1
|
Jézéquel J, Condomitti G, Kroon T, Hamid F, Sanalidou S, Garcés T, Maeso P, Balia M, Hu Z, Sahara S, Rico B. Cadherins orchestrate specific patterns of perisomatic inhibition onto distinct pyramidal cell populations. Nat Commun 2025; 16:4481. [PMID: 40368888 PMCID: PMC12078473 DOI: 10.1038/s41467-025-59635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
GABAergic interneurons were thought to regulate excitatory networks by establishing unselective connections onto diverse pyramidal cell populations, but recent studies demonstrate the existence of a cell type-specific inhibitory connectome. How and when interneurons establish precise connectivity patterns among intermingled populations of excitatory neurons remains enigmatic. We explore the molecular mechanisms orchestrating the emergence of cell type-specific inhibition in the mouse cerebral cortex. We demonstrate that layer 5 intra- (L5 IT) and extra-telencephalic (L5 ET) neurons express unique transcriptional programs, allowing them to shape parvalbumin- (PV+) and cholecystokinin-positive (CCK+) interneuron wiring. We identified Cdh12 and Cdh13, two cadherin superfamily members, as underpinnings of cell type- and input-specific inhibitory patterns of L5 pyramidal cell populations. Multiplex monosynaptic tracing revealed a minimal overlap between IT and ET presynaptic inhibitory networks and suggests that different PV+ basket cell populations innervate distinct L5 pyramidal cell types. Here, we unravel the contribution of cadherins in shaping cell-type-specific cortical interneuron wiring.
Collapse
Affiliation(s)
- Julie Jézéquel
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Giuseppe Condomitti
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Tim Kroon
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Fursham Hamid
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Stella Sanalidou
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Teresa Garcés
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Patricia Maeso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Maddalena Balia
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Zhaohui Hu
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Setsuko Sahara
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
2
|
Kelly D, Bicker S, Winterer J, Nanda P, Germain PL, Dieterich C, Schratt G. A functional screen uncovers circular RNAs regulating excitatory synaptogenesis in hippocampal neurons. Nat Commun 2025; 16:3040. [PMID: 40155636 PMCID: PMC11953392 DOI: 10.1038/s41467-025-58070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Circular RNAs (circRNAs) are an expanding class of largely unexplored RNAs which are prominently enriched in the mammalian brain. Here, we systematically interrogate their role in excitatory synaptogenesis of rat hippocampal neurons using RNA interference. Thereby, we identify seven circRNAs as negative regulators of excitatory synapse formation, many of which contain high-affinity microRNA binding sites. Knockdown of one of these candidates, circRERE, promotes the formation of electrophysiologically silent synapses. Mechanistically, circRERE knockdown results in a preferential upregulation of synaptic mRNAs containing binding sites for miR-128-3p. Overexpression of circRERE stabilizes miR-128-3p and rescues exaggerated synapse formation upon circRERE knockdown in a miR-128-3p binding site-specific manner. Overall, our results uncover circRERE-mediated stabilization of miR-128-3p as a means to restrict the formation of silent excitatory synaptic co-clusters and more generally implicate circRNA-dependent microRNA regulation in the control of synapse development and function.
Collapse
Affiliation(s)
- Darren Kelly
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Silvia Bicker
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Prakruti Nanda
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
- Laboratory of Molecular and Behavioural Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
- Lab of Statistical Bioinformatics, IMLS, University of Zürich, Zurich, Switzerland
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Schratt
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
3
|
Bosquez Huerta NA, Lee ZF, Christine Song EA, Woo J, Cheng YT, Sardar D, Sert O, Maleki E, Yu K, Akdemir ES, Sanchez K, Jo J, Rasband MN, Lee HK, Harmanci AS, Deneen B. Sex-specific astrocyte regulation of spinal motor circuits by Nkx6.1. Cell Rep 2025; 44:115121. [PMID: 39731735 PMCID: PMC11932065 DOI: 10.1016/j.celrep.2024.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Astrocytes exhibit diverse cellular and molecular properties across the central nervous system (CNS). Recent studies identified region-specific transcription factors (TF) that oversee these diverse properties; how sex differences intersect with region-specific transcriptional programs to regulate astrocyte function is unknown. Here, we show that the TF Nkx6.1 is specifically expressed in ventral astrocytes of the spinal cord and that its deletion results in sex-specific effects on astrocyte morphology. Astrocytes from males exhibit enhanced morphological complexity, accompanied by increased motor function and cholinergic synapses. In contrast, female astrocytes exhibit reduced complexity and no changes in motor function. Mechanistically, we found that Nkx6.1 exhibits sex-specific DNA-binding properties and epigenomic remodeling, identifying Semaphorin 4A (Sema4A) and Gabbr1 as targets regulating astrocyte morphology and cholinergic synapse formation. Collectively, our studies identify astrocytic Nkx6.1 as a key regulator of astrocyte properties in the spinal cord while adding sexual dimorphism as a layer of transcriptional regulation to astrocyte function and circuit activity.
Collapse
Affiliation(s)
- Navish A Bosquez Huerta
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhung-Fu Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eun-Ah Christine Song
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Ting Cheng
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ozlem Sert
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ehson Maleki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanha Yu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ekin Su Akdemir
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaitlyn Sanchez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew N Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akdes Serin Harmanci
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin Deneen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Zhang J, Yang CQ, Liu ZQ, Wu SP, Li ZG, Zhang LM, Fan HW, Guo ZY, Man HY, Li X, Lu YM, Zhu LQ, Liu D. Cpeb1 remodels cell type-specific translational program to promote fear extinction. SCIENCE ADVANCES 2025; 11:eadr8687. [PMID: 39792668 PMCID: PMC11721575 DOI: 10.1126/sciadv.adr8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex (IL) during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction. Specifically, Cpeb1 deficiency in neurons activates the translation of heterochromatin protein 1 binding protein 3, which enhances microRNA networks, whereas in microglia, it suppresses the translation of chemokine receptor 1 (Cx3cr1), resulting in an aged-like microglial phenotype. These coordinated alterations impair spine formation and plasticity. Our study highlights the critical role of cell type-specific protein translation in fear extinction and provides an insight into therapeutic targets for disorders with extinction deficits.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chun-Qing Yang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shi-Ping Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zu-Guang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luo-Man Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
| | - Hong-Wei Fan
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi-Yuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430030, China
| | - You-Ming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
5
|
Krueger-Burg D. Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy. Trends Neurosci 2025; 48:47-61. [PMID: 39779392 DOI: 10.1016/j.tins.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins. Notably, many of these proteins appear to function only at specific subsets of GABAergic synapses, creating a diversity of organizer complexes that may serve as circuit-specific targets for pharmacotherapies. The present review aims to summarize the methodological developments that underlie this newfound knowledge and provide a current overview of synapse-specific GABAergic organizer complexes, as well as outlining future avenues and challenges in translating this knowledge into clinical applications.
Collapse
Affiliation(s)
- Dilja Krueger-Burg
- Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
6
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. PLoS One 2024; 19:e0301063. [PMID: 38995900 PMCID: PMC11244776 DOI: 10.1371/journal.pone.0301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vernon R. J. Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
7
|
Peeters LD, Wills LJ, Cuozzo AM, Ivanich KL, Turney SE, Bullock LP, Price RM, Gass JT, Brown RW. Modulation of mGlu5 reduces rewarding associative properties of nicotine via changes in mesolimbic plasticity: Relevance to comorbid cigarette smoking in psychosis. Pharmacol Biochem Behav 2024; 239:173752. [PMID: 38521210 PMCID: PMC11088493 DOI: 10.1016/j.pbb.2024.173752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
RATIONALE Antipsychotic medications that are used to treat psychosis are often limited in their efficacy by high rates of severe side effects. Treatment success in schizophrenia is further complicated by high rates of comorbid nicotine use. Dopamine D2 heteroreceptor complexes have recently emerged as targets for the development of more efficacious pharmaceutical treatments for schizophrenia. OBJECTIVE The current study sought to explore the use of the positive allosteric modulator of the mGlu5 receptor 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) as a treatment to reduce symptoms related to psychosis and comorbid nicotine use. METHODS Neonatal treatment of animals with the dopamine D2-like receptor agonist quinpirole (NQ) from postnatal day (P)1-21 produces a lifelong increase in D2 receptor sensitivity, showing relevance to psychosis and comorbid tobacco use disorder. Following an 8-day conditioning paradigm, brain tissue in the mesolimbic pathway was analyzed for several plasticity markers, including brain derived neurotrophic factor (BDNF), phosphorylated p70 ribosomal S6 kinase (phospho-p70S6K), and cadherin-13 (Cdh13). RESULTS Pretreatment with CDPPB was effective to block enhanced nicotine conditioned place preference observed in NQ-treated animals. Pretreatment was additionally effective to block the nicotine-induced increase in BDNF and sex-dependent increases in cadherin-13 in the ventral tegmental area (VTA), as well as increased phospho-p70S6K in the nucleus accumbens (NAcc) shell found in NQ-treated animals. CONCLUSION In conjunction with prior work, the current study suggests positive allosteric modulation of the mGlu5 receptor, an emerging target for schizophrenia therapeutics, may be effective for the treatment of comorbid nicotine abuse in psychosis.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Liza J Wills
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Kira L Ivanich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Seth E Turney
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Luke P Bullock
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Robert M Price
- Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Justin T Gass
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America.
| |
Collapse
|
8
|
Rosario-Rodríguez LJ, Cantres-Rosario YM, Carrasquillo-Carrión K, Rosa-Díaz A, Rodríguez-De Jesús AE, Rivera-Nieves V, Tosado-Rodríguez EL, Méndez LB, Roche-Lima A, Bertrán J, Meléndez LM. Plasma Proteins Associated with COVID-19 Severity in Puerto Rico. Int J Mol Sci 2024; 25:5426. [PMID: 38791465 PMCID: PMC11121485 DOI: 10.3390/ijms25105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Viral strains, age, and host factors are associated with variable immune responses against SARS-CoV-2 and disease severity. Puerto Ricans have a genetic mixture of races: European, African, and Native American. We hypothesized that unique host proteins/pathways are associated with COVID-19 disease severity in Puerto Rico. Following IRB approval, a total of 95 unvaccinated men and women aged 21-71 years old were recruited in Puerto Rico from 2020-2021. Plasma samples were collected from COVID-19-positive subjects (n = 39) and COVID-19-negative individuals (n = 56) during acute disease. COVID-19-positive individuals were stratified based on symptomatology as follows: mild (n = 18), moderate (n = 13), and severe (n = 8). Quantitative proteomics was performed in plasma samples using tandem mass tag (TMT) labeling. Labeled peptides were subjected to LC/MS/MS and analyzed by Proteome Discoverer (version 2.5), Limma software (version 3.41.15), and Ingenuity Pathways Analysis (IPA, version 22.0.2). Cytokines were quantified using a human cytokine array. Proteomics analyses of severely affected COVID-19-positive individuals revealed 58 differentially expressed proteins. Cadherin-13, which participates in synaptogenesis, was downregulated in severe patients and validated by ELISA. Cytokine immunoassay showed that TNF-α levels decreased with disease severity. This study uncovers potential host predictors of COVID-19 severity and new avenues for treatment in Puerto Ricans.
