Avenue, Baltimore, MD 21205, , Dr. Byung-Ok Choi, Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea,
| | - Deok-Ho Kim
- Authors share corresponding authorship: To whom correspondence should be addressed: Dr. Deok-Ho Kim, Department of Biomedical Engineering, The Johns Hopkins University, Ross Research Building, 724B, 720 Rutland Avenue, Baltimore, MD 21205, , Dr. Byung-Ok Choi, Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea,
| |
Collapse
|
30
|
Hines TJ, Lutz C, Murray SA, Burgess RW. An Integrated Approach to Studying Rare Neuromuscular Diseases Using Animal and Human Cell-Based Models. Front Cell Dev Biol 2022; 9:801819. [PMID: 35047510 PMCID: PMC8762301 DOI: 10.3389/fcell.2021.801819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
As sequencing technology improves, the identification of new disease-associated genes and new alleles of known genes is rapidly increasing our understanding of the genetic underpinnings of rare diseases, including neuromuscular diseases. However, precisely because these disorders are rare and often heterogeneous, they are difficult to study in patient populations. In parallel, our ability to engineer the genomes of model organisms, such as mice or rats, has gotten increasingly efficient through techniques such as CRISPR/Cas9 genome editing, allowing the creation of precision human disease models. Such in vivo model systems provide an efficient means for exploring disease mechanisms and identifying therapeutic strategies. Furthermore, animal models provide a platform for preclinical studies to test the efficacy of those strategies. Determining whether the same mechanisms are involved in the human disease and confirming relevant parameters for treatment ideally involves a human experimental system. One system currently being used is induced pluripotent stem cells (iPSCs), which can then be differentiated into the relevant cell type(s) for in vitro confirmation of disease mechanisms and variables such as target engagement. Here we provide a demonstration of these approaches using the example of tRNA-synthetase-associated inherited peripheral neuropathies, rare forms of Charcot-Marie-Tooth disease (CMT). Mouse models have led to a better understanding of both the genetic and cellular mechanisms underlying the disease. To determine if the mechanisms are similar in human cells, we will use genetically engineered iPSC-based models. This will allow comparisons of different CMT-associated GARS alleles in the same genetic background, reducing the variability found between patient samples and simplifying the availability of cell-based models for a rare disease. The necessity of integrating mouse and human models, strategies for accomplishing this integration, and the challenges of doing it at scale are discussed using recently published work detailing the cellular mechanisms underlying GARS-associated CMT as a framework.
Collapse
|
31
|
Childers MC, Regnier M, Bothwell M, Smith AS. Conformational sampling of CMT-2D associated GlyRS mutations. BRAIN MULTIPHYSICS 2022; 3:100054. [PMID: 36504507 PMCID: PMC9731397 DOI: 10.1016/j.brain.2022.100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During protein synthesis, aminoacyl-tRNA synthetases covalently link amino acids with their cognate tRNAs. Amino acid mutations in glycyl-tRNA synthetase can disrupt protein synthesis and lead to a neurological disorder known as Charcot-Marie-Tooth disease type 2D (CMT-2D). Several studies employing diverse techniques have identified potential disease mechanisms at the molecular level. The majority of CMT-2D mutations in glycyl-tRNA are found within its dimer interface. However, no atomic structures bearing these mutations have been solved. Consequently, the specific disease-causing structural changes that occur in glycyl-tRNA synthetase have not been definitively established. Here we use molecular dynamics simulations to probe conformational changes in glycyl-tRNA synthetase caused by one mutation within the dimer interface: G240R. Our results show that the mutation alters the number of native interactions at the dimer interface and also leads to altered dynamics of two regions of glycyl-tRNA synthetase associated with tRNA binding. Additionally, we use our simulations to make predictions about the effects of other clinically reported CMT-2D mutations. Our results identify a region of the glycyl-tRNA synthetase structure that may be disrupted in a large number of CMT-2D mutations. Structural changes in this region may be a common molecular mechanism in glycyl-tRNA synthetase CMT-2D pathologies. Statement of significance: In this study, we use molecular dynamics simulations to elucidate structural conformations accessible to glycyl-tRNA synthetase (GlyRS), an enzyme that ligates cytosolic glycine with tRNA-Gly. This protein contains multiple flexible regions with dynamics that elude in vitro structural characterization. Our computational approach provides unparalleled atomistic details of structural changes in GlyRS that contribute to its role in protein synthesis. A number of mutations in GlyRS are associated with a peripheral nerve disorder, Charcot-Marie-Tooth disease type 2D (CMT-2D). Mutation-induced structural and dynamic changes in GlyRS have similarity that elude in vitro structural characterization. Our simulations provide insights into disease mechanisms for one such mutation: G240R. Additionally, we leverage our computational data to identify regions of GlyRS critical to its function and to predict the effects of other disease-associated mutations. These results open up new directions for research into the molecular characterization of GlyRS and into hypothesis-driven studies of CMT-2D disease mechanisms.
