1
|
Hu D, Masai I. Dscamb regulates cone mosaic formation in zebrafish via filopodium-mediated homotypic recognition. Nat Commun 2025; 16:2501. [PMID: 40133281 PMCID: PMC11937385 DOI: 10.1038/s41467-025-57506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Cone photoreceptors assemble to form a regular mosaic pattern in vertebrate retinas. In zebrafish, four distinct spectral cone types (red, green, blue, and ultraviolet), form a lattice-like pattern. However, the mechanism of cone mosaic formation has been unknown. Here we show that Down Syndrome Cell Adhesion Molecule b (Dscamb) regulates the cone mosaic pattern in zebrafish, especially via red-cone spacing. During photoreceptor differentiation, newly formed cones extend filopodium-like processes laterally to apical surfaces of neighboring cones. Interestingly, red cones extend filopodia, but promptly retract them when they meet their own cone type, suggesting filopodium-mediated, homotypic recognition and self-avoidance. This self-avoidance is compromised in zebrafish dscamb mutants, leading to abnormal clustering of red cones and subsequent disruption of regular cone spacing. Thus, apical filopodium-mediated spacing of the same cone type depends on Dscamb and is essential for cone mosaic formation in zebrafish.
Collapse
Affiliation(s)
- Dongpeng Hu
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| |
Collapse
|
2
|
Ing-Esteves S, Lefebvre JL. Gamma-protocadherins regulate dendrite self-recognition and dynamics to drive self-avoidance. Curr Biol 2024; 34:4224-4239.e4. [PMID: 39214087 DOI: 10.1016/j.cub.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.
Collapse
Affiliation(s)
- Samantha Ing-Esteves
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julie L Lefebvre
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
3
|
Xia HH, Zhu LM, Shen LT, Wan ZC. Cytoplasmic tail of transmembrane dscam controls antibacterial responses by regulating cell proliferation-related genes in hemocytes of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109626. [PMID: 38797334 DOI: 10.1016/j.fsi.2024.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
In arthropods, the involvement of Dscam (Down syndrome cell adhesion molecule) in innate immunity has been extensively demonstrated. Its cytoplasmic tail contains multiple conserved functional sites, which indicates its involvement in different intracellular signaling pathways. In this study, we focused on the role of the cytoplasmic tail of Dscam in the Chinese mitten crab (Eriocheir sinensis) immune defense. In the group with cytoplasmic tail knockdown (the site was located on constant exons 37 and 38), 3885 differentially expressed genes (DEGs) were identified. The DEGs were enriched in small molecule binding, protein-containing complex binding, and immunity-related pathways. The expression of selected genes were validated using quantitative real-time reverse transcription PCR. We identified key Cell cycle, Janus kinase (JAK)-signal transducer, activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathway genes, the results indicated that the cytoplasmic tail of Dscam controls antibacterial responses by regulating cell proliferation-related genes in hemocytes.
Collapse
Affiliation(s)
- Hong-Hao Xia
- College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, 230031, PR China
| | - Le-Mei Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, 230031, PR China
| | - Long-Teng Shen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, 230031, PR China
| | - Zhi-Cheng Wan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, 230031, PR China.
| |
Collapse
|
4
|
Hizawa K, Sasaki T, Arimura N. A comparative overview of DSCAM and its multifunctional roles in Drosophila and vertebrates. Neurosci Res 2024; 202:1-7. [PMID: 38141781 DOI: 10.1016/j.neures.2023.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
DSCAM (Down syndrome cell adhesion molecule) is a unique neuronal adhesion protein with extensively documented multifaceted functionalities. DSCAM also has interesting properties in vertebrates and invertebrates, respectively. In Drosophila species, particularly, Dscam exhibits remarkable genetic diversity, with tens of thousands of splicing isoforms that modulate the specificity of neuronal wiring. Interestingly, this splice variant diversity of Dscam is absent in vertebrates. DSCAM plays a pivotal role in mitigating excessive adhesion between identical cell types, thereby maintaining the structural and functional coherence of neural networks. DSCAM contributes to the oversight of selective intercellular interactions such as synaptogenesis; however, the precise regulatory mechanisms underlying the promotion and inhibition of cell adhesion involved remain unclear. In this review, we aim to delineate the distinct molecules that interact with DSCAM and their specific roles within the biological landscapes of Drosophila and vertebrates. By integrating these comparative insights, we aim to elucidate the multifunctional nature of DSCAM, particularly its capacity to facilitate or deter intercellular adhesion.
