1
|
Bai JP, Zhang C, Bahader I, Strenzke N, Renigunta V, Oliver D, Navaratnam D, Beckstein O, Santos-Sacchi J. Chloride binding does not influence prestin motor speed at very high frequencies in the mouse outer hair cell. Structure 2025:S0969-2126(25)00175-3. [PMID: 40403717 DOI: 10.1016/j.str.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/07/2025] [Accepted: 04/25/2025] [Indexed: 05/24/2025]
Abstract
Prestin (SLC26A5) promotes mechanical feedback via outer hair cells (OHC) within the organ of Corti, governed by voltage-dependent kinetics of its charge movements; namely, nonlinear-capacitance (NLC). We study NLC frequency response in mouse OHC membrane patches. The characteristic frequency cut-off (Fis) is 27 kHz. Single point mutations within prestin's chloride binding pocket (S396E and S398E) lack usual anion influence. In agreement, we show absence of anion binding in these mutants through molecular dynamics (MD) simulations. NLC Fis in S396E knock-in mice is unaltered, indicating that high frequency activity is not governed by chloride but likely by viscoelastic loads. Also, the allosteric action of chloride does not underlie piezoelectric-like behavior in prestin, since tension sensitivity of S396E NLC is comparable to WT. Because structures of all studied species appear indistinguishable, with analogous chloride binding pockets, prestin performance likely evolved by modifying, not its protein-anion interaction, but instead mechanical loads on the protein.
Collapse
Affiliation(s)
- Jun-Ping Bai
- Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Chenou Zhang
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Iman Bahader
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience and Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Nicola Strenzke
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience and Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Vijay Renigunta
- Institute for Physiology and Pathophysiology, Section of Neurophysiology, Philipps University Marburg, Deutschhausstr. 2, 35037 Marburg, Germany
| | - Dominik Oliver
- Institute for Physiology and Pathophysiology, Section of Neurophysiology, Philipps University Marburg, Deutschhausstr. 2, 35037 Marburg, Germany
| | - Dhasakumar Navaratnam
- Surgery (Otolaryngology), Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Oliver Beckstein
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Joseph Santos-Sacchi
- Surgery (Otolaryngology), Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
2
|
Zhang T, Li Q, Wang H, Sun S, Xu H. A Missense Variant in the IKZF2 Gene Identified in a Genetically Undiagnosed Family With Hearing Loss. Am J Med Genet A 2025; 197:e63986. [PMID: 39754384 DOI: 10.1002/ajmg.a.63986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Hearing loss is one of the conditions characterized by a high degree of genetic heterogeneity, and whole exome sequencing (WES) serves as a key method for identifying pathogenic variants. To date, 155 genes have been reported to be associated with nonsyndromic hearing loss. Recently, a study by Velde et al. found that the IKZF2 (OMIM#606234) gene is associated with nonsyndromic hearing loss. In our cohort of nearly 300 patients with undiagnosed hearing loss who underwent WES, we discovered a case harboring a variant in the IKZF2 gene, specifically c.485A > C (NM_001387220.1). By investigating the patient's family history and hearing conditions, we subsequently employed Sanger sequencing to validate our findings within the family, confirming that this patient's pathogenic variant is indeed in the IKZF2 gene. Our case provides further robust evidence supporting the association of IKZF2 with nonsyndromic hearing loss.
Collapse
Affiliation(s)
- Teng Zhang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiang Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanjun Wang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuping Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Stiepan S, Dhar S. A Variable-Stimulus Distortion Product Otoacoustic Emission Screening Method to Match Cochlear Place-Specific Properties. Ear Hear 2025; 46:421-432. [PMID: 39407360 PMCID: PMC11832347 DOI: 10.1097/aud.0000000000001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
OBJECTIVES Distortion product otoacoustic emissions (DPOAEs) are a popular screening tool for hearing loss in specific populations (e.g., newborns). Current screening protocols use stimulus conditions that are agnostic to local mechanical properties of the cochlea and are also limited to a narrow frequency range. We have recently reported locally optimized stimulus frequency ratio and level combinations for recording DPOAEs up to stimulus frequencies of 19 kHz. In normally functioning cochlea, optimized stimuli improved the signal to noise ratios and allowed the registration of higher DPOAE levels, especially at higher frequencies. The purpose of this study was to evaluate the clinical performance of these physiologically motivated, locally appropriate, stimulus parameters for a screening application to identify the presence of hearing loss. DESIGN Subjects were 24 adults with sensorineural hearing loss and 31 adults with normal hearing. The cubic DPOAE was measured and analyzed up to frequencies of 16 kHz using a range of stimulus conditions. Receiver operating characteristic curves were used to identify stimulus combinations most sensitive to screening for hearing loss. RESULTS Receiver operating characteristic curves demonstrated improved test efficacy for hearing loss detection when using stimulus frequency ratios and levels that are frequency-dependent and consistent with known mechanical properties of the cochlea. CONCLUSIONS We propose a new DPOAE recording paradigm (variable-stimuli DP) using stimuli aligned to local cochlear properties which may improve early and accurate detection of decline in cochlear function.
Collapse
Affiliation(s)
- Samantha Stiepan
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Knowles Hearing Center, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
4
|
Zhao Z, Han Z, Shao Y, Naveena K, Yuan J, Zhou N, Wang C, Li X, Shi X, Jin D, Xu B, Dong F, Liu Z, Li W, Liu H, Qiao Y. A OHCs-Targeted Strategy for PEDF Delivery in Noise-Induced Hearing Loss. Adv Healthc Mater 2025; 14:e2403537. [PMID: 39865717 DOI: 10.1002/adhm.202403537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/09/2025] [Indexed: 01/28/2025]
Abstract
Noise-induced hearing loss (NIHL) results from prolonged exposure to intense noise, causing damage to sensory outer hair cells (OHCs) and spiral ganglion neurons (SGNs). The blood labyrinth barrier (BLB) hinders systemic drug delivery to the inner ear. This study applied a retro-auricular round window membrane (RWM) method to bypass the BLB, enabling the transport of macromolecular proteins into the inner ear. Pigment epithelium-derived factor (PEDF), which has anti-inflammatory and neuroprotective properties, is conjugated to a prestin-targeting peptide 2 (PrTP2) using N-succinimidyl-3-maleimidopropionate (SMP) to form PrTP2-SMP/PEDF. This compound specifically targeted Prestin and accumulated around OHCs for sustained release, effectively reducing OHC and SGN loss. Functional and structural tests, including auditory brainstem response (ABR), confocal microscopy, and scanning electron microscopy (SEM), revealed significant hearing restoration and cellular protection. Additionally, the results of enzyme-linked immunosorbent assay (ELISA), Annexin V and propidium iodide (PI) staining and immunoblotting show that noise exposure may induce pyroptosis in the cochlea by activating the NOD-like receptor protein 3 (NLRP3)-apoptosis-associated speck-like protein containing a CARD (ASC) - cysteinyl aspartate specific proteinase (Caspase-1) pathway and PrTP2-SMP/PEDF alleviates the inflammatory response by inhibiting pyroptosis. Toxicity analysis indicates no adverse effects, suggesting that PrTP2-SMP/PEDF has a promising therapeutic prospective for NIHL.
Collapse
Affiliation(s)
- Zeqi Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Zhengzhong Han
- Department of Neurosurgery, Xuzhou Children's Hospital, Xuzhou, 221002, P. R. China
| | - Yudi Shao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Central Laboratory, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Konduru Naveena
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Jintao Yuan
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Central Laboratory, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Nan Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Central Laboratory, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Caiji Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Xuanyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Xi Shi
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Hainan, 570228, P. R. China
- Song Li's Academician Workstation of Hainan University, School of Pharmaceutical Sciences, Hainan, 572000, P. R. China
| | - Dan Jin
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Bing Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Zhiwei Liu
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Wei Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuehua Qiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| |
Collapse
|
5
|
Fettiplace R, Beurg M. The mechanisms of frequency tuning in gecko auditory hair cells. Hear Res 2025; 457:109186. [PMID: 39817969 PMCID: PMC11821432 DOI: 10.1016/j.heares.2025.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
We developed an isolated auditory papilla of the crested gecko to record from the hair cells and explore the origins of frequency tuning. Low-frequency cells displayed electrical tuning, dependent on Ca2+-activated K+ channels; high-frequency cells, overlain with sallets, showed a variation in hair bundle stiffness which when combined with sallet mass could provide a mechanical resonance of 1 to 6 kHz. Sinusoidal electrical currents injected extracellularly evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations, as occur in the sallets. Current evoked oscillations were reduced by lowering Ca2+, but not by block of the mechanotransduction channels by dihydrostreptomycin or salicylate block of prestin. We suggest the phenomenon may augment passive mechanical tuning of the sallets over the high-frequency region.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin-Madison, WI 53706, USA.
