1
|
Zhong H, Wang S, Huang Y, Cui X, Ding X, Zhu L, Yuan M, Fu Y. Endomembrane trafficking driven by microtubule growth regulates stomatal movement in Arabidopsis. Nat Commun 2024; 15:7967. [PMID: 39261498 PMCID: PMC11391047 DOI: 10.1038/s41467-024-52338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Microtubule-based vesicle trafficking usually relies upon kinesin and dynein motors and few reports describe microtubule polymerisation driving directional vesicle trafficking. Here we show that Arabidopsis END BINDING1b (EB1b), a microtubule plus-end binding protein, directly interacts with SYP121, a SNARE protein that mediates the trafficking of the K+ channel KAT1 and its distribution to the plasma membrane (PM) in Arabidopsis guard cells. Knockout of AtEB1b and its homologous proteins results in a modest but significant change in the distribution of KAT1 and SYP121 in guard cells and consequently delays light-induced stomatal opening. Live-cell imaging reveals that a portion of SYP121-associated endomembrane compartments co-localise with AtEB1b at the growing ends of microtubules, trafficking along with the growth of microtubules for targeting to the PM. Our study reveals a mechanism of vesicle trafficking driven by microtubule growth, which is involved in the redistribution of PM proteins to modulate guard cell movement.
Collapse
Affiliation(s)
- Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaohui Huang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ming Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Verkerk L, Verkerk AO, Wilders R. Zebrafish as a Model System for Brugada Syndrome. Rev Cardiovasc Med 2024; 25:313. [PMID: 39355588 PMCID: PMC11440409 DOI: 10.31083/j.rcm2509313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 10/03/2024] Open
Abstract
Brugada syndrome (BrS) is an inheritable cardiac arrhythmogenic disease, associated with an increased risk of sudden cardiac death. It is most common in males around the age of 40 and the prevalence is higher in Asia than in Europe and the United States. The pathophysiology underlying BrS is not completely understood, but several hypotheses have been proposed. So far, the best effective treatment is the implantation of an implantable cardioverter-defibrillator (ICD), but device-related complications are not uncommon. Therefore, there is an urgent need to improve diagnosis and risk stratification and to find new treatment options. To this end, research should further elucidate the genetic basis and pathophysiological mechanisms of BrS. Several experimental models are being used to gain insight into these aspects. The zebrafish (Danio rerio) is a widely used animal model for the study of cardiac arrhythmias, as its cardiac electrophysiology shows interesting similarities to humans. However, zebrafish have only been used in a limited number of studies on BrS, and the potential role of zebrafish in studying the mechanisms of BrS has not been reviewed. Therefore, the present review aims to evaluate zebrafish as an animal model for BrS. We conclude that zebrafish can be considered as a valuable experimental model for BrS research, not only for gene editing technologies, but also for screening potential BrS drugs.
Collapse
Affiliation(s)
- Leonie Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Chiang DY, Verkerk AO, Victorio R, Shneyer BI, van der Vaart B, Jouni M, Narendran N, Kc A, Sampognaro JR, Vetrano-Olsen F, Oh JS, Buys E, de Jonge B, Shah DA, Kiviniemi T, Burridge PW, Bezzina CR, Akhmanova A, MacRae CA. The Role of MAPRE2 and Microtubules in Maintaining Normal Ventricular Conduction. Circ Res 2024; 134:46-59. [PMID: 38095085 PMCID: PMC11889334 DOI: 10.1161/circresaha.123.323231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Brugada syndrome is associated with loss-of-function SCN5A variants, yet these account for only ≈20% of cases. A recent genome-wide association study identified a novel locus within MAPRE2, which encodes EB2 (microtubule end-binding protein 2), implicating microtubule involvement in Brugada syndrome. METHODS A mapre2 knockout zebrafish model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated protein 9) and validated by Western blot. Larval hearts at 5 days post-fertilization were isolated for voltage mapping and immunocytochemistry. Adult fish hearts were used for ECG, patch clamping, and immunocytochemistry. Morpholinos were injected into embryos at 1-cell stage for knockdown experiments. A transgenic zebrafish line with cdh2 tandem fluorescent timer was used to study adherens junctions. Microtubule plus-end tracking and patch clamping were performed in human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) with MAPRE2 knockdown and knockout, respectively. RESULTS Voltage mapping of mapre2 knockout hearts showed a decrease in ventricular maximum upstroke velocity of the action potential and conduction velocity, suggesting loss of cardiac voltage-gated sodium channel function. ECG showed QRS prolongation in adult knockout fish, and patch clamping showed decreased sodium current density in knockout ventricular myocytes and arrhythmias in knockout iPSC-CMs. Confocal imaging showed disorganized adherens junctions and mislocalization of mature Ncad (N-cadherin) with mapre2 loss of function, associated with a decrease of detyrosinated tubulin. MAPRE2 knockdown in iPSC-CMs led to an increase in microtubule growth velocity and distance, indicating changes in microtubule dynamics. Finally, knockdown of ttl encoding tubulin tyrosine ligase in mapre2 knockout larvae rescued tubulin detyrosination and ventricular maximum upstroke velocity of the action potential. CONCLUSIONS Genetic ablation of mapre2 led to a decrease in voltage-gated sodium channel function, a hallmark of Brugada syndrome, associated with disruption of adherens junctions, decrease of detyrosinated tubulin as a marker of microtubule stability, and changes in microtubule dynamics. Restoration of the detyrosinated tubulin fraction with ttl knockdown led to rescue of voltage-gated sodium channel-related functional parameters in mapre2 knockout hearts. Taken together, our study implicates microtubule dynamics in the modulation of ventricular conduction.
Collapse
Affiliation(s)
- David Y. Chiang
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arie O. Verkerk
- Department of Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rachelle Victorio
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Boris I. Shneyer
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Babet van der Vaart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nakul Narendran
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashmita Kc
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James R. Sampognaro
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Franki Vetrano-Olsen
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John S. Oh
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eva Buys
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Berend de Jonge
- Department of Medical Biology, Academic Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Disheet A. Shah
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tuomas Kiviniemi
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Connie R. Bezzina
- Department of Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Calum A. MacRae
- Cardiovascular Medicine and Genetics Divisions, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Ma D, Sun C, Manne R, Guo T, Bosc C, Barry J, Magliery T, Andrieux A, Li H, Gu C. A cytoskeleton-membrane interaction conserved in fast-spiking neurons controls movement, emotion, and memory. Mol Psychiatry 2023; 28:3994-4010. [PMID: 37833406 PMCID: PMC10905646 DOI: 10.1038/s41380-023-02286-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The pathogenesis of schizophrenia is believed to involve combined dysfunctions of many proteins including microtubule-associated protein 6 (MAP6) and Kv3.1 voltage-gated K+ (Kv) channel, but their relationship and functions in behavioral regulation are often not known. Here we report that MAP6 stabilizes Kv3.1 channels in parvalbumin-positive (PV+ ) fast-spiking GABAergic interneurons, regulating behavior. MAP6-/- and Kv3.1-/- mice display similar hyperactivity and avoidance reduction. Their proteins colocalize in PV+ interneurons and MAP6 deletion markedly reduces Kv3.1 protein level. We further show that two microtubule-binding modules of MAP6 bind the Kv3.1 tetramerization domain with high affinity, maintaining the channel level in both neuronal soma and axons. MAP6 knockdown by AAV-shRNA in the amygdala or the hippocampus reduces avoidance or causes hyperactivity and recognition memory deficit, respectively, through elevating projection neuron activity. Finally, knocking down Kv3.1 or disrupting the MAP6-Kv3.1 binding in these brain regions causes avoidance reduction and hyperactivity, consistent with the effects of MAP6 knockdown. Thus, disrupting this conserved cytoskeleton-membrane interaction in fast-spiking neurons causes different degrees of functional vulnerability in various neural circuits.
Collapse
Affiliation(s)
- Di Ma
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Chao Sun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- MCDB graduate program, The Ohio State University, Columbus, OH, USA
| | - Rahul Manne
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Tianqi Guo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Joshua Barry
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Houzhi Li
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Chen Gu
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- MCDB graduate program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Liu Y, Shuai K, Sun Y, Zhu L, Wu XM. Advances in the study of axon-associated vesicles. Front Mol Neurosci 2022; 15:1045778. [PMID: 36545123 PMCID: PMC9760877 DOI: 10.3389/fnmol.2022.1045778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is the most important and difficult to study system in the human body and is known for its complex functions, components, and mechanisms. Neurons are the basic cellular units realizing neural functions. In neurons, vesicles are one of the critical pathways for intracellular material transport, linking information exchanges inside and outside cells. The axon is a vital part of neuron since electrical and molecular signals must be conducted through axons. Here, we describe and explore the formation, trafficking, and sorting of cellular vesicles within axons, as well as related-diseases and practical implications. Furthermore, with deepening of understanding and the development of new approaches, accumulating evidence proves that besides signal transmission between synapses, the material exchange and vesicular transmission between axons and extracellular environment are involved in physiological processes, and consequently to neural pathology. Recent studies have also paid attention to axonal vesicles and their physiological roles and pathological effects on axons themselves. Therefore, this review mainly focuses on these two key nodes to explain the role of intracellular vesicles and extracellular vesicles migrated from cells on axons and neurons, providing innovative strategy for future researches.
Collapse
Affiliation(s)
- Yanling Liu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ke Shuai
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yiyan Sun
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Mei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China,*Correspondence: Xiao-Mei Wu,
| |
Collapse
|
6
|
Dziadkowiak E, Nowakowska-Kotas M, Budrewicz S, Koszewicz M. Pathology of Initial Axon Segments in Chronic Inflammatory Demyelinating Polyradiculoneuropathy and Related Disorders. Int J Mol Sci 2022; 23:13621. [PMID: 36362407 PMCID: PMC9658771 DOI: 10.3390/ijms232113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 07/30/2023] Open
Abstract
The diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is based on a combination of clinical, electrodiagnostic and laboratory features. The different entities of the disease include chronic immune sensory polyradiculopathy (CISP) and autoimmune nodopathies. It is debatable whether CIDP occurring in the course of other conditions, i.e., monoclonal IgG or IgA gammopathy, should be treated as a separate disease entity from idiopathic CIDP. This study aims to evaluate the molecular differences of the nodes of Ranvier and the initial axon segment (AIS) and juxtaparanode region (JXP) as the potential cause of phenotypic variation of CIDP while also seeking new pathomechanisms since JXP is sequestered behind the paranode and autoantibodies may not access the site easily. The authors initially present the structure of the different parts of the neuron and its functional significance, then discuss the problem of whether damage to the juxtaparanodal region, Schwann cells and axons could cause CIDP or if these damages should be separated as separate disease entities. In particular, AIS's importance for modulating neural excitability and carrying out transport along the axon is highlighted. The disclosure of specific pathomechanisms, including novel target antigens, in the heterogeneous CIDP syndrome is important for diagnosing and treating these patients.