Collapse
Affiliation(s)
- Kento Hizawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan
| | - Nariko Arimura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
5
|
Touahri Y, Hanna J, Tachibana N, Okawa S, Liu H, David LA, Olender T, Vasan L, Pak A, Mehta DN, Chinchalongporn V, Balakrishnan A, Cantrup R, Dixit R, Mattar P, Saleh F, Ilnytskyy Y, Murshed M, Mains PE, Kovalchuk I, Lefebvre JL, Leong HS, Cayouette M, Wang C, Del Sol A, Brand M, Reese BE, Schuurmans C. Pten regulates endocytic trafficking of cell adhesion and Wnt signaling molecules to pattern the retina. Cell Rep 2024; 43:114005. [PMID: 38551961 PMCID: PMC11290456 DOI: 10.1016/j.celrep.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nobuhiko Tachibana
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hedy Liu
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Lakshmy Vasan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Vorapin Chinchalongporn
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robert Cantrup
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Fermisk Saleh
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3G 1A6, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Julie L Lefebvre
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Benjamin E Reese
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
6
|
Hergenreder T, Yang T, Ye B. The role of Down syndrome cell adhesion molecule in Down syndrome. MEDICAL REVIEW (2021) 2024; 4:31-41. [PMID: 38515781 PMCID: PMC10954295 DOI: 10.1515/mr-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024]
Abstract
Down syndrome (DS) is caused by the presence of an extra copy of the entire or a portion of human chromosome 21 (HSA21). This genomic alteration leads to elevated expression of numerous HSA21 genes, resulting in a variety of health issues in individuals with DS. Among the genes located in the DS "critical region" of HSA21, Down syndrome cell adhesion molecule (DSCAM) plays an important role in neuronal development. There is a growing body of evidence underscoring DSCAM's involvement in various DS-related disorders. This review aims to provide a concise overview of the established functions of DSCAM, with a particular focus on its implications in DS. We delve into the roles that DSCAM plays in DS-associated diseases. In the concluding section of this review, we explore prospective avenues for future research to further unravel DSCAM's role in DS and opportunities for therapeutic treatments.
Collapse
Affiliation(s)
- Ty Hergenreder
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tao Yang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Kozlowski C, Hadyniak SE, Kay JN. Retinal neurons establish mosaic patterning by excluding homotypic somata from their dendritic territory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567616. [PMID: 38014021 PMCID: PMC10680827 DOI: 10.1101/2023.11.17.567616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using newly-generated transgenic tools and single cell labeling, we identify a transient developmental period when starburst somata receive extensive contacts from neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor's dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing, and suggest that this could be a general mechanism for mosaic patterning across many cell types and species.
Collapse
Affiliation(s)
- Christopher Kozlowski
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Sarah E Hadyniak
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Jeremy N Kay
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710 USA
| |
Collapse
|
8
|
He CH, Song NN, Xie PX, Wang YB, Chen JY, Huang Y, Hu L, Li Z, Su JH, Zhang XQ, Zhang L, Ding YQ. Overexpression of EphB6 and EphrinB2 controls soma spacing of cortical neurons in a mutual inhibitory way. Cell Death Dis 2023; 14:309. [PMID: 37149633 PMCID: PMC10164173 DOI: 10.1038/s41419-023-05825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
To establish functional circuitry, neurons settle down in a particular spatial domain by spacing their cell bodies, which requires proper positioning of the soma and establishing of a zone with unique connections. Deficits in this process are implicated in neurodevelopmental diseases. In this study, we examined the function of EphB6 in the development of cerebral cortex. Overexpression of EphB6 via in utero electroporation results in clumping of cortical neurons, while reducing its expression has no effect. In addition, overexpression of EphrinB2, a ligand of EphB6, also induces soma clumping in the cortex. Unexpectedly, the soma clumping phenotypes disappear when both of them are overexpressed in cortical neurons. The mutual inhibitory effect of EphB6/ EphrinB2 on preventing soma clumping is likely to be achieved via interaction of their specific domains. Thus, our results reveal a combinational role of EphrinB2/EphB6 overexpression in controlling soma spacing in cortical development.