Collapse
Affiliation(s)
- Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
| | - Yadira M. Cantres-Rosario
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Alexandra Rosa-Díaz
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Ana E. Rodríguez-De Jesús
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Verónica Rivera-Nieves
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Eduardo L. Tosado-Rodríguez
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Loyda B. Méndez
- Department of Science & Technology, Ana G. Mendez University, Carolina 00928, Puerto Rico;
| | - Abiel Roche-Lima
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Jorge Bertrán
- Infectious Diseases, Auxilio Mutuo Hospital, San Juan 00919, Puerto Rico;
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| |
Collapse
|
9
|
Mincheva-Tasheva S, Pfitzner C, Kumar R, Kurtsdotter I, Scherer M, Ritchie T, Muhr J, Gecz J, Thomas PQ. Mapping combinatorial expression of non-clustered protocadherins in the developing brain identifies novel PCDH19-mediated cell adhesion properties. Open Biol 2024; 14:230383. [PMID: 38629124 PMCID: PMC11037505 DOI: 10.1098/rsob.230383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.
Collapse
Affiliation(s)
- Stefka Mincheva-Tasheva
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Chandran Pfitzner
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Raman Kumar
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Idha Kurtsdotter
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Michaela Scherer
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Tarin Ritchie
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Jonas Muhr
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Jozef Gecz
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
- South Australian Health and Medical Research
Institute, Adelaide, 5000 ,
Australia
| | - Paul Q. Thomas
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| |
Collapse
|
10
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584540. [PMID: 38558974 PMCID: PMC10979978 DOI: 10.1101/2024.03.11.584540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme CaMKII plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on runaway synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| |
Collapse
|
11
|
Guo Q, Wang Y, Wang Q, Qian Y, Jiang Y, Dong X, Chen H, Chen X, Liu X, Yu S, Zhu J, Shan S, Wu B, Zhou W, Wang H. In the developing cerebral cortex: axonogenesis, synapse formation, and synaptic plasticity are regulated by SATB2 target genes. Pediatr Res 2023; 93:1519-1527. [PMID: 36028553 DOI: 10.1038/s41390-022-02260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Special AT-rich sequence-binding protein 2 is essential for the development of cerebral cortex and key molecular node for the establishment of proper neural circuitry and function. Mutations in the SATB2 gene lead to SATB2-associated syndrome, which is characterized by abnormal development of skeleton and central nervous systems. METHODS We generated Satb2 knockout mouse model through CRISPR-Cas9 technology and performed RNA-seq and ChIP-seq of embryonic cerebral cortex. We conducted RT-qPCR, western blot, immunofluorescence staining, luciferase reporter assay and behavioral analysis for experimental verification. RESULTS We identified 1363 downstream effector genes of Satb2 and correlation analysis of Satb2-targeted genes and neurological disease genes showed that Satb2 contribute to cognitive and mental disorders from the early developmental stage. We found that Satb2 directly regulate the expression of Ntng1, Cdh13, Kitl, genes important for axon guidance, synaptic formation, neuron migration, and Satb2 directly activates the expression of Mef2c. We also showed that Satb2 heterozygous knockout mice showed impaired spatial learning and memory. CONCLUSIONS Taken together, our study supportsroles of Satb2 in the regulation of axonogenesis and synaptic formation at the early developmental stage and provides new insights into the complicated regulatory mechanism of Satb2 and new evidence to elucidate the pathogen of SATB2-associated syndrome. IMPACT 1363 downstream effector genes of Satb2 were classified into 5 clusters with different temporal expression patterns. We identified Plxnd1, Ntng1, Efnb2, Ephb1, Plxna2, Epha3, Plxna4, Unc5c, and Flrt2 as axon guidance molecules to regulate axonogenesis. 168 targeted genes of Satb2 were found to regulate synaptic formation in the early development of the cerebral cortex. Transcription factor Mef2c is positively regulated by Satb2, and 28 Mef2c-targeted genes can be directly regulated by Satb2. In the Morris water maze test, Satb2+/- mice showed impaired spatial learning and memory, further strengthening that Satb2 can regulate synaptic functions.
Collapse
Affiliation(s)
- Qiufang Guo
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
- Berry Genomics Co, 102206, Beijing, China
| | - Yaqiong Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Qing Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Yinmo Jiang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Xiang Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Xiuyun Liu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Sha Yu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Jitao Zhu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Shifang Shan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China.
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Key Laboratory of Neonatal Diseases, Ministry of Health, 201102, Shanghai, China.
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China.
| |
Collapse
|
12
|
Lu ZJ, Ye JG, Wang DL, Li MK, Zhang QK, Liu Z, Huang YJ, Pan CN, Lin YH, Shi ZX, Zheng YF. Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Mouse Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2023; 64:30. [PMID: 36943152 PMCID: PMC10043503 DOI: 10.1167/iovs.64.3.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Purpose Corneal epithelial homeostasis is maintained by coordinated gene expression across distinct cell populations, but the gene regulatory programs underlying this cellular diversity remain to be characterized. Here we applied single-cell multi-omics analysis to delineate the gene regulatory profile of mouse corneal epithelial cells under normal homeostasis. Methods Single cells isolated from the cornea epithelium (with marginal conjunctiva) of adult mice were subjected to scRNA-seq and scATAC-seq using the 10×Genomics platform. Cell types were clustered by the graph-based visualization method uniform manifold approximation and projection and unbiased computational informatics analysis. The scRNA-seq and scATAC-seq datasets were integrated following the integration pipeline described in ArchR and Seurat. Results We characterized diverse corneal epithelial cell types based on gene expression signatures and chromatin accessibility. We found that cell type-specific accessibility regions were mainly located at distal regions, suggesting essential roles of distal regulatory elements in determining corneal epithelial cell diversity. Trajectory analyses revealed a continuum of cell state transition and higher coordination between transcription factor (TF) motif accessibility and gene expression during corneal epithelial cell differentiation. By integrating transcriptomic and chromatin accessibility analysis, we identified cell type-specific and shared gene regulation programs. We also uncovered critical TFs driving corneal epithelial cell differentiation, such as nuclear factor I (NFI) family members, Rarg, Elf3. We found that nuclear factor-κB (NF-κB) family members were positive TFs in limbal cells and some superficial cells, but they were involved in regulating distinct biological processes. Conclusions Our study presents a comprehensive gene regulatory landscape of mouse cornea epithelial cells, and provides valuable foundations for future investigation of corneal epithelial homeostasis in the context of cornea pathologies and regenerative medicine.
Collapse
Affiliation(s)
- Zhao-Jing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, China
| | - Jin-Guo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dong-Liang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Meng-Ke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qi-Kai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yan-Jing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Cai-Neng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu-Heng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhuo-Xing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying-Feng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, China
| |
Collapse
|
13
|
Takahashi H, Yamamoto T, Tsuboi A. Molecular mechanisms underlying activity-dependent ischemic tolerance in the brain. Neurosci Res 2023; 186:3-9. [PMID: 36244569 DOI: 10.1016/j.neures.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. The inhibition of cerebral blood flow triggers intertwined pathological events, resulting in cell death and loss of brain function. Interestingly, animals pre-exposed to short-term ischemia can tolerate subsequent severe ischemia. This phenomenon is called ischemic tolerance and is also triggered by other noxious stimuli. However, whether short-term exposure to non-noxious stimuli can induce ischemic tolerance remains unknown. Recently, we found that pre-exposing mice to an enriched environment for 40 min is sufficient to facilitate cell survival after a subsequent stroke. The neuroprotective process depends on the neuronal activity soon before stroke, of which the activity-dependent transcription factor Npas4 is essential. Excessive Ca2+ influx triggers Npas4 expression in ischemic neurons, leading to the activation of neuroprotective programs. Pre-induction of Npas4 in the normal brain effectively supports cell survival after stroke. Furthermore, our study revealed that Npas4 regulates L-type voltage-gated Ca2+ channels through expression of the small Ras-like GTPase Gem in ischemic neurons. Ischemic tolerance is a good model for understanding how to promote neuroprotective mechanisms in the normal and injured brain. Here, we highlight activity-dependent ischemic tolerance and discuss its role in promoting neuroprotection against stroke.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Akio Tsuboi
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
14
|
Saunders A, Huang KW, Vondrak C, Hughes C, Smolyar K, Sen H, Philson AC, Nemesh J, Wysoker A, Kashin S, Sabatini BL, McCarroll SA. Ascertaining cells' synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries. Nat Commun 2022; 13:6993. [PMID: 36384944 PMCID: PMC9668842 DOI: 10.1038/s41467-022-34334-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Brain function depends on synaptic connections between specific neuron types, yet systematic descriptions of synaptic networks and their molecular properties are not readily available. Here, we introduce SBARRO (Synaptic Barcode Analysis by Retrograde Rabies ReadOut), a method that uses single-cell RNA sequencing to reveal directional, monosynaptic relationships based on the paths of a barcoded rabies virus from its "starter" postsynaptic cell to that cell's presynaptic partners. Thousands of these partner relationships can be ascertained in a single experiment, alongside genome-wide RNAs. We use SBARRO to describe synaptic networks formed by diverse mouse brain cell types in vitro, finding that different cell types have presynaptic networks with differences in average size and cell type composition. Patterns of RNA expression suggest that functioning synapses are critical for rabies virus uptake. By tracking individual rabies clones across cells, SBARRO offers new opportunities to map the synaptic organization of neural circuits.
Collapse
Affiliation(s)
- Arpiar Saunders
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.5288.70000 0000 9758 5690Vollum Institute, Oregon Health & Science University, Portland, OR 97239 USA
| | - Kee Wui Huang
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Cassandra Vondrak
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Christina Hughes
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Karina Smolyar
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Harsha Sen
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Adrienne C. Philson
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - James Nemesh
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Alec Wysoker
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Seva Kashin
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Bernardo L. Sabatini
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Steven A. McCarroll
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
15
|
Sharma G, Banerjee S. Activity-regulated E3 ubiquitin ligase TRIM47 modulates excitatory synapse development. Front Mol Neurosci 2022; 15:943980. [PMID: 36211980 PMCID: PMC9532517 DOI: 10.3389/fnmol.2022.943980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) has been shown to regulate neuronal development and synapse formation. Activity-dependent regulation of E3 ligase, a component of the UPS that targets specific proteins for proteasome-mediated degradation, is emerging as a pivotal player for the establishment of functional synapses. Here, we identified TRIM47 as a developmentally regulated E3 ligase that is expressed in rat hippocampus during the temporal window of synapse formation. We have demonstrated that the expression of TRIM47 is regulated by the glutamate-induced synaptic activity of hippocampal neurons in culture. In addition, the activity-dependent enhancement of TRIM47 expression is recapitulated following the object location test, a hippocampus-dependent spatial memory paradigm. We observed that this enhancement of TRIM47 expression requires NMDA receptor activation. The knockdown of TRIM47 leads to an enhancement of spine density without affecting dendritic complexity. Furthermore, we observed an increase in excitatory synapse development upon loss of TRIM47 function. Comprehensively, our study identified an activity-regulated E3 ligase that drives excitatory synapse formation in hippocampal neurons.