Collapse
Affiliation(s)
- Matthew Carter Childers
- Department of Bioengineering, University of Washington, Seattle, WA, United States,The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, United States,The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Mark Bothwell
- The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States,Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Alec S.T. Smith
- The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States,Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States,Corresponding author at: Physiology and Biophysics, University of Washington, Seattle, WA, United States (A.S.T. Smith)
| |
Collapse
|
32
|
Nam DE, Park JH, Park CE, Jung NY, Nam SH, Kwon HM, Kim HS, Kim SB, Son WS, Choi BO, Chung KW. Variants of aminoacyl-tRNA synthetase genes in Charcot-Marie-Tooth disease: A Korean cohort study. J Peripher Nerv Syst 2021; 27:38-49. [PMID: 34813128 DOI: 10.1111/jns.12476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) and related diseases are a genetically and clinically heterogeneous group of peripheral neuropathies. Particularly, mutations in several aminoacyl-tRNA synthetase (ARS) genes have been reported to cause axonal CMT (CMT2) or distal hereditary motor neuropathy (dHMN). However, the common pathogenesis among CMT subtypes by different ARS gene defects is not well understood. This study was performed to investigate ARS gene mutations in a CMT cohort of 710 Korean families. Whole-exome sequencing was applied to 710 CMT patients who were negative for PMP22 duplication. We identified 12 disease-causing variants (from 13 families) in GARS1, AARS1, HARS1, WARS1, and YARS1 genes. Seven variants were determined to be novel. The frequency of overall ARS gene mutations was 1.22% among all independent patients diagnosed with CMT and 1.83% in patients negative for PMP22 duplication. WARS1 mutations have been reported to cause dHMN; however, in our patients with WARS1 variants, CMT was associated with sensory involvement. We analyzed genotype-phenotype correlations and expanded the phenotypic spectrum of patients with CMT possessing ARS gene variants. We also characterized clinical phenotypes according to ARS genes. This study will be useful for performing exact molecular and clinical diagnoses and providing reference data for other population studies.
Collapse
Affiliation(s)
- Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Jin Hee Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Cho Eun Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Na Young Jung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Soo Hyun Nam
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Gangdong Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Won Seok Son
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| |
Collapse
|
33
|
Ozes B, Moss K, Myers M, Ridgley A, Chen L, Murrey D, Sahenk Z. AAV1.NT-3 gene therapy in a CMT2D model: phenotypic improvements in GarsP278KY/+ mice. Brain Commun 2021; 3:fcab252. [PMID: 34755111 PMCID: PMC8568849 DOI: 10.1093/braincomms/fcab252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Glycyl-tRNA synthetase mutations are associated to the Charcot-Marie-Tooth disease type-2D. The GarsP278KY/+ model for Charcot-Marie-Tooth disease type-2D is known best for its early onset severe neuropathic phenotype with findings including reduced axon size, slow conduction velocities and abnormal neuromuscular junction. Muscle involvement remains largely unexamined. We tested the efficacy of neurotrophin 3 gene transfer therapy in two Gars mutants with severe (GarsP278KY/+ ) and milder (GarsΔETAQ/+ ) phenotypes via intramuscular injection of adeno-associated virus setoype-1, triple tandem muscle creatine kinase promoter, neurotrophin 3 (AAV1.tMCK.NT-3) at 1 × 1011 vg dose. In the GarsP278KY/+ mice, the treatment efficacy was assessed at 12 weeks post-injection using rotarod test, electrophysiology and detailed quantitative histopathological studies of the peripheral nervous system including neuromuscular junction and muscle. Neurotrophin 3 gene transfer therapy in GarsP278KY/+ mice resulted in significant functional and electrophysiological improvements, supported with increases in myelin thickness and improvements in the denervated status of neuromuscular junctions as well as increases in muscle fibre size along with attenuation of myopathic changes. Improvements in the milder phenotype GarsΔETAQ/+ was less pronounced. Furthermore, oxidative enzyme histochemistry in muscles from Gars mutants revealed alterations in the content and distribution of oxidative enzymes with increased expression levels of Pgc1a. Cox1, Cox3 and Atp5d transcripts were significantly decreased suggesting that the muscle phenotype might be related to mitochondrial dysfunction. Neurotrophin 3 gene therapy attenuated these abnormalities in the muscle. This study shows that neurotrophin 3 gene transfer therapy has disease modifying effect in a mouse model for Charcot-Marie-Tooth disease type-2D, leading to meaningful improvements in peripheral nerve myelination and neuromuscular junction integrity as well as in a unique myopathic process, associated with mitochondria dysfunction, all in combination contributing to functional outcome. Based on the multiple biological effects of this versatile molecule, we predict neurotrophin 3 has the potential to be beneficial in other aminoacyl-tRNA synthetase-linked Charcot-Marie-Tooth disease subtypes.