Collapse
Affiliation(s)
- Chun-Hui He
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Pin-Xi Xie
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| | - Yu-Bing Wang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ying Huang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ling Hu
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhao Li
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| | - Jun-Hui Su
- Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xiao-Qing Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China.
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China.
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Navarro-Calvo J, Esquiva G, Gómez-Vicente V, Valor LM. MicroRNAs in the Mouse Developing Retina. Int J Mol Sci 2023; 24:ijms24032992. [PMID: 36769311 PMCID: PMC9918188 DOI: 10.3390/ijms24032992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The retina is among the highest organized tissues of the central nervous system. To achieve such organization, a finely tuned regulation of developmental processes is required to form the retinal layers that contain the specialized neurons and supporting glial cells to allow precise phototransduction. MicroRNAs are a class of small RNAs with undoubtful roles in fundamental biological processes, including neurodevelopment of the brain and the retina. This review provides a short overview of the most important findings regarding microRNAs in the regulation of retinal development, from the developmental-dependent rearrangement of the microRNA expression program to the key roles of particular microRNAs in the differentiation and maintenance of retinal cell subtypes.
Collapse
Affiliation(s)
- Jorge Navarro-Calvo
- Unidad de Investigación, Hospital General Universitario Dr. Balmis, ISABIAL, 03010 Alicante, Spain
| | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Violeta Gómez-Vicente
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Luis M. Valor
- Unidad de Investigación, Hospital General Universitario Dr. Balmis, ISABIAL, 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-913-988
| |
Collapse
|
10
|
Ma M, Brunal AA, Clark KC, Studtmann C, Stebbins K, Higashijima SI, Pan YA. Deficiency in the cell-adhesion molecule dscaml1 impairs hypothalamic CRH neuron development and perturbs normal neuroendocrine stress axis function. Front Cell Dev Biol 2023; 11:1113675. [PMID: 36875755 PMCID: PMC9978177 DOI: 10.3389/fcell.2023.1113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The corticotropin-releasing hormone (CRH)-expressing neurons in the hypothalamus are critical regulators of the neuroendocrine stress response pathway, known as the hypothalamic-pituitary-adrenal (HPA) axis. As developmental vulnerabilities of CRH neurons contribute to stress-associated neurological and behavioral dysfunctions, it is critical to identify the mechanisms underlying normal and abnormal CRH neuron development. Using zebrafish, we identified Down syndrome cell adhesion molecule like-1 (dscaml1) as an integral mediator of CRH neuron development and necessary for establishing normal stress axis function. In dscaml1 mutant animals, hypothalamic CRH neurons had higher crhb (the CRH homolog in zebrafish) expression, increased cell number, and reduced cell death compared to wild-type controls. Physiologically, dscaml1 mutant animals had higher baseline stress hormone (cortisol) levels and attenuated responses to acute stressors. Together, these findings identify dscaml1 as an essential factor for stress axis development and suggest that HPA axis dysregulation may contribute to the etiology of human DSCAML1-linked neuropsychiatric disorders.