Collapse
|
16
|
Cordovado A, Schaettin M, Jeanne M, Panasenkava V, Denommé-Pichon AS, Keren B, Mignot C, Doco-Fenzy M, Rodan L, Ramsey K, Narayanan V, Jones JR, Prijoles EJ, Mitchell WG, Ozmore JR, Juliette K, Torti E, Normand EA, Granger L, Petersen AK, Au MG, Matheny JP, Phornphutkul C, Chambers MK, Fernández-Ramos JA, López-Laso E, Kruer MC, Bakhtiari S, Zollino M, Morleo M, Marangi G, Mei D, Pisano T, Guerrini R, Louie RJ, Childers A, Everman DB, Isidor B, Audebert-Bellanger S, Odent S, Bonneau D, Gilbert-Dussardier B, Redon R, Bézieau S, Laumonnier F, Stoeckli ET, Toutain A, Vuillaume ML. SEMA6B variants cause intellectual disability and alter dendritic spine density and axon guidance. Hum Mol Genet 2022; 31:3325-3340. [PMID: 35604360 DOI: 10.1093/hmg/ddac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
Intellectual disability is a neurodevelopmental disorder frequently caused by monogenic defects. In this study, we collected 14 SEMA6B heterozygous variants in 16 unrelated patients referred for intellectual disability to different centres. Whereas until now SEMA6B variants have mainly been reported in patients with progressive myoclonic epilepsy, our study indicates that the clinical spectrum is wider, and also includes non-syndromic intellectual disability without epilepsy or myoclonus. To assess the pathogenicity of these variants, selected mutated forms of Sema6b were overexpressed in HEK293T cells and in primary neuronal cultures. shRNAs targeting Sema6b were also used in neuronal cultures to measure the impact of the decreased Sema6b expression on morphogenesis and synaptogenesis. The overexpression of some variants leads to a subcellular mislocalisation of SEMA6B protein in HEK293T cells and to a reduced spine density due to loss of mature spines in neuronal cultures. Sema6b knock-down also impairs spine density and spine maturation. In addition, we conducted in vivo rescue experiments in chicken embryos with the selected mutated forms of Sema6b expressed in commissural neurons after knock-down of endogenous SEMA6B. We observed that expression of these variants in commissural neurons fails to rescue the normal axon pathway. In conclusion, identification of SEMA6B variants in patients presenting with an overlapping phenotype with intellectual disability, and functional studies highlight the important role of SEMA6B in neuronal development, notably in spine formation and maturation, and in axon guidance. This study adds SEMA6B to the list of intellectual disability-related genes.
Collapse
Affiliation(s)
- Amélie Cordovado
- UMR 1253, iBrain, University of Tours, Inserm, 37032 Tours, France
| | - Martina Schaettin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich 8057, Switzerland
| | - Médéric Jeanne
- UMR 1253, iBrain, University of Tours, Inserm, 37032 Tours, France.,Genetics Department, University Hospital of Tours, 37044 Tours, France
| | | | - Anne-Sophie Denommé-Pichon
- Functional Unit in Innovative Genomic Diagnosis of Rare Diseases, FHU-TRANSLAD, Dijon-Bourgogne University Hospital, Dijon, France.,UMR1231 GAD, Inserm - Bourgogne-Franche Comté University, Dijon, France
| | - Boris Keren
- Genetics Department, Pitié-Salpêtrière Hospital, AP-HP. Sorbonne University, 75651 Paris, France
| | - Cyril Mignot
- Genetics Department, Pitié-Salpêtrière Hospital, AP-HP. Sorbonne University, 75651 Paris, France
| | - Martine Doco-Fenzy
- University Hospital Reims, AMH2, Genetics Division, SFR CAP santé EA3801, Reims, France
| | - Lance Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Julie R Jones
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | | | - Wendy G Mitchell
- Neurology Division, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, USA
| | | | - Kali Juliette
- Gillette Children's Specialty Healthcare: Neurology Department, St Paul, MN 55101, USA
| | | | | | - Leslie Granger
- Genetics Division, Department of Pediatric Development and Rehabilitation, Randall Children's Hospital, Portland, OR 97227, USA
| | - Andrea K Petersen
- Genetics Division, Department of Pediatric Development and Rehabilitation, Randall Children's Hospital, Portland, OR 97227, USA
| | - Margaret G Au
- University of Kentucky: Department of Genetics and Metabolism, Lexington, KY 40536, USA
| | - Juliann P Matheny
- University of Kentucky: Department of Genetics and Metabolism, Lexington, KY 40536, USA
| | - Chanika Phornphutkul
- Division of Human Genetics, Department of Pediatrics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital, Providence, RI 02903, USA
| | - Mary-Kathryn Chambers
- Division of Genetics, Rhode Island Hospital, Hasbro Children's Hospital, Providence, RI 02903, USA
| | | | - Eduardo López-Laso
- Pediatric Neurology Unit, department of Pediatrics, University Hospital Reina Sofía, IMIBIC and CIBERER, Córdoba, Spain
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Marcella Zollino
- Università Cattolica Sacro Cuore, Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Roma, Italy.,Fondazione Policlinico A. Gemelli IRCCS, U. O. C. Genetica Medica, Roma, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Giuseppe Marangi
- Università Cattolica Sacro Cuore, Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Roma, Italy.,Fondazione Policlinico A. Gemelli IRCCS, U. O. C. Genetica Medica, Roma, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, Member of ERN Epicare, University of Florence, Florence, Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, Member of ERN Epicare, University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, Member of ERN Epicare, University of Florence, Florence, Italy
| | - Raymond J Louie
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | - Anna Childers
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | - David B Everman
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | - Betrand Isidor
- Medical Genetics Service, Clinical Genetics Unit, University Hospital of Nantes, Hôtel Dieu, 44093 Nantes, France
| | | | - Sylvie Odent
- Clinical Genetics Service, University Hospital, Genetic and Development Institute of Rennes IGDR, UMR 6290 University of Rennes, ITHACA ERN, 35203 Rennes, France
| | - Dominique Bonneau
- Department of Medical Genetics, University Hospital of Angers and Mitovasc INSERM 1083, CNRS 6015, 49000 Angers, France
| | | | - Richard Redon
- INSERM, CNRS, UNIV Nantes, Thorax Institute, 44007 Nantes, France
| | - Stéphane Bézieau
- INSERM, CNRS, UNIV Nantes, Thorax Institute, 44007 Nantes, France.,University Hospital of Nantes, Medical Genetics Service 44093 Nantes, France
| | | | - Esther T Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich 8057, Switzerland
| | - Annick Toutain
- UMR 1253, iBrain, University of Tours, Inserm, 37032 Tours, France.,Genetics Department, University Hospital of Tours, 37044 Tours, France
| | - Marie-Laure Vuillaume
- UMR 1253, iBrain, University of Tours, Inserm, 37032 Tours, France.,Genetics Department, University Hospital of Tours, 37044 Tours, France
| |
Collapse
|
17
|
Cadherin-13 is a critical regulator of GABAergic modulation in human stem-cell-derived neuronal networks. Mol Psychiatry 2022; 27:1-18. [PMID: 33972691 PMCID: PMC8960401 DOI: 10.1038/s41380-021-01117-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Activity in the healthy brain relies on a concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders; however, obtaining mechanistic insight into these disruptions, with translational value for the patient, has typically been hampered by methodological limitations. Cadherin-13 (CDH13) has been associated with autism and attention-deficit/hyperactivity disorder. CDH13 localizes at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human-induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and MEF2C (PV-precursor marker protein) expressing GABAergic neurons (iGABA) in vitro, and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13 deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-β1 and Integrin-β3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type-specific contribution of disease genes to the E/I balance.
Collapse
|
18
|
Takahashi H, Asahina R, Fujioka M, Matsui TK, Kato S, Mori E, Hioki H, Yamamoto T, Kobayashi K, Tsuboi A. Ras-like Gem GTPase induced by Npas4 promotes activity-dependent neuronal tolerance for ischemic stroke. Proc Natl Acad Sci U S A 2021; 118:e2018850118. [PMID: 34349016 PMCID: PMC8364162 DOI: 10.1073/pnas.2018850118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Ischemic stroke, which results in loss of neurological function, initiates a complex cascade of pathological events in the brain, largely driven by excitotoxic Ca2+ influx in neurons. This leads to cortical spreading depolarization, which induces expression of genes involved in both neuronal death and survival; yet, the functions of these genes remain poorly understood. Here, we profiled gene expression changes that are common to ischemia (modeled by middle cerebral artery occlusion [MCAO]) and to experience-dependent activation (modeled by exposure to an enriched environment [EE]), which also induces Ca2+ transients that trigger transcriptional programs. We found that the activity-dependent transcription factor Npas4 was up-regulated under MCAO and EE conditions and that transient activation of cortical neurons in the healthy brain by the EE decreased cell death after stroke. Furthermore, both MCAO in vivo and oxygen-glucose deprivation in vitro revealed that Npas4 is necessary and sufficient for neuroprotection. We also found that this protection involves the inhibition of L-type voltage-gated Ca2+ channels (VGCCs). Next, our systematic search for Npas4-downstream genes identified Gem, which encodes a Ras-related small GTPase that mediates neuroprotective effects of Npas4. Gem suppresses the membrane localization of L-type VGCCs to inhibit excess Ca2+ influx, thereby protecting neurons from excitotoxic death after in vitro and in vivo ischemia. Collectively, our findings indicate that Gem expression via Npas4 is necessary and sufficient to promote neuroprotection in the injured brain. Importantly, Gem is also induced in human cerebral organoids cultured under an ischemic condition, revealing Gem as a new target for drug discovery.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan;
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Ryo Asahina
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Masayuki Fujioka
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Takeshi K Matsui
- Department of Future Basic Medicine, School of Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, School of Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Akio Tsuboi
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan;
- Laboratory for Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
19
|
Frei JA, Niescier RF, Bridi MS, Durens M, Nestor JE, Kilander MBC, Yuan X, Dykxhoorn DM, Nestor MW, Huang S, Blatt GJ, Lin YC. Regulation of Neural Circuit Development by Cadherin-11 Provides Implications for Autism. eNeuro 2021; 8:ENEURO.0066-21.2021. [PMID: 34135003 PMCID: PMC8266214 DOI: 10.1523/eneuro.0066-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurologic condition characterized by alterations in social interaction and communication, and restricted and/or repetitive behaviors. The classical Type II cadherins cadherin-8 (Cdh8, CDH8) and cadherin-11 (Cdh11, CDH11) have been implicated as autism risk gene candidates. To explore the role of cadherins in the etiology of autism, we investigated their expression patterns during mouse brain development and in autism-specific human tissue. In mice, expression of cadherin-8 and cadherin-11 was developmentally regulated and enriched in the cortex, hippocampus, and thalamus/striatum during the peak of dendrite formation and synaptogenesis. Both cadherins were expressed in synaptic compartments but only cadherin-8 associated with the excitatory synaptic marker neuroligin-1. Induced pluripotent stem cell (iPSC)-derived cortical neural precursor cells (NPCs) and cortical organoids generated from individuals with autism showed upregulated CDH8 expression levels, but downregulated CDH11. We used Cdh11 knock-out (KO) mice of both sexes to analyze the function of cadherin-11, which could help explain phenotypes observed in autism. Cdh11-/- hippocampal neurons exhibited increased dendritic complexity along with altered neuronal and synaptic activity. Similar to the expression profiles in human tissue, levels of cadherin-8 were significantly elevated in Cdh11 KO brains. Additionally, excitatory synaptic markers neuroligin-1 and postsynaptic density (PSD)-95 were both increased. Together, these results strongly suggest that cadherin-11 is involved in regulating the development of neuronal circuitry and that alterations in the expression levels of cadherin-11 may contribute to the etiology of autism.
Collapse
Affiliation(s)
- Jeannine A Frei
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Morgan S Bridi
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Madel Durens
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Jonathan E Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | | | - Xiaobing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Michael W Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Gene J Blatt
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| |
Collapse
|
20
|
Carulli D, de Winter F, Verhaagen J. Semaphorins in Adult Nervous System Plasticity and Disease. Front Synaptic Neurosci 2021; 13:672891. [PMID: 34045951 PMCID: PMC8148045 DOI: 10.3389/fnsyn.2021.672891] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes.