| | - Maryline Beurg
- Department of Neuroscience, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
6
|
Lee EJ, Kim K, Diaz-Aguilar MS, Min H, Chavez E, Steinbergs KJ, Safarta LA, Zhang G, Ryan AF, Lin JH. Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome. J Clin Invest 2025; 135:e175562. [PMID: 39570676 PMCID: PMC11785932 DOI: 10.1172/jci175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Activating transcription factor 6 (ATF6) is a key regulator of the unfolded protein response (UPR) and is important for ER function and protein homeostasis in metazoan cells. Patients carrying loss-of-function ATF6 disease alleles develop the cone dysfunction disorder achromatopsia. The effect of loss of ATF6 function on other cell types, organs, and diseases in people remains unclear. Here, we report that progressive sensorineural hearing loss was a notable complaint in some patients carrying ATF6 disease alleles and that Atf6-/- mice also showed progressive auditory deficits affecting both sexes. In mice with hearing deficits, we found disorganized stereocilia on hair cells and focal loss of outer hair cells. Transcriptomics analysis of Atf6-/- cochleae revealed a marked induction of the UPR, especially through the protein kinase RNA-like endoplasmic reticulum kinase (PERK) arm. These findings identify ATF6 as an essential regulator of cochlear health and function. Furthermore, they support the idea that ATF6 inactivation in people causes progressive sensorineural hearing loss as part of a blindness-deafness genetic syndrome targeting hair cells and cone photoreceptors. Last, our genetic findings indicate that ER stress is an important pathomechanism underlying cochlear damage and hearing loss, with clinical implications for patient lifestyle modifications that minimize environmental and physiological sources of ER stress to the ear.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Kyle Kim
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Monica Sophia Diaz-Aguilar
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
- Rush University Medical College, Chicago, Illinois, USA
| | - Hyejung Min
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Eduardo Chavez
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Korina J. Steinbergs
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Lance A. Safarta
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Guirong Zhang
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Allen F. Ryan
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Jonathan H. Lin
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| |
Collapse
|
7
|
Bai JP, Zhang C, Bahader I, Strenzke N, Renigunta V, Oliver D, Navaratnam D, Beckstein O, Santos-Sacchi J. Chloride binding to prestin does not influence very high-frequency complex nonlinear capacitance (cNLC) in the mouse outer hair cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577264. [PMID: 38352579 PMCID: PMC10862721 DOI: 10.1101/2024.01.29.577264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Prestin (SLC26a5) function evolved to enhance auditory sensitivity and frequency selectivity by providing mechanical feedback via outer hair cells (OHC) into the organ of Corti. Its effectiveness is governed by the voltage-dependent kinetics of the protein's charge movements, namely, nonlinear capacitance (NLC). We study the frequency response of NLC in the mouse OHC, a species with ultrasonic hearing. We find that the characteristic frequency cut-off (F is ) for the mouse in near 27 kHz. Single point mutations within the chloride binding pocket of prestin (e.g., S396E, S398E) lack the protein's usual anion susceptibility. In agreement, we now show absence of anion binding in these mutants through molecular dynamics (MD) simulations. NLC F is in the S396E knock-in mouse is unaltered, indicating that high frequency activity is not governed by chloride, but more likely by viscoelastic loads within the membrane. We also show that the allosteric action of chloride does not underlie piezoelectric-like behavior in prestin, since tension sensitivity of S396E NLC is comparable to that of WT. Because prestin structures of all species studied to-date are essentially indistinguishable, with analogous chloride binding pockets, auditory requirements of individual species for cochlear amplification likely evolved to enhance prestin performance by modifying, not its protein-anion interaction, but instead external mechanical loads on the protein. Significance Prestin is believed to provide cochlear amplification in mammals that possess a wide range of frequency sensitivities. Previously, chloride anions have been shown to control prestin kinetics at frequencies below 10 kHz. However, now we find that chloride binding is not influential for prestin kinetics in the very high range of the mouse. We suggest that such high frequency prestin performance is governed by impinging mechanical loads within the membrane, and not interactions with anions.
Collapse
|
8
|
Hudspeth AJ, Martin P. The Critical Thing about the Ear's Sensory Hair Cells. J Neurosci 2024; 44:e1583242024. [PMID: 39477536 PMCID: PMC11529813 DOI: 10.1523/jneurosci.1583-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
The capabilities of the human ear are remarkable. We can normally detect acoustic stimuli down to a threshold sound-pressure level of 0 dB (decibels) at the entrance to the external ear, which elicits eardrum vibrations in the picometer range. From this threshold up to the onset of pain, 120 dB, our ears can encompass sounds that differ in power by a trillionfold. The comprehension of speech and enjoyment of music result from our ability to distinguish between tones that differ in frequency by only 0.2%. All these capabilities vanish upon damage to the ear's receptors, the mechanoreceptive sensory hair cells. Each cochlea, the auditory organ of the inner ear, contains some 16,000 such cells that are frequency-tuned between ∼20 Hz (cycles per second) and 20,000 Hz. Remarkably enough, hair cells do not simply capture sound energy: they can also exhibit an active process whereby sound signals are amplified, tuned, and scaled. This article describes the active process in detail and offers evidence that its striking features emerge from the operation of hair cells on the brink of an oscillatory instability-one example of the critical phenomena that are widespread in physics.
Collapse
Affiliation(s)
- A J Hudspeth
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065
| | - Pascal Martin
- Physics of Cells and Cancer Unit, Institut Curie, PSL Research University, CNRS UMR168, Paris 75005, France
- Sorbonne Université, Paris 75005, France
| |
Collapse
|
9
|
Giffen KP, Liu H, Yamane KL, Li Y, Chen L, Kramer KL, Zallocchi M, He DZ. Molecular specializations underlying phenotypic differences in inner ear hair cells of zebrafish and mice. Front Neurol 2024; 15:1437558. [PMID: 39484049 PMCID: PMC11524865 DOI: 10.3389/fneur.2024.1437558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Hair cells (HCs) are the sensory receptors of the auditory and vestibular systems in the inner ears of vertebrates that selectively transduce mechanical stimuli into electrical activity. Although all HCs have the hallmark stereocilia bundle for mechanotransduction, HCs in non-mammals and mammals differ in their molecular specialization in the apical, basolateral, and synaptic membranes. HCs of non-mammals, such as zebrafish (zHCs), are electrically tuned to specific frequencies and possess an active process in the stereocilia bundle to amplify sound signals. Mammalian HCs, in contrast, are not electrically tuned and achieve amplification by somatic motility of outer HCs (OHCs). Methods To understand the genetic mechanisms underlying differences between adult zebrafish and mammalian HCs, we compared their RNA-seq-characterized transcriptomes, focusing on protein-coding orthologous genes related to HC specialization. Results There was considerable shared expression of gene orthologs among the HCs, including those genes associated with mechanotransduction, ion transport/channels, and synaptic signaling. However, there were some notable differences in expression among zHCs, OHCs, and inner HCs (IHCs), which likely underlie the distinctive physiological properties of each cell type. For example, OHCs highly express Slc26a5 which encodes the motor protein prestin that contributes to OHC electromotility. However, zHCs have only weak expression of slc26a5, and subsequently showed no voltage-dependent electromotility when measured. Notably, the zHCs expressed more paralogous genes including those associated with HC-specific functions and transcriptional activity, though it is unknown whether they have functions similar to their mammalian counterparts. There was overlap in the expressed genes associated with a known hearing phenotype. Discussion Our analyses unveil substantial differences in gene expression patterns that may explain phenotypic specialization of zebrafish and mouse HCs. This dataset also includes several protein-coding genes to further the functional characterization of HCs and study of HC evolution from non-mammals to mammals.
Collapse
Affiliation(s)
- Kimberlee P. Giffen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Basic Sciences, Augusta University/University of Georgia Medical Partnership, Athens, GA, United States
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Kacey L. Yamane
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Yi Li
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
- Department of Otorhinolaryngology, Beijing Tongren Hospital, Beijing Capital Medical University, Beijing, China
| | - Lei Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Kenneth L. Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Marisa Zallocchi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - David Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
10
|
Metzler-Winslow C, Toderi MA, Bozovic D. Neural control and innate self-tuning of the hair cell's active process. Biophys J 2024; 123:3550-3557. [PMID: 39244640 PMCID: PMC11494480 DOI: 10.1016/j.bpj.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
We propose a model for the feedback control processes that underlie the robustness and high sensitivity of mechanosensory hair cells. Our model encompasses self-tuning active processes intrinsic to these cells, which drive the amplification of mechanical stimuli by consuming metabolic energy, and a neural input process that protects these cells from damage caused by powerful stimuli. We explore the effects of these two feedback mechanisms on mechanical self-oscillations of the sense cells and their response to external forcing.
Collapse
Affiliation(s)
- Charles Metzler-Winslow
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California.
| | - Martín A Toderi
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California
| | - Dolores Bozovic
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
11
|
Lachgar-Ruiz M, Ingham NJ, Martelletti E, Chen J, James E, Panganiban C, Lewis MA, Steel KP. Two new mouse alleles of Ocm and Slc26a5. Hear Res 2024; 452:109109. [PMID: 39241555 DOI: 10.1016/j.heares.2024.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The genes Ocm (encoding oncomodulin) and Slc26a5 (encoding prestin) are expressed strongly in outer hair cells and both are involved in deafness in mice. However, it is not clear if they influence the expression of each other. In this study, we characterise the auditory phenotype resulting from two new mouse alleles, Ocmtm1e and Slc26a5tm1Cre. Each mutation leads to absence of detectable mRNA transcribed from the mutant allele, but there was no evidence that oncomodulin regulates expression of prestin or vice versa. The two mutants show distinctive patterns of auditory dysfunction. Ocmtm1e homozygotes have normal auditory brainstem response thresholds at 4 weeks old followed by progressive hearing loss starting at high frequencies, while heterozygotes show largely normal thresholds until 6 months of age, when signs of worse thresholds are detected. In contrast, Slc26a5tm1Cre homozygotes have stable but raised thresholds across all frequencies tested, 3 to 42 kHz, at least from 4 to 8 weeks old, while heterozygotes have raised thresholds at high frequencies. Distortion product otoacoustic emissions and cochlear microphonics show deficits similar to auditory brainstem responses in both mutants, suggesting that the origin of hearing impairment is in the outer hair cells. Endocochlear potentials are normal in the two mutants. Scanning electron microscopy revealed normal development of hair cells in Ocmtm1e homozygotes but scattered outer hair cell loss even at 4 weeks old when thresholds appeared normal, indicating that there is not a direct relationship between numbers of outer hair cells present and auditory thresholds.