Collapse
Affiliation(s)
- Manxiu Ma
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States
| | - Alyssa A Brunal
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Kareem C Clark
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States
| | - Carleigh Studtmann
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Katelyn Stebbins
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Y Albert Pan
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
11
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Clemons MR, Flores AA, Black CX, Murphy MK, Dimico RH, Fife P, Lee MD, Camerino MJ, Schlussler M, Baielli M, Rogers A, Bartle A, Beard R, Cooper R, Fuerst PG. Student remote and distance research in neuroanatomy: Mapping Dscaml1 expression with a LacZ gene trap in mouse brain. Anat Histol Embryol 2023; 52:73-84. [PMID: 36148518 PMCID: PMC9845144 DOI: 10.1111/ahe.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/21/2022] [Accepted: 08/31/2022] [Indexed: 01/21/2023]
Abstract
Undergraduate student engagement in research increases retention and degree completion, especially for students who are underrepresented in science. Several approaches have been adopted to increase research opportunities including curriculum based undergraduate research opportunities (CUREs), in which research is embedded into course content. Here we report on efforts to tackle a different challenge: providing research opportunities to students engaged in remote learning or who are learning at satellite campuses or community colleges with limited research infrastructure. In our project we engaged students learning remotely or at regional centers to map gene expression in the mouse brain. In this project we mapped expression of the Down syndrome cell adhesion molecule like 1 (Dscaml1) gene in mouse brain using a LacZ expression reporter line. Identifying where Dscaml1 is expressed in the brain is an important next step in determining if its roles in development and function in the retina are conserved in the rest of the brain. Students working remotely reconstruct brain montages and annotated Dscaml1 expression in the brain of mice carrying one or two copies of the gene trap. We built on these findings by further characterizing Dscaml1 expression in inhibitory neurons of the visual pathway. These results build on and extend previous findings and demonstrate the utility of including distance learners in an active research group for both the student learners and the research team. We conclude with best practices we have developed based on this and other distance learner focused projects.
Collapse
Affiliation(s)
- Mellisa R. Clemons
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Alex A. Flores
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Cailyn X. Black
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Molly K. Murphy
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Ren H. Dimico
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Parker Fife
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Mark D. Lee
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Michael J. Camerino
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Megan Schlussler
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Michael Baielli
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Aspen Rogers
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Amaris Bartle
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Reese Beard
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844, USA
| | - Rhena Cooper
- North Idaho College, Division of Natural Sciences, Coeur d’Alene, Idaho, 83814, USA
| | - Peter G. Fuerst
- University of Washington School of Medicine, WWAMI Medical Education Program, Moscow, Idaho 83844, USA
| |
Collapse
|
13
|
Cao Y, Fajardo D, Guerrero-Given D, Samuel MA, Ohtsuka T, Boye SE, Kamasawa N, Martemyanov KA. Post-developmental plasticity of the primary rod pathway allows restoration of visually guided behaviors. Curr Biol 2022; 32:4783-4796.e3. [PMID: 36179691 PMCID: PMC9691582 DOI: 10.1016/j.cub.2022.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 01/24/2023]
Abstract
The formation of neural circuits occurs in a programmed fashion, but proper activity in the circuit is essential for refining the organization necessary for driving complex behavioral tasks. In the retina, sensory deprivation during the critical period of development is well known to perturb the organization of the visual circuit making the animals unable to use vision for behavior. However, the extent of plasticity, molecular factors involved, and malleability of individual channels in the circuit to manipulations outside of the critical period are not well understood. In this study, we selectively disconnected and reconnected rod photoreceptors in mature animals after completion of the retina circuit development. We found that introducing synaptic rod photoreceptor input post-developmentally allowed their integration into the circuit both anatomically and functionally. Remarkably, adult mice with newly integrated rod photoreceptors gained high-sensitivity vision, even when it was absent from birth. These observations reveal plasticity of the retina circuit organization after closure of the critical period and encourage the development of vision restoration strategies for congenital blinding disorders.
Collapse
Affiliation(s)
- Yan Cao
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Diego Fajardo
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Debbie Guerrero-Given
- The Imaging Center, Electron Microscopy Core Facility, Max Planck Florida Institute, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Melanie A Samuel
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Naomi Kamasawa
- The Imaging Center, Electron Microscopy Core Facility, Max Planck Florida Institute, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA.
| |
Collapse
|
14
|
Hendi A, Niu LG, Snow AW, Ikegami R, Wang ZW, Mizumoto K. Channel-independent function of UNC-9/Innexin in spatial arrangement of GABAergic synapses in C. elegans. eLife 2022; 11:80555. [PMID: 36378164 PMCID: PMC9665852 DOI: 10.7554/elife.80555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Precise synaptic connection of neurons with their targets is essential for the proper functioning of the nervous system. A plethora of signaling pathways act in concert to mediate the precise spatial arrangement of synaptic connections. Here we show a novel role for a gap junction protein in controlling tiled synaptic arrangement in the GABAergic motor neurons in Caenorhabditis elegans, in which their axons and synapses overlap minimally with their neighboring neurons within the same class. We found that while EGL-20/Wnt controls axonal tiling, their presynaptic tiling is mediated by a gap junction protein UNC-9/Innexin, that is localized at the presynaptic tiling border between neighboring dorsal D-type GABAergic motor neurons. Strikingly, the gap junction channel activity of UNC-9 is dispensable for its function in controlling tiled presynaptic patterning. While gap junctions are crucial for the proper functioning of the nervous system as channels, our finding uncovered the novel channel-independent role of UNC-9 in synapse patterning.