Collapse
Affiliation(s)
- Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Neuroscience Rita Levi-Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
21
|
Wan Y, Feng B, You Y, Yu J, Xu C, Dai H, Trapp BD, Shi P, Chen Z, Hu W. Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures. Cell Rep 2021; 33:108346. [PMID: 33147450 DOI: 10.1016/j.celrep.2020.108346] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/08/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022] Open
Abstract
Complex febrile seizures (FSs) lead to a high risk of intractable temporal lobe epilepsy during adulthood, yet the pathological process of complex FSs is largely unknown. Here, we demonstrate that activated microglia extensively associated with glutamatergic neuronal soma displace surrounding GABAergic presynapses in complex FSs. Patch-clamp electrophysiology establishes that the microglial displacement of GABAergic presynapses abrogates a complex-FS-induced increase in GABAergic neurotransmission and neuronal excitability, whereas GABA exerts an excitatory action in this immature stage. Pharmacological inhibition of microglial displacement of GABAergic presynapses or selective ablation of microglia in CD11bDTR mice promotes the generation of complex FSs. Blocking or deleting the P2Y12 receptor (P2Y12R) reduces microglial displacement of GABAergic presynapses and shortens the latency of complex FSs. Together, microglial displacement of GABAergic presynapses, regulated by P2Y12R, reduces neuronal excitability to mitigate the generation of complex FSs. Microglial displacement is a protective event during the pathological process of complex FSs.
Collapse
Affiliation(s)
- Yushan Wan
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Bo Feng
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yi You
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jie Yu
- Laboratory of Brain Function and Disease in Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Haibin Dai
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Peng Shi
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China; Laboratory of Brain Function and Disease in Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China.
| |
Collapse
|
22
|
Takeda K, Watanabe T, Oyabu K, Tsukamoto S, Oba Y, Nakano T, Kubota K, Katsurabayashi S, Iwasaki K. Valproic acid-exposed astrocytes impair inhibitory synapse formation and function. Sci Rep 2021; 11:23. [PMID: 33420078 PMCID: PMC7794250 DOI: 10.1038/s41598-020-79520-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Valproic acid (VPA) is widely prescribed to treat epilepsy. Maternal VPA use is, however, clinically restricted because of the severe risk that VPA may cause neurodevelopmental disorders in offspring, such as autism spectrum disorder. Understanding the negative action of VPA may help to prevent VPA-induced neurodevelopmental disorders. Astrocytes play a vital role in neurodevelopment and synapse function; however, the impact of VPA on astrocyte involvement in neurodevelopment and synapse function has not been examined. In this study, we examined whether exposure of cultured astrocytes to VPA alters neuronal morphology and synapse function of co-cultured neurons. We show that synaptic transmission by inhibitory neurons was small because VPA-exposed astrocytes reduced the number of inhibitory synapses. However, synaptic transmission by excitatory neurons and the number of excitatory synapses were normal with VPA-exposed astrocytes. VPA-exposed astrocytes did not affect the morphology of inhibitory neurons. These data indicate that VPA-exposed astrocytes impair synaptogenesis specifically of inhibitory neurons. Our results indicate that maternal use of VPA would affect not only neurons but also astrocytes and would result in perturbed astrocyte-mediated neurodevelopment.
Collapse
Affiliation(s)
- Kotomi Takeda
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan. .,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.
| | - Kohei Oyabu
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shuntaro Tsukamoto
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Yuki Oba
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Takafumi Nakano
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| |
Collapse
|
23
|
Simonetti M, Paldy E, Njoo C, Bali KK, Worzfeld T, Pitzer C, Kuner T, Offermanns S, Mauceri D, Kuner R. The impact of Semaphorin 4C/Plexin-B2 signaling on fear memory via remodeling of neuronal and synaptic morphology. Mol Psychiatry 2021; 26:1376-1398. [PMID: 31444474 PMCID: PMC7985029 DOI: 10.1038/s41380-019-0491-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
Abstract
Aberrant fear is a cornerstone of several psychiatric disorders. Consequently, there is large interest in elucidation of signaling mechanisms that link extracellular cues to changes in neuronal function and structure in brain pathways that are important in the generation and maintenance of fear memory and its behavioral expression. Members of the Plexin-B family of receptors for class 4 semaphorins play important roles in developmental plasticity of neurons, and their expression persists in some areas of the adult nervous system. Here, we aimed to elucidate the role of Semaphorin 4C (Sema4C) and its cognate receptor, Plexin-B2, in the expression of contextual and cued fear memory, setting a mechanistic focus on structural plasticity and exploration of contributing signaling pathways. We observed that Plexin-B2 and Sema4C are expressed in forebrain areas related to fear memory, such as the anterior cingulate cortex, amygdala and the hippocampus, and their expression is regulated by aversive stimuli that induce fear memory. By generating forebrain-specific Plexin-B2 knockout mice and analyzing fear-related behaviors, we demonstrate that Sema4C-PlexinB2 signaling plays a crucial functional role in the recent and remote recall of fear memory. Detailed neuronal morphological analyses revealed that Sema4C-PlexinB2 signaling largely mediates fear-induced structural plasticity by enhancing dendritic ramifications and modulating synaptic density in the adult hippocampus. Analyses on signaling-related mutant mice showed that these functions are mediated by PlexinB2-dependent RhoA activation. These results deliver important insights into the mechanistic understanding of maladaptive plasticity in fear circuits and have implications for novel therapeutic strategies against fear-related disorders.
Collapse
Affiliation(s)
- Manuela Simonetti
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Eszter Paldy
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Christian Njoo
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Kiran Kumar Bali
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Thomas Worzfeld
- grid.10253.350000 0004 1936 9756Institute of Pharmacology, Marburg University, Karl-von-Frisch-Str. 1, 35043 Marburg, Germany ,grid.418032.c0000 0004 0491 220XDepartment of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Claudia Pitzer
- grid.7700.00000 0001 2190 4373Interdisciplinary Neurobehavioral Core, Heidelberg University, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Thomas Kuner
- grid.7700.00000 0001 2190 4373Anatomy and Cell Biology Institute, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Stefan Offermanns
- grid.418032.c0000 0004 0491 220XDepartment of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Daniela Mauceri
- grid.7700.00000 0001 2190 4373Department of Neurobiology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Ikuta R, Myoenzono K, Wasano J, Hamaguchi-Hamada K, Hamada S, Kurumata-Shigeto M. N-cadherin localization in taste buds of mouse circumvallate papillae. J Comp Neurol 2020; 529:2227-2242. [PMID: 33319419 DOI: 10.1002/cne.25090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023]
Abstract
Taste buds, the receptor organs for taste, contain 50-100 taste bud cells. Although these cells undergo continuous turnover, the structural and functional integrity of taste buds is maintained. The molecular mechanisms by which synaptic connectivity between taste buds and afferent fibers is formed and maintained remain ambiguous. In the present study, we examined the localization of N-cadherin in the taste buds of the mouse circumvallate papillae because N-cadherin, one of the classical cadherins, is important for the formation and maintenance of synapses. At the light microscopic level, N-cadherin was predominantly detected in type II cells and nerve fibers in the connective tissues in and around the vallate papillae. At the ultrastructural level, N-cadherin immunoreactivity appears along the cell membrane and in the intracellular vesicles of type II cells. N-cadherin immunoreactivity also is evident in the membranes of afferent terminals at the contact sites to N-cadherin-positive type II cells. At channel type synapses between type II cells and nerve fibers, N-cadherin is present surrounding, but not within, the presumed neurotransmitter release zone, identified by large mitochondria apposed to the taste cells. The present results suggest that N-cadherin is important for the formation or maintenance of type II cell afferent synapses in taste buds.
Collapse
Affiliation(s)
- Rio Ikuta
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| | - Kanae Myoenzono
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan.,Humanome Lab., Inc., Tokyo, Japan
| | - Jun Wasano
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| | | | - Shun Hamada
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| | - Mami Kurumata-Shigeto
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| |
Collapse
|
25
|
Verstraelen P, Garcia-Diaz Barriga G, Verschuuren M, Asselbergh B, Nuydens R, Larsen PH, Timmermans JP, De Vos WH. Systematic Quantification of Synapses in Primary Neuronal Culture. iScience 2020; 23:101542. [PMID: 33083769 PMCID: PMC7516133 DOI: 10.1016/j.isci.2020.101542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023] Open
Abstract
Most neurological disorders display impaired synaptic connectivity. Hence, modulation of synapse formation may have therapeutic relevance. However, the high density and small size of synapses complicate their quantification. To improve synapse-oriented screens, we analyzed the labeling performance of synapse-targeting antibodies on neuronal cell cultures using segmentation-independent image analysis based on sliding window correlation. When assessing pairwise colocalization, a common readout for mature synapses, overlap was incomplete and confounded by spurious signals. To circumvent this, we implemented a proximity ligation-based approach that only leads to a signal when two markers are sufficiently close. We applied this approach to different marker combinations and demonstrate its utility for detecting synapse density changes in healthy and compromised cultures. Thus, segmentation-independent analysis and exploitation of resident protein proximity increases the sensitivity of synapse quantifications in neuronal cultures and represents a valuable extension to the analytical toolset for in vitro synapse screens.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | | | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | - Bob Asselbergh
- VIB Center for Molecular Neurology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | - Rony Nuydens
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Antwerp 2340, Belgium
| | - Peter H. Larsen
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Antwerp 2340, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| |
Collapse
|
26
|
De Novo Truncating Variants in the Last Exon of SEMA6B Cause Progressive Myoclonic Epilepsy. Am J Hum Genet 2020; 106:549-558. [PMID: 32169168 DOI: 10.1016/j.ajhg.2020.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
De novo variants (DNVs) cause many genetic diseases. When DNVs are examined in the whole coding regions of genes in next-generation sequencing analyses, pathogenic DNVs often cluster in a specific region. One such region is the last exon and the last 50 bp of the penultimate exon, where truncating DNVs cause escape from nonsense-mediated mRNA decay [NMD(-) region]. Such variants can have dominant-negative or gain-of-function effects. Here, we first developed a resource of rates of truncating DNVs in NMD(-) regions under the null model of DNVs. Utilizing this resource, we performed enrichment analysis of truncating DNVs in NMD(-) regions in 346 developmental and epileptic encephalopathy (DEE) trios. We observed statistically significant enrichment of truncating DNVs in semaphorin 6B (SEMA6B) (p value: 2.8 × 10-8; exome-wide threshold: 2.5 × 10-6). The initial analysis of the 346 individuals and additional screening of 1,406 and 4,293 independent individuals affected by DEE and developmental disorders collectively identified four truncating DNVs in the SEMA6B NMD(-) region in five individuals who came from unrelated families (p value: 1.9 × 10-13) and consistently showed progressive myoclonic epilepsy. RNA analysis of lymphoblastoid cells established from an affected individual showed that the mutant allele escaped NMD, indicating stable production of the truncated protein. Importantly, heterozygous truncating variants in the NMD(+) region of SEMA6B are observed in general populations, and SEMA6B is most likely loss-of-function tolerant. Zebrafish expressing truncating variants in the NMD(-) region of SEMA6B orthologs displayed defective development of brain neurons and enhanced pentylenetetrazole-induced seizure behavior. In summary, we show that truncating DNVs in the final exon of SEMA6B cause progressive myoclonic epilepsy.