Collapse
MESH Headings
- Animals
- Sulfate Transporters/genetics
- Sulfate Transporters/metabolism
- Evoked Potentials, Auditory, Brain Stem
- Auditory Threshold
- Phenotype
- Alleles
- Homozygote
- Mice
- Otoacoustic Emissions, Spontaneous
- Mutation
- Heterozygote
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Molecular Motor Proteins/genetics
- Molecular Motor Proteins/metabolism
- Cochlea/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Mice, Inbred C57BL
- Acoustic Stimulation
Collapse
Affiliation(s)
- Marìa Lachgar-Ruiz
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Neil J Ingham
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Elisa Martelletti
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Jing Chen
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Elysia James
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Clarisse Panganiban
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Morag A Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Karen P Steel
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK.
| |
Collapse
|
12
|
Zhu Z, Reid W, George SS, Ou V, Ó Maoiléidigh D. 3D morphology of an outer-hair-cell hair bundle increases its displacement and dynamic range. Biophys J 2024; 123:3433-3451. [PMID: 39161094 PMCID: PMC11480765 DOI: 10.1016/j.bpj.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/22/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
In mammals, outer-hair-cell hair bundles (OHBs) transduce sound-induced forces into receptor currents and are required for the wide dynamic range and high sensitivity of hearing. OHBs differ conspicuously in morphology from other types of bundles. Here, we show that the 3D morphology of an OHB greatly impacts its mechanics and transduction. An OHB comprises rod-like stereocilia, which pivot on the surface of its sensory outer hair cell. Stereocilium pivot positions are arranged in columns and form a V shape. We measure the pivot positions and determine that OHB columns are far from parallel. To calculate the consequences of an OHB's V shape and far-from-parallel columns, we develop a mathematical model of an OHB that relates its pivot positions, 3D morphology, mechanics, and receptor current. We find that the 3D morphology of the OHB can halve its stiffness, can double its damping coefficient, and causes stereocilium displacements driven by stimulus forces to differ substantially across the OHB. Stereocilium displacements drive the opening and closing of ion channels through which the receptor current flows. Owing to the stereocilium-displacement differences, the currents passing through the ion channels can peak versus the stimulus frequency and vary considerably across the OHB. Consequently, the receptor current peaks versus the stimulus frequency. Ultimately, the OHB's 3D morphology can increase its receptor-current dynamic range more than twofold. Our findings imply that potential pivot-position changes owing to development, mutations, or location within the mammalian auditory organ might greatly alter OHB function.
Collapse
Affiliation(s)
- Zenghao Zhu
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Wisam Reid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California; Harvard Medical School, Boston, Massachusetts
| | - Shefin Sam George
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Victoria Ou
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Dáibhid Ó Maoiléidigh
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California.
| |
Collapse
|
13
|
Cai W, Grosh K. Rate-dependent cochlear outer hair cell force generation: Models and parameter estimation. Biophys J 2024; 123:3421-3432. [PMID: 39148291 PMCID: PMC11480764 DOI: 10.1016/j.bpj.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
The outer hair cells (OHCs) of the mammalian cochlea are the mediators of an active, nonlinear electromechanical process necessary for sensitive, frequency-specific hearing. The membrane protein prestin conveys to the OHC a piezoelectric-like behavior hypothesized to actuate a high frequency, cycle-by-cycle conversion of electrical to mechanical energy to boost cochlear responses to low-level sound. This hypothesis has been debated for decades, with two key remaining issues: the influence of the rate dependence of conformal changes in prestin and the OHC transmembrane impedance. In this paper, we mainly focus on the rate dependence of the conformal change in prestin. A theoretical electromechanical model of the OHC that explicitly includes rate dependence of conformal transitions, viscoelasticity, and piezoelectricity. Using this theory, we show the influence of rate dependence and viscoelasticity on electromechanical force generation and transmembrane impedance. Furthermore, we stress the importance of using the correct mechanical boundary conditions when estimating the transmembrane capacitance. Finally, a set of experiments is described to uniquely estimate the constitutive properties of the OHC from whole-cell measurements.
Collapse
Affiliation(s)
- Wen Cai
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Karl Grosh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Kresge Hearing Research Institute, University of Michigan, 4605 Medical Science Unit II, Ann Arbor, Michigan.
| |
Collapse
|
14
|
Tang J, Feng M, Wang D, Zhang L, Yang K. Recent advancement of sonogenetics: A promising noninvasive cellular manipulation by ultrasound. Genes Dis 2024; 11:101112. [PMID: 38947740 PMCID: PMC11214298 DOI: 10.1016/j.gendis.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/02/2024] Open
Abstract
Recent advancements in biomedical research have underscored the importance of noninvasive cellular manipulation techniques. Sonogenetics, a method that uses genetic engineering to produce ultrasound-sensitive proteins in target cells, is gaining prominence along with optogenetics, electrogenetics, and magnetogenetics. Upon stimulation with ultrasound, these proteins trigger a cascade of cellular activities and functions. Unlike traditional ultrasound modalities, sonogenetics offers enhanced spatial selectivity, improving precision and safety in disease treatment. This technology broadens the scope of non-surgical interventions across a wide range of clinical research and therapeutic applications, including neuromodulation, oncologic treatments, stem cell therapy, and beyond. Although current literature predominantly emphasizes ultrasonic neuromodulation, this review offers a comprehensive exploration of sonogenetics. We discuss ultrasound properties, the specific ultrasound-sensitive proteins employed in sonogenetics, and the technique's potential in managing conditions such as neurological disorders, cancer, and ophthalmic diseases, and in stem cell therapies. Our objective is to stimulate fresh perspectives for further research in this promising field.
Collapse
Affiliation(s)
- Jin Tang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingxuan Feng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| |
Collapse
|
15
|
Iwasa KH. Multiple Modes of Motion for the Effectiveness of Outer Hair Cells at High Frequencies. ARXIV 2024:arXiv:2404.01062v3. [PMID: 38903735 PMCID: PMC11188145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Outer hair cells (OHCs) are essential for the sensitivity and frequency specificity of the mammalian ear. To perform this function, OHCs need to amplify the motion of the basilar membrane (BM), which is much stiffer than themselves. If OHCs and the BM are components of a single oscillator, this impedance mismatch seriously limits the effectiveness of OHCs. However, the elaborated structure of the organ of Corti can support multiple modes of motion. Here, systems of two coupled oscillators are examined as the simplest models of the system with multiple modes of motion. It is found that some of these model systems have conditions, under which an OHC can function as an effective amplifier, overcoming the impedance mismatch. The present examination suggests that the presence of multiple modes of motion is a key to the exquisite performance of the mammalian ear.
Collapse
Affiliation(s)
- Kuni H Iwasa
- NIDCD, National Institutes of Health Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Zheng J, Zhou Y, Fuentes RJ, Tan X. Verification of Outer Hair Cell Motor Protein, Prestin, as a Serological Biomarker for Mouse Cochlear Damage. Int J Mol Sci 2024; 25:7285. [PMID: 39000390 PMCID: PMC11241755 DOI: 10.3390/ijms25137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The motor protein prestin, found in the inner ear's outer hair cells (OHCs), is responsible for high sensitivity and sharp frequency selectivity in mammalian hearing. Some studies have suggested that prestin could be a serological biomarker for cochlear damage, as OHCs are highly vulnerable to damage from various sources. However, the reported data are inconsistent and lack appropriate negative controls. To investigate whether prestin can be used as a serological biomarker for cochlear damage or stress, we measured prestin quantities in the bloodstreams of mice using ELISA kits from different companies. Wildtype (WT) mice were exposed to different ototoxic treatments, including noise exposure and ototoxic reagents that rapidly kill OHCs. Prestin-knockout (KO) mice were used as a negative control. Our data show that some ELISA kits were not able to detect prestin specifically. The ELISA kit that could detect the prestin protein from cochlear homogenates failed to detect prestin in the bloodstream, despite there being significant damage to OHCs in the cochleae. Furthermore, the optical densities of the serum samples, which correlate to prestin quantities, were significantly influenced by hemolysis in the samples. In conclusion, Prestin from OHCs is not a sensitive and reliable serological biomarker for detecting cochlear damage in mice using ELISA.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Chicago Campus, Northwestern University, Chicago, IL 60611, USA; (R.J.F.); (X.T.)
- Department of Communication Sciences and Disorders, School of Communication, Evanston Campus, Northwestern University, Evanston, IL 60208, USA;
- The Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, School of Communication, Evanston Campus, Northwestern University, Evanston, IL 60208, USA;
| | - Robert J. Fuentes
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Chicago Campus, Northwestern University, Chicago, IL 60611, USA; (R.J.F.); (X.T.)
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Chicago Campus, Northwestern University, Chicago, IL 60611, USA; (R.J.F.); (X.T.)
- The Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
17
|
Takahashi S, Zhou Y, Cheatham MA, Homma K. The frequency dependence of prestin-mediated fast electromotility for mammalian cochlear amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595389. [PMID: 38826260 PMCID: PMC11142200 DOI: 10.1101/2024.05.22.595389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Prestin's voltage-driven motor activity confers sound-elicited somatic electromotility in auditory outer hair cells (OHCs) and is essential for the exquisite sensitivity and frequency selectivity of mammalian hearing. Lack of prestin results in hearing threshold shifts across frequency, supporting the causal association of variants in the prestin-coding gene, SLC26A5 , with human hearing loss, DFNB61. However, cochlear function can tolerate reductions in prestin-mediated OHC electromotility. We found that two deafness-associated prestin variants, p.A100T and p.P119S, do not deprive prestin of its fast motor function but significantly reduce membrane expression, leading to large reductions in OHC electromotility that were only ∼30% of wildtype (WT). Mice harboring these missense variants suffered congenital hearing loss that was worse at high frequencies; however, they retained WT-like auditory brainstem response thresholds at 8 kHz, which is processed at the apex of the mouse cochlea. This observation suggests the increasing importance of prestin-driven cochlear amplification at higher frequencies relevant to mammalian hearing. The observation also suggests the promising clinical possibility that small enhancements of OHC electromotility could significantly ameliorate DFNB61 hearing loss in human patients. SIGNIFICANCE Prestin is abundantly expressed in the auditory outer hair cells and is essential for normal cochlear operation. Hence, reduction of prestin expression is often taken as indicative of reduced cochlear function in diseased or aged ears. However, this assumption overlooks the fact that cochlear function can tolerate large reductions in prestin motor activity. DFNB61 mouse models generated and characterized in this study provide an opportunity to gauge the amount of prestin motor activity needed to sustain normal hearing sensitivity. This knowledge is crucial not only for understanding the pathogenic roles of deafness-associated variants that impair OHC electromotility but also for unraveling how prestin contributes to cochlear amplification.