Collapse
Affiliation(s)
- Burcak Ozes
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kyle Moss
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Morgan Myers
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Alicia Ridgley
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Lei Chen
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Darren Murrey
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Zarife Sahenk
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
34
|
Tjon JK, Lakeman P, van Leeuwen E, Waisfisz Q, Weiss MM, Tan-Sindhunata GMB, Nikkels PGJ, van der Voorn PJP, Salomons GS, Burchell GL, Linskens IH, van der Knoop BJ, de Vries JIP. Fetal akinesia deformation sequence and massive perivillous fibrin deposition resulting in fetal death in six fetuses from one consanguineous couple, including literature review. Mol Genet Genomic Med 2021; 9:e1827. [PMID: 34636181 PMCID: PMC8606203 DOI: 10.1002/mgg3.1827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background Massive perivillous fibrin deposition (MPFD) is associated with adverse pregnancy outcomes and is mainly caused by maternal factors with limited involvement of fetal or genetic causes. We present one consanguineous couple with six fetuses developing Fetal Akinesia Deformation Sequence (FADS) and MPFD, with a possible underlying genetic cause. This prompted a literature review on prevalence of FADS and MPFD. Methods Fetal ultrasound examination, motor assessment, genetic testing, postmortem examination, and placenta histology are presented (2009–2019). Literature was reviewed for the association between congenital anomalies and MPFD. Results All six fetuses developed normally during the first trimester. Thereafter, growth restriction, persistent flexed position, abnormal motility, and contractures in 4/6, consistent with FADS occurred. All placentas showed histologically confirmed MPFD. Genetic analyses in the five available cases showed homozygosity for two variants of unknown significance in two genes, VARS1 (OMIM*192150) and ABCF1 (OMIM*603429). Both parents are heterozygous for these variants. From 63/1999 manuscripts, 403 fetal outcomes were mobilized. In 14/403 fetuses, congenital abnormalities in association with MPFD were seen of which two fetuses with contractures/FADS facial anomalies. Conclusion The low prevalence of fetal contractures/FADS facial anomalies in association with MPFD in the literature review supports the possible fetal or genetic contribution causing FADS and MPFD in our family. This study with literature review supports the finding that fetal, fetoplacental, and/or genetic components may play a role in causing a part of MPFDs.
Collapse
Affiliation(s)
- Jill K Tjon
- Department of Obstetrics and Gynaecology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Phillis Lakeman
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisabeth van Leeuwen
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marjan M Weiss
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gita M B Tan-Sindhunata
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter G J Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Gajja S Salomons
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ingeborg H Linskens
- Department of Obstetrics and Gynaecology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bloeme J van der Knoop
- Department of Obstetrics and Gynaecology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johanna I P de Vries
- Department of Obstetrics and Gynaecology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Morant L, Erfurth ML, Jordanova A. Drosophila Models for Charcot-Marie-Tooth Neuropathy Related to Aminoacyl-tRNA Synthetases. Genes (Basel) 2021; 12:1519. [PMID: 34680913 PMCID: PMC8536177 DOI: 10.3390/genes12101519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) represent the largest cluster of proteins implicated in Charcot-Marie-Tooth neuropathy (CMT), the most common neuromuscular disorder. Dominant mutations in six aaRS cause different axonal CMT subtypes with common clinical characteristics, including progressive distal muscle weakness and wasting, impaired sensory modalities, gait problems and skeletal deformities. These clinical manifestations are caused by "dying back" axonal degeneration of the longest peripheral sensory and motor neurons. Surprisingly, loss of aminoacylation activity is not a prerequisite for CMT to occur, suggesting a gain-of-function disease mechanism. Here, we present the Drosophila melanogaster disease models that have been developed to understand the molecular pathway(s) underlying GARS1- and YARS1-associated CMT etiology. Expression of dominant CMT mutations in these aaRSs induced comparable neurodegenerative phenotypes, both in larvae and adult animals. Interestingly, recent data suggests that shared molecular pathways, such as dysregulation of global protein synthesis, might play a role in disease pathology. In addition, it has been demonstrated that the important function of nuclear YARS1 in transcriptional regulation and the binding properties of mutant GARS1 are also conserved and can be studied in D. melanogaster in the context of CMT. Taken together, the fly has emerged as a faithful companion model for cellular and molecular studies of aaRS-CMT that also enables in vivo investigation of candidate CMT drugs.