Collapse
|
27
|
Forero A, Ku HP, Malpartida AB, Wäldchen S, Alhama-Riba J, Kulka C, Aboagye B, Norton WHJ, Young AMJ, Ding YQ, Blum R, Sauer M, Rivero O, Lesch KP. Serotonin (5-HT) neuron-specific inactivation of Cadherin-13 impacts 5-HT system formation and cognitive function. Neuropharmacology 2020; 168:108018. [PMID: 32113967 DOI: 10.1016/j.neuropharm.2020.108018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/15/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023]
Abstract
Genome-wide screening approaches identified the cell adhesion molecule Cadherin-13 (CDH13) as a risk factor for neurodevelopmental disorders, nevertheless the contribution of CDH13 to the disease mechanism remains obscure. CDH13 is involved in neurite outgrowth and axon guidance during early brain development and we previously provided evidence that constitutive CDH13 deficiency influences the formation of the raphe serotonin (5-HT) system by modifying neuron-radial glia interaction. Here, we dissect the specific impact of CDH13 on 5-HT system development and function using a 5-HT neuron-specific Cdh13 knockout mouse model (conditional Cdh13 knockout, Cdh13 cKO). Our results show that exclusive inactivation of CDH13 in 5-HT neurons selectively increases 5-HT neuron density in the embryonic dorsal raphe, with persistence into adulthood, and serotonergic innervation of the developing prefrontal cortex. At the behavioral level, adult Cdh13 cKO mice display delayed acquisition of several learning tasks and a subtle impulsive-like phenotype, with decreased latency in a sociability paradigm alongside with deficits in visuospatial memory. Anxiety-related traits were not observed in Cdh13 cKO mice. Our findings further support the critical role of CDH13 in the development of dorsal raphe 5-HT circuitries, a mechanism that may underlie specific clinical features observed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Andrea Forero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.
| | - Hsing-Ping Ku
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Ana Belén Malpartida
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Sina Wäldchen
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Judit Alhama-Riba
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Christina Kulka
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Benjamin Aboagye
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Yu-Qiang Ding
- Institute of Brain Sciences, Fudan University, Shanghai, 200031, China
| | - Robert Blum
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
28
|
Maguire JL. What Do We Want? INHIBITION. When Do We Want it? NOW. Epilepsy Curr 2019; 19:402-404. [PMID: 31718334 PMCID: PMC6891176 DOI: 10.1177/1535759719873035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Nahalka J. The role of the protein-RNA recognition code in neurodegeneration. Cell Mol Life Sci 2019; 76:2043-2058. [PMID: 30980111 PMCID: PMC11105320 DOI: 10.1007/s00018-019-03096-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/14/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small endogenous RNAs that pair and bind to sites on mRNAs to direct post-transcriptional repression. However, there is a possibility that microRNAs directly influence protein structure and activity, and this influence can be termed post-translational riboregulation. This conceptual review explores the literature on neurodegenerative disorders. Research on the association between neurodegeneration and RNA-repeat toxicity provides data that support a protein-RNA recognition code. For example, this code explains why hnRNP H and SFPQ proteins, which are involved in amyotrophic lateral sclerosis, are sequestered by the (GGGGCC)n repeat sequence. Similarly, it explains why MNBL proteins and (CTG)n repeats in RNA, which are involved in myotonic dystrophy, are sequestered into RNA foci. Using this code, proteins involved in diseases can be identified. A simple protein BLAST search of the human genome for amino acid repeats that correspond to the nucleotide repeats reveals new proteins among already known proteins that are involved in diseases. For example, the (CAG)n repeat sequence, when transcribed into possible peptide sequences, leads to the identification of PTCD3, Rem2, MESP2, SYPL2, WDR33, COL23A1, and others. After confirming this approach on RNA repeats, in the next step, the code was used in the opposite manner. Proteins that are involved in diseases were compared with microRNAs involved in those diseases. For example, a reasonable correspondence of microRNA 9 and 107 with amyloid-β-peptide (Aβ42) was identified. In the last step, a miRBase search for micro-nucleotides, obtained by transcription of a prion amino acid sequence, revealed new microRNAs and microRNAs that have previously been identified as involved in prion diseases. This concept provides a useful key for designing RNA or peptide probes.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska cesta 9, 84538, Bratislava, Slovak Republic.
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, 94976, Nitra, Slovak Republic.
| |
Collapse
|
30
|
Wang C, Pan YH, Wang Y, Blatt G, Yuan XB. Segregated expressions of autism risk genes Cdh11 and Cdh9 in autism-relevant regions of developing cerebellum. Mol Brain 2019; 12:40. [PMID: 31046797 PMCID: PMC6498582 DOI: 10.1186/s13041-019-0461-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Results of recent genome-wide association studies (GWAS) and whole genome sequencing (WGS) highlighted type II cadherins as risk genes for autism spectrum disorders (ASD). To determine whether these cadherins may be linked to the morphogenesis of ASD-relevant brain regions, in situ hybridization (ISH) experiments were carried out to examine the mRNA expression profiles of two ASD-associated cadherins, Cdh9 and Cdh11, in the developing cerebellum. During the first postnatal week, both Cdh9 and Cdh11 were expressed at high levels in segregated sub-populations of Purkinje cells in the cerebellum, and the expression of both genes was declined as development proceeded. Developmental expression of Cdh11 was largely confined to dorsal lobules (lobules VI/VII) of the vermis as well as the lateral hemisphere area equivalent to the Crus I and Crus II areas in human brains, areas known to mediate high order cognitive functions in adults. Moreover, in lobules VI/VII of the vermis, Cdh9 and Cdh11 were expressed in a complementary pattern with the Cdh11-expressing areas flanked by Cdh9-expressing areas. Interestingly, the high level of Cdh11 expression in the central domain of lobules VI/VII was correlated with a low level of expression of the Purkinje cell marker calbindin, coinciding with a delayed maturation of Purkinje cells in the same area. These findings suggest that these two ASD-associated cadherins may exert distinct but coordinated functions to regulate the wiring of ASD-relevant circuits in the cerebellum.
Collapse
Affiliation(s)
- Chunlei Wang
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yue Wang
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Gene Blatt
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
31
|
Scott MK, Yue J, Biesemeier DJ, Lee JW, Fekete DM. Expression of class III Semaphorins and their receptors in the developing chicken (Gallus gallus) inner ear. J Comp Neurol 2019; 527:1196-1209. [PMID: 30520042 PMCID: PMC6401314 DOI: 10.1002/cne.24595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Class III Semaphorin (Sema) secreted ligands are known to repel neurites expressing Neuropilin (Nrp) and/or Plexin (Plxn) receptors. There is, however, a growing body of literature supporting that Sema signaling also has alternative roles in development such as synaptogenesis, boundary formation, and vasculogenesis. To evaluate these options during inner ear development, we used in situ hybridization or immunohistochemistry to map the expression of Sema3D, Sema3F, Nrp1, Nrp2, and PlxnA1 in the chicken (Gallus gallus) inner ear from embryonic day (E)5-E10. The resulting expression patterns in either the otic epithelium or its surrounding mesenchyme suggest that Sema signaling could be involved in each of the varied functions reported for other tissues. Sema3D expression flanking the sensory tissue in vestibular organs suggests that it may repel Nrp2- and PlxnA1-expressing neurites of the vestibular ganglion away from nonsensory epithelia, thus channeling them into the sensory domains at E5-E8. Expression of Sema signaling genes in the sensory hair cells of both the auditory and vestibular organs on E8-E10 may implicate Sema signaling in synaptogenesis. In the nonsensory regions of the cochlea, Sema3D in the future tegmentum vasculosum opposes Nrp1 and PlxnA1 in the future cuboidal cells; the abutment of ligand and receptors in adjacent domains may enforce or maintain the boundary between them. In the mesenchyme, Nrp1 colocalized with capillary-rich tissue. Sema3D immediately flanks this Nrp1-expressing tissue, suggesting a role in endothelial cell migration towards the inner ear. In summary, Sema signaling may play multiple roles in the developing inner ear.
Collapse
Affiliation(s)
- M. Katie Scott
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
| | - Jia Yue
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | - Joo Won Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Donna M. Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
32
|
Semaphorin4D Induces Inhibitory Synapse Formation by Rapid Stabilization of Presynaptic Boutons via MET Coactivation. J Neurosci 2019; 39:4221-4237. [PMID: 30914448 DOI: 10.1523/jneurosci.0215-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 11/21/2022] Open
Abstract
Changes in inhibitory connections are essential for experience-dependent circuit adaptations. Defects in inhibitory synapses are linked to neurodevelopmental disorders, but the molecular processes underlying inhibitory synapse formation are not well understood. Here we use high-resolution two-photon microscopy in organotypic hippocampal slices from GAD65-GFP mice of both sexes to examine the signaling pathways induced by the postsynaptic signaling molecule Semaphorin4D (Sema4D) during inhibitory synapse formation. By monitoring changes in individual GFP-labeled presynaptic boutons, we found that the primary action of Sema4D is to induce stabilization of presynaptic boutons within tens of minutes. Stabilized boutons rapidly recruited synaptic vesicles, followed by accumulation of postsynaptic gephyrin and were functional after 24 h, as determined by electrophysiology and immunohistochemistry. Inhibitory boutons are only sensitive to Sema4D at a specific stage during synapse formation and sensitivity to Sema4D is regulated by network activity. We further examined the intracellular signaling cascade triggered by Sema4D and found that bouton stabilization occurs through rapid remodeling of the actin cytoskeleton. This could be mimicked by the actin-depolymerizing drug latrunculin B or by reducing ROCK activity. We discovered that the intracellular signaling cascade requires activation of the receptor tyrosine kinase MET, which is a well known autism risk factor. By using a viral approach to reduce MET levels specifically in inhibitory neurons, we found that their axons are no longer sensitive to Sema4D signaling. Together, our data yield important insights into the molecular pathway underlying activity-dependent Sema4D-induced synapse formation and reveal a novel role for presynaptic MET at inhibitory synapses.SIGNIFICANCE STATEMENT GABAergic synapses provide the main inhibitory control of neuronal activity in the brain. We wanted to unravel the sequence of molecular events that take place when formation of inhibitory synapses is triggered by a specific signaling molecule, Sema4D. We find that this signaling pathway depends on network activity and involves specific remodeling of the intracellular actin cytoskeleton. We also reveal a previously unknown role for MET at inhibitory synapses. Our study provides novel insights into the dynamic process of inhibitory synapse formation. As defects in GABAergic synapses have been implied in many brain disorders, and mutations in MET are strong risk factors for autism, our findings urge for a further investigation of the role of MET at inhibitory synapses.
Collapse
|
33
|
Rosa-Fernandes L, Cugola FR, Russo FB, Kawahara R, de Melo Freire CC, Leite PEC, Bassi Stern AC, Angeli CB, de Oliveira DBL, Melo SR, Zanotto PMDA, Durigon EL, Larsen MR, Beltrão-Braga PCB, Palmisano G. Zika Virus Impairs Neurogenesis and Synaptogenesis Pathways in Human Neural Stem Cells and Neurons. Front Cell Neurosci 2019; 13:64. [PMID: 30949028 PMCID: PMC6436085 DOI: 10.3389/fncel.2019.00064] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/11/2019] [Indexed: 11/21/2022] Open
Abstract
Growing evidences have associated Zika virus (ZIKV) infection with congenital malformations, including microcephaly. Nonetheless, signaling mechanisms that promote the disease outcome are far from being understood, affecting the development of suitable therapeutics. In this study, we applied shotgun mass spectrometry (MS)-based proteomics combined with cell biology approaches to characterize altered molecular pathways on human neuroprogenitor cells (NPC) and neurons derived from induced pluripotent stem cells infected by ZIKV-BR strain, obtained from the 2015 Brazilian outbreak. Furthermore, ZIKV-BR infected NPCs showed unique alteration of pathways involved in neurological diseases, cell death, survival and embryonic development compared to ZIKV-AF, showing a human adaptation of the Brazilian viral strain. Besides, infected neurons differentiated from NPC presented an impairment of neurogenesis and synaptogenesis processes. Taken together, these data explain that CNS developmental arrest observed in Congenital Zika Syndrome is beyond neuronal cell death.