Collapse
|
18
|
Giffen KP, Liu H, Yamane KL, Li Y, Chen L, Kramer KL, Zallocchi M, He DZ. Molecular Specializations Underlying Phenotypic Differences in Inner Ear Hair Cells of Zebrafish and Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595729. [PMID: 38826418 PMCID: PMC11142236 DOI: 10.1101/2024.05.24.595729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Hair cells (HCs) are the sensory receptors of the auditory and vestibular systems in the inner ears of vertebrates that selectively transduce mechanical stimuli into electrical activity. Although all HCs have the hallmark stereocilia bundle for mechanotransduction, HCs in non-mammals and mammals differ in their molecular specialization in the apical, basolateral and synaptic membranes. HCs of non-mammals, such as zebrafish (zHCs), are electrically tuned to specific frequencies and possess an active process in the stereocilia bundle to amplify sound signals. Mammalian cochlear HCs, in contrast, are not electrically tuned and achieve amplification by somatic motility of outer HCs (OHCs). To understand the genetic mechanisms underlying differences among adult zebrafish and mammalian cochlear HCs, we compared their RNA-seq-characterized transcriptomes, focusing on protein-coding orthologous genes related to HC specialization. There was considerable shared expression of gene orthologs among the HCs, including those genes associated with mechanotransduction, ion transport/channels, and synaptic signaling. For example, both zebrafish and mouse HCs express Tmc1, Lhfpl5, Tmie, Cib2, Cacna1d, Cacnb2, Otof, Pclo and Slc17a8. However, there were some notable differences in expression among zHCs, OHCs, and inner HCs (IHCs), which likely underlie the distinctive physiological properties of each cell type. Tmc2 and Cib3 were not detected in adult mouse HCs but tmc2a and b and cib3 were highly expressed in zHCs. Mouse HCs express Kcna10, Kcnj13, Kcnj16, and Kcnq4, which were not detected in zHCs. Chrna9 and Chrna10 were expressed in mouse HCs. In contrast, chrna10 was not detected in zHCs. OHCs highly express Slc26a5 which encodes the motor protein prestin that contributes to OHC electromotility. However, zHCs have only weak expression of slc26a5, and subsequently showed no voltage dependent electromotility when measured. Notably, the zHCs expressed more paralogous genes including those associated with HC-specific functions and transcriptional activity, though it is unknown whether they have functions similar to their mammalian counterparts. There was overlap in the expressed genes associated with a known hearing phenotype. Our analyses unveil substantial differences in gene expression patterns that may explain phenotypic specialization of zebrafish and mouse HCs. This dataset also includes several protein-coding genes to further the functional characterization of HCs and study of HC evolution from non-mammals to mammals.
Collapse
Affiliation(s)
- Kimberlee P. Giffen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Augusta University/University of Georgia Medical Partnership, Athens, GA, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Kacey L. Yamane
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Yi Li
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
- Department of Otorhinolaryngology, Beijing Tongren Hospital, Beijing Capital Medical University, Beijing, China
| | - Lei Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Ken L. Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - David Z.Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
19
|
Takahashi S, Homma K. The molecular principles underlying diverse functions of the SLC26 family of proteins. J Biol Chem 2024; 300:107261. [PMID: 38582450 PMCID: PMC11078650 DOI: 10.1016/j.jbc.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024] Open
Abstract
Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study, we sought to identify the common versus distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Center for Mechanical Excitability, The University of Chicago, Chicago, Illinois, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Center for Mechanical Excitability, The University of Chicago, Chicago, Illinois, USA; The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
20
|
Bachman JL, Kitcher SR, Vattino LG, Beaulac HJ, Chaves MG, Rivera IH, Katz E, Wedemeyer C, Weisz CJ. GABAergic synapses between auditory efferent neurons and type II spiral ganglion afferent neurons in the mouse cochlea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587185. [PMID: 38586043 PMCID: PMC10996694 DOI: 10.1101/2024.03.28.587185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cochlear outer hair cells (OHCs) are electromotile and are implicated in mechanisms of amplification of responses to sound that enhance sound sensitivity and frequency tuning. They send information to the brain through glutamatergic synapses onto a small subpopulation of neurons of the ascending auditory nerve, the type II spiral ganglion neurons (SGNs). The OHC synapses onto type II SGNs are sparse and weak, suggesting that type II SGNs respond primarily to loud and possibly damaging levels of sound. OHCs also receive innervation from the brain through the medial olivocochlear (MOC) efferent neurons. MOC neurons are cholinergic yet exert an inhibitory effect on auditory function as they are coupled to alpha9/alpha10 nicotinic acetylcholine receptors (nAChRs) on OHCs, which leads to calcium influx that gates SK potassium channels. The net hyperpolarization exerted by this efferent synapse reduces OHC activity-evoked electromotility and is implicated in cochlear gain control, protection against acoustic trauma, and attention. MOC neurons also label for markers of gamma-aminobutyric acid (GABA) and GABA synthesis. GABAB autoreceptor (GABABR) activation by GABA released from MOC terminals has been demonstrated to reduce ACh release, confirming important negative feedback roles for GABA. However, the full complement of GABAergic activity in the cochlea is not currently understood, including the mechanisms that regulate GABA release from MOC axon terminals, whether GABA diffuses from MOC axon terminals to other postsynaptic cells, and the location and function of GABAA receptors (GABAARs). Previous electron microscopy studies suggest that MOC neurons form contacts onto several other cell types in the cochlea, but whether these contacts form functional synapses, and what neurotransmitters are employed, are unknown. Here we use immunohistochemistry, optical neurotransmitter imaging and patch-clamp electrophysiology from hair cells, afferent dendrites, and efferent axons to demonstrate that in addition to presynaptic GABABR autoreceptor activation, MOC efferent axon terminals release GABA onto type II SGN afferent dendrites with postsynaptic activity mediated by GABAARs. This synapse may have multiple roles including developmental regulation of cochlear innervation, fine tuning of OHC activity, or providing feedback to the brain about MOC and OHC activity.
Collapse
Affiliation(s)
- Julia L. Bachman
- These authors contributed equally
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
- The National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Siân R. Kitcher
- These authors contributed equally
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Lucas G. Vattino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
- Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Holly J. Beaulac
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - M. Grace Chaves
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
- Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Graduate Program in Speech and Hearing Biosciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Israel Hernandez Rivera
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Carolina Wedemeyer
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Catherine J.C. Weisz
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Takahashi S, Zhou Y, Cheatham MA, Homma K. The pathogenic roles of the p.R130S prestin variant in DFNB61 hearing loss. J Physiol 2024; 602:1199-1210. [PMID: 38431907 PMCID: PMC10942758 DOI: 10.1113/jp285599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5, the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes (SLC26A5W70X/R130S ). Our recent study showed that mice homozygous for p.R130S (Slc26a5R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5R130S/- mice were used as a model for human SLC26A5W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study defines the pathogenic roles of p.R130S prestin and identifies a limited time window for potential clinical intervention. KEY POINTS: The voltage-driven motor protein, prestin, is encoded by SLC26A5 and expressed abundantly in cochlear outer hair cells (OHCs). The importance of prestin for normal hearing was demonstrated in mice lacking prestin; however, none of the specific SLC26A5 variants identified to date in human patients has been experimentally demonstrated to be pathogenic. In this study we used both cell lines and a mouse model to define the pathogenic role of compound heterozygous p.W70X (c.209G>A) and p.R130S (c.390A>C) SLC26A5 variants identified in patients with moderate to profound hearing loss. As in patients, mice carrying one copy of p.R130S Slc26a5 showed OHC dysfunction and progressive degeneration, which results in congenital progressive hearing loss. This is the first functional study reporting pathogenic SLC26A5 variants and pointing to the presence of a therapeutic time window for potential clinical interventions targeting the affected OHCs before they are lost.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders
| | - Kazuaki Homma
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders
| |
Collapse
|
22
|
Takahashi S, Kojima T, Wasano K, Homma K. Functional Studies of Deafness-Associated Pendrin and Prestin Variants. Int J Mol Sci 2024; 25:2759. [PMID: 38474007 PMCID: PMC10931795 DOI: 10.3390/ijms25052759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pendrin and prestin are evolutionary-conserved membrane proteins that are essential for normal hearing. Dysfunction of these proteins results in hearing loss in humans, and numerous deafness-associated pendrin and prestin variants have been identified in patients. However, the pathogenic impacts of many of these variants are ambiguous. Here, we report results from our ongoing efforts to experimentally characterize pendrin and prestin variants using in vitro functional assays. With previously established fluorometric anion transport assays, we determined that many of the pendrin variants identified on transmembrane (TM) 10, which contains the essential anion binding site, and on the neighboring TM9 within the core domain resulted in impaired anion transport activity. We also determined the range of functional impairment in three deafness-associated prestin variants by measuring nonlinear capacitance (NLC), a proxy for motor function. Using the results from our functional analyses, we also evaluated the performance of AlphaMissense (AM), a computational tool for predicting the pathogenicity of missense variants. AM prediction scores correlated well with our experimental results; however, some variants were misclassified, underscoring the necessity of experimentally assessing the effects of variants. Together, our experimental efforts provide invaluable information regarding the pathogenicity of deafness-associated pendrin and prestin variants.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Takashi Kojima
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Otolaryngology, Head and Neck Surgery, National Hospital Organization Tochigi Medical Center, Tochigi 320-0057, Japan
| | - Koichiro Wasano
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Kazuaki Homma
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
23
|
Takahashi S, Kojima T, Wasano K, Homma K. Functional studies of deafness-associated pendrin and prestin variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576877. [PMID: 38328051 PMCID: PMC10849616 DOI: 10.1101/2024.01.23.576877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pendrin and prestin are evolutionary conserved membrane proteins that are essential for normal hearing. Pendrin is an anion transporter required for normal development and maintenance of ion homeostasis in the inner ear, while prestin is a voltage-dependent motor responsible for cochlear amplification essential for high sensitivity and frequency selectivity of mammalian hearing. Dysfunction of these proteins result in hearing loss in humans, and numerous deafness-associated pendrin and prestin variants have been identified in patients. However, the pathogenic impacts of many of these variants are ambiguous. Here we report results from our ongoing efforts in experimentally characterizing pendrin and prestin variants using in vitro functional assays, providing invaluable information regarding their pathogenicity.