Collapse
|
7
|
Sperandeo A, Tamburini C, Noakes Z, de la Fuente DC, Keefe F, Petter O, Plumbly W, Clifton N, Li M, Peall K. Cortical neuronal hyperexcitability and synaptic changes in SGCE mutation-positive myoclonus dystonia. Brain 2022; 146:1523-1541. [PMID: 36204995 PMCID: PMC10115238 DOI: 10.1093/brain/awac365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/17/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Myoclonus Dystonia is a childhood-onset hyperkinetic movement disorder with a combined motor and psychiatric phenotype. It represents one of the few autosomal dominant inherited dystonic disorders and is caused by mutations in the ε-sarcoglycan (SGCE) gene. Work to date suggests that dystonia is caused by disruption of neuronal networks, principally basal ganglia-cerebello-thalamo-cortical circuits. Investigation of cortical involvement has primarily focused on disruption to interneuron inhibitory activity, rather than the excitatory activity of cortical pyramidal neurons. Here, we have sought to examine excitatory cortical glutamatergic activity using two approaches; the CRISPR/Cas9 editing of a human embryonic cell line, generating an SGCE compound heterozygous mutation, and three patient-derived induced pluripotent stem cell lines (iPSC) each gene edited to generate matched wild-type SGCE control lines. Differentiation towards a cortical neuronal phenotype demonstrated no significant differences in neither early- (PAX6, FOXG1) nor late-stage (CTIP2, TBR1) neurodevelopmental markers. However, functional characterisation using Ca2+ imaging and MEA approaches identified an increase in network activity, while single-cell patch clamp studies found a greater propensity towards action potential generation with larger amplitudes and shorter half-widths associated with SGCE-mutations. Bulk-RNA-seq analysis identified gene ontological enrichment for neuron projection development, synaptic signalling, and synaptic transmission. Examination of dendritic morphology found SGCE-mutations to be associated with a significantly higher number of branches and longer branch lengths, together with longer ion-channel dense axon initial segments, particularly towards the latter stages of differentiation (D80 and D100). Gene expression and protein quantification of key synaptic proteins (synaptophysin, synapsin and PSD95), AMPA and NMDA receptor subunits found no significant differences between the SGCE-mutation and matched wild-type lines. By contrast, significant changes to synaptic adhesion molecule expression were identified, namely higher pre-synaptic neurexin-1 and lower post-synaptic neuroligin-4 levels in the SGCE mutation carrying lines. Our study demonstrates an increased intrinsic excitability of cortical glutamatergic neuronal cells in the context of SGCE mutations, coupled with a more complex neurite morphology and disruption to synaptic adhesion molecules. These changes potentially represent key components to the development of the hyperkinetic clinical phenotype observed in Myoclonus Dystonia, as well a central feature to the wider spectrum of dystonic disorders, potentially providing targets for future therapeutic development.
Collapse
Affiliation(s)
- Alessandra Sperandeo
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Claudia Tamburini
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Zoe Noakes
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Daniel Cabezas de la Fuente
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Francesca Keefe
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Olena Petter
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - William Plumbly
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Nicholas Clifton
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Meng Li
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Kathryn Peall
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| |
Collapse
|
8
|
Yee JX, Rastani A, Soden ME. The potassium channel auxiliary subunit Kvβ2 ( Kcnab2) regulates Kv1 channels and dopamine neuron firing. J Neurophysiol 2022; 128:62-72. [PMID: 35788155 PMCID: PMC9273274 DOI: 10.1152/jn.00194.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion channel complexes typically consist of both pore-forming subunits and auxiliary subunits that do not directly conduct current but can regulate trafficking or alter channel properties. Isolating the role of these auxiliary subunits in neurons has proved difficult due to a lack of specific pharmacological agents and the potential for developmental compensation in constitutive knockout models. Here, we use cell-type-specific viral-mediated CRISPR/Cas9 mutagenesis to target the potassium channel auxiliary subunit Kvβ2 (Kcnab2) in dopamine neurons in the adult mouse brain. We find that mutagenesis of Kcnab2 reduces surface expression of Kv1.2, the primary Kv1 pore-forming subunit expressed in dopamine neurons, and shifts the voltage dependence of inactivation of potassium channel currents toward more hyperpolarized potentials. Loss of Kcnab2 broadens the action potential waveform in spontaneously firing dopamine neurons recorded in slice, reduces the afterhyperpolarization amplitude, and increases spike timing irregularity and excitability, all of which is consistent with a reduction in potassium channel current. Similar effects were observed with mutagenesis of the pore-forming subunit Kv1.2 (Kcna2). These results identify Kv1 currents as important contributors to dopamine neuron firing and demonstrate a role for Kvβ2 subunits in regulating the trafficking and gating properties of these ion channels. Furthermore, they demonstrate the utility of CRISPR-mediated mutagenesis in the study of previously difficult to isolate ion channel subunits.NEW & NOTEWORTHY Here, we utilize CRISPR/Cas9-mediated mutagenesis in dopamine neurons in mice to target the gene encoding Kvβ2, an auxiliary subunit that forms a part of Kv1 channel complexes. We find that the absence of Kvβ2 alters action potential properties by reducing surface expression of pore-forming subunits and shifting the voltage dependence of channel inactivation. This work establishes a new function for Kvβ2 subunits and Kv1 complexes in regulating dopamine neuron activity.
Collapse
Affiliation(s)
- Joshua X. Yee
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Ariana Rastani
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Marta E. Soden
- Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Roig SR, Cassinelli S, Navarro-Pérez M, Pérez-Verdaguer M, Estadella I, Capera J, Felipe A. S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit. Cell Mol Life Sci 2022; 79:230. [PMID: 35396942 PMCID: PMC8994742 DOI: 10.1007/s00018-022-04269-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022]
Abstract
The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation.
Collapse
Affiliation(s)
- Sara R Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Imaging Core Facility, Biozentrum University of Basel, 4056, Basel, Switzerland
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Mireia Pérez-Verdaguer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Department of Cell Biology, School of Medicine, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
10
|
Barc J, Tadros R, Glinge C, Chiang DY, Jouni M, Simonet F, Jurgens SJ, Baudic M, Nicastro M, Potet F, Offerhaus JA, Walsh R, Choi SH, Verkerk AO, Mizusawa Y, Anys S, Minois D, Arnaud M, Duchateau J, Wijeyeratne YD, Muir A, Papadakis M, Castelletti S, Torchio M, Ortuño CG, Lacunza J, Giachino DF, Cerrato N, Martins RP, Campuzano O, Van Dooren S, Thollet A, Kyndt F, Mazzanti A, Clémenty N, Bisson A, Corveleyn A, Stallmeyer B, Dittmann S, Saenen J, Noël A, Honarbakhsh S, Rudic B, Marzak H, Rowe MK, Federspiel C, Le Page S, Placide L, Milhem A, Barajas-Martinez H, Beckmann BM, Krapels IP, Steinfurt J, Winkel BG, Jabbari R, Shoemaker MB, Boukens BJ, Škorić-Milosavljević D, Bikker H, Manevy F, Lichtner P, Ribasés M, Meitinger T, Müller-Nurasyid M, Veldink JH, van den Berg LH, Van Damme P, Cusi D, Lanzani C, Rigade S, Charpentier E, Baron E, Bonnaud S, Lecointe S, Donnart A, Le Marec H, Chatel S, Karakachoff M, Bézieau S, London B, Tfelt-Hansen J, Roden D, Odening KE, Cerrone M, Chinitz LA, Volders PG, van de Berg MP, Laurent G, Faivre L, Antzelevitch C, Kääb S, Arnaout AA, Dupuis JM, Pasquie JL, Billon O, Roberts JD, Jesel L, Borggrefe M, Lambiase PD, Mansourati J, et alBarc J, Tadros R, Glinge C, Chiang DY, Jouni M, Simonet F, Jurgens SJ, Baudic M, Nicastro M, Potet F, Offerhaus JA, Walsh R, Choi SH, Verkerk AO, Mizusawa Y, Anys S, Minois D, Arnaud M, Duchateau J, Wijeyeratne YD, Muir A, Papadakis M, Castelletti S, Torchio M, Ortuño CG, Lacunza J, Giachino DF, Cerrato N, Martins RP, Campuzano O, Van Dooren S, Thollet A, Kyndt F, Mazzanti A, Clémenty N, Bisson A, Corveleyn A, Stallmeyer B, Dittmann S, Saenen J, Noël A, Honarbakhsh S, Rudic B, Marzak H, Rowe MK, Federspiel C, Le Page S, Placide L, Milhem A, Barajas-Martinez H, Beckmann BM, Krapels IP, Steinfurt J, Winkel BG, Jabbari R, Shoemaker MB, Boukens BJ, Škorić-Milosavljević D, Bikker H, Manevy F, Lichtner P, Ribasés M, Meitinger T, Müller-Nurasyid M, Veldink JH, van den Berg LH, Van Damme P, Cusi D, Lanzani C, Rigade S, Charpentier E, Baron E, Bonnaud S, Lecointe S, Donnart A, Le Marec H, Chatel S, Karakachoff M, Bézieau S, London B, Tfelt-Hansen J, Roden D, Odening KE, Cerrone M, Chinitz LA, Volders PG, van de Berg MP, Laurent G, Faivre L, Antzelevitch C, Kääb S, Arnaout AA, Dupuis JM, Pasquie JL, Billon O, Roberts JD, Jesel L, Borggrefe M, Lambiase PD, Mansourati J, Loeys B, Leenhardt A, Guicheney P, Maury P, Schulze-Bahr E, Robyns T, Breckpot J, Babuty D, Priori SG, Napolitano C, de Asmundis C, Brugada P, Brugada R, Arbelo E, Brugada J, Mabo P, Behar N, Giustetto C, Molina MS, Gimeno JR, Hasdemir C, Schwartz PJ, Crotti L, McKeown PP, Sharma S, Behr ER, Haissaguerre M, Sacher F, Rooryck C, Tan HL, Remme CA, Postema PG, Delmar M, Ellinor PT, Lubitz SA, Gourraud JB, Tanck MW, George AL, MacRae CA, Burridge PW, Dina C, Probst V, Wilde AA, Schott JJ, Redon R, Bezzina CR. Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nat Genet 2022; 54:232-239. [PMID: 35210625 PMCID: PMC9376964 DOI: 10.1038/s41588-021-01007-6] [Show More Authors] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.