Collapse
Affiliation(s)
- Laura Morant
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Maria-Luise Erfurth
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
36
|
Mendonsa S, von Kuegelgen N, Bujanic L, Chekulaeva M. Charcot-Marie-Tooth mutation in glycyl-tRNA synthetase stalls ribosomes in a pre-accommodation state and activates integrated stress response. Nucleic Acids Res 2021; 49:10007-10017. [PMID: 34403468 PMCID: PMC8464049 DOI: 10.1093/nar/gkab730] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/14/2022] Open
Abstract
Toxic gain-of-function mutations in aminoacyl-tRNA synthetases cause a degeneration of peripheral motor and sensory axons, known as Charcot-Marie-Tooth (CMT) disease. While these mutations do not disrupt overall aminoacylation activity, they interfere with translation via an unknown mechanism. Here, we dissect the mechanism of function of CMT mutant glycyl-tRNA synthetase (CMT-GARS), using high-resolution ribosome profiling and reporter assays. We find that CMT-GARS mutants deplete the pool of glycyl-tRNAGly available for translation and inhibit the first stage of elongation, the accommodation of glycyl-tRNA into the ribosomal A-site, which causes ribosomes to pause at glycine codons. Moreover, ribosome pausing activates a secondary repression mechanism at the level of translation initiation, by inducing the phosphorylation of the alpha subunit of eIF2 and the integrated stress response. Thus, CMT-GARS mutant triggers translational repression via two interconnected mechanisms, affecting both elongation and initiation of translation.
Collapse
Affiliation(s)
- Samantha Mendonsa
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Free University, Berlin, Germany
| | - Nicolai von Kuegelgen
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Free University, Berlin, Germany
| | - Lucija Bujanic
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
37
|
Bosco L, Falzone YM, Previtali SC. Animal Models as a Tool to Design Therapeutical Strategies for CMT-like Hereditary Neuropathies. Brain Sci 2021; 11:1237. [PMID: 34573256 PMCID: PMC8465478 DOI: 10.3390/brainsci11091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Since ancient times, animal models have provided fundamental information in medical knowledge. This also applies for discoveries in the field of inherited peripheral neuropathies (IPNs), where they have been instrumental for our understanding of nerve development, pathogenesis of neuropathy, molecules and pathways involved and to design potential therapies. In this review, we briefly describe how animal models have been used in ancient medicine until the use of rodents as the prevalent model in present times. We then travel along different examples of how rodents have been used to improve our understanding of IPNs. We do not intend to describe all discoveries and animal models developed for IPNs, but just to touch on a few arbitrary and paradigmatic examples, taken from our direct experience or from literature. The idea is to show how strategies have been developed to finally arrive to possible treatments for IPNs.
Collapse
Affiliation(s)
| | | | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (Y.M.F.)
| |
Collapse
|
38
|
Spaulding EL, Hines TJ, Bais P, Tadenev ALD, Schneider R, Jewett D, Pattavina B, Pratt SL, Morelli KH, Stum MG, Hill DP, Gobet C, Pipis M, Reilly MM, Jennings MJ, Horvath R, Bai Y, Shy ME, Alvarez-Castelao B, Schuman EM, Bogdanik LP, Storkebaum E, Burgess RW. The integrated stress response contributes to tRNA synthetase-associated peripheral neuropathy. Science 2021; 373:1156-1161. [PMID: 34516839 PMCID: PMC8908546 DOI: 10.1126/science.abb3414] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dominant mutations in ubiquitously expressed transfer RNA (tRNA) synthetase genes cause axonal peripheral neuropathy, accounting for at least six forms of Charcot-Marie-Tooth (CMT) disease. Genetic evidence in mouse and Drosophila models suggests a gain-of-function mechanism. In this study, we used in vivo, cell type–specific transcriptional and translational profiling to show that mutant tRNA synthetases activate the integrated stress response (ISR) through the sensor kinase GCN2 (general control nonderepressible 2). The chronic activation of the ISR contributed to the pathophysiology, and genetic deletion or pharmacological inhibition of Gcn2 alleviated the peripheral neuropathy. The activation of GCN2 suggests that the aberrant activity of the mutant tRNA synthetases is still related to translation and that inhibiting GCN2 or the ISR may represent a therapeutic strategy in CMT.