Collapse
Affiliation(s)
- Ardalan Hendi
- Department of Zoology, University of British Columbia
- Life Sciences Institute, University of British Columbia
| | - Long-Gang Niu
- Department of Neuroscience, University of Connecticut Health Center
| | - Andrew William Snow
- Graduate Program in Cell and Developmental Biology, University of British Columbia
| | | | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia
- Life Sciences Institute, University of British Columbia
- Graduate Program in Cell and Developmental Biology, University of British Columbia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia
| |
Collapse
|
15
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
16
|
Singh M, Ye B, Kim JH. Dual Leucine Zipper Kinase Regulates Dscam Expression through a Noncanonical Function of the Cytoplasmic Poly(A)-Binding Protein. J Neurosci 2022; 42:6007-6019. [PMID: 35764381 PMCID: PMC9351639 DOI: 10.1523/jneurosci.0543-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Dual leucine zipper kinase (DLK) plays a pivotal role in the development, degeneration, and regeneration of neurons. DLK can regulate gene expression post-transcriptionally, but the underlying mechanism remains poorly understood. The Drosophila DLK, Wallenda (Wnd), regulates the expression of Down syndrome cell adhesion molecule (Dscam) to control presynaptic arbor growth. This regulation is mediated by the 3' untranslated region (3'UTR) of Dscam mRNA, which suggests that RNA binding proteins (RBPs) mediate DLK function. We performed a genome-wide cell-based RNAi screen of RBPs and identified the cytoplasmic poly(A)-binding protein, pAbp, as an RBP that mediates Wnd-induced increase in Dscam expression. Genetic analysis shows that Wnd requires pAbp for promoting presynaptic arbor growth and for enhancing Dscam expression. Our analysis revealed that Dscam mRNAs harbor short poly(A) tails. We identified a region in Dscam 3'UTR that specifically interacts with pAbp. Removing this region significantly reduced Wnd-induced increase in Dscam expression. These suggest that a noncanonical interaction of PABP with the 3'UTR of target transcripts is essential for DLK functions.SIGNIFICANCE STATEMENT The kinase DLK plays key roles in a multitude of neuronal responses, including axon development, neurodegeneration, and nerve injury. Previous studies show that DLK acts via mRNAs to regulate protein synthesis, but how DLK does so is poorly understood. This study demonstrates that DLK regulates the synthesis of Dscam through the poly(A)-binding protein PABP-C. Whereas PABP-C is known as a general translational activator, our study shows that DLK-mediated Dscam expression involves a noncanonical interaction between PABP-C and the Dscam mRNA, which leads to a selective regulation of Dscam translation by PABP-C. Thus, our study provides novel insights into the mechanisms that underlie the function of DLK and regulation of gene expression of PABP-C.