Collapse
|
24
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
25
|
Takahashi S, Homma K. The molecular principles underlying diverse functions of the SLC26 family of proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570988. [PMID: 38106153 PMCID: PMC10723444 DOI: 10.1101/2023.12.10.570988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study we sought to identify the common vs. distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.
Collapse
|
26
|
Kuwabara MF, Haddad BG, Lenz-Schwab D, Hartmann J, Longo P, Huckschlag BM, Fuß A, Questino A, Berger TK, Machtens JP, Oliver D. Elevator-like movements of prestin mediate outer hair cell electromotility. Nat Commun 2023; 14:7145. [PMID: 37932294 PMCID: PMC10628124 DOI: 10.1038/s41467-023-42489-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/12/2023] [Indexed: 11/08/2023] Open
Abstract
The outstanding acuity of the mammalian ear relies on cochlear amplification, an active mechanism based on the electromotility (eM) of outer hair cells. eM is a piezoelectric mechanism generated by little-understood, voltage-induced conformational changes of the anion transporter homolog prestin (SLC26A5). We used a combination of molecular dynamics (MD) simulations and biophysical approaches to identify the structural dynamics of prestin that mediate eM. MD simulations showed that prestin samples a vast conformational landscape with expanded (ES) and compact (CS) states beyond previously reported prestin structures. Transition from CS to ES is dominated by the translational-rotational movement of prestin's transport domain, akin to elevator-type substrate translocation by related solute carriers. Reversible transition between CS and ES states was supported experimentally by cysteine accessibility scanning, cysteine cross-linking between transport and scaffold domains, and voltage-clamp fluorometry (VCF). Our data demonstrate that prestin's piezoelectric dynamics recapitulate essential steps of a structurally conserved ion transport cycle.
Collapse
Affiliation(s)
- Makoto F Kuwabara
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Bassam G Haddad
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - Dominik Lenz-Schwab
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Julia Hartmann
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Piersilvio Longo
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - Britt-Marie Huckschlag
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Anneke Fuß
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Annalisa Questino
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Thomas K Berger
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany.
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Germany.
| |
Collapse
|
27
|
Takahashi S, Zhou Y, Cheatham MA, Homma K. The pathogenic roles of the p.R130S prestin variant in DFNB61 hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554157. [PMID: 37662362 PMCID: PMC10473669 DOI: 10.1101/2023.08.21.554157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5 , the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes ( SLC26A5 W70X/R130S ). Our recent study showed that mice homozygous for p.R130S ( Slc26a5 R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5 R130S/- mice were used as a model for human SLC26A5 W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study fully defines the pathogenic roles for the p.R130S prestin, which points to the presence of a limited time window for potential clinical intervention.
Collapse
|
28
|
Cheatham MA. Distortion Product Otoacoustic Emissions in Mice Above and Below the Eliciting Primaries. J Assoc Res Otolaryngol 2023; 24:413-428. [PMID: 37464091 PMCID: PMC10504173 DOI: 10.1007/s10162-023-00903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Normal hearing is associated with cochlear nonlinearity. When two tones (f1 and f2) are presented, the intracochlear response contains additional components that can be recorded from the ear canal as distortion product otoacoustic emissions (DPOAEs). Although the most prominent intermodulation distortion component is at 2f1-f2, other cubic distortion products are also generated. Because these measurements are noninvasive, they are used in humans and in animal models to detect hearing loss. This study evaluated how loss of sensitivity affects DPOAEs with frequencies above and below the stimulating primaries, i.e., for upper sideband (USB) components like 2f2-f1 and for lower sideband (LSB) components like 2f1-f2. DPOAEs were recorded in several mouse mutants with varying degrees of hearing loss associated with structural changes to the tectorial membrane (TM), or with loss of outer hair cell (OHC) somatic electromotility due to lack of prestin or to the expression of a non-functional prestin. In mice with changes in sensitivity, magnitude reductions were observed for 2f1-f2 relative to controls with mice lacking prestin showing the greatest changes. In contrast, 2f2-f1 was minimally affected by reductions in cochlear gain due to changes in the TM or by the loss of OHC somatic electromotility. In addition, TM mutants with spontaneous otoacoustic emissions (SOAEs) generated larger responses than controls at 2f2-f1 when its frequency was similar to that for the SOAEs. Although cochlear pathologies appear to affect USB and LSB DPOAEs in different ways, both 2f1-f2 and 2f2-f1 reflect nonlinearities associated with the transducer channels. However, in mice, the component at 2f2-f1 does not appear to receive enhancement due to prestin's motor action.
Collapse
Affiliation(s)
- Mary Ann Cheatham
- The Knowles Hearing Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2-240 Frances Searle Building, 2240 Campus Drive, Evanston, IL, 60208, USA.
| |
Collapse
|
29
|
Trigila AP, Castagna VC, Berasain L, Montini D, Rubinstein M, Gomez-Casati ME, Franchini LF. Accelerated Evolution Analysis Uncovers PKNOX2 as a Key Transcription Factor in the Mammalian Cochlea. Mol Biol Evol 2023; 40:msad128. [PMID: 37247388 PMCID: PMC10337857 DOI: 10.1093/molbev/msad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
The genetic bases underlying the evolution of morphological and functional innovations of the mammalian inner ear are poorly understood. Gene regulatory regions are thought to play an important role in the evolution of form and function. To uncover crucial hearing genes whose regulatory machinery evolved specifically in mammalian lineages, we mapped accelerated noncoding elements (ANCEs) in inner ear transcription factor (TF) genes and found that PKNOX2 harbors the largest number of ANCEs within its transcriptional unit. Using reporter gene expression assays in transgenic zebrafish, we determined that four PKNOX2-ANCEs drive differential expression patterns when compared with ortholog sequences from close outgroup species. Because the functional role of PKNOX2 in cochlear hair cells has not been previously investigated, we decided to study Pknox2 null mice generated by CRISPR/Cas9 technology. We found that Pknox2-/- mice exhibit reduced distortion product otoacoustic emissions (DPOAEs) and auditory brainstem response (ABR) thresholds at high frequencies together with an increase in peak 1 amplitude, consistent with a higher number of inner hair cells (IHCs)-auditory nerve synapsis observed at the cochlear basal region. A comparative cochlear transcriptomic analysis of Pknox2-/- and Pknox2+/+ mice revealed that key auditory genes are under Pknox2 control. Hence, we report that PKNOX2 plays a critical role in cochlear sensitivity at higher frequencies and that its transcriptional regulation underwent lineage-specific evolution in mammals. Our results provide novel insights about the contribution of PKNOX2 to normal auditory function and to the evolution of high-frequency hearing in mammals.
Collapse
Affiliation(s)
- Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria C Castagna
- Facultad de Medicina, Instituto de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lara Berasain
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Dante Montini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
30
|
Hong G, Fu X, Qi J, Shao B, Han X, Fang Y, Liu S, Cheng C, Zhu C, Gao J, Gao X, Chen J, Xia M, Xiong W, Chai R. Dock4 is required for the maintenance of cochlear hair cells and hearing function. FUNDAMENTAL RESEARCH 2023; 3:557-569. [PMID: 38933554 PMCID: PMC11197514 DOI: 10.1016/j.fmre.2022.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Auditory hair cells (HCs) are the mechanosensory receptors of the cochlea, and HC loss or malfunction can result from genetic defects. Dock4, a member of the Dock180-related protein superfamily, is a guanine nucleotide exchange factor for Rac1, and previous reports have shown that Dock4 mutations are associated with autism spectrum disorder, myelodysplastic syndromes, and tumorigenesis. Here, we found that Dock4 is highly expressed in the cochlear HCs of mice. However, the role of Dock4 in the inner ear has not yet been investigated. Taking advantage of the piggyBac transposon system, Dock4 knockdown (KD) mice were established to explore the role of Dock4 in the cochlea. Compared to wild-type controls, Dock4 KD mice showed significant hearing impairment from postnatal day 60. Dock4 KD mice showed hair bundle deficits and increased oxidative stress, which eventually led to HC apoptosis, late-onset HC loss, and progressive hearing loss. Furthermore, molecular mechanism studies showed that Rac1/β-catenin signaling was significantly downregulated in Dock4 KD cochleae and that this was the cause for the disorganized stereocilia and increased oxidative stress in HCs. Overall, our work demonstrates that the Dock4/Rac1/β-catenin signaling pathway plays a critical role in the maintenance of auditory HCs and hearing function.