Collapse
Affiliation(s)
- Julien Barc
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, .
| | - Rafik Tadros
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Charlotte Glinge
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - David Y Chiang
- Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Floriane Simonet
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Sean J Jurgens
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manon Baudic
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Michele Nicastro
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Franck Potet
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joost A Offerhaus
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Yuka Mizusawa
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Soraya Anys
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Damien Minois
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Marine Arnaud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Josselin Duchateau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
- Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Yanushi D Wijeyeratne
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Alison Muir
- Cardiology, Belfast Health and Social Care Trust and Queen's University Belfast, Belfast, UK
| | - Michael Papadakis
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Silvia Castelletti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Margherita Torchio
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
| | - Cristina Gil Ortuño
- Cardiogenetic, Unidad de Cardiopatías Familiares, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, Murcia, Spain
| | - Javier Lacunza
- Cardiology, Unidad de Cardiopatías Familiares, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Daniela F Giachino
- Clinical and Biological Sciences, Medical Genetics, University of Torino, Orbassano, Italy
- Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Natascia Cerrato
- Medical Sciences, Cardiology, University of Torino, Torino, Italy
| | - Raphaël P Martins
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Medical Science Department, University of Girona, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Biochemistry and Molecular Genetics Department, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Sonia Van Dooren
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Centre for Medical Genetics, research group Reproduction and Genetics, research cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Aurélie Thollet
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Florence Kyndt
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Andrea Mazzanti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | - Anniek Corveleyn
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Birgit Stallmeyer
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Sven Dittmann
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Johan Saenen
- Cardiology, Electrophysiology - Cardiogenetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Antoine Noël
- Department of Cardiology, University Hospital of Brest, Brest, France
| | | | - Boris Rudic
- Department 1st of Medicine, Cardiology, University Medical Center Mannheim, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Halim Marzak
- Department of Cardiology, University Hospital of Strasbourg, Strasbourg, France
| | - Matthew K Rowe
- Medicine, Cardiology, Western University, London, Ontario, Canada
| | - Claire Federspiel
- Department of Cardiovascular Medicine, Vendée Hospital, Service de Cardiologie, La Roche sur Yon, France
| | | | - Leslie Placide
- Department of Cardiology, CHU Montpellier, Montpellier, France
| | - Antoine Milhem
- Department of Cardiology, CH La Rochelle, La Rochelle, France
| | | | - Britt-Maria Beckmann
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- University Hospital of the Johann Wolfgang Goethe University Frankfurt, Institute of Legal Medicine, Frankfurt, Germany
| | - Ingrid P Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johannes Steinfurt
- Department of Cardiology and Angiology I, Heart Center, University Freiburg, Freiburg, Germany
| | - Bo Gregers Winkel
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Reza Jabbari
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Moore B Shoemaker
- Medicine, Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bas J Boukens
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Doris Škorić-Milosavljević
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hennie Bikker
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Genome Diagnostics Laboratory, Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Federico Manevy
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marta Ribasés
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philip Van Damme
- Neurology Department University Hospital Leuven, Neuroscience Department KU Leuven, Center for Brain & Disease Research VIB, Leuven, Belgium
| | - Daniele Cusi
- Scientific Unit, Bio4Dreams - Business Nursery for Life Sciences, Milan, Italy
| | - Chiara Lanzani
- Nephrology, Genomics of Renal Diseases and Hypertension Unit, Università Vita Salute San Raffaele, Milan, Italy
| | - Sidwell Rigade
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Eric Charpentier
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Estelle Baron
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphanie Bonnaud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Simon Lecointe
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Audrey Donnart
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Hervé Le Marec
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphanie Chatel
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Matilde Karakachoff
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphane Bézieau
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Barry London
- Department of Internal Medicine, Division of Cardiovascular Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jacob Tfelt-Hansen
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dan Roden
- Medicine, Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Medicine, Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Medicine, Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University Freiburg, Freiburg, Germany
- Department of Cardiology, Translational Cardiology, University Hospital Bern, Bern, Switzerland
| | - Marina Cerrone
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, NY, USA
| | - Larry A Chinitz
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, NY, USA
| | - Paul G Volders
- Department of Cardiology, CARIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maarten P van de Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriel Laurent
- Cardiology Department, ImVia lab team IFTIM, University Hospital Dijon, Dijon, France
| | | | | | - Stefan Kääb
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Munich, Munich, Germany
| | | | | | - Jean-Luc Pasquie
- Department of Cardiology, CNRS UMR9214 - Inserm U1046 - PHYMEDEXP, Université de Montpellier et CHU Montpellier, Montpellier, France
| | - Olivier Billon
- Department of Cardiovascular Medicine, Vendée Hospital, Service de Cardiologie, La Roche sur Yon, France
| | - Jason D Roberts
- Medicine, Cardiology, Western University, London, Ontario, Canada
| | - Laurence Jesel
- Department of Cardiology, University Hospital of Strasbourg, Strasbourg, France
- INSERM 1260 - Regenerative Nanomedecine, University of Strasbourg, Strasbourg, France
| | - Martin Borggrefe
- Department 1st of Medicine, Cardiology, University Medical Center Mannheim, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Pier D Lambiase
- Cardiology, Medicine, Barts Heart Centre, London, UK
- Institute of Cardiovasculr Science, UCL, Population Health, UCL, London, UK
| | | | - Bart Loeys
- Center for Medical Genetics, Cardiogenetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Antoine Leenhardt
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Cardiology, Hopital Bichat, Paris, France
| | - Pascale Guicheney
- Sorbonne Université, Paris, France
- UMR_S1166, Faculté de médecine, Sorbonne Université, INSERM, Paris, France
| | - Philippe Maury
- Service de cardiologie, Hôpital Rangueil, CHU de Toulouse, Toulouse, France
| | - Eric Schulze-Bahr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Tomas Robyns
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
- Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | | | - Silvia G Priori
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carlo Napolitano
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carlo de Asmundis
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Heart Rhythm Management Center, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis, Brussel-Vrije Universiteit Brussel, ERN Heart Guard Center, Brussels, Belgium
- IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pedro Brugada
- Heart Rhythm Management Center, UZ Brussel-VUB, Brussels, Belgium
| | - Ramon Brugada
- Hospital Trueta, CiberCV, University of Girona, IDIBGI, Girona, Spain, Barcelona, Spain
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Josep Brugada
- Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Philippe Mabo
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Nathalie Behar
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Carla Giustetto
- Medical Sciences, Cardiology, University of Torino, Torino, Italy
| | - Maria Sabater Molina
- Cardiogenetic, Unidad de Cardiopatías Familiares, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, Murcia, Spain
| | - Juan R Gimeno
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Cardiology, Unidad de Cardiopatías Familiares, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Bornova, Turkey
| | - Peter J Schwartz
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
| | - Lia Crotti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Pascal P McKeown
- Cardiology, Belfast Health and Social Care Trust and Queen's University Belfast, Belfast, UK
| | - Sanjay Sharma
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Elijah R Behr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Michel Haissaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
- Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Frédéric Sacher
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
- Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Caroline Rooryck
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France
- Université de Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), INSERM U1211, Bordeaux, France
| | - Hanno L Tan
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Carol A Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter G Postema
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Delmar
- Medicine, Cardiology, New York University School of Medicine, New York, NY, USA
| | - Patrick T Ellinor
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital and Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Steven A Lubitz
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital and Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jean-Baptiste Gourraud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Michael W Tanck
- Clinical Epidemiology, Biostatistics and Bioinformatics, Clinical Methods and Public Health, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Calum A MacRae
- Medicine, Cardiovascular Medicine, Genetics and Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christian Dina
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Vincent Probst
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Arthur A Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean-Jacques Schott
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Richard Redon
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Connie R Bezzina
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, .
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Marchal GA, Jouni M, Chiang DY, Pérez-Hernández M, Podliesna S, Yu N, Casini S, Potet F, Veerman CC, Klerk M, Lodder EM, Mengarelli I, Guan K, Vanoye CG, Rothenberg E, Charpentier F, Redon R, George AL, Verkerk AO, Bezzina CR, MacRae CA, Burridge PW, Delmar M, Galjart N, Portero V, Remme CA. Targeting the Microtubule EB1-CLASP2 Complex Modulates Na V1.5 at Intercalated Discs. Circ Res 2021; 129:349-365. [PMID: 34092082 PMCID: PMC8298292 DOI: 10.1161/circresaha.120.318643] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Gerard A Marchal
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Mariam Jouni
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - David Y Chiang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA (D.Y.C., C.A.M.)
| | | | - Svitlana Podliesna
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Nuo Yu
- Department of Cell Biology, Erasmus Medical Centre Rotterdam, The Netherlands (N.Y., N.G.)
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Franck Potet
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Christiaan C Veerman
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Mischa Klerk
- Department of Medical Biology, Amsterdam UMC - location AMC, The Netherlands (M.K., A.O.V.)
| | - Elisabeth M Lodder
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Isabella Mengarelli
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany (K.G.)
| | - Carlos G Vanoye
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Eli Rothenberg
- Department of Biochemistry and Pharmacology (E.R.), NYU School of Medicine
| | - Flavien Charpentier
- Université de Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France (F.C., R.R., V.P.)
| | - Richard Redon
- Université de Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France (F.C., R.R., V.P.)
| | - Alfred L George
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Arie O Verkerk
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
- Department of Medical Biology, Amsterdam UMC - location AMC, The Netherlands (M.K., A.O.V.)
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Calum A MacRae
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA (D.Y.C., C.A.M.)
| | - Paul W Burridge
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Mario Delmar
- Division of Cardiology (M.P.-H., M.D.), NYU School of Medicine
| | - Niels Galjart
- Department of Cell Biology, Erasmus Medical Centre Rotterdam, The Netherlands (N.Y., N.G.)
| | - Vincent Portero
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
- Université de Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France (F.C., R.R., V.P.)