Collapse
Affiliation(s)
- Monika Singh
- Department of Biology, University of Nevada, Reno, Nevada 89557
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jung Hwan Kim
- Department of Biology, University of Nevada, Reno, Nevada 89557,
| |
Collapse
|
17
|
Yang T, Veling MW, Zhao XF, Prin NP, Zhu L, Hergenreder T, Liu H, Liu L, Rane ZS, Savelieff MG, Fuerst PG, Li Q, Kwan KY, Giger RJ, Wang Y, Ye B. Migrating Pyramidal Neurons Require DSCAM to Bypass the Border of the Developing Cortical Plate. J Neurosci 2022; 42:5510-5521. [PMID: 35672151 PMCID: PMC9295838 DOI: 10.1523/jneurosci.0997-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/16/2023] Open
Abstract
During mammalian neocortex development, nascent pyramidal neurons migrate along radial glial cells and overtake earlier-born neurons to terminate at the front of the developing cortical plate (CP), leading to the outward expansion of the CP border. While much has been learned about the cellular and molecular mechanisms that underlie the migration of pyramidal neurons, how migrating neurons bypass the preceding neurons at the end of migration to reach their final positions remains poorly understood. Here, we report that Down syndrome cell adhesion molecule (DSCAM) is required for migrating neurons to bypass their postmigratory predecessors during the expansion of the upper cortical layers. DSCAM is a type I transmembrane cell adhesion molecule. It has been linked to Down syndrome through its location on Chromosome 21 trisomy and to autism spectrum disorders through loss-of-function mutations. Ex vivo time-lapse imaging demonstrates that DSCAM is required for migrating neurons to bypass their postmigratory predecessors, crossing the CP border to expand the upper cortical layers. In DSCAM-deficient cortices, migrating neurons stop prematurely under the CP border, leading to thinner upper cortical layers with higher neuronal density. We further show that DSCAM weakens cell adhesion mediated by N-cadherin in the upper cortical plate, allowing migrating neurons to traverse the CP border and expand the CP. These findings suggest that DSCAM is required for proper migratory termination and final positioning of nascent pyramidal neurons, which may provide insight into brain disorders that exhibit thinner upper layers of the cerebral cortex without neuronal loss.SIGNIFICANCE STATEMENT Newly born neurons in the developing mammalian neocortex migrate outward toward the cortical surface, bypassing earlier born neurons to expand the developing cortex. How migrating neurons bypass the preceding neurons and terminate at the front of the expanding cortex remains poorly understood. We demonstrate that Down syndrome cell adhesion molecule (DSCAM), linked to Down syndrome and autism spectrum disorder, is required by migrating neurons to bypass their postmigratory predecessors and terminate migration in the outwardly expanding cortical layer. Migrating neurons deficient in DSCAM stop prematurely, failing to expand the cortex. We further show that DSCAM likely mediates migratory termination by weakening cell adhesion mediated by N-cadherin.
Collapse
Affiliation(s)
- Tao Yang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Macy W Veling
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Nicholas P Prin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Limei Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Ty Hergenreder
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Hao Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lu Liu
- Internal Medicine, Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Zachary S Rane
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Masha G Savelieff
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844
| | - Qing Li
- Internal Medicine, Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kenneth Y Kwan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yu Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
18
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
19
|
Santos RA, Del Rio R, Alvarez AD, Romero G, Vo BZ, Cohen-Cory S. DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target. Neural Dev 2022; 17:5. [PMID: 35422013 PMCID: PMC9011933 DOI: 10.1186/s13064-022-00161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Xenopus retinotectal circuit is organized topographically, where the dorsal-ventral axis of the retina maps respectively on to the ventral-dorsal axis of the tectum; axons from the nasal-temporal axis of the retina project respectively to the caudal-rostral axis of the tectum. Studies throughout the last two decades have shown that mechanisms involving molecular recognition of proper termination domains are at work guiding topographic organization. Such studies have shown that graded distribution of molecular cues is important for topographic mapping. However, the complement of molecular cues organizing topography along the developing optic nerve, and as retinal axons cross the chiasm and navigate towards and innervate their target in the tectum, remains unknown. Down syndrome cell adhesion molecule (DSCAM) has been characterized as a key molecule in axon guidance, making it a strong candidate involved in the topographic organization of retinal fibers along the optic path and at their target. METHODS Using a combination of whole-brain clearing and immunohistochemistry staining techniques we characterized DSCAM expression and the projection of ventral and dorsal retinal fibers starting from the eye, following to the optic nerve and chiasm, and into the terminal target in the optic tectum in Xenopus laevis tadpoles. We then assessed the effects of DSCAM on the establishment of retinotopic maps through spatially and temporally targeted DSCAM knockdown on retinal ganglion cells (RGCs) with axons innervating the optic tectum. RESULTS Highest expression of DSCAM was localized to the ventral posterior region of the optic nerve and chiasm; this expression pattern coincides with ventral fibers derived from ventral RGCs. Targeted downregulation of DSCAM expression on ventral RGCs affected the segregation of medial axon fibers from their dorsal counterparts within the tectal neuropil, indicating that DSCAM plays a role in retinotopic organization. CONCLUSION These findings together with previous studies demonstrating cell-autonomous roles for DSCAM during the development of pre- and postsynaptic arbors in the Xenopus retinotectal circuit indicates that DSCAM exerts multiple roles in coordinating axon targeting and structural connectivity in the developing vertebrate visual system.