Collapse
Affiliation(s)
- E. L. Spaulding
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - T. J. Hines
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - P. Bais
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - A. L. D. Tadenev
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - R. Schneider
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - D. Jewett
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - B. Pattavina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - S. L. Pratt
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111 USA
| | - K. H. Morelli
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - M. G. Stum
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - D. P. Hill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - C. Gobet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. Pipis
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - M. M. Reilly
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - M. J. Jennings
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - R. Horvath
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Y. Bai
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - M. E. Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - E. M. Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - L. P. Bogdanik
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - E. Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - R. W. Burgess
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111 USA
| |
Collapse
|
39
|
Zuko A, Mallik M, Thompson R, Spaulding EL, Wienand AR, Been M, Tadenev ALD, van Bakel N, Sijlmans C, Santos LA, Bussmann J, Catinozzi M, Das S, Kulshrestha D, Burgess RW, Ignatova Z, Storkebaum E. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science 2021; 373:1161-1166. [PMID: 34516840 DOI: 10.1126/science.abb3356] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robin Thompson
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Anne R Wienand
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | | | - Nick van Bakel
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Leonardo A Santos
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Julia Bussmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sarada Das
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Divita Kulshrestha
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
40
|
Estève C, Roman C, DeLeusse C, Baravalle M, Bertaux K, Blanc F, Bourgeois P, Bresson V, Cano A, Coste ME, Delteil C, Lacoste C, Loosveld M, De Paula AM, Monnier AS, Secq V, Levy N, Badens C, Fabre A. Novel partial loss-of-function variants in the tyrosyl-tRNA synthetase 1 (YARS1) gene involved in multisystem disease. Eur J Med Genet 2021; 64:104294. [PMID: 34352414 DOI: 10.1016/j.ejmg.2021.104294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022]
Abstract
Cytoplasmic aminoacyl-tRNA synthetases (ARSs) are emerging as a cause of numerous rare inherited diseases. Recently, biallelic variants in tyrosyl-tRNA synthetase 1 (YARS1) have been described in ten patients of three families with multi-systemic disease (failure to thrive, developmental delay, liver dysfunction, and lung cysts). Here, we report an additional subject with overlapping clinical findings, heterozygous for two novel variants in tyrosyl-tRNA synthetase 1 (NM_003680.3(YARS1):c.176T>C; p.(Ile59Thr) and NM_003680.3(YARS1):c.237C>G; p.(Tyr79*) identified by whole exome sequencing. The p.Ile59Thr variant is located in the highly conserved aminoacylation domain of the protein. Compared to subjects previously described, this patient presents a much more severe condition. Our findings support implication of two novel YARS1 variants in these disorders. Furthermore, we provide evidence for a reduced protein abundance in cells of the patient, in favor of a partial loss-of-function mechanism.
Collapse
Affiliation(s)
| | - Céline Roman
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Cécile DeLeusse
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Melissa Baravalle
- Service de Pneumologie Pédiatrique, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Karine Bertaux
- CRB TAC (CRB AP-HM TAC), [BIORESOURCES], Marseille, France
| | - Frédéric Blanc
- Service D'Anesthésie Réanimation Pédiatrique, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Patrice Bourgeois
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Violaine Bresson
- Service D'Urgences Pédiatriques, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Aline Cano
- Service de Pédiatrie Spécialisée & Médecine Infantile, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Marie-Edith Coste
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Clémence Delteil
- Service de Médecine Légale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Caroline Lacoste
- Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Marie Loosveld
- Laboratoire D'Hématologie Biologique, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - André Maues De Paula
- Laboratoire D'Anatomie Pathologique, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Anne-Sophie Monnier
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Véronique Secq
- U1068-CRCM, Aix Marseille Univ, APHM, Hôpital Nord, Service D'anatomo-pathologie, Marseille, France
| | - Nicolas Levy
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Alexandre Fabre
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France.
| |
Collapse
|
41
|
NMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease. Sci Rep 2021; 11:12251. [PMID: 34112844 PMCID: PMC8192785 DOI: 10.1038/s41598-021-91094-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
The neuromuscular junction (NMJ) is the peripheral synapse formed between a motor neuron axon terminal and a muscle fibre. NMJs are thought to be the primary site of peripheral pathology in many neuromuscular diseases, but innervation/denervation status is often assessed qualitatively with poor systematic criteria across studies, and separately from 3D morphological structure. Here, we describe the development of ‘NMJ-Analyser’, to comprehensively screen the morphology of NMJs and their corresponding innervation status automatically. NMJ-Analyser generates 29 biologically relevant features to quantitatively define healthy and aberrant neuromuscular synapses and applies machine learning to diagnose NMJ degeneration. We validated this framework in longitudinal analyses of wildtype mice, as well as in four different neuromuscular disease models: three for amyotrophic lateral sclerosis (ALS) and one for peripheral neuropathy. We showed that structural changes at the NMJ initially occur in the nerve terminal of mutant TDP43 and FUS ALS models. Using a machine learning algorithm, healthy and aberrant neuromuscular synapses are identified with 95% accuracy, with 88% sensitivity and 97% specificity. Our results validate NMJ-Analyser as a robust platform for systematic and structural screening of NMJs, and pave the way for transferrable, and cross-comparison and high-throughput studies in neuromuscular diseases.