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| |
Collapse
|
12
|
Jepps TA. Kv7 channel trafficking by the microtubule network in vascular smooth muscle. Acta Physiol (Oxf) 2021; 232:e13692. [PMID: 34021973 PMCID: PMC8365713 DOI: 10.1111/apha.13692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
In arterial smooth muscle cells, changes in availability of integral membrane proteins influence the regulation of blood flow and blood pressure, which is critical for human health. However, the mechanisms that coordinate the trafficking and membrane expression of specific receptors and ion channels in vascular smooth muscle are poorly understood. In the vasculature, very little is known about microtubules, which form a road network upon which proteins can be transported to and from the cell membrane. This review article summarizes the impact of the microtubule network on arterial contractility, highlighting the importance of the network, with an emphasis on our recent findings regarding the trafficking of the voltage‐dependent Kv7 channels.
Collapse
Affiliation(s)
- Thomas A Jepps
- Vascular Biology Group Department of Biomedical Sciences University of Copenhagen Blegdamsvej 3 2200 Copenhagen N Denmark
| |
Collapse
|
13
|
Chou SM, Li KX, Huang MY, Chen C, Lin King YH, Li GG, Zhou W, Teo CF, Jan YN, Jan LY, Yang SB. Kv1.1 channels regulate early postnatal neurogenesis in mouse hippocampus via the TrkB signaling pathway. eLife 2021; 10:e58779. [PMID: 34018923 PMCID: PMC8208815 DOI: 10.7554/elife.58779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
In the postnatal brain, neurogenesis occurs only within a few regions, such as the hippocampal sub-granular zone (SGZ). Postnatal neurogenesis is tightly regulated by factors that balance stem cell renewal with differentiation, and it gives rise to neurons that participate in learning and memory formation. The Kv1.1 channel, a voltage-gated potassium channel, was previously shown to suppress postnatal neurogenesis in the SGZ in a cell-autonomous manner. In this study, we have clarified the physiological and molecular mechanisms underlying Kv1.1-dependent postnatal neurogenesis. First, we discovered that the membrane potential of neural progenitor cells is highly dynamic during development. We further established a multinomial logistic regression model for cell-type classification based on the biophysical characteristics and corresponding cell markers. We found that the loss of Kv1.1 channel activity causes significant depolarization of type 2b neural progenitor cells. This depolarization is associated with increased tropomyosin receptor kinase B (TrkB) signaling and proliferation of neural progenitor cells; suppressing TrkB signaling reduces the extent of postnatal neurogenesis. Thus, our study defines the role of the Kv1.1 potassium channel in regulating the proliferation of postnatal neural progenitor cells in mouse hippocampus.
Collapse
Affiliation(s)
- Shu-Min Chou
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Ke-Xin Li
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | | | - Chao Chen
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Yuan-Hung Lin King
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | | | - Wei Zhou
- Department of Anesthesia and Perioperative Care, University of California, San FranciscoSan FranciscoUnited States
| | - Chin Fen Teo
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Neuroscience Program of Academia Sinica, Academia SinicaTaipeiTaiwan
| |
Collapse
|
14
|
Burger CA, Jiang D, Mackin RD, Samuel MA. Development and maintenance of vision's first synapse. Dev Biol 2021; 476:218-239. [PMID: 33848537 DOI: 10.1016/j.ydbio.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.
Collapse
Affiliation(s)
- Courtney A Burger
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Xie MX, Cao XY, Zeng WA, Lai RC, Guo L, Wang JC, Xiao YB, Zhang X, Chen D, Liu XG, Zhang XL. ATF4 selectively regulates heat nociception and contributes to kinesin-mediated TRPM3 trafficking. Nat Commun 2021; 12:1401. [PMID: 33658516 PMCID: PMC7930092 DOI: 10.1038/s41467-021-21731-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Effective treatments for patients suffering from heat hypersensitivity are lacking, mostly due to our limited understanding of the pathogenic mechanisms underlying this disorder. In the nervous system, activating transcription factor 4 (ATF4) is involved in the regulation of synaptic plasticity and memory formation. Here, we show that ATF4 plays an important role in heat nociception. Indeed, loss of ATF4 in mouse dorsal root ganglion (DRG) neurons selectively impairs heat sensitivity. Mechanistically, we show that ATF4 interacts with transient receptor potential cation channel subfamily M member-3 (TRPM3) and mediates the membrane trafficking of TRPM3 in DRG neurons in response to heat. Loss of ATF4 also significantly decreases the current and KIF17-mediated trafficking of TRPM3, suggesting that the KIF17/ATF4/TRPM3 complex is required for the neuronal response to heat stimuli. Our findings unveil the non-transcriptional role of ATF4 in the response to heat stimuli in DRG neurons.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Xian-Ying Cao
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
- State Key Laboratory of Marine Resources Utilization of South China Sea, 58 Renmin Avenue, Haikou, China
| | - Wei-An Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Ren-Chun Lai
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Lan Guo
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Jun-Chao Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yi-Bin Xiao
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Xi Zhang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Di Chen
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China.
| | - Xiao-Long Zhang
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|
16
|
Deardorff AS, Romer SH, Fyffe RE. Location, location, location: the organization and roles of potassium channels in mammalian motoneurons. J Physiol 2021; 599:1391-1420. [DOI: 10.1113/jp278675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Adam S. Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
- Department of Neurology and Internal Medicine, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| | - Shannon H. Romer
- Odyssey Systems Environmental Health Effects Laboratory, Navy Medical Research Unit‐Dayton Wright‐Patterson Air Force Base OH 45433 USA
| | - Robert E.W. Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| |
Collapse
|
17
|
Assembly and Function of the Juxtaparanodal Kv1 Complex in Health and Disease. Life (Basel) 2020; 11:life11010008. [PMID: 33374190 PMCID: PMC7824554 DOI: 10.3390/life11010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their role remains partially understood at the juxtaparanodes where they are trapped under the compact myelin bordering the nodes of Ranvier in physiological conditions. However, the exposure of Kv1 channels in de- or dys-myelinating neuropathy results in alteration of saltatory conduction. Moreover, cell adhesion molecules associated with the Kv1 complex, including Caspr2, Contactin2, and LGI1, are target antigens in autoimmune diseases associated with hyperexcitability such as encephalitis, neuromyotonia, or neuropathic pain. The clustering of Kv1.1/Kv1.2 channels at the axon initial segment and juxtaparanodes is based on interactions with cell adhesion molecules and cytoskeletal linkers. This review will focus on the trafficking and assembly of the axonal Kv1 complex in the peripheral and central nervous system (PNS and CNS), during development, and in health and disease.
Collapse
|
18
|
Ichinose S, Ogawa T, Jiang X, Hirokawa N. The Spatiotemporal Construction of the Axon Initial Segment via KIF3/KAP3/TRIM46 Transport under MARK2 Signaling. Cell Rep 2020; 28:2413-2426.e7. [PMID: 31461655 DOI: 10.1016/j.celrep.2019.07.093] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023] Open
Abstract
The axon initial segment (AIS) is a compartment that serves as a molecular barrier to achieve axon-dendrite differentiation. Distribution of specific proteins during early neuronal development has been proposed to be critical for AIS construction. However, it remains unknown how these proteins are specifically targeted to the proximal axon within this limited time period. Here, we reveal spatiotemporal regulation driven by the microtubule (MT)-based motor KIF3A/B/KAP3 that transports TRIM46, influenced by a specific MARK2 phosphorylation cascade. In the proximal part of the future axon under low MARK2 activity, the KIF3/KAP3 motor recognizes TRIM46 as cargo and transports it to the future AIS. In contrast, in the somatodendritic area under high MARK2 activity, KAP3 phosphorylated at serine 60 by MARK2 cannot bind with TRIM46 and be transported. This spatiotemporal regulation between KIF3/KAP3 and TRIM46 under specific MARK2 activity underlies the specific transport needed for axonal differentiation.
Collapse
Affiliation(s)
- Sotaro Ichinose
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadayuki Ogawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xuguang Jiang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
19
|
Metabolic regulation of Kv channels and cardiac repolarization by Kvβ2 subunits. J Mol Cell Cardiol 2019; 137:93-106. [PMID: 31639389 DOI: 10.1016/j.yjmcc.2019.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 11/21/2022]
Abstract
Voltage-gated potassium (Kv) channels control myocardial repolarization. Pore-forming Kvα proteins associate with intracellular Kvβ subunits, which bind pyridine nucleotides with high affinity and differentially regulate channel trafficking, plasmalemmal localization and gating properties. Nevertheless, it is unclear how Kvβ subunits regulate myocardial K+ currents and repolarization. Here, we tested the hypothesis that Kvβ2 subunits regulate the expression of myocardial Kv channels and confer redox sensitivity to Kv current and cardiac repolarization. Co-immunoprecipitation and in situ proximity ligation showed that in cardiac myocytes, Kvβ2 interacts with Kv1.4, Kv1.5, Kv4.2, and Kv4.3. Cardiac myocytes from mice lacking Kcnab2 (Kvβ2-/-) had smaller cross sectional areas, reduced sarcolemmal abundance of Kvα binding partners, reduced Ito, IK,slow1, and IK,slow2 densities, and prolonged action potential duration compared with myocytes from wild type mice. These differences in Kvβ2-/- mice were associated with greater P wave duration and QT interval in electrocardiograms, and lower ejection fraction, fractional shortening, and left ventricular mass in echocardiographic and morphological assessments. Direct intracellular dialysis with a high NAD(P)H:NAD(P)+ accelerated Kv inactivation in wild type, but not Kvβ2-/- myocytes. Furthermore, elevated extracellular levels of lactate increased [NADH]i and prolonged action potential duration in wild type cardiac myocytes and perfused wild type, but not Kvβ2-/-, hearts. Taken together, these results suggest that Kvβ2 regulates myocardial electrical activity by supporting the functional expression of proteins that generate Ito and IK,slow, and imparting redox and metabolic sensitivity to Kv channels, thereby coupling cardiac repolarization to myocyte metabolism.