Collapse
Affiliation(s)
- Rommel Andrew Santos
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Rodrigo Del Rio
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Alexander Delfin Alvarez
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Gabriela Romero
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Brandon Zarate Vo
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| |
Collapse
|
20
|
Neurons Induce Tiled Astrocytes with Branches That Avoid Each Other. Int J Mol Sci 2022; 23:ijms23084161. [PMID: 35456979 PMCID: PMC9028504 DOI: 10.3390/ijms23084161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Neurons induce astrocyte branches that approach synapses. Each astrocyte tiles by expanding branches in an exclusive territory, with limited entries for the neighboring astrocyte branches. However, how astrocytes form exclusive territories is not known. For example, the extensive branching of astrocytes may sterically interfere with the penetration of other astrocyte branches. Alternatively, astrocyte branches may actively avoid each other or remove overlapped branches to establish a territory. Here, we show time-lapse imaging of the multi-order branching process of GFP-labeled astrocytes. Astrocyte branches grow in the direction where other astrocyte branches do not exist. Neurons that had just started to grow dendrites were able to induce astrocyte branching and tiling. Upon neuronal loss by glutamate excitotoxicity, astrocytes’ terminal processes retracted and more branches went over other branches. Our results indicate that neurons induce astrocyte branches and make them avoid each other.
Collapse
|
21
|
Molecular mechanisms regulating the spatial configuration of neurites. Semin Cell Dev Biol 2022; 129:103-114. [PMID: 35248463 DOI: 10.1016/j.semcdb.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Precise neural networks, composed of axons and dendrites, are the structural basis for information processing in the brain. Therefore, the correct formation of neurites is critical for accurate neural function. In particular, the three-dimensional structures of dendrites vary greatly among neuron types, and the unique shape of each dendrite is tightly linked to specific synaptic connections with innervating axons and is correlated with its information processing. Although many systems are involved in neurite formation, the developmental mechanisms that control the orientation, size, and arborization pattern of neurites definitively defines their three-dimensional structure in tissues. In this review, we summarize these regulatory mechanisms that establish proper spatial configurations of neurites, especially dendrites, in invertebrates and vertebrates.
Collapse
|
22
|
Genes Associated with Disturbed Cerebral Neurogenesis in the Embryonic Brain of Mouse Models of Down Syndrome. Genes (Basel) 2021; 12:genes12101598. [PMID: 34680993 PMCID: PMC8535956 DOI: 10.3390/genes12101598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is the most frequent genetic cause of intellectual disability. Although the mechanism remains unknown, delayed brain development is assumed to be involved in DS intellectual disability. Analyses with human with DS and mouse models have shown that defects in embryonic cortical neurogenesis may lead to delayed brain development. Cre-loxP-mediated chromosomal engineering has allowed the generation of a variety of mouse models carrying various partial Mmu16 segments. These mouse models are useful for determining genotype–phenotype correlations and identifying dosage-sensitive genes involved in the impaired neurogenesis. In this review, we summarize several candidate genes and pathways that have been linked to defective cortical neurogenesis in DS.
Collapse
|
23
|
Structure of cell-cell adhesion mediated by the Down syndrome cell adhesion molecule. Proc Natl Acad Sci U S A 2021; 118:2022442118. [PMID: 34531300 DOI: 10.1073/pnas.2022442118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
The Down syndrome cell adhesion molecule (DSCAM) belongs to the immunoglobulin superfamily (IgSF) and plays important roles in neural development. It has a large ectodomain, including 10 Ig-like domains and 6 fibronectin III (FnIII) domains. Previous data have shown that DSCAM can mediate cell adhesion by forming homophilic dimers between cells and contributes to self-avoidance of neurites or neuronal tiling, which is important for neural network formation. However, the organization and assembly of DSCAM at cell adhesion interfaces has not been fully understood. Here we combine electron microscopy and other biophysical methods to characterize the structure