Collapse
Affiliation(s)
- Livia Rosa-Fernandes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Fernanda Rodrigues Cugola
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Fabiele Baldino Russo
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Rebeca Kawahara
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Paulo Emílio Corrêa Leite
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Bassi Stern
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Stella Rezende Melo
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Patricia Cristina Baleeiro Beltrão-Braga
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- School of Arts Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Kiser DP, Popp S, Schmitt-Böhrer AG, Strekalova T, van den Hove DL, Lesch KP, Rivero O. Early-life stress impairs developmental programming in Cadherin 13 (CDH13)-deficient mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:158-168. [PMID: 30165120 DOI: 10.1016/j.pnpbp.2018.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cadherin-13 (CDH13), a member of the calcium-dependent cell adhesion molecule family, has been linked to neurodevelopmental disorders, including autism spectrum (ASD) and attention-deficit/hyperactivity (ADHD) disorders, but also to depression. In the adult brain, CDH13 expression is restricted e.g. to the presynaptic compartment of inhibitory GABAergic synapses in the hippocampus and Cdh13 knockout mice show an increased inhibitory drive onto hippocampal CA1 pyramidal neurons, leading to a shift in excitatory/inhibitory balance. CDH13 is also moderating migration of serotonergic neurons in the dorsal raphe nucleus, establishing projections preferentially to the thalamus and cerebellum during brain development. Furthermore, CDH13 is upregulated by chronic stress as well as in depression, suggesting a role in early-life adaptation to stressful experience. Here, we therefore investigated the interaction between Cdh13 variation and neonatal maternal separation (MS) in mice. METHODS Male and female wild-type (Cdh13+/+), heterozygous (Cdh13+/-) and homozygous (Cdh13-/-) knockout mice exposed to MS, or daily handling as control, were subjected to a battery of behavioural tests to assess motor activity, learning and memory as well as anxiety-like behaviour. A transcriptome analysis of the hippocampus was performed in an independent cohort of mice which was exposed to MS or handling, but remained naïve for behavioural testing. RESULTS MS lead to increased anxiety-like behaviour in Cdh13-/- mice compared to the other two MS groups. Cdh13-/- mice showed a context-dependent effect on stress- and anxiety-related behaviour, impaired extinction learning following contextual fear conditioning and decreased impulsivity, as well as a mild decrease in errors in the Barnes maze and reduced risk-taking in the light-dark transition test after MS. We also show sex differences, with increased locomotor activity in female Cdh13-/- mice, but unaltered impulsivity and activity in male Cdh13-/- mice. Transcriptome analysis revealed several pathways associated with cell surface/adhesion molecules to be altered following Cdh13 deficiency, together with an influence on endoplasmic reticulum function. CONCLUSION MS resulted in increased stress resilience, increased exploration and an overall anxiolytic behavioural phenotype in male Cdh13+/+ and Cdh13+/- mice. Cdh13 deficiency, however, obliterated most of the effects caused by early-life stress, with Cdh13-/- mice exhibiting delayed habituation, no reduction of anxiety-like behaviour and decreased fear extinction. Our behavioural findings indicate a role of CDH13 in the programming of and adaptation to early-life stress. Finally, our transcriptomic data support the view of CDH13 as a neuroprotective factor as well as a mediator in cell-cell interactions, with an impact on synaptic plasticity.
Collapse
Affiliation(s)
- Dominik P Kiser
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Sandy Popp
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Angelika G Schmitt-Böhrer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Daniel L van den Hove
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.
| |
Collapse
|
35
|
Activity-dependent development of GABAergic synapses. Brain Res 2019; 1707:18-26. [DOI: 10.1016/j.brainres.2018.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022]
|
36
|
Tian Y, Guo S, Chen C, Zhao L, Li Z, Yan Y. Gene sequence screening for manganese poisoning-susceptible genes and analysis of gene interaction effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:60-69. [PMID: 30300793 DOI: 10.1016/j.etap.2018.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Manganese poisoning is a common occupational disease, studies have found that the susceptibility to manganese poisoning differs in individuals. We adopted genome-wide sequencing methods to screen for susceptibility genes involved in gene-mediated metabolic pathways from the perspective of manganese poisoning. We identified 18,439 genes in this study, including 14,272 known genes and 4398 new genes. We then selected 17 differential genes using p values, of which 7 genes were down-regulated and 10 genes were up-regulated. Possible interaction genes for each differential gene were selected according to the String database. Sgk1, HCRTr1, HspB1, Rem2, Oprd1, ATF5, and TRHr identified in this study may be involved in oxidative stress mechanisms, dopamine (DA) synthesis, and neuronal survival during apoptosis and may affect susceptibility to manganese poisoning.
Collapse
Affiliation(s)
- Yutian Tian
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, China; Shandong Academy Occupational Health and Occupational Medicine, 18877 Jingshi Road, Jinan 250062, China.
| | - Shuhan Guo
- Shandong University of Traditional Chinese Medicine, 4655 University Road, Science and Technology Park, Changqing District, Jinan 250355, China
| | - Cengceng Chen
- Jining Center for Disease Control and Prevention, 26 Yingcui Road, Jining 272000, China
| | - Li Zhao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, China; Shandong Academy Occupational Health and Occupational Medicine, 18877 Jingshi Road, Jinan 250062, China
| | - Zhen Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, China; Shandong Academy Occupational Health and Occupational Medicine, 18877 Jingshi Road, Jinan 250062, China
| | - Yongjian Yan
- Shandong Academy Occupational Health and Occupational Medicine, 18877 Jingshi Road, Jinan 250062, China.
| |
Collapse
|
37
|
Wahl D, Solon-Biet SM, Wang QP, Wali JA, Pulpitel T, Clark X, Raubenheimer D, Senior AM, Sinclair DA, Cooney GJ, de Cabo R, Cogger VC, Simpson SJ, Le Couteur DG. Comparing the Effects of Low-Protein and High-Carbohydrate Diets and Caloric Restriction on Brain Aging in Mice. Cell Rep 2018; 25:2234-2243.e6. [PMID: 30463018 PMCID: PMC6296764 DOI: 10.1016/j.celrep.2018.10.070] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
Calorie restriction (CR) increases lifespan and improves brain health in mice. Ad libitum low-protein, high-carbohydrate (LPHC) diets also extend lifespan, but it is not known whether they are beneficial for brain health. We compared hippocampus biology and memory in mice subjected to 20% CR or provided ad libitum access to one of three LPHC diets or to a control diet. Patterns of RNA expression in the hippocampus of 15-month-old mice were similar between mice fed CR and LPHC diets when we looked at genes associated with longevity, cytokines, and dendrite morphogenesis. Nutrient-sensing proteins, including SIRT1, mTOR, and PGC1α, were also influenced by diet; however, the effects varied by sex. CR and LPHC diets were associated with increased dendritic spines in dentate gyrus neurons. Mice fed CR and LPHC diets had modest improvements in the Barnes maze and novel object recognition. LPHC diets recapitulate some of the benefits of CR on brain aging.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Centre for Education and Research on Ageing, Concord, NSW 2139, Australia
| | | | - Qiao-Ping Wang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Gregory J Cooney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Victoria C Cogger
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Centre for Education and Research on Ageing, Concord, NSW 2139, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Centre for Education and Research on Ageing, Concord, NSW 2139, Australia.
| |
Collapse
|
38
|
Synaptic structural protein dysfunction leads to altered excitation inhibition ratios in models of autism spectrum disorder. Pharmacol Res 2018; 139:207-214. [PMID: 30465851 DOI: 10.1016/j.phrs.2018.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
Genetics is believed to play a key role in the development of Autism Spectrum Disorder (ASD) and a plethora of potential candidate genes have been identified by genetic characterization of patients, their family members and controls. To make sense of this information investigators have searched for common pathways and downstream properties of neural networks that are regulated by these genes. For instance, several candidate genes encode synaptic proteins, and one hypothesis that has emerged is that disruption of the synaptic excitation and inhibition (E/I) balance would destabilize neural processing and lead to ASD phenotypes. Some compelling evidence for this has come from the analyses of mouse and culture models with defects in synaptic structural proteins, which influence several aspects of synapse biology and is the subject of this review. Remaining challenges include identifying the specifics that distinguish ASD from other psychiatric diseases and designing more direct tests of the E/I balance hypothesis.
Collapse
|
39
|
McDermott JE, Goldblatt D, Paradis S. Class 4 Semaphorins and Plexin-B receptors regulate GABAergic and glutamatergic synapse development in the mammalian hippocampus. Mol Cell Neurosci 2018; 92:50-66. [PMID: 29981480 PMCID: PMC6191356 DOI: 10.1016/j.mcn.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
To understand how proper circuit formation and function is established in the mammalian brain, it is necessary to define the genes and signaling pathways that instruct excitatory and inhibitory synapse development. We previously demonstrated that the ligand-receptor pair, Sema4D and Plexin-B1, regulates inhibitory synapse development on an unprecedentedly fast time-scale while having no effect on excitatory synapse development. Here, we report previously undescribed synaptogenic roles for Sema4A and Plexin-B2 and provide new insight into Sema4D and Plexin-B1 regulation of synapse development in rodent hippocampus. First, we show that Sema4a, Sema4d, Plxnb1, and Plxnb2 have distinct and overlapping expression patterns in neurons and glia in the developing hippocampus. Second, we describe a requirement for Plexin-B1 in both the presynaptic axon of inhibitory interneurons as well as the postsynaptic dendrites of excitatory neurons for Sema4D-dependent inhibitory synapse development. Third, we define a new synaptogenic activity for Sema4A in mediating inhibitory and excitatory synapse development. Specifically, we demonstrate that Sema4A signals through the same pathway as Sema4D, via the postsynaptic Plexin-B1 receptor, to promote inhibitory synapse development. However, Sema4A also signals through the Plexin-B2 receptor to promote excitatory synapse development. Our results shed new light on the molecular cues that promote the development of either inhibitory or excitatory synapses in the mammalian hippocampus.
Collapse
Affiliation(s)
| | - Dena Goldblatt
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Suzanne Paradis
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
40
|
Wolf C, Weth A, Walcher S, Lax C, Baumgartner W. Modeling of Zinc Dynamics in the Synaptic Cleft: Implications for Cadherin Mediated Adhesion and Synaptic Plasticity. Front Mol Neurosci 2018; 11:306. [PMID: 30233309 PMCID: PMC6131644 DOI: 10.3389/fnmol.2018.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
While the numerous influences of synaptically released zinc on synaptic efficiency during long-term potentiation have been discussed by many authors already, we focused on the possible effect of zinc on cadherins and therefore its contribution to morphological changes in the context of synaptic plasticity. The difficulty with gaining insights into the dynamics of zinc-cadherin interaction is the inability to directly observe it on a suitable timescale. Therefore our approach was to establish an analytical model of the zinc diffusion dynamics in the synaptic cleft and experimentally validate, if the theoretical concentrations at the periphery of the synaptic cleft are sufficient to significantly modulate cadherin-mediated adhesion. Our results emphasize, that synaptically released zinc might have a strong accelerating effect on the morphological changes involved in long-term synaptic plasticity. The approach presented here might also prove useful for investigations on other synaptically released trace metals.