Collapse
|
42
|
Vinogradova ES, Nikonov OS, Nikonova EY. Associations between Neurological Diseases and Mutations in the Human Glycyl-tRNA Synthetase. BIOCHEMISTRY (MOSCOW) 2021; 86:S12-S23. [PMID: 33827397 PMCID: PMC7905983 DOI: 10.1134/s0006297921140029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Aminoacyl-RNA synthetases (aaRSs) are among the key enzymes of protein biosynthesis. They are responsible for conducting the first step in the protein biosynthesis, namely attaching amino acids to the corresponding tRNA molecules both in cytoplasm and mitochondria. More and more research demonstrates that mutations in the genes encoding aaRSs lead to the development of various neurodegenerative diseases, such as incurable Charcot–Marie–Tooth disease (CMT) and distal spinal muscular atrophy. Some mutations result in the loss of tRNA aminoacylation activity, while other mutants retain their classical enzyme activity. In the latter case, disease manifestations are associated with additional neuron-specific functions of aaRSs. At present, seven aaRSs (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, MetRS, and LysRS) are known to be involved in the CMT etiology with glycyl-tRNA synthetase (GlyRS) being the most studied of them.
Collapse
Affiliation(s)
| | - Oleg S Nikonov
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
43
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
44
|
Mullen P, Abbott JA, Wellman T, Aktar M, Fjeld C, Demeler B, Ebert AM, Francklyn CS. Neuropathy-associated histidyl-tRNA synthetase variants attenuate protein synthesis in vitro and disrupt axon outgrowth in developing zebrafish. FEBS J 2021; 288:142-159. [PMID: 32543048 PMCID: PMC7736457 DOI: 10.1111/febs.15449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses a set of genetically and clinically heterogeneous neuropathies characterized by length-dependent dysfunction of the peripheral nervous system. Mutations in over 80 diverse genes are associated with CMT, and aminoacyl-tRNA synthetases (ARS) constitute a large gene family implicated in the disease. Despite considerable efforts to elucidate the mechanistic link between ARS mutations and the CMT phenotype, the molecular basis of the pathology is unknown. In this work, we investigated the impact of three CMT-associated substitutions (V155G, Y330C, and R137Q) in the cytoplasmic histidyl-tRNA synthetase (HARS1) on neurite outgrowth and peripheral nervous system development. The model systems for this work included a nerve growth factor-stimulated neurite outgrowth model in rat pheochromocytoma cells (PC12), and a zebrafish line with GFP/red fluorescent protein reporters of sensory and motor neuron development. The expression of CMT-HARS1 mutations led to attenuation of protein synthesis and increased phosphorylation of eIF2α in PC12 cells and was accompanied by impaired neurite and axon outgrowth in both models. Notably, these effects were phenocopied by histidinol, a HARS1 inhibitor, and cycloheximide, a protein synthesis inhibitor. The mutant proteins also formed heterodimers with wild-type HARS1, raising the possibility that CMT-HARS1 mutations cause disease through a dominant-negative mechanism. Overall, these findings support the hypothesis that CMT-HARS1 alleles exert their toxic effect in a neuronal context, and lead to dysregulated protein synthesis. These studies demonstrate the value of zebrafish as a model for studying mutant alleles associated with CMT, and for characterizing the processes that lead to peripheral nervous system dysfunction.
Collapse
Affiliation(s)
- Patrick Mullen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Jamie A Abbott
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Theresa Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Mahafuza Aktar
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Christian Fjeld
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Canada
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
45
|
Xie Y, Lin Z, Pakhrin PS, Li X, Wang B, Liu L, Huang S, Zhao H, Cao W, Hu Z, Guo J, Shen L, Tang B, Zhang R. Genetic and Clinical Features in 24 Chinese Distal Hereditary Motor Neuropathy Families. Front Neurol 2021; 11:603003. [PMID: 33381078 PMCID: PMC7767876 DOI: 10.3389/fneur.2020.603003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives: Distal hereditary motor neuropathy (dHMN) is a clinically and genetically heterogeneous group of inherited neuropathies. The objectives of this study were to report the clinical and genetic features of dHMN patients in a Chinese cohort. Aims and Methods: We performed clinical assessments and whole-exome sequencing in 24 dHMN families from Mainland China. We conducted a retrospective analysis of the data and investigated the frequency and clinical features of patients with a confirmed mutation. Results: Two novel heterozygous mutations in GARS, c.373G>C (p.E125Q) and c.1015G>A (p.G339R), were identified and corresponded to the typical dHMN-V phenotype. Together with families with WARS, SORD, SIGMAR1, and HSPB1 mutations, 29.2% of families (7/24) acquired a definite genetic diagnosis. One novel heterozygous variant of uncertain significance, c.1834G>A (p.G612S) in LRSAM1, was identified in a patient with mild dHMN phenotype. Conclusion: Our study expanded the mutation spectrum of GARS mutations and added evidence that GARS mutations are associated with both axonal Charcot-Marie-Tooth and dHMN phenotypes. Mutations in genes encoding aminoamide tRNA synthetase (ARS) might be a frequent cause of autosomal dominant-dHMN, and SORD mutation might account for a majority of autosomal recessive-dHMN cases. The relatively low genetic diagnosis yield indicated more causative dHMN genes need to be discovered.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Lin