Collapse
Affiliation(s)
- Guodong Hong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xiaolong Fu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Buwei Shao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xuan Han
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yuan Fang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100083, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Chengwen Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Junyan Gao
- Jiangsu Rehabilitation Research Center for Hearing and Speech Impairment, Nanjing, Jiangsu 210004, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Jie Chen
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250000, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong 250022, China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100083, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100101, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
31
|
Fettiplace R. Cochlear tonotopy from proteins to perception. Bioessays 2023:e2300058. [PMID: 37329318 DOI: 10.1002/bies.202300058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
A ubiquitous feature of the auditory organ in amniotes is the longitudinal mapping of neuronal characteristic frequencies (CFs), which increase exponentially with distance along the organ. The exponential tonotopic map reflects variation in hair cell properties according to cochlear location and is thought to stem from concentration gradients in diffusible morphogenic proteins during embryonic development. While in all amniotes the spatial gradient is initiated by sonic hedgehog (SHH), released from the notochord and floorplate, subsequent molecular pathways are not fully understood. In chickens, BMP7 is one such morphogen, secreted from the distal end of the cochlea. In mammals, the developmental mechanism differs from birds and may depend on cochlear location. A consequence of exponential maps is that each octave occupies an equal distance on the cochlea, a spacing preserved in the tonotopic maps in higher auditory brain regions. This may facilitate frequency analysis and recognition of acoustic sequences.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
32
|
Santos-Sacchi J, Bai JP, Navaratnam D. Megahertz Sampling of Prestin (SLC26a5) Voltage-Sensor Charge Movements in Outer Hair Cell Membranes Reveals Ultrasonic Activity that May Support Electromotility and Cochlear Amplification. J Neurosci 2023; 43:2460-2468. [PMID: 36868859 PMCID: PMC10082455 DOI: 10.1523/jneurosci.2033-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Charged moieties in the outer hair cell (OHC) membrane motor protein, prestin, are driven by transmembrane voltage to power OHC electromotility (eM) and cochlear amplification (CA), an enhancement of mammalian hearing. Consequently, the speed of prestin's conformational switching constrains its dynamic influence on micromechanics of the cell and the organ of Corti. Corresponding voltage-sensor charge movements in prestin, classically assessed as a voltage-dependent, nonlinear membrane capacitance (NLC), have been used to gauge its frequency response, but have been validly measured only out to 30 kHz. Thus, controversy exists concerning the effectiveness of eM in supporting CA at ultrasonic frequencies where some mammals can hear. Using megahertz sampling of guinea pig (either sex) prestin charge movements, we extend interrogations of NLC into the ultrasonic range (up to 120 kHz) and find an order of magnitude larger response at 80 kHz than previously predicted, indicating that an influence of eM at ultrasonic frequencies is likely, in line with recent in vivo results (Levic et al., 2022). Given wider bandwidth interrogations, we also validate kinetic model predictions of prestin by directly observing its characteristic cut-off frequency under voltage-clamp as the intersection frequency (Fis), near 19 kHz, of the real and imaginary components of complex NLC (cNLC). The frequency response of prestin displacement current noise determined from either the Nyquist relation or stationary measures aligns with this cut-off. We conclude that voltage stimulation accurately assesses the spectral limits of prestin activity, and that voltage-dependent conformational switching is physiologically significant in the ultrasonic range.SIGNIFICANCE STATEMENT The motor protein prestin powers outer hair cell (OHC) electromotility (eM) and cochlear amplification (CA), an enhancement of high-frequency mammalian hearing. The ability of prestin to work at very high frequencies depends on its membrane voltage-driven conformation switching. Using megahertz sampling, we extend measures of prestin charge movement into the ultrasonic range and find response magnitude at 80 kHz an order of magnitude larger than previously estimated, despite confirmation of previous low pass characteristic frequency cut-offs. The frequency response of prestin noise garnered by the admittance-based Nyquist relation or stationary noise measures confirms this characteristic cut-off frequency. Our data indicate that voltage perturbation provides accurate assessment of prestin performance indicating that it can support cochlear amplification into a higher frequency range than previously thought.
Collapse
Affiliation(s)
- Joseph Santos-Sacchi
- Surgery (Otolaryngology), Yale University School of Medicine, New Haven, Connecticut 06510
- Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
- Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Jun-Ping Bai
- Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Dhasakumar Navaratnam
- Surgery (Otolaryngology), Yale University School of Medicine, New Haven, Connecticut 06510
- Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
33
|
Altoè A, Shera CA. The Long Outer-Hair-Cell RC Time Constant: A Feature, Not a Bug, of the Mammalian Cochlea. J Assoc Res Otolaryngol 2023; 24:129-145. [PMID: 36725778 PMCID: PMC10121995 DOI: 10.1007/s10162-022-00884-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/23/2022] [Indexed: 02/03/2023] Open
Abstract
The cochlea of the mammalian inner ear includes an active, hydromechanical amplifier thought to arise via the piezoelectric action of the outer hair cells (OHCs). A classic problem of cochlear biophysics is that the RC (resistance-capacitance) time constant of the hair-cell membrane appears inconveniently long, producing an effective cut-off frequency much lower than that of most audible sounds. The long RC time constant implies that the OHC receptor potential-and hence its electromotile response-decreases by roughly two orders of magnitude over the frequency range of mammalian hearing, casting doubt on the hypothesized role of cycle-by-cycle OHC-based amplification in mammalian hearing. Here, we review published data and basic physics to show that the "RC problem" has been magnified by viewing it through the wrong lens. Our analysis finds no appreciable mismatch between the expected magnitude of high-frequency electromotility and the sound-evoked displacements of the organ of Corti. Rather than precluding significant OHC-based boosts to auditory sensitivity, the long RC time constant appears beneficial for hearing, reducing the effects of internal noise and distortion while increasing the fidelity of cochlear amplification.
Collapse
Affiliation(s)
- Alessandro Altoè
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Takahashi S, Zhou Y, Kojima T, Cheatham MA, Homma K. Prestin's fast motor kinetics is essential for mammalian cochlear amplification. Proc Natl Acad Sci U S A 2023; 120:e2217891120. [PMID: 36893263 PMCID: PMC10089206 DOI: 10.1073/pnas.2217891120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Prestin (SLC26A5)-mediated voltage-driven elongations and contractions of sensory outer hair cells within the organ of Corti are essential for mammalian cochlear amplification. However, whether this electromotile activity directly contributes on a cycle-by-cycle basis is currently controversial. By restoring motor kinetics in a mouse model expressing a slowed prestin missense variant, this study provides experimental evidence acknowledging the importance of fast motor action to mammalian cochlear amplification. Our results also demonstrate that the point mutation in prestin disrupting anion transport in other proteins of the SLC26 family does not alter cochlear function, suggesting that the potential weak anion transport of prestin is not essential in the mammalian cochlea.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL60208
| | - Takashi Kojima
- Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL60208
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL60208
| | - Kazuaki Homma
- Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL60208
| |
Collapse
|
35
|
Levental I, Lyman E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol 2023; 24:107-122. [PMID: 36056103 PMCID: PMC9892264 DOI: 10.1038/s41580-022-00524-4] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins comprise ~30% of the mammalian proteome, mediating metabolism, signalling, transport and many other functions required for cellular life. The microenvironment of integral membrane proteins (IMPs) is intrinsically different from that of cytoplasmic proteins, with IMPs solvated by a compositionally and biophysically complex lipid matrix. These solvating lipids affect protein structure and function in a variety of ways, from stereospecific, high-affinity protein-lipid interactions to modulation by bulk membrane properties. Specific examples of functional modulation of IMPs by their solvating membranes have been reported for various transporters, channels and signal receptors; however, generalizable mechanistic principles governing IMP regulation by lipid environments are neither widely appreciated nor completely understood. Here, we review recent insights into the inter-relationships between complex lipidomes of mammalian membranes, the membrane physicochemical properties resulting from such lipid collectives, and the regulation of IMPs by either or both. The recent proliferation of high-resolution methods to study such lipid-protein interactions has led to generalizable insights, which we synthesize into a general framework termed the 'functional paralipidome' to understand the mutual regulation between membrane proteins and their surrounding lipid microenvironments.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Molecular and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Ed Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
36
|
Dehghani-Ghahnaviyeh S, Zhao Z, Tajkhorshid E. Lipid-mediated prestin organization in outer hair cell membranes and its implications in sound amplification. Nat Commun 2022; 13:6877. [PMID: 36371434 PMCID: PMC9653410 DOI: 10.1038/s41467-022-34596-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Prestin is a high-density motor protein in the outer hair cells (OHCs), whose conformational response to acoustic signals alters the shape of the cell, thereby playing a major role in sound amplification by the cochlea. Despite recent structures, prestin's intimate interactions with the membrane, which are central to its function remained unresolved. Here, employing a large set (collectively, more than 0.5 ms) of coarse-grained molecular dynamics simulations, we demonstrate the impact of prestin's lipid-protein interactions on its organization at densities relevant to the OHCs and its effectiveness in reshaping OHCs. Prestin causes anisotropic membrane deformation, which mediates a preferential membrane organization of prestin where deformation patterns by neighboring copies are aligned constructively. The resulting reduced membrane rigidity is hypothesized to maximize the impact of prestin on OHC reshaping. These results demonstrate a clear case of protein-protein cooperative communication in membrane, purely mediated by interactions with lipids.
Collapse
Affiliation(s)
- Sepehr Dehghani-Ghahnaviyeh
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Zhiyu Zhao
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Emad Tajkhorshid
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
37
|
Futamata H, Fukuda M, Umeda R, Yamashita K, Tomita A, Takahashi S, Shikakura T, Hayashi S, Kusakizako T, Nishizawa T, Homma K, Nureki O. Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility. Nat Commun 2022; 13:6208. [PMID: 36266333 PMCID: PMC9584906 DOI: 10.1038/s41467-022-34017-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/11/2022] [Indexed: 01/11/2023] Open
Abstract
Outer hair cell elecromotility, driven by prestin, is essential for mammalian cochlear amplification. Here, we report the cryo-EM structures of thermostabilized prestin (PresTS), complexed with chloride, sulfate, or salicylate at 3.52-3.63 Å resolutions. The central positively-charged cavity allows flexible binding of various anion species, which likely accounts for the known distinct modulations of nonlinear capacitance (NLC) by different anions. Comparisons of these PresTS structures with recent prestin structures suggest rigid-body movement between the core and gate domains, and provide mechanistic insights into prestin inhibition by salicylate. Mutations at the dimeric interface severely diminished NLC, suggesting that stabilization of the gate domain facilitates core domain movement, thereby contributing to the expression of NLC. These findings advance our understanding of the molecular mechanism underlying mammalian cochlear amplification.