Collapse
|
20
|
Krämer R, Rode S, Rumpf S. Rab11 is required for neurite pruning and developmental membrane protein degradation in Drosophila sensory neurons. Dev Biol 2019; 451:68-78. [DOI: 10.1016/j.ydbio.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
|
21
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
22
|
Blanco C, Morales D, Mogollones I, Vergara‐Jaque A, Vargas C, Álvarez A, Riquelme D, Leiva‐Salcedo E, González W, Morales D, Maureira D, Aldunate I, Cáceres M, Varela D, Cerda O. EB1‐ and EB2‐dependent anterograde trafficking of TRPM4 regulates focal adhesion turnover and cell invasion. FASEB J 2019; 33:9434-9452. [DOI: 10.1096/fj.201900136r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Constanza Blanco
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Danna Morales
- Program of Physiology and Biophysics Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Ignacio Mogollones
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Ariela Vergara‐Jaque
- Program of Physiology and Biophysics Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
- Multidisciplinary Scientific Nucleus Universidad de Talca Talca Chile
- Center for Bioinformatics and Molecular Simulation Universidad de Talca Talca Chile
| | - Carla Vargas
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Alhejandra Álvarez
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Denise Riquelme
- Department of Biology Faculty of Chemistry and Biology Universidad de Santiago de Chile Santiago Chile
| | - Elías Leiva‐Salcedo
- Department of Biology Faculty of Chemistry and Biology Universidad de Santiago de Chile Santiago Chile
| | - Wendy González
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
- Center for Bioinformatics and Molecular Simulation Universidad de Talca Talca Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Ismael Aldunate
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
- The Wound Repair Treatment, and Health (WoRTH) Initiative Santiago Chile
| | - Diego Varela
- Program of Physiology and Biophysics Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
- The Wound Repair Treatment, and Health (WoRTH) Initiative Santiago Chile
| |
Collapse
|
23
|
Cook BM, Wozniak KM, Proctor DA, Bromberg RB, Wu Y, Slusher BS, Littlefield BA, Jordan MA, Wilson L, Feinstein SC. Differential Morphological and Biochemical Recovery from Chemotherapy-Induced Peripheral Neuropathy Following Paclitaxel, Ixabepilone, or Eribulin Treatment in Mouse Sciatic Nerves. Neurotox Res 2018; 34:677-692. [PMID: 30051419 DOI: 10.1007/s12640-018-9929-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022]
Abstract
The reversibility of chemotherapy-induced peripheral neuropathy (CIPN), a disabling and potentially permanent side effect of microtubule-targeting agents (MTAs), is becoming an increasingly important issue as treatment outcomes improve. The molecular mechanisms regulating the variability in time to onset, severity, and time to recovery from CIPN between the common MTAs paclitaxel and eribulin are unknown. Previously (Benbow et al. in Neurotox Res 29:299-313, 2016), we found that after 2 weeks of a maximum tolerated dose (MTD) in mice, paclitaxel treatment resulted in severe reductions in axon area density, higher frequency of myelin abnormalities, and increased numbers of Schwann cell nuclei in sciatic nerves. Biochemically, eribulin induced greater microtubule-stabilizing effects than paclitaxel. Here, we extended these comparative MTD studies to assess the recovery from these short-term effects of paclitaxel, eribulin, and a third MTA, ixabepilone, over the course of 6 months. Paclitaxel induced a persistent reduction in axon area density over the entire 6-month recovery period, unlike ixabepilone- or eribulin-treated animals. The abundance of myelin abnormalities rapidly declined after cessation of all drugs but recovered most slowly after paclitaxel treatment. Paclitaxel- and ixabepilone- but not eribulin-treated animals exhibited increased Schwann cell numbers during the recovery period. Tubulin composition and biochemistry rapidly returned from MTD-induced levels of α-tubulin, acetylated α-tubulin, and end-binding protein 1 to control levels following cessation of drug treatment. Taken together, sciatic nerve axons recovered more rapidly from morphological effects in eribulin- and ixabepilone-treated animals than in paclitaxel-treated animals and drug-induced increases in protein expression levels following paclitaxel and eribulin treatment were relatively transient.
Collapse
Affiliation(s)
- B M Cook
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Biomolecular Sciences and Engineering, University of California Santa Barbara, Santa Barbara, CA, 93016, USA
| | - K M Wozniak
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - D A Proctor
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93016, USA
| | - R B Bromberg
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93016, USA
| | - Y Wu
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - B S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - B A Littlefield
- Scientific Administration, Eisai Research Institute, Andover, MA, 01810, USA
| | - M A Jordan
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93016, USA
| | - L Wilson
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93016, USA
| | - Stuart C Feinstein
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA. .,Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93016, USA.
| |
Collapse
|
24
|
Zhao YQ, Mu DL, Wang D, Han YL, Hou CC, Zhu JQ. Analysis of the function of KIF3A and KIF3B in the spermatogenesis in Boleophthalmus pectinirostris. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:769-788. [PMID: 29511984 DOI: 10.1007/s10695-017-0461-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/18/2017] [Indexed: 06/08/2023]
Abstract
Spermatogenesis represents one of the most complicated morphological transformation procedures. During this process, the assembly and maintenance of the flagella and intracellular transport of membrane-bound organelles required KIF3A and KIF3B. Our main goal was to test KIF3A and KIF3B location during spermatogenesis of Boleophthalmus pectinirostris. We cloned complete cDNA of KIF3A/3B from the testis of B. pectinirostris by PCR and rapid amplification of cDNA ends (RACE). The predicted secondary and tertiary structures of B. pectinirostris KIF3A/3B contained three domains: (a) the head region, (b) the stalk region, and (c) the tail region. Real-time quantitative PCR (qPCR) results revealed that KIF3A and KIF3B mRNA were presented in all the tissues examined, with the highest expression seen in the testis. In situ hybridization (ISH) showed that KIF3A and KIF3B were distributed in the periphery of the nuclear in the spermatocyte and the early spermatid. In the late spermatid and mature sperm, the KIF3A and KIF3B mRNA were gradually gathered to one side where the flagella formed. Immunofluorescence (IF) showed that KIF3A, tubulin, and mitochondria were co-localized in different stages during spermiogenesis in B. pectinirostris. The temporal and spatial expression dynamics of KIF3A/3B indicate that KIF3A and KIF3B might be involved in flagellar assembly and maintenance at the mRNA and protein levels. Moreover, these proteins may transport the mitochondria resulting in flagellum formation in B. pectinirostris.
Collapse
Affiliation(s)
- Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Dan-Li Mu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Di Wang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Ying-Li Han
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| |
Collapse
|
25
|
Zhang XL, Ding HH, Xu T, Liu M, Ma C, Wu SL, Wei JY, Liu CC, Zhang SB, Xin WJ. Palmitoylation of δ-catenin promotes kinesin-mediated membrane trafficking of Nav1.6 in sensory neurons to promote neuropathic pain. Sci Signal 2018; 11:11/523/eaar4394. [PMID: 29588412 DOI: 10.1126/scisignal.aar4394] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao-Long Zhang
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan-Huan Ding
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Liu
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Ma
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shao-Ling Wu
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jia-You Wei
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cui-Cui Liu
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Su-Bo Zhang
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wen-Jun Xin
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
26
|
CXCR1/2 pathways in paclitaxel-induced neuropathic pain. Oncotarget 2017; 8:23188-23201. [PMID: 28423567 PMCID: PMC5410296 DOI: 10.18632/oncotarget.15533] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/08/2017] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a type of neuropathic pain that represents a frequent and serious consequence of chemotherapy agents. Over the last years, significant progress has been achieved in elucidating the underlying pathogenesis of CIPN. The interference of taxanes with microtubule has been proposed as a mechanism that leads to altered axonal transport and to permanent neurological damages. The inflammatory process activated by chemotherapeutic agents has been considered as a potential trigger of nociceptive process in CIPN. In this study we investigated the effect of reparixin, an inhibitor of CXCR1/CXCR2, in suppressing the development of paclitaxel-induced nociception in rats. Moreover, reparixin activity in reversing the neurotoxic effects induced by paclitaxel or GRO/KC in F11 cells was also analyzed. Reparixin administered by continuous infusion ameliorated paclitaxel-induced mechanical and cold allodynia in rats. In F11 cells, reparixin was able to inhibit the increase of acetyladed α-tubulin induced both by paclitaxel and GRO/KC. The subsequent experiments were performed in order to dissect the signal transduction pathways under GRO/KC control, eventually modulated by paclitaxel and/or reparixin. To this aim we found that reparixin significantly counteracted p-FAK, p-JAK2/p-STAT3, and PI3K-p-cortactin activation induced either by paclitaxel or GRO/KC. Overall the present results have identified IL-8/CXCR1/2 pathway as a mechanism involved in paclitaxel-induced peripheral neuropathy. In particular, the obtained data suggest that the inhibition of CXCR1/2 combined with standard taxane therapy, in addition to potentiating the taxane anti-tumor activity can reduce chemotherapy-induced neurotoxicity, thus giving some insight for the development of novel treatments.
Collapse
|
27
|
Jukkola P, Gu Y, Lovett-Racke AE, Gu C. Suppression of Inflammatory Demyelinaton and Axon Degeneration through Inhibiting Kv3 Channels. Front Mol Neurosci 2017; 10:344. [PMID: 29123469 PMCID: PMC5662905 DOI: 10.3389/fnmol.2017.00344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/10/2017] [Indexed: 01/19/2023] Open
Abstract
The development of neuroprotective and repair strategies for treating progressive multiple sclerosis (MS) requires new insights into axonal injury. 4-aminopyridine (4-AP), a blocker of voltage-gated K+ (Kv) channels, is used in symptomatic treatment of progressive MS, but the underlying mechanism remains unclear. Here we report that deleting Kv3.1—the channel with the highest 4-AP sensitivity—reduces clinical signs in experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. In Kv3.1 knockout (KO) mice, EAE lesions in sensory and motor tracts of spinal cord were markedly reduced, and radial astroglia were activated with increased expression of brain derived neurotrophic factor (BDNF). Kv3.3/Kv3.1 and activated BDNF receptors were upregulated in demyelinating axons in EAE and MS lesions. In spinal cord myelin coculture, BDNF treatment promoted myelination, and neuronal firing via altering channel expression. Therefore, suppressing Kv3.1 alters neural circuit activity, which may enhance BNDF signaling and hence protect axons from inflammatory insults.