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pukar Singh Pakhrin
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Binghao Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huadong Zhao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wanqian Cao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Zhang H, Zhou ZW, Sun L. Aminoacyl-tRNA synthetases in Charcot-Marie-Tooth disease: A gain or a loss? J Neurochem 2020; 157:351-369. [PMID: 33236345 PMCID: PMC8247414 DOI: 10.1111/jnc.15249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Abstract
Charcot‐Marie‐Tooth disease (CMT) is one of the most common inherited neurodegenerative disorders with an increasing number of CMT‐associated variants identified as causative factors, however, there has been no effective therapy for CMT to date. Aminoacyl‐tRNA synthetases (aaRS) are essential enzymes in translation by charging amino acids onto their cognate tRNAs during protein synthesis. Dominant monoallelic variants of aaRSs have been largely implicated in CMT. Some aaRSs variants affect enzymatic activity, demonstrating a loss‐of‐function property. In contrast, loss of aminoacylation activity is neither necessary nor sufficient for some aaRSs variants to cause CMT. Instead, accumulating evidence from CMT patient samples, animal genetic studies or protein conformational analysis has pinpointed toxic gain‐of‐function of aaRSs variants in CMT, suggesting complicated mechanisms underlying the pathogenesis of CMT. In this review, we summarize the latest advances in studies on CMT‐linked aaRSs, with a particular focus on their functions. The current challenges, future direction and the promising candidates for potential treatment of CMT are also discussed. ![]()
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhong-Wei Zhou
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
De Gioia R, Citterio G, Abati E, Nizzardo M, Bresolin N, Comi GP, Corti S, Rizzo F. Animal Models of CMT2A: State-of-art and Therapeutic Implications. Mol Neurobiol 2020; 57:5121-5129. [PMID: 32856204 PMCID: PMC7541381 DOI: 10.1007/s12035-020-02081-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/19/2020] [Indexed: 01/19/2023]
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A), arising from mitofusin 2 (MFN2) gene mutations, is the most common inherited axonal neuropathy affecting motor and sensory neurons. The cellular and molecular mechanisms by which MFN2 mutations determine neuronal degeneration are largely unclear. No effective treatment exists for CMT2A, which has a high degree of genetic/phenotypic heterogeneity. The identification of mutations in MFN2 has allowed the generation of diverse transgenic animal models, but to date, their ability to recapitulate the CMT2A phenotype is limited, precluding elucidation of its pathogenesis and discovery of therapeutic strategies. This review will critically present recent progress in in vivo CMT2A disease modeling, discoveries, drawbacks and limitations, current challenges, and key reflections to advance the field towards developing effective therapies for these patients.
Collapse
Affiliation(s)
- Roberta De Gioia
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Gaia Citterio
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Monica Nizzardo
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.,Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Nereo Bresolin
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.,Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.,Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Stefania Corti
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.,Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Federica Rizzo
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy. .,Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.
| |
Collapse
|
48
|
Sleigh JN, Mech AM, Aktar T, Zhang Y, Schiavo G. Altered Sensory Neuron Development in CMT2D Mice Is Site-Specific and Linked to Increased GlyRS Levels. Front Cell Neurosci 2020; 14:232. [PMID: 32848623 PMCID: PMC7431706 DOI: 10.3389/fncel.2020.00232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Dominant, missense mutations in the widely and constitutively expressed GARS1 gene cause peripheral neuropathy that usually begins in adolescence and principally impacts the upper limbs. Caused by a toxic gain-of-function in the encoded glycyl-tRNA synthetase (GlyRS) enzyme, the neuropathology appears to be independent of the canonical role of GlyRS in aminoacylation. Patients display progressive, life-long weakness and wasting of muscles in hands followed by feet, with frequently associated deficits in sensation. When dysfunction is observed in motor and sensory nerves, there is a diagnosis of Charcot-Marie-Tooth disease type 2D (CMT2D), or distal hereditary motor neuropathy type V if the symptoms are purely motor. The cause of this varied sensory involvement remains unresolved, as are the pathomechanisms underlying the selective neurodegeneration characteristic of the disease. We have previously identified in CMT2D mice that neuropathy-causing Gars mutations perturb sensory neuron fate and permit mutant GlyRS to aberrantly interact with neurotrophin receptors (Trks). Here, we extend this work by interrogating further the anatomy and function of the CMT2D sensory nervous system in mutant Gars mice, obtaining several key results: (1) sensory pathology is restricted to neurons innervating the hindlimbs; (2) perturbation of sensory development is not common to all mouse models of neuromuscular disease; (3) in vitro axonal transport of signaling endosomes is not impaired in afferent neurons of all CMT2D mouse models; and (4) Gars expression is selectively elevated in a subset of sensory neurons and linked to sensory developmental defects. These findings highlight the importance of comparative neurological assessment in mouse models of disease and shed light on key proposed neuropathogenic mechanisms in GARS1-linked neuropathy.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