Collapse
Affiliation(s)
- Haon Futamata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masahiro Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo; Meguro-ku, Tokyo, 153-8503, Japan
| | - Rie Umeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoe Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Takafumi Shikakura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| | - Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL, 60608, USA.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
38
|
Zhang H, Li H, Lu M, Wang S, Ma X, Wang F, Liu J, Li X, Yang H, Zhang F, Shen H, Buckley NJ, Gamper N, Yamoah EN, Lv P. Repressor element 1-silencing transcription factor deficiency yields profound hearing loss through K v7.4 channel upsurge in auditory neurons and hair cells. eLife 2022; 11:76754. [PMID: 36125121 PMCID: PMC9525063 DOI: 10.7554/elife.76754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Repressor element 1-silencing transcription factor (REST) is a transcriptional repressor that recognizes neuron-restrictive silencer elements in the mammalian genomes in a tissue- and cell-specific manner. The identity of REST target genes and molecular details of how REST regulates them are emerging. We performed conditional null deletion of Rest (cKO), mainly restricted to murine hair cells (HCs) and auditory neurons (aka spiral ganglion neurons [SGNs]). Null inactivation of full-length REST did not affect the development of normal HCs and SGNs but manifested as progressive hearing loss in adult mice. We found that the inactivation of REST resulted in an increased abundance of Kv7.4 channels at the transcript, protein, and functional levels. Specifically, we found that SGNs and HCs from Rest cKO mice displayed increased Kv7.4 expression and augmented Kv7 currents; SGN’s excitability was also significantly reduced. Administration of a compound with Kv7.4 channel activator activity, fasudil, recapitulated progressive hearing loss in mice. In contrast, inhibition of the Kv7 channels by XE991 rescued the auditory phenotype of Rest cKO mice. Previous studies identified some loss-of-function mutations within the Kv7.4-coding gene, Kcnq4, as a causative factor for progressive hearing loss in mice and humans. Thus, the findings reveal that a critical homeostatic Kv7.4 channel level is required for proper auditory functions.
Collapse
Affiliation(s)
- Haiwei Zhang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Hongchen Li
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Mingshun Lu
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Shengnan Wang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Xueya Ma
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Fei Wang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Jiaxi Liu
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Xinyu Li
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Haichao Yang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Fan Zhang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Hebei, China
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Nikita Gamper
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, United States
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Hebei, China
| |
Collapse
|
39
|
Homma K, Takahashi S, Cheatham MA. How much prestin motor activity is required for normal hearing? Hear Res 2022; 423:108376. [PMID: 34848118 PMCID: PMC9091054 DOI: 10.1016/j.heares.2021.108376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022]
Abstract
Prestin (SLC26A5) is a membrane-based voltage-dependent motor protein responsible for outer hair cell (OHC) somatic electromotility. Its importance for mammalian cochlear amplification has been demonstrated using mouse models lacking prestin (prestin-KO) and expressing dysfunctional prestin, prestinV499G/Y501H (499-prestin-KI). However, it is still not elucidated how prestin contributes to the mechanical amplification process in the cochlea. In this study, we characterized several prestin mouse models in which prestin activity in OHCs was variously manipulated. We found that near-normal cochlear function can be maintained even when prestin activity is significantly reduced, suggesting that the relationship between OHC electromotility and the peripheral sensitivity to sound may not be linear. This result is counterintuitive given the large threshold shifts in prestin-KO and 499-prestin-KI mice, as reported in previous studies. To reconcile these apparently opposing observations, we entertain a voltage- and turgor pressure-based cochlear amplification mechanism that requires prestin but is insensitive to significant reductions in prestin protein expression. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA.
| | - Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mary Ann Cheatham
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA; Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
40
|
Strimbu CE, Olson ES. Salicylate-induced changes in organ of Corti vibrations. Hear Res 2022; 423:108389. [PMID: 34774368 PMCID: PMC9058039 DOI: 10.1016/j.heares.2021.108389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/04/2022]
Abstract
Intra organ of Corti (OC) vibrations differ from those measured at the basilar membrane (BM), with higher amplitudes and a wide-band nonlinearity extending well below a region's best frequency. The vibrations are boosted by the cochlear amplifier, the active processes within the mammalian hearing organ, and are thus sensitive to metabolic or pharmacological manipulation. We introduced salicylate, a known blocker of outer hair cell (OHC) based electromotility, into the perilymphatic space by applying sodium salicylate onto the round window membrane. Vibration patterns of an area of the OC were mapped with phase sensitive optical coherence tomography before and after treatment; distortion product otoacoustic emissions (DPOAEs) were measured at similar times to assess the cochlear condition. Following treatment, all regions showed a loss of vibration amplitude and tuning while OHC-region vibrations retained their wide-band nonlinearity. OC vibrations, which had been relatively confined in a region including OHCs and extending to the BM at the outer pillar foot, became less confined with structures lateral to the OHCs sometimes exhibiting the highest amplitudes. Vibrations and DPOAEs could recover to baseline levels over approximately three hours post treatment. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- C. Elliott Strimbu
- Columbia University, Department of Otolaryngology, 630 West 168th Street, New York, NY 10032, USA
| | - Elizabeth S. Olson
- Columbia University, Department of Otolaryngology, 630 West 168th Street, New York, NY 10032, USA
- Columbia University, Department of Biomedical Engineering, 1210 Amsterdam Avenue, New York, NY 10027 USA
| |
Collapse
|
41
|
Santos-Sacchi J, Tan WJT. Coupling between outer hair cell electromotility and prestin sensor charge depends on voltage operating point. Hear Res 2022; 423:108373. [PMID: 34776274 PMCID: PMC9054947 DOI: 10.1016/j.heares.2021.108373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
The OHC drives cochlear amplification, and prestin activity is the basis. The frequency response of nonlinear capacitance (NLC), which is a ratiometric measure of prestin's voltage-sensor charge movement (dQp/dVm), depends on the location of AC voltage excitation along prestin's operating voltage range, being slowest at the voltage (Vh) where NLC peaks. Here we directly investigate the coupling between prestin charge movement (Qp) and electromotility (eM) at frequencies up to 6.25 kHz, and find tight correspondence between the two at operating voltages displaced from Vh. Near Vh, however, eM shows a slower frequency response than Qp. We reason that coupling is more susceptible to molecular/cellular loads at Vh, where prestin compliance is expected to be maximal. Recent cryo-EM studies have begun to shed light on structural features of prestin that impact its performance against loads. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- Joseph Santos-Sacchi
- Surgery (Otolaryngology), 333 Cedar Street, New Haven, CT 06510, USA; Neuroscience, 333 Cedar Street, New Haven, CT 06510, USA; Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - Winston J T Tan
- Surgery (Otolaryngology), 333 Cedar Street, New Haven, CT 06510, USA
| |
Collapse
|
42
|
Filova I, Pysanenko K, Tavakoli M, Vochyanova S, Dvorakova M, Bohuslavova R, Smolik O, Fabriciova V, Hrabalova P, Benesova S, Valihrach L, Cerny J, Yamoah EN, Syka J, Fritzsch B, Pavlinkova G. ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc Natl Acad Sci U S A 2022; 119:e2207433119. [PMID: 36074819 PMCID: PMC9478650 DOI: 10.1073/pnas.2207433119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.
Collapse
Affiliation(s)
- Iva Filova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine Czech Academy of Sciences, 14220 Prague, Czechia
| | - Mitra Tavakoli
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Simona Vochyanova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Martina Dvorakova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Jiri Cerny
- Laboratory of Light Microscopy, Institute of Molecular Genetics Czech Academy of Sciences, 14220 Prague, Czechia
| | - Ebenezer N. Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, NV 89557
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine Czech Academy of Sciences, 14220 Prague, Czechia
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
- Department of Otolaryngology, University of Iowa, Iowa City, IA 52242-1324
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| |
Collapse
|
43
|
Stiepan S, Goodman SS, Dhar S. Optimizing distortion product otoacoustic emission recordings in normal-hearing ears by adopting cochlear place-specific stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:776. [PMID: 36050172 PMCID: PMC9348896 DOI: 10.1121/10.0013218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) provide a window into active cochlear processes and have become a popular clinical and research tool. DPOAEs are commonly recorded using stimulus with fixed presentation levels and frequency ratio irrespective of the test frequency. However, this is inconsistent with the changing mechanical properties of the cochlear partition from the base to the apex that lend specific frequency-dependent spatial properties to the cochlear traveling wave. Therefore, the frequency and level characteristics between the stimulus tones should also need to be adjusted as a function of frequency to maintain optimal interaction between them. The goal of this investigation was to establish a frequency-specific measurement protocol guided by local cochlear mechanics. A broad stimulus parameter space extending up to 20 kHz was explored in a group of normal-hearing individuals. The stimulus frequency ratio yielding the largest 2f1-f2 DPOAE level changed as a function of frequency and stimulus level. Specifically, for a constant stimulus level, the frequency ratio producing the largest DPOAE level decreased with increasing frequency. Similarly, at a given f2 frequency, the stimulus frequency ratio producing the largest DPOAE level became wider as stimulus level increased. These results confirm and strengthen our current understanding of DPOAE generation in the normally functioning cochlea and expand our understanding to previously unexamined higher frequencies. These data support the use of frequency- and level-specific stimulus frequency ratios to maximize DPOAE generation.
Collapse
Affiliation(s)
- Samantha Stiepan
- Roxelyn and Richard Pepper Department of Communication Science and Disorders, Northwestern University, Evanston, Illinois 60208, USA
| | - Shawn S. Goodman
- Department of Communication Science and Disorders, University of Iowa, Iowa City, Iowa 52242, USA
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Science and Disorders, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
44
|
Lewis RM. From Bench to Booth: Examining Hair-Cell Regeneration Through an Audiologist's Scope. J Am Acad Audiol 2022; 32:654-660. [PMID: 35609592 DOI: 10.1055/s-0041-1731700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Damage to auditory hair cells is a key feature of sensorineural hearing loss due to aging, noise exposure, or ototoxic drugs. Though hair-cell loss is permanent in humans, research in bird species led to the discovery that analogous hair cells of the avian basilar papilla are able to regenerate after being damaged by ototoxic agents. Regeneration appears to occur through a combination of the mitotic expansion of a precursor population of supporting cells and direct transdifferentiation of supporting cells into functioning hair cells. This review will synthesize the relevant anatomy and pathophysiology of sensorineural hearing loss, the historical observations that led to the genesis of the hair-cell regeneration field, and perspectives on initial human hair-cell regeneration trials.