Collapse
Affiliation(s)
- Christoph Wolf
- Institute of Medical Biomechatronics, Johannes Kepler University Linz, Linz, Austria
| | - Agnes Weth
- Institute of Medical Biomechatronics, Johannes Kepler University Linz, Linz, Austria
| | | | - Christian Lax
- Lehrstuhl A für Mathematik, RWTH-Aachen University, Aachen, Germany
| | - Werner Baumgartner
- Institute of Medical Biomechatronics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
41
|
Story Jovanova O, Nedeljkovic I, Spieler D, Walker RM, Liu C, Luciano M, Bressler J, Brody J, Drake AJ, Evans KL, Gondalia R, Kunze S, Kuhnel B, Lahti J, Lemaitre RN, Marioni RE, Swenson B, Himali JJ, Wu H, Li Y, McRae AF, Russ TC, Stewart J, Wang Z, Zhang G, Ladwig KH, Uitterlinden AG, Guo X, Peters A, Räikkönen K, Starr JM, Waldenberger M, Wray NR, Whitsel EA, Sotoodehnia N, Seshadri S, Porteous DJ, van Meurs J, Mosley TH, McIntosh AM, Mendelson MM, Levy D, Hou L, Eriksson JG, Fornage M, Deary IJ, Baccarelli A, Tiemeier H, Amin N. DNA Methylation Signatures of Depressive Symptoms in Middle-aged and Elderly Persons: Meta-analysis of Multiethnic Epigenome-wide Studies. JAMA Psychiatry 2018; 75:949-959. [PMID: 29998287 PMCID: PMC6142917 DOI: 10.1001/jamapsychiatry.2018.1725] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Depressive disorders arise from a combination of genetic and environmental risk factors. Epigenetic disruption provides a plausible mechanism through which gene-environment interactions lead to depression. Large-scale, epigenome-wide studies on depression are missing, hampering the identification of potentially modifiable biomarkers. OBJECTIVE To identify epigenetic mechanisms underlying depression in middle-aged and elderly persons, using DNA methylation in blood. DESIGN, SETTING, AND PARTICIPANTS To date, the first cross-ethnic meta-analysis of epigenome-wide association studies (EWAS) within the framework of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium was conducted. The discovery EWAS included 7948 individuals of European origin from 9 population-based cohorts. Participants who were assessed for both depressive symptoms and whole-blood DNA methylation were included in the study. Results of EWAS were pooled using sample-size weighted meta-analysis. Replication of the top epigenetic sites was performed in 3308 individuals of African American and European origin from 2 population-based cohorts. MAIN OUTCOMES AND MEASURES Whole-blood DNA methylation levels were assayed with Illumina-Infinium Human Methylation 450K BeadChip and depressive symptoms were assessed by questionnaire. RESULTS The discovery cohorts consisted of 7948 individuals (4104 [51.6%] women) with a mean (SD) age of 65.4 (5.8) years. The replication cohort consisted of 3308 individuals (2456 [74.2%] women) with a mean (SD) age of 60.3 (6.4) years. The EWAS identified methylation of 3 CpG sites to be significantly associated with increased depressive symptoms: cg04987734 (P = 1.57 × 10-08; n = 11 256; CDC42BPB gene), cg12325605 (P = 5.24 × 10-09; n = 11 256; ARHGEF3 gene), and an intergenic CpG site cg14023999 (P = 5.99 × 10-08; n = 11 256; chromosome = 15q26.1). The predicted expression of the CDC42BPB gene in the brain (basal ganglia) (effect, 0.14; P = 2.7 × 10-03) and of ARHGEF3 in fibroblasts (effect, -0.48; P = 9.8 × 10-04) was associated with major depression. CONCLUSIONS AND RELEVANCE This study identifies 3 methylated sites associated with depressive symptoms. All 3 findings point toward axon guidance as the common disrupted pathway in depression. The findings provide new insights into the molecular mechanisms underlying the complex pathophysiology of depression. Further research is warranted to determine the utility of these findings as biomarkers of depression and evaluate any potential role in the pathophysiology of depression and their downstream clinical effects.
Collapse
Affiliation(s)
- Olivera Story Jovanova
- Department of Epidemiology, Erasmus MC-University
Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ivana Nedeljkovic
- Department of Epidemiology, Erasmus MC-University
Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Derek Spieler
- Institute of Epidemiology II, Helmholtz Zentrum
München, Neuherberg, Germany,Klinik und Poliklinik für Psychosomatische
Medizin und Psychotherapie des Klinikums Rechts der Isar der Technischen Universität
München, Munich, Germany
| | - Rosie M. Walker
- Centre for Cognitive Ageing and Cognitive
Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Genomic and Experimental Medicine, MRC
Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General
Hospital, Edinburgh, United Kingdom
| | - Chunyu Liu
- The Framingham Heart Study, Framingham,
Massachusetts,The Population Sciences Branch, Division of Intramural
Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland,Boston University School of Public Health, Boston,
Massachusetts
| | - Michelle Luciano
- Centre for Cognitive Ageing and Cognitive
Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom,Department of Psychology, University of Edinburgh,
Edinburgh, United Kingdom
| | - Jan Bressler
- Human Genetics Center, University of Texas Health
Science Center at Houston
| | - Jennifer Brody
- Cardiovascular Health Research Unit, Department of
Medicine, University of Washington, Seattle
| | - Amanda J. Drake
- University/British Heart Foundation Centre for
Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh,
Edinburgh, United Kingdom
| | - Kathryn L. Evans
- Centre for Cognitive Ageing and Cognitive
Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Genomic and Experimental Medicine, MRC
Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General
Hospital, Edinburgh, United Kingdom
| | - Rahul Gondalia
- Department of Epidemiology, University of North
Carolina at Chapel Hill
| | - Sonja Kunze
- Institute of Epidemiology II, Helmholtz Zentrum
München, Neuherberg, Germany,Research Unit of Molecular Epidemiology, Helmholtz
Zentrum München, Neuherberg, Germany
| | - Brigitte Kuhnel
- Institute of Epidemiology II, Helmholtz Zentrum
München, Neuherberg, Germany,Research Unit of Molecular Epidemiology, Helmholtz
Zentrum München, Neuherberg, Germany
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of
Medicine, University of Helsinki, Helsinki, Finland
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of
Medicine, University of Washington, Seattle
| | - Riccardo E. Marioni
- Centre for Cognitive Ageing and Cognitive
Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom,Department of Psychology, University of Edinburgh,
Edinburgh, United Kingdom
| | - Brenton Swenson
- Cardiovascular Health Research Unit, Department of
Medicine, University of Washington, Seattle,Institute for Public Health Genetics, School of
Public Health, University of Washington, Seattle
| | - Jayandra Jung Himali
- The Framingham Heart Study, Framingham,
Massachusetts,Boston University School of Public Health, Boston,
Massachusetts,Boston University School of Medicine, Boston,
Massachusetts
| | - Hongsheng Wu
- Computer Science and Networking, Wentworth Institute
of Technology, Boston, Massachusetts
| | - Yun Li
- Department of Genetics, University of North Carolina
at Chapel Hill,Department of Biostatistics, University of North
Carolina at Chapel Hill,Department of Computer Science, University of North
Carolina at Chapel Hill
| | - Allan F. McRae
- Institute for Molecular Bioscience, The University
of Queensland, Brisbane, Australia,Queensland Brain Institute, The University of
Queensland, Brisbane, Australia
| | - Tom C. Russ
- Centre for Cognitive Ageing and Cognitive
Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom,Alzheimer Scotland Dementia Research Centre,
Edinburgh, United Kingdom,Centre for Dementia Prevention, University of
Edinburgh, Edinburgh, United Kingdom
| | - James Stewart
- Department of Epidemiology, University of North
Carolina at Chapel Hill,Carolina Population Center, University of North
Carolina at Chapel Hill
| | - Zhiying Wang
- Human Genetics Center, University of Texas Health
Science Center at Houston
| | - Guosheng Zhang
- Department of Genetics, University of North Carolina
at Chapel Hill,Department of Biostatistics, University of North
Carolina at Chapel Hill,Department of Computer Science, University of North
Carolina at Chapel Hill
| | - Karl-Heinz Ladwig
- Institute of Epidemiology II, Helmholtz Zentrum
München, Neuherberg, Germany,Klinik und Poliklinik für Psychosomatische
Medizin und Psychotherapie des Klinikums Rechts der Isar der Technischen Universität
München, Munich, Germany
| | - Andre G. Uitterlinden
- Department of Epidemiology, Erasmus MC-University
Medical Center Rotterdam, Rotterdam, the Netherlands,Department of Internal Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and
Population Sciences, Department of Pediatrics, Harbor-University of California Los Angeles
(UCLA) Medical Center
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum
München, Neuherberg, Germany,Research Unit of Molecular Epidemiology, Helmholtz
Zentrum München, Neuherberg, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of
Medicine, University of Helsinki, Helsinki, Finland
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive
Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom,Alzheimer Scotland Dementia Research Centre,
Edinburgh, United Kingdom
| | - Melanie Waldenberger
- Institute of Epidemiology II, Helmholtz Zentrum
München, Neuherberg, Germany,Research Unit of Molecular Epidemiology, Helmholtz
Zentrum München, Neuherberg, Germany
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University
of Queensland, Brisbane, Australia,Queensland Brain Institute, The University of
Queensland, Brisbane, Australia
| | - Eric A. Whitsel
- Department of Epidemiology, University of North
Carolina at Chapel Hill,Department of Medicine, University of North Carolina
at Chapel Hill
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of
Medicine, University of Washington, Seattle
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham,
Massachusetts,Boston University School of Medicine, Boston,
Massachusetts
| | - David J. Porteous
- Centre for Cognitive Ageing and Cognitive
Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Genomic and Experimental Medicine, MRC
Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General
Hospital, Edinburgh, United Kingdom
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands
| | | | - Andrew M. McIntosh
- Centre for Cognitive Ageing and Cognitive
Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom,Division of Psychiatry, The University of Edinburgh,
Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael M. Mendelson
- The Framingham Heart Study, Framingham,
Massachusetts,The Population Sciences Branch, Division of Intramural
Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland,Department of Cardiology, Boston Children’s
Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel Levy
- The Framingham Heart Study, Framingham,
Massachusetts,The Population Sciences Branch, Division of Intramural
Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Lifang Hou
- Feinberg School of Medicine, Northwestern
University, Chicago, Illinois
| | - Johan G. Eriksson
- Department of General Practice and Primary Health
Care, University of Helsinki, Helsinki, Finland
| | - Myriam Fornage
- Human Genetics Center, University of Texas Health
Science Center at Houston,Institute of Molecular Medicine, University of Texas
Health Science Center at Houston
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive
Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom,Department of Psychology, University of Edinburgh,
Edinburgh, United Kingdom
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Harvard
T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus MC-University
Medical Center Rotterdam, Rotterdam, the Netherlands,Department of Child and Adolescent Psychiatry,
Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands,Department of Social and Behavioral Science, Harvard
T. H. Chan School of Public Health, Boston, Massachusetts
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC-University
Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
42
|
Royer L, Herzog JJ, Kenny K, Tzvetkova B, Cochrane JC, Marr MT, Paradis S. The Ras-like GTPase Rem2 is a potent inhibitor of calcium/calmodulin-dependent kinase II activity. J Biol Chem 2018; 293:14798-14811. [PMID: 30072381 DOI: 10.1074/jbc.ra118.003560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/20/2018] [Indexed: 02/05/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a well-characterized, abundant protein kinase that regulates a diverse set of functions in a tissue-specific manner. For example, in heart muscle, CaMKII regulates Ca2+ homeostasis, whereas in neurons, CaMKII regulates activity-dependent dendritic remodeling and long-term potentiation (LTP), a neurobiological correlate of learning and memory. Previously, we identified the GTPase Rem2 as a critical regulator of dendrite branching and homeostatic plasticity in the vertebrate nervous system. Here, we report that Rem2 directly interacts with CaMKII and potently inhibits the activity of the intact holoenzyme, a previously unknown Rem2 function. Our results suggest that Rem2 inhibition involves interaction with both the CaMKII hub domain and substrate recognition domain. Moreover, we found that Rem2-mediated inhibition of CaMKII regulates dendritic branching in cultured hippocampal neurons. Lastly, we report that substitution of two key amino acid residues in the Rem2 N terminus (Arg-79 and Arg-80) completely abolishes its ability to inhibit CaMKII. We propose that our biochemical findings will enable further studies unraveling the functional significance of Rem2 inhibition of CaMKII in cells.