Collapse
Affiliation(s)
- Peter Jukkola
- Biomedical Sciences Graduate Program, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Yuanzheng Gu
- Department of Biological Chemistry and Pharmacology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Chen Gu
- Biomedical Sciences Graduate Program, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Biological Chemistry and Pharmacology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
28
|
Zhao YQ, Yang HY, Zhang DD, Han YL, Hou CC, Zhu JQ. Dynamic transcription and expression patterns of KIF3A and KIF3B genes during spermiogenesis in the shrimp, Palaemon carincauda. Anim Reprod Sci 2017; 184:59-77. [PMID: 28689636 DOI: 10.1016/j.anireprosci.2017.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/29/2017] [Accepted: 06/22/2017] [Indexed: 01/20/2023]
Abstract
Spermiogenesis is a highly ordered and complex process in the male germ cell differentiation. The microtubule-based motor proteins KIF3A and KIF3B are required for the progression of the stages of spermiogenesis. In this study, the main goal was to determine whether KIF3A and KIF3B have a key role in spermiogenesis in Palaemon carincauda. The complete cDNA of KIF3A/3B from the testis of P. carincauda was cloned by using PCR and rapid amplification of cDNA ends (RACE). The predicted secondary and tertiary structures of KIF3A/3B contained three domains which were the: a) head region, b) stalk region, and c) tail region. Real-time quantitative PCR (qPCR) results revealed that KIF3A and KIF3B mRNAs were obtained for all the tissues examined, with the greatest gene expression in the testis. In situ hybridization indicated the KIF3A and KIF3B mRNAs were distributed in the periphery of the nuclear in the early spermatid of spermiogenesis. In the middle and late spermatid stages, KIF3A and KIF3B mRNAs were gradually upregulated and assembled to one side where acrosome biogenesis begins. In the mature sperm, KIF3A and KIF3B mRNAs were distributed in the acrosome cap and spike. Immunofluorescence studies indicated that KIF3A, tubulin, mitochondria, and Golgi were co-localized in different stages during spermiogenesis in P. carincauda. The temporal and spatial gene expression dynamics of KIF3A/3B indicate that KIF3A and KIF3B proteins may be involved in acrosome formation and nucleus shaping. Moreover, these proteins can transport the mitochondria and Golgi that facilitate acrosome formation in P. carincauda.
Collapse
Affiliation(s)
- Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Hai-Yan Yang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Dan-Dan Zhang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Ying-Li Han
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China.
| |
Collapse
|
29
|
Gu Y, Jukkola P, Wang Q, Esparza T, Zhao Y, Brody D, Gu C. Polarity of varicosity initiation in central neuron mechanosensation. J Cell Biol 2017; 216:2179-2199. [PMID: 28606925 PMCID: PMC5496611 DOI: 10.1083/jcb.201606065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/17/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022] Open
Abstract
Little is known about mechanical regulation of morphological and functional polarity of central neurons. In this study, we report that mechanical stress specifically induces varicosities in the axons but not the dendrites of central neurons by activating TRPV4, a Ca2+/Na+-permeable mechanosensitive channel. This process is unexpectedly rapid and reversible, consistent with the formation of axonal varicosities in vivo induced by mechanical impact in a mouse model of mild traumatic brain injury. In contrast, prolonged stimulation of glutamate receptors induces varicosities in dendrites but not in axons. We further show that axonal varicosities are induced by persistent Ca2+ increase, disassembled microtubules (MTs), and subsequently reversible disruption of axonal transport, and are regulated by stable tubulin-only polypeptide, an MT-associated protein. Finally, axonal varicosity initiation can trigger action potentials to antidromically propagate to the soma in retrograde signaling. Therefore, our study demonstrates a new feature of neuronal polarity: axons and dendrites preferentially respond to physical and chemical stresses, respectively.
Collapse
Affiliation(s)
- Yuanzheng Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH
| | - Peter Jukkola
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Qian Wang
- Biomedical Engineering Department, The Ohio State University, Columbus, OH
| | - Thomas Esparza
- Department of Neurology, Washington University, St. Louis, MO
| | - Yi Zhao
- Biomedical Engineering Department, The Ohio State University, Columbus, OH
| | - David Brody
- Department of Neurology, Washington University, St. Louis, MO
| | - Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| |
Collapse
|
30
|
Niere F, Raab-Graham KF. mTORC1 Is a Local, Postsynaptic Voltage Sensor Regulated by Positive and Negative Feedback Pathways. Front Cell Neurosci 2017; 11:152. [PMID: 28611595 PMCID: PMC5447718 DOI: 10.3389/fncel.2017.00152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) serves as a regulator of mRNA translation. Recent studies suggest that mTORC1 may also serve as a local, voltage sensor in the postsynaptic region of neurons. Considering biochemical, bioinformatics and imaging data, we hypothesize that the activity state of mTORC1 dynamically regulates local membrane potential by promoting and repressing protein synthesis of select mRNAs. Our hypothesis suggests that mTORC1 uses positive and negative feedback pathways, in a branch-specific manner, to maintain neuronal excitability within an optimal range. In some dendritic branches, mTORC1 activity oscillates between the "On" and "Off" states. We define this as negative feedback. In contrast, positive feedback is defined as the pathway that leads to a prolonged depolarized or hyperpolarized resting membrane potential, whereby mTORC1 activity is constitutively on or off, respectively. We propose that inactivation of mTORC1 increases the expression of voltage-gated potassium alpha (Kv1.1 and 1.2) and beta (Kvβ2) subunits, ensuring that the membrane resets to its resting membrane potential after experiencing increased synaptic activity. In turn, reduced mTORC1 activity increases the protein expression of syntaxin-1A and promotes the surface expression of the ionotropic glutamate receptor N-methyl-D-aspartate (NMDA)-type subunit 1 (GluN1) that facilitates increased calcium entry to turn mTORC1 back on. Under conditions such as learning and memory, mTORC1 activity is required to be high for longer periods of time. Thus, the arm of the pathway that promotes syntaxin-1A and Kv1 protein synthesis will be repressed. Moreover, dendritic branches that have low mTORC1 activity with increased Kv expression would balance dendrites with constitutively high mTORC1 activity, allowing for the neuron to maintain its overall activity level within an ideal operating range. Finally, such a model suggests that recruitment of more positive feedback dendritic branches within a neuron is likely to lead to neurodegenerative disorders.
Collapse
Affiliation(s)
- Farr Niere
- Department of Physiology and Pharmacology, Wake Forest School of MedicineWinston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest School of MedicineWinston-Salem, NC, United States
| |
Collapse
|
31
|
Raab-Graham KF, Niere F. mTOR referees memory and disease through mRNA repression and competition. FEBS Lett 2017; 591:1540-1554. [PMID: 28493559 DOI: 10.1002/1873-3468.12675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022]
Abstract
Mammalian target of rapamycin (mTOR) activity is required for memory and is dysregulated in disease. Activation of mTOR promotes protein synthesis; however, new studies are demonstrating that mTOR activity also represses the translation of mRNAs. Almost three decades ago, Kandel and colleagues hypothesised that memory was due to the induction of positive regulators and removal of negative constraints. Are these negative constraints repressed mRNAs that code for proteins that block memory formation? Herein, we will discuss the mRNAs coded by putative memory suppressors, how activation/inactivation of mTOR repress protein expression at the synapse, how mTOR activity regulates RNA binding proteins, mRNA stability, and translation, and what the possible implications of mRNA repression are to memory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Farr Niere
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
32
|
Robinson CL, Evans RD, Briggs DA, Ramalho JS, Hume AN. Inefficient recruitment of kinesin-1 to melanosomes precludes it from facilitating their transport. J Cell Sci 2017; 130:2056-2065. [PMID: 28490438 PMCID: PMC5482976 DOI: 10.1242/jcs.186064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2017] [Indexed: 12/25/2022] Open
Abstract
Microtubules and F-actin, and their associated motor proteins, are considered to play complementary roles in long- and short-range organelle transport. However, there is growing appreciation that myosin/F-actin networks can drive long-range transport. In melanocytes, myosin-Va and kinesin-1 have both been proposed as long-range centrifugal transporters moving melanosomes into the peripheral dendrites. Here, we investigated the role of kinesin-1 heavy chain (Kif5b) and its suggested targeting factor Rab1a in transport. We performed confocal microscopy and subcellular fractionation, but did not detect Kif5b or Rab1a on melanosomes. Meanwhile functional studies, using siRNA knockdown and dominant negative mutants, did not support a role for Kif5b or Rab1a in melanosome transport. To probe the potential of Kif5b to function in transport, we generated fusion proteins that target active Kif5b to melanosomes and tested their ability to rescue perinuclear clustering in myosin-Va-deficient cells. Expression of these chimeras, but not full-length Kif5b, dispersed melanosomes with similar efficiency to myosin-Va. Our data indicate that kinesin and microtubules can compensate for defects in myosin-Va and actin-based transport in mammals, but that endogenous Kif5b does not have an important role in transport of melanocytes due to its inefficient recruitment to melanosomes. Highlighted Article: We show that Kif5b can compensate for defects in myosin-Va-based transport in mammals, but that endogenous Kif5b plays a minimal role in transport in melanocytes due to inefficient recruitment to melanosomes.
Collapse
Affiliation(s)
| | - Richard D Evans
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Jose S Ramalho
- CEDOC Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
33
|
Duménieu M, Oulé M, Kreutz MR, Lopez-Rojas J. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Front Cell Neurosci 2017; 11:115. [PMID: 28484374 PMCID: PMC5403416 DOI: 10.3389/fncel.2017.00115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.
Collapse
Affiliation(s)
- Maël Duménieu
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie Oulé
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH)Hamburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
34
|
Benbow SJ, Wozniak KM, Kulesh B, Savage A, Slusher BS, Littlefield BA, Jordan MA, Wilson L, Feinstein SC. Microtubule-Targeting Agents Eribulin and Paclitaxel Differentially Affect Neuronal Cell Bodies in Chemotherapy-Induced Peripheral Neuropathy. Neurotox Res 2017; 32:151-162. [PMID: 28391556 DOI: 10.1007/s12640-017-9729-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anticancer treatment with microtubule-targeted agents (MTAs). The frequency of severe CIPN, which can be dose limiting and even life threatening, varies widely among different MTAs. For example, paclitaxel induces a higher frequency of severe CIPN than does eribulin. Different MTAs also possess distinct mechanisms of microtubule-targeted action. Recently, we demonstrated that paclitaxel and eribulin differentially affect sciatic nerve axons, with paclitaxel inducing more pronounced neurodegenerative effects and eribulin inducing greater microtubule stabilizing biochemical effects. Here, we complement and extend these axonal studies by assessing the effects of paclitaxel and eribulin in the cell bodies of sciatic nerve axons, housed in the dorsal root ganglia (DRG). Importantly, the microtubule network in cell bodies is known to be significantly more dynamic than in axons. Paclitaxel induced activating transcription factor 3 expression, a marker of neuronal stress/injury. Paclitaxel also increased expression levels of acetylated tubulin and end binding protein 1, markers of microtubule stability and growth, respectively. These effects are hypothesized to be detrimental to the dynamic microtubule network within the cell bodies. In contrast, eribulin had no significant effect on any of these parameters in the cell bodies. Taken together, DRG cell bodies and their axons, two distinct neuronal cell compartments, contain functionally distinct microtubule networks that exhibit unique biochemical responses to different MTA treatments. We hypothesize that these distinct mechanistic actions may underlie the variability seen in the initiation, progression, persistence, and recovery from CIPN.
Collapse
Affiliation(s)
- Sarah J Benbow
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Krystyna M Wozniak
- Johns Hopkins Drug Discovery Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bridget Kulesh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - April Savage
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Departments of Neurology, Psychiatry, Neuroscience, Medicine and Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Mary Ann Jordan
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Leslie Wilson
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Stuart C Feinstein
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA. .,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
35
|
Cornejo VH, Luarte A, Couve A. Global and local mechanisms sustain axonal proteostasis of transmembrane proteins. Traffic 2017; 18:255-266. [PMID: 28220989 DOI: 10.1111/tra.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/02/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
The control of neuronal protein homeostasis or proteostasis is tightly regulated both spatially and temporally, assuring accurate and integrated responses to external or intrinsic stimuli. Local or autonomous responses in dendritic and axonal compartments are crucial to sustain function during development, physiology and in response to damage or disease. Axons are responsible for generating and propagating electrical impulses in neurons, and the establishment and maintenance of their molecular composition are subject to extreme constraints exerted by length and size. Proteins that require the secretory pathway, such as receptors, transporters, ion channels or cell adhesion molecules, are fundamental for axonal function, but whether axons regulate their abundance autonomously and how they achieve this is not clear. Evidence supports the role of three complementary mechanisms to maintain proteostasis of these axonal proteins, namely vesicular transport, local translation and trafficking and transfer from supporting cells. Here, we review these mechanisms, their molecular machineries and contribution to neuronal function. We also examine the signaling pathways involved in local translation and their role during development and nerve injury. We discuss the relative contributions of a transport-controlled proteome directed by the soma (global regulation) versus a local-controlled proteome based on local translation or cell transfer (local regulation).
Collapse
Affiliation(s)
- Víctor Hugo Cornejo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Alejandro Luarte
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Andrés Couve
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Unravelling the complexities of vascular smooth muscle ion channels: Fine tuning of activity by ancillary subunits. Pharmacol Ther 2017; 178:57-66. [PMID: 28336473 DOI: 10.1016/j.pharmthera.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Which ion channel is the most important for regulating vascular tone? Which one is responsible for controlling the resting membrane potential or repolarization? Which channels are recruited by different intracellular signalling pathways or change in certain vascular diseases? Many different ion channels have been identified in the vasculature over the years and claimed as future therapeutic targets. Unfortunately, several of these ion channels are not just found in the vasculature, with many of them also found to have prominent functional roles in different organs of the body, which then leads to off-target effects. As cardiovascular diseases are expected to increase worldwide to epidemic proportions, ion channel research and the hunt for the next major therapeutic target to treat different vascular diseases has never been more important. However, I believe that the question we should now be asking is: which ancillary subunits are involved in regulating specific ion channels in the vasculature and do they have the potential to be new therapeutic targets?
Collapse
|
37
|
Muir E, Raza M, Ellis C, Burnside E, Love F, Heller S, Elliot M, Daniell E, Dasgupta D, Alves N, Day P, Fawcett J, Keynes R. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC. PLoS One 2017; 12:e0186759. [PMID: 29121057 PMCID: PMC5679598 DOI: 10.1371/journal.pone.0186759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/06/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. METHODOLOGY/PRINCIPAL FINDINGS To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. CONCLUSION/SIGNIFICANCE Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for gene therapy, and of direct relevance to strategies aimed at expressing foreign proteins in mammalian cells, in particular bacterial proteins.
Collapse
Affiliation(s)
- Elizabeth Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Mansoor Raza
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Clare Ellis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily Burnside
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Fiona Love
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Simon Heller
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Elliot
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Esther Daniell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Debayan Dasgupta
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nuno Alves
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Cambridge, United Kingdom
| | - Priscilla Day
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - James Fawcett
- John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Cambridge, United Kingdom
| | - Roger Keynes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
38
|
|
39
|
Thayer DA, Yang SB, Jan YN, Jan LY. N-linked glycosylation of Kv1.2 voltage-gated potassium channel facilitates cell surface expression and enhances the stability of internalized channels. J Physiol 2016; 594:6701-6713. [PMID: 27377235 DOI: 10.1113/jp272394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/09/2016] [Indexed: 01/20/2023] Open
Abstract
KEY POINTS Kv1.2 and related voltage-gated potassium channels have a highly conserved N-linked glycosylation site in the first extracellular loop, with complex glycosylation in COS-7 cells similar to endogenous Kv1.2 glycosylation in hippocampal neurons. COS-7 cells expressing Kv1.2 show a crucial role of this N-linked glycosylation in the forward trafficking of Kv1.2 to the cell membrane. Although both wild-type and non-glycosylated mutant Kv1.2 channels that have reached the cell membrane are internalized at a comparable rate, mutant channels are degraded at a faster rate. Treatment of wild-type Kv1.2 channels on the cell surface with glycosidase to remove sialic acids also results in the faster degradation of internalized channels. Glycosylation of Kv1.2 is important with respect to facilitating trafficking to the cell membrane and enhancing the stability of channels that have reached the cell membrane. ABSTRACT Studies in cultured hippocampal neurons and the COS-7 cell line demonstrate important roles for N-linked glycosylation of Kv1.2 channels in forward trafficking and protein degradation. Kv1.2 channels can contain complex N-linked glycans, which facilitate cell surface expression of the channels. Additionally, the protein stability of cell surface-expressed Kv1.2 channels is affected by glycosylation via differences in the degradation of internalized channels. The present study reveals the importance of N-linked complex glycosylation in boosting Kv1.2 channel density. Notably, sialic acids at the terminal sugar branches play an important role in dampening the degradation of Kv1.2 internalized from the cell membrane to promote its stability.
Collapse
Affiliation(s)
- Desiree A Thayer
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, CA, USA.,Amunix, Mountain View, CA, USA
| | - Shi-Bing Yang
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, CA, USA.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, CA, USA
| | - Lily Y Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
40
|
Drum BML, Yuan C, Li L, Liu Q, Wordeman L, Santana LF. Oxidative stress decreases microtubule growth and stability in ventricular myocytes. J Mol Cell Cardiol 2016; 93:32-43. [PMID: 26902968 PMCID: PMC4902331 DOI: 10.1016/j.yjmcc.2016.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/21/2016] [Accepted: 02/12/2016] [Indexed: 02/05/2023]
Abstract
Microtubules (MTs) have many roles in ventricular myocytes, including structural stability, morphological integrity, and protein trafficking. However, despite their functional importance, dynamic MTs had never been visualized in living adult myocytes. Using adeno-associated viral vectors expressing the MT-associated protein plus end binding protein 3 (EB3) tagged with EGFP, we were able to perform live imaging and thus capture and quantify MT dynamics in ventricular myocytes in real time under physiological conditions. Super-resolution nanoscopy revealed that EB1 associated in puncta along the length of MTs in ventricular myocytes. The vast (~80%) majority of MTs grew perpendicular to T-tubules at a rate of 0.06μm∗s(-1) and growth was preferentially (82%) confined to a single sarcomere. Microtubule catastrophe rate was lower near the Z-line than M-line. Hydrogen peroxide increased the rate of catastrophe of MTs ~7-fold, suggesting that oxidative stress destabilizes these structures in ventricular myocytes. We also quantified MT dynamics after myocardial infarction (MI), a pathological condition associated with increased production of reactive oxygen species (ROS). Our data indicate that the catastrophe rate of MTs increases following MI. This contributed to decreased transient outward K(+) currents by decreasing the surface expression of Kv4.2 and Kv4.3 channels after MI. On the basis of these data, we conclude that, under physiological conditions, MT growth is directionally biased and that increased ROS production during MI disrupts MT dynamics, decreasing K(+) channel trafficking.
Collapse
Affiliation(s)
- Benjamin M L Drum
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Can Yuan
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Lei Li
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Qinghang Liu
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Linda Wordeman
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - L Fernando Santana
- Deparment of Physiology & Membrane Biology, University of California School of Medicine, Davis, CA 95616, United States.
| |
Collapse
|
41
|
Park SM, Littleton JT, Park HR, Lee JH. Drosophila Homolog of Human KIF22 at the Autism-Linked 16p11.2 Loci Influences Synaptic Connectivity at Larval Neuromuscular Junctions. Exp Neurobiol 2016; 25:33-9. [PMID: 26924931 PMCID: PMC4766112 DOI: 10.5607/en.2016.25.1.33] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 12/13/2022] Open
Abstract
Copy number variations at multiple chromosomal loci, including 16p11.2, have recently been implicated in the pathogenesis of autism spectrum disorder (ASD), a neurodevelopmental disease that affects 1~3% of children worldwide. The aim of this study was to investigate the roles of human genes at the 16p11.2 loci in synaptic development using Drosophila larval neuromuscular junctions (NMJ), a well-established model synapse with stereotypic innervation patterns. We conducted a preliminary genetic screen based on RNA interference in combination with the GAL4-UAS system, followed by mutational analyses. Our result indicated that disruption of klp68D, a gene closely related to human KIF22, caused ectopic innervations of axon branches forming type III boutons in muscle 13, along with less frequent re-routing of other axon branches. In addition, mutations in klp64D, of which gene product forms Kinesin-2 complex with KLP68D, led to similar targeting errors of type III axons. Mutant phenotypes were at least partially reproduced by knockdown of each gene via RNA interference. Taken together, our data suggest the roles of Kinesin-2 proteins, including KLP68D and KLP64D, in ensuring proper synaptic wiring.
Collapse
Affiliation(s)
- Sang Mee Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; Department of Biology & Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea.; Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612, Korea
| | - Ji Hye Lee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea.; Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612, Korea.; The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Benítez-King G, Valdés-Tovar M, Trueta C, Galván-Arrieta T, Argueta J, Alarcón S, Lora-Castellanos A, Solís-Chagoyán H. The microtubular cytoskeleton of olfactory neurons derived from patients with schizophrenia or with bipolar disorder: Implications for biomarker characterization, neuronal physiology and pharmacological screening. Mol Cell Neurosci 2016; 73:84-95. [PMID: 26837043 DOI: 10.1016/j.mcn.2016.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 01/29/2023] Open
Abstract
Schizophrenia (SZ) and Bipolar Disorder (BD) are highly inheritable chronic mental disorders with a worldwide prevalence of around 1%. Despite that many efforts had been made to characterize biomarkers in order to allow for biological testing for their diagnoses, these disorders are currently detected and classified only by clinical appraisal based on the Diagnostic and Statistical Manual of Mental Disorders. Olfactory neuroepithelium-derived neuronal precursors have been recently proposed as a model for biomarker characterization. Because of their peripheral localization, they are amenable to collection and suitable for being cultured and propagated in vitro. Olfactory neuroepithelial cells can be obtained by a non-invasive brush-exfoliation technique from neuropsychiatric patients and healthy subjects. Neuronal precursors isolated from these samples undergo in vitro the cytoskeletal reorganization inherent to the neurodevelopment process which has been described as one important feature in the etiology of both diseases. In this paper, we will review the current knowledge on microtubular organization in olfactory neurons of patients with SZ and with BD that may constitute specific cytoskeletal endophenotypes and their relation with alterations in L-type voltage-activated Ca(2+) currents. Finally, the potential usefulness of neuronal precursors for pharmacological screening will be discussed.
Collapse
Affiliation(s)
- G Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico.
| | - M Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - C Trueta
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, C.P. 14370, Tlalpan, Distrito Federal, Mexico
| | - T Galván-Arrieta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - J Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - S Alarcón
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - A Lora-Castellanos
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - H Solís-Chagoyán
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| |
Collapse
|
43
|
|
44
|
Benbow SJ, Cook BM, Reifert J, Wozniak KM, Slusher BS, Littlefield BA, Wilson L, Jordan MA, Feinstein SC. Effects of Paclitaxel and Eribulin in Mouse Sciatic Nerve: A Microtubule-Based Rationale for the Differential Induction of Chemotherapy-Induced Peripheral Neuropathy. Neurotox Res 2015; 29:299-313. [DOI: 10.1007/s12640-015-9580-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/15/2022]
|
45
|
Ichinose S, Ogawa T, Hirokawa N. Mechanism of Activity-Dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 2015; 87:1022-35. [PMID: 26335646 DOI: 10.1016/j.neuron.2015.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Abstract
A regulated mechanism of cargo loading is crucial for intracellular transport. N-cadherin, a synaptic adhesion molecule that is critical for neuronal function, must be precisely transported to dendritic spines in response to synaptic activity and plasticity. However, the mechanism of activity-dependent cargo loading remains unclear. To elucidate this mechanism, we investigated the activity-dependent transport of N-cadherin via its transporter, KIF3A. First, by comparing KIF3A-bound cargo vesicles with unbound KIF3A, we identified critical KIF3A phosphorylation sites and specific kinases, PKA and CaMKIIa, using quantitative phosphoanalyses. Next, mutagenesis and kinase inhibitor experiments revealed that N-cadherin transport was enhanced via phosphorylation of the KIF3A C terminus, thereby increasing cargo-loading activity. Furthermore, N-cadherin transport was enhanced during homeostatic upregulation of synaptic strength, triggered by chronic inactivation by TTX. We propose the first model of activity-dependent cargo loading, in which phosphorylation of the KIF3A C terminus upregulates the loading and transport of N-cadherin in homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Sotaro Ichinose
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadayuki Ogawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
46
|
Redistribution of Kv1 and Kv7 enhances neuronal excitability during structural axon initial segment plasticity. Nat Commun 2015; 6:8815. [PMID: 26581625 PMCID: PMC4673506 DOI: 10.1038/ncomms9815] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 10/07/2015] [Indexed: 01/16/2023] Open
Abstract
Structural plasticity of the axon initial segment (AIS), the trigger zone of neurons, is a powerful means for regulating neuronal activity. Here, we show that AIS plasticity is not limited to structural changes; it also occurs as changes in ion-channel expression, which substantially augments the efficacy of regulation. In the avian cochlear nucleus, depriving afferent inputs by removing cochlea elongated the AIS, and simultaneously switched the dominant Kv channels at the AIS from Kv1.1 to Kv7.2. Due to the slow activation kinetics of Kv7.2, the redistribution of the Kv channels reduced the shunting conductance at the elongated AIS during the initiation of action potentials and effectively enhanced the excitability of the deprived neurons. The results indicate that the functional plasticity of the AIS works cooperatively with the structural plasticity and compensates for the loss of afferent inputs to maintain the homeostasis of auditory circuits after hearing loss by cochlea removal. Sensory deprivation in the avian brain can lead to structural changes in the axon initial segment. Here, the authors build on their previous work by showing that such homeostatic AIS plasticity also involves changes in Kv channel expression, which contributes to enhanced neuronal excitability.
Collapse
|
47
|
Studying neuronal microtubule organization and microtubule-associated proteins using single molecule localization microscopy. Methods Cell Biol 2015; 131:127-49. [PMID: 26794511 DOI: 10.1016/bs.mcb.2015.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The formation and maintenance of highly polarized neurons critically depends on the proper organization of the microtubule (MT) cytoskeleton. In axons, MTs are uniformly oriented with their plus-end pointing outward whereas in mature dendrites MTs have mixed orientations. MT organization and dynamics can be regulated by MT-associated proteins (MAPs). Plus-end tracking proteins are specialized MAPs that decorate plus-ends of growing MTs and regulate neuronal polarity, neurite extension, and dendritic spine morphology. Conventional fluorescence microscopy enables observation of specific cellular components through molecule-specific labeling but provides limited resolution (∼250 nm). Therefore, electron microscopy has until now provided most of our knowledge about the precise MT organization in neurons. In the past decade, super-resolution fluorescence microscopy techniques have emerged that circumvent the diffraction limit of light and enable high-resolution reconstruction of the MT network combined with selective protein labeling. However, preserving MT ultrastructure, MAP binding, high labeling density, and antibody specificity after fixation protocols is still quite challenging. In this chapter, we provide an optimized protocol for two-color direct stochastic optical reconstruction microscopy imaging of neuronal MTs together with their growing plus-ends to probe MT architecture and polarity.
Collapse
|
48
|
ADNP/ADNP2 expression in oligodendrocytes: implication for myelin-related neurodevelopment. J Mol Neurosci 2015; 57:304-13. [DOI: 10.1007/s12031-015-0640-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Sayas CL, Tortosa E, Bollati F, Ramírez-Ríos S, Arnal I, Avila J. Tau regulates the localization and function of End-binding proteins 1 and 3 in developing neuronal cells. J Neurochem 2015; 133:653-67. [PMID: 25761518 DOI: 10.1111/jnc.13091] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Abstract
The axonal microtubule-associated protein tau is a well-known regulator of microtubule stability in neurons. However, the putative interplay between tau and End-binding proteins 1 and 3 (EB1/3), the core microtubule plus-end tracking proteins, has not been elucidated yet. Here, we show that a cross-talk between tau and EB1/3 exists in developing neuronal cells. Tau and EBs partially colocalize at extending neurites of N1E-115 neuroblastoma cells and axons of primary hippocampal neurons, as shown by confocal immunofluorescence analyses. Tau down-regulation leads to a reduction of EB1/3 comet length, as observed in shRNA-stably depleted neuroblastoma cells and TAU-/- neurons. EB1/3 localization depends on the expression levels and localization of tau protein. Over-expression of tau at high levels induces EBs relocalization to microtubule bundles at extending neurites of N1E-115 cells. In differentiating primary neurons, tau is required for the proper accumulation of EBs at stretches of microtubule bundles at the medial and distal regions of the axon. Tau interacts with EB proteins, as shown by immunoprecipitation in different non-neuronal and neuronal cells and in whole brain lysates. A tau/EB1 direct interaction was corroborated by in vitro pull-down assays. Fluorescence recovery after photobleaching assays performed in neuroblastoma cells confirmed that tau modulates EB3 cellular mobility. In summary, we provide evidence of a new function of tau as a direct regulator of EB proteins in developing neuronal cells. This cross-talk between a classical microtubule-associated protein and a core microtubule plus-end tracking protein may contribute to the fine-tuned regulation of microtubule dynamics and stability during neuronal differentiation. We describe here a novel function for tau as a direct regulator of End binding (EB) proteins in differentiating neuronal cells. EB1/3 cellular mobility and localization in extending neurites and axons is modulated by tau levels and localization. We provide new evidence of the interplay between classical microtubule-associated proteins (MAPs) and "core" microtubule plus-end tracking proteins (+TIPs) during neuronal development.
Collapse
Affiliation(s)
- Carmen Laura Sayas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain; Centre for Biomedical Research of the Canary Islands (CIBICAN), Institute for Biomedical Technologies (ITB), University of La Laguna (ULL), Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Jukkola P, Gu C. Regulation of neurovascular coupling in autoimmunity to water and ion channels. Autoimmun Rev 2015; 14:258-67. [PMID: 25462580 PMCID: PMC4303502 DOI: 10.1016/j.autrev.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/15/2014] [Indexed: 12/27/2022]
Abstract
Much progress has been made in understanding autoimmune channelopathies, but the underlying pathogenic mechanisms are not always clear due to broad expression of some channel proteins. Recent studies show that autoimmune conditions that interfere with neurovascular coupling in the central nervous system (CNS) can lead to neurodegeneration. Cerebral blood flow that meets neuronal activity and metabolic demand is tightly regulated by local neural activity. This process of reciprocal regulation involves coordinated actions of a number of cell types, including neurons, glia, and vascular cells. In particular, astrocytic endfeet cover more than 90% of brain capillaries to assist blood-brain barrier (BBB) function, and wrap around synapses and nodes of Ranvier to communicate with neuronal activity. In this review, we highlight four types of channel proteins that are expressed in astrocytes, regarding their structures, biophysical properties, expression and distribution patterns, and related diseases including autoimmune disorders. Water channel aquaporin 4 (AQP4) and inwardly rectifying potassium (Kir4.1) channels are concentrated in astrocytic endfeet, whereas some voltage-gated Ca(2+) and two-pore domain K(+) channels are expressed throughout the cell body of reactive astrocytes. More channel proteins are found in astrocytes under normal and abnormal conditions. This research field will contribute to a better understanding of pathogenic mechanisms underlying autoimmune disorders.
Collapse
Affiliation(s)
- Peter Jukkola
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Gu
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|