Collapse
Affiliation(s)
- Rebecca M Lewis
- Whisper.ai, Department of Clinical Research, San Francisco, California.,Georgetown University Medical Center, Department of Neuroscience, Washington, D.C
| |
Collapse
|
45
|
Signatures of cochlear processing in neuronal coding of auditory information. Mol Cell Neurosci 2022; 120:103732. [PMID: 35489636 DOI: 10.1016/j.mcn.2022.103732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
The vertebrate ear is endowed with remarkable perceptual capabilities. The faintest sounds produce vibrations of magnitudes comparable to those generated by thermal noise and can nonetheless be detected through efficient amplification of small acoustic stimuli. Two mechanisms have been proposed to underlie such sound amplification in the mammalian cochlea: somatic electromotility and active hair-bundle motility. These biomechanical mechanisms may work in concert to tune auditory sensitivity. In addition to amplitude sensitivity, the hearing system shows exceptional frequency discrimination allowing mammals to distinguish complex sounds with great accuracy. For instance, although the wide hearing range of humans encompasses frequencies from 20 Hz to 20 kHz, our frequency resolution extends to one-thirtieth of the interval between successive keys on a piano. In this article, we review the different cochlear mechanisms underlying sound encoding in the auditory system, with a particular focus on the frequency decomposition of sounds. The relation between peak frequency of activation and location along the cochlea - known as tonotopy - arises from multiple gradients in biophysical properties of the sensory epithelium. Tonotopic mapping represents a major organizational principle both in the peripheral hearing system and in higher processing levels and permits the spectral decomposition of complex tones. The ribbon synapses connecting sensory hair cells to auditory afferents and the downstream spiral ganglion neurons are also tuned to process periodic stimuli according to their preferred frequency. Though sensory hair cells and neurons necessarily filter signals beyond a few kHz, many animals can hear well beyond this range. We finally describe how the cochlear structure shapes the neural code for further processing in order to send meaningful information to the brain. Both the phase-locked response of auditory nerve fibers and tonotopy are key to decode sound frequency information and place specific constraints on the downstream neuronal network.
Collapse
|
46
|
Tao Y, Liu X, Yang L, Chu C, Tan F, Yu Z, Ke J, Li X, Zheng X, Zhao X, Qi J, Lin CP, Chai R, Zhong G, Wu H. AAV-ie-K558R mediated cochlear gene therapy and hair cell regeneration. Signal Transduct Target Ther 2022; 7:109. [PMID: 35449181 PMCID: PMC9023545 DOI: 10.1038/s41392-022-00938-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
The cochlea consists of multiple types of cells, including hair cells, supporting cells and spiral ganglion neurons, and is responsible for converting mechanical forces into electric signals that enable hearing. Genetic and environmental factors can result in dysfunctions of cochlear and auditory systems. In recent years, gene therapy has emerged as a promising treatment in animal deafness models. One major challenge of the gene therapy for deafness is to effectively deliver genes to specific cells of cochleae. Here, we screened and identified an AAV-ie mutant, AAV-ie-K558R, that transduces hair cells and supporting cells in the cochleae of neonatal mice with high efficiency. AAV-ie-K558R is a safe vector with no obvious deficits in the hearing system. We found that AAV-ie-K558R can partially restore the hearing loss in Prestin KO mice and, importantly, deliver Atoh1 into cochlear supporting cells to generate hair cell-like cells. Our results demonstrate the clinical potential of AAV-ie-K558R for treating the hearing loss caused by hair cell death.
Collapse
Affiliation(s)
- Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xiaoyi Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Liu Yang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Cenfeng Chu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Zehua Yu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Junzi Ke
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Xiang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xingle Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, PR China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, PR China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, PR China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, 100069, Beijing, PR China.
| | - Guisheng Zhong
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China.
| |
Collapse
|
47
|
Molecular and cytological profiling of biological aging of mouse cochlear inner and outer hair cells. Cell Rep 2022; 39:110665. [PMID: 35417713 PMCID: PMC9069708 DOI: 10.1016/j.celrep.2022.110665] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Age-related hearing loss (ARHL) negatively impacts quality of life in the elderly population. The prevalent cause of ARHL is loss of mechanosensitive cochlear hair cells (HCs). The molecular and cellular mechanisms of HC degeneration remain poorly understood. Using RNA-seq transcriptomic analyses of inner and outer HCs isolated from young and aged mice, we show that HC aging is associated with changes in key molecular processes, including transcription, DNA damage, autophagy, and oxidative stress, as well as genes related to HC specialization. At the cellular level, HC aging is characterized by loss of stereocilia, shrinkage of HC soma, and reduction in outer HC mechanical properties, suggesting that functional decline in mechanotransduction and cochlear amplification precedes HC loss and contributes to ARHL. Our study reveals molecular and cytological profiles of aging HCs and identifies genes such as Sod1, Sirt6, Jund, and Cbx3 as biomarkers and potential therapeutic targets for ameliorating ARHL. Using RNA-seq, advanced imaging, and electrophysiology, Liu et al. reveal molecular and cytological profiles of aging cochlear hair cells. Their study also suggests that a functional decline in mechanotransduction and cochlear amplification precedes hair cell loss and contributes to age-related hearing loss.
Collapse
|
48
|
Giffen KP, Li Y, Liu H, Zhao XC, Zhang CJ, Shen RJ, Wang T, Janesick A, Chen BB, Gong SS, Kachar B, Jin ZB, He DZ. Mutation of SLC7A14 causes auditory neuropathy and retinitis pigmentosa mediated by lysosomal dysfunction. SCIENCE ADVANCES 2022; 8:eabk0942. [PMID: 35394837 PMCID: PMC8993119 DOI: 10.1126/sciadv.abk0942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/22/2022] [Indexed: 05/13/2023]
Abstract
Lysosomes contribute to cellular homeostasis via processes including macromolecule degradation, nutrient sensing, and autophagy. Defective proteins related to lysosomal macromolecule catabolism are known to cause a range of lysosomal storage diseases; however, it is unclear whether mutations in proteins involved in homeostatic nutrient sensing mechanisms cause syndromic sensory disease. Here, we show that SLC7A14, a transporter protein mediating lysosomal uptake of cationic amino acids, is evolutionarily conserved in vertebrate mechanosensory hair cells and highly expressed in lysosomes of mammalian cochlear inner hair cells (IHCs) and retinal photoreceptors. Autosomal recessive mutation of SLC7A14 caused loss of IHCs and photoreceptors, leading to presynaptic auditory neuropathy and retinitis pigmentosa in mice and humans. Loss-of-function mutation altered protein trafficking and increased basal autophagy, leading to progressive cell degeneration. This study implicates autophagy-lysosomal dysfunction in syndromic hearing and vision loss in mice and humans.
Collapse
Affiliation(s)
- Kimberlee P. Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Yi Li
- Beijing Institute of Otorhinolaryngology, Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Xiao-Chang Zhao
- Beijing Institute of Otorhinolaryngology, Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chang-Jun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing 100730, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing 100730, China
| | - Tianying Wang
- Beijing Institute of Otorhinolaryngology, Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Amanda Janesick
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, CA 94305, USA
| | - Bo-Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shu-Sheng Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing 100730, China
| | - David Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
49
|
Abstract
Geckos are lizards capable of vocalization and can detect frequencies up to 5 kHz, but the mechanism of frequency discrimination is incompletely understood. The gecko’s auditory papilla has a unique arrangement over the high-frequency zone, with rows of mechanically sensitive hair bundles covered with gelatinous sallets. Lower-frequency hair cells are tuned by an electrical resonance employing Ca2+-activated K+ channels, but hair cells tuned above 1 kHz probably rely on a mechanical resonance of the sallets. The resonance may be boosted by an electromotile force from hair bundles found to be evoked by changes in hair cell membrane potential. This unusual mechanism operates independently of mechanotransduction and differs from mammals which amplify the mechanical input using the motor protein prestin. The auditory papilla of geckos contains two zones of sensory hair cells, one covered by a continuous tectorial membrane affixed to the hair bundles and the other by discrete tectorial sallets each surmounting a transverse row of bundles. Gecko papillae are thought to encode sound frequencies up to 5 kHz, but little is known about the hair cell electrical properties or their role in frequency tuning. We recorded from hair cells in the isolated auditory papilla of the crested gecko, Correlophus ciliatus, and found that in both the nonsalletal region and part of the salletal region, the cells displayed electrical tuning organized tonotopically. Along the salletal zone, occupying the apical two-thirds of the papilla, hair bundle length decreased threefold and stereociliary complement increased 1.5-fold. The two morphological variations predict a 13-fold gradient in bundle stiffness, confirmed experimentally, which, when coupled with salletal mass, could provide passive mechanical resonances from 1 to 6 kHz. Sinusoidal electrical currents injected across the papilla evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations across the papilla. Evoked bundle oscillations were diminished by reducing Ca2+ influx, but not by blocking the mechanotransduction channels or inhibiting prestin action, thereby distinguishing them from known electromechanical mechanisms in hair cells. We suggest the phenomenon may be a manifestation of an electromechanical amplification that augments the passive mechanical tuning of the sallets over the high-frequency region.
Collapse
|
50
|
Prestin-Mediated Frequency Selectivity Does not Cover Ultrahigh Frequencies in Mice. Neurosci Bull 2022; 38:769-784. [DOI: 10.1007/s12264-022-00839-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
|