| | - Aleksandra M. Mech
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tahmina Aktar
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yuxin Zhang
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, United Kingdom
| |
Collapse
|
49
|
Sleigh JN, Mech AM, Schiavo G. Developmental demands contribute to early neuromuscular degeneration in CMT2D mice. Cell Death Dis 2020; 11:564. [PMID: 32703932 PMCID: PMC7378196 DOI: 10.1038/s41419-020-02798-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Dominantly inherited, missense mutations in the widely expressed housekeeping gene, GARS1, cause Charcot-Marie-Tooth type 2D (CMT2D), a peripheral neuropathy characterised by muscle weakness and wasting in limb extremities. Mice modelling CMT2D display early and selective neuromuscular junction (NMJ) pathology, epitomised by disturbed maturation and neurotransmission, leading to denervation. Indeed, the NMJ disruption has been reported in several different muscles; however, a systematic comparison of neuromuscular synapses from distinct body locations has yet to be performed. We therefore analysed NMJ development and degeneration across five different wholemount muscles to identify key synaptic features contributing to the distinct pattern of neurodegeneration in CMT2D mice. Denervation was found to occur along a distal-to-proximal gradient, providing a cellular explanation for the greater weakness observed in mutant Gars hindlimbs compared with forelimbs. Nonetheless, muscles from similar locations and innervated by axons of equivalent length showed significant differences in neuropathology, suggestive of additional factors impacting on site-specific neuromuscular degeneration. Defective NMJ development preceded and associated with degeneration, but was not linked to a delay of wild-type NMJ maturation processes. Correlation analyses indicate that muscle fibre type nor synaptic architecture explain the differential denervation of CMT2D NMJs, rather it is the extent of post-natal synaptic growth that predisposes to neurodegeneration. Together, this work improves our understanding of the mechanisms driving synaptic vulnerability in CMT2D and hints at pertinent pathogenic pathways.
Collapse
Affiliation(s)
- James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| | - Aleksandra M Mech
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, WC1N 3BG, UK
| |
Collapse
|
50
|
Morelli KH, Griffin LB, Pyne NK, Wallace LM, Fowler AM, Oprescu SN, Takase R, Wei N, Meyer-Schuman R, Mellacheruvu D, Kitzman JO, Kocen SG, Hines TJ, Spaulding EL, Lupski JR, Nesvizhskii A, Mancias P, Butler IJ, Yang XL, Hou YM, Antonellis A, Harper SQ, Burgess RW. Allele-specific RNA interference prevents neuropathy in Charcot-Marie-Tooth disease type 2D mouse models. J Clin Invest 2020; 129:5568-5583. [PMID: 31557132 DOI: 10.1172/jci130600] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Gene therapy approaches are being deployed to treat recessive genetic disorders by restoring the expression of mutated genes. However, the feasibility of these approaches for dominantly inherited diseases - where treatment may require reduction in the expression of a toxic mutant protein resulting from a gain-of-function allele - is unclear. Here we show the efficacy of allele-specific RNAi as a potential therapy for Charcot-Marie-Tooth disease type 2D (CMT2D), caused by dominant mutations in glycyl-tRNA synthetase (GARS). A de novo mutation in GARS was identified in a patient with a severe peripheral neuropathy, and a mouse model precisely recreating the mutation was produced. These mice developed a neuropathy by 3-4 weeks of age, validating the pathogenicity of the mutation. RNAi sequences targeting mutant GARS mRNA, but not wild-type, were optimized and then packaged into AAV9 for in vivo delivery. This almost completely prevented the neuropathy in mice treated at birth. Delaying treatment until after disease onset showed modest benefit, though this effect decreased the longer treatment was delayed. These outcomes were reproduced in a second mouse model of CMT2D using a vector specifically targeting that allele. The effects were dose dependent, and persisted for at least 1 year. Our findings demonstrate the feasibility of AAV9-mediated allele-specific knockdown and provide proof of concept for gene therapy approaches for dominant neuromuscular diseases.
Collapse
Affiliation(s)
- Kathryn H Morelli
- The Jackson Laboratory, Bar Harbor, Maine, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| | - Laurie B Griffin
- Program in Cellular and Molecular Biology, and.,Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Nettie K Pyne
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lindsay M Wallace
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Allison M Fowler
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Stephanie N Oprescu
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ryuichi Takase
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Dattatreya Mellacheruvu
- Department of Pathology, and.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, Maine, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, and.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Alexey Nesvizhskii
- Department of Pathology, and.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Pedro Mancias
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Ian J Butler
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anthony Antonellis
- Program in Cellular and Molecular Biology, and.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, Maine, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|