Collapse
Affiliation(s)
| | | | | | | | - Jesse C Cochrane
- Department of Molecular Biology and Genetics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Michael T Marr
- From the Department of Biology, .,Rosenstiel Basic Medical Sciences Research Center
| | - Suzanne Paradis
- From the Department of Biology, .,Volen Center for Complex Systems, and.,National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454 and
| |
Collapse
|
43
|
Hinojosa AJ, Deogracias R, Rico B. The Microtubule Regulator NEK7 Coordinates the Wiring of Cortical Parvalbumin Interneurons. Cell Rep 2018; 24:1231-1242. [PMID: 30067978 PMCID: PMC6088228 DOI: 10.1016/j.celrep.2018.06.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/29/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023] Open
Abstract
Functional networks in the mammalian cerebral cortex rely on the interaction between glutamatergic pyramidal cells and GABAergic interneurons. Both neuronal populations exhibit an extraordinary divergence in morphology and targeting areas, which ultimately dictate their precise function in cortical circuits. How these prominent morphological differences arise during development is not well understood. Here, we conducted a high-throughput screen for genes differentially expressed by pyramidal cells and interneurons during cortical wiring. We found that NEK7, a kinase involved in microtubule polymerization, is mostly expressed in parvalbumin (PV+) interneurons at the time when they establish their connectivity. Functional experiments revealed that NEK7-deficient PV+ interneurons show altered microtubule dynamics, axon growth cone steering and reduced axon length, arbor complexity, and total number of synaptic contacts formed with pyramidal cells. Altogether, our results reveal a molecular mechanism by which the microtubule-associated kinase NEK7 regulates the wiring of PV+ interneurons.
Collapse
Affiliation(s)
- Antonio Jesús Hinojosa
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Rubén Deogracias
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain.
| |
Collapse
|
44
|
Tantra M, Guo L, Kim J, Zainolabidin N, Eulenburg V, Augustine GJ, Chen AI. Conditional deletion of Cadherin 13 perturbs Golgi cells and disrupts social and cognitive behaviors. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12466. [PMID: 29446202 PMCID: PMC6635760 DOI: 10.1111/gbb.12466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Inhibitory interneurons mediate the gating of synaptic transmission and modulate the activities of neural circuits. Disruption of the function of inhibitory networks in the forebrain is linked to impairment of social and cognitive behaviors, but the involvement of inhibitory interneurons in the cerebellum has not been assessed. We found that Cadherin 13 (Cdh13), a gene implicated in autism spectrum disorder and attention-deficit hyperactivity disorder, is specifically expressed in Golgi cells within the cerebellar cortex. To assess the function of Cdh13 and utilize the manipulation of Cdh13 expression in Golgi cells as an entry point to examine cerebellar-mediated function, we generated mice carrying Cdh13-floxed alleles and conditionally deleted Cdh13 with GlyT2::Cre mice. Loss of Cdh13 results in a decrease in the expression/localization of GAD67 and reduces spontaneous inhibitory postsynaptic current (IPSC) in cerebellar Golgi cells without disrupting spontaneous excitatory postsynaptic current (EPSC). At the behavioral level, loss of Cdh13 in the cerebellum, piriform cortex and endopiriform claustrum have no impact on gross motor coordination or general locomotor behaviors, but leads to deficits in cognitive and social abilities. Mice lacking Cdh13 exhibit reduced cognitive flexibility and loss of preference for contact region concomitant with increased reciprocal social interactions. Together, our findings show that Cdh13 is critical for inhibitory function of Golgi cells, and that GlyT2::Cre-mediated deletion of Cdh13 in non-executive centers of the brain, such as the cerebellum, may contribute to cognitive and social behavioral deficits linked to neurological disorders.
Collapse
Affiliation(s)
- M. Tantra
- School of Biological SciencesNanyang Technological University (NTU)Singapore
- School of Life SciencesUniversity of WarwickCoventryUK
| | - L. Guo
- School of Biological SciencesNanyang Technological University (NTU)Singapore
- School of Life SciencesUniversity of WarwickCoventryUK
| | - J. Kim
- Lee Kong Chian School of MedicineNanyang Technological University (NTU)Singapore
| | - N. Zainolabidin
- School of Biological SciencesNanyang Technological University (NTU)Singapore
- School of Life SciencesUniversity of WarwickCoventryUK
| | - V. Eulenburg
- Institute of BiochemistryFriedrich‐Alexander University Erlangen‐NurembergErlangenGermany
| | - G. J. Augustine
- Lee Kong Chian School of MedicineNanyang Technological University (NTU)Singapore
- Institute of Molecular and Cell BiologySingapore
| | - A. I. Chen
- School of Biological SciencesNanyang Technological University (NTU)Singapore
- School of Life SciencesUniversity of WarwickCoventryUK
- Institute of Molecular and Cell BiologySingapore
| |
Collapse
|
45
|
Verstraelen P, Van Dyck M, Verschuuren M, Kashikar ND, Nuydens R, Timmermans JP, De Vos WH. Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture. Front Neurosci 2018; 12:389. [PMID: 29997468 PMCID: PMC6028601 DOI: 10.3389/fnins.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/22/2018] [Indexed: 12/04/2022] Open
Abstract
Neurological disorders display a broad spectrum of clinical manifestations. Yet, at the cellular level, virtually all these diseases converge into a common phenotype of dysregulated synaptic connectivity. In dementia, synapse dysfunction precedes neurodegeneration and cognitive impairment by several years, making the synapse a crucial entry point for the development of diagnostic and therapeutic strategies. Whereas high-resolution imaging and biochemical fractionations yield detailed insight into the molecular composition of the synapse, standardized assays are required to quickly gauge synaptic connectivity across large populations of cells under a variety of experimental conditions. Such screening capabilities have now become widely accessible with the advent of high-throughput, high-content microscopy. In this review, we discuss how microscopy-based approaches can be used to extract quantitative information about synaptic connectivity in primary neurons with deep coverage. We elaborate on microscopic readouts that may serve as a proxy for morphofunctional connectivity and we critically analyze their merits and limitations. Finally, we allude to the potential of alternative culture paradigms and integrative approaches to enable comprehensive profiling of synaptic connectivity.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Michiel Van Dyck
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Rony Nuydens
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Cell Systems and Imaging, Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
46
|
Dark C, Homman-Ludiye J, Bryson-Richardson RJ. The role of ADHD associated genes in neurodevelopment. Dev Biol 2018; 438:69-83. [DOI: 10.1016/j.ydbio.2018.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/04/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
|
47
|
Acker DWM, Wong I, Kang M, Paradis S. Semaphorin 4D promotes inhibitory synapse formation and suppresses seizures in vivo. Epilepsia 2018; 59:1257-1268. [PMID: 29799628 DOI: 10.1111/epi.14429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We previously discovered a role for the extracellular domain of the transmembrane protein semaphorin 4D (Sema4D) as a fast-acting, selective, and positive regulator of functional γ-aminobutyric acid (GABA)ergic synapse formation in hippocampal neuronal culture. We also demonstrated that Sema4D treatment increases inhibitory tone and suppresses hyperexcitability in an organotypic hippocampal slice culture model of epilepsy. Here, we investigate the ability of Sema4D to promote GABAergic synapse formation and suppress seizure activity in vivo in adult mice. METHODS We performed a 3-hour, intrahippocampal infusion of Sema4D or control protein into the CA1 region of adult mice. To quantify GABAergic presynaptic bouton density, we performed immunohistochemistry on hippocampal tissue sections isolated from these animals using an antibody that specifically recognizes the glutamic acid decarboxylase isoform 65 protein (GAD65), which is localized to presynaptic GABAergic boutons. To assess seizure activity, we employed 2 in vivo mouse models of epilepsy, intravenous (iv) pentylenetetrazol (PTZ) and hippocampal electrical kindling, in the presence or absence of Sema4D treatment. We monitored seizure activity by behavioral observation or electroencephalography (EEG). To assay the persistence of the Sema4D effect, we monitored seizure activity and measured the density of GAD65-positive presynaptic boutons 3 or 48 hours after Sema4D infusion. RESULTS Sema4D-treated mice displayed an elevated density of GABAergic presynaptic boutons juxtaposed to hippocampal pyramidal neuron cell bodies, consistent with the hypothesis that Sema4D promotes the formation of new inhibitory synapses in vivo. In addition, Sema4D acutely suppressed seizures in both the PTZ and electrical kindling models. When we introduced a 48-hour gap between Sema4D treatment and the seizure stimulus, seizure activity was indistinguishable from controls. Moreover, immunohistochemistry on brain sections or hippocampal slices isolated 3 hours, but not 48 hours, after Sema4D treatment displayed an increase in GABAergic bouton density, demonstrating temporal correlation between the effects of Sema4D on seizures and GABAergic synaptic components. SIGNIFICANCE Our findings suggest a novel approach to treating acute seizures: harnessing synaptogenic molecules to enhance connectivity in the inhibitory network.
Collapse
Affiliation(s)
- Daniel W M Acker
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Irene Wong
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Mihwa Kang
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| |
Collapse
|
48
|
Abstract
Circuit operations are determined jointly by the properties of the circuit elements and the properties of the connections among these elements. In the nervous system, neurons exhibit diverse morphologies and branching patterns, allowing rich compartmentalization within individual cells and complex synaptic interactions among groups of cells. In this review, we summarize work detailing how neuronal morphology impacts neural circuit function. In particular, we consider example neurons in the retina, cerebral cortex, and the stomatogastric ganglion of crustaceans. We also explore molecular coregulators of morphology and circuit function to begin bridging the gap between molecular and systems approaches. By identifying motifs in different systems, we move closer to understanding the structure-function relationships that are present in neural circuits.
Collapse
Affiliation(s)
| | - Stephen D Van Hooser
- Department of Biology, Brandeis University , Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts.,Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University , Waltham, Massachusetts
| |
Collapse
|
49
|
Zhou YF, Li YN, Jin HJ, Wu JH, He QW, Wang XX, Lei H, Hu B. Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats. FASEB J 2018; 32:2181-2196. [PMID: 29242274 DOI: 10.1096/fj.201700786rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The inflammatory process in stroke is the major contributor to blood-brain barrier (BBB) breakdown. Previous studies indicated that semaphorin 4D (Sema4D), an axon guidance molecule, initiated inflammatory microglial activation and disrupted endothelial function in the CNS. However, whether Sema4D disrupts BBB integrity after stroke remains unclear. To study the effect of Sema4D on BBB disruption in stroke, rats were subjected to transient middle cerebral artery occlusion and targeted injection of lentivirus-mediated clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene disruption of PlexinB1. We found that Sema4D synchronously increased with BBB permeability and accumulated in the perivascular area after stroke. Suppressing Sema4D/PlexinB1 signaling in the periinfarct cortex significantly decreased BBB permeability as detected by MRI and fibrin deposition, and thereby improved stroke outcome. In vitro, we confirmed that Sema4D disrupted BBB integrity and endothelial tight junctions. Moreover, we found that Sema4D induced pericytes to acquire a CD11b-positive phenotype and express proinflammatory cytokines. In addition, Sema4D inhibited AUF1-induced proinflammatory mRNA decay effect. Taken together, our data provides evidence that Sema4D disrupts BBB integrity and promotes an inflammatory response by binding to PlexinB1 in pericytes after transient middle cerebral artery occlusion. Our study indicates that Sema4D may be a novel therapeutic target for treatment in the acute phase of stroke.-Zhou, Y.-F., Li, Y.-N., Jin, H.-J., Wu, J.-H., He, Q.-W., Wang, X.-X., Lei, H., Hu, B. Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats.
Collapse
Affiliation(s)
- Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu-Xia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Modulation of hippocampal synapse maturation by activity-regulated E3 ligase via non-canonical pathway. Neuroscience 2017; 364:226-241. [DOI: 10.1016/j.neuroscience.2017.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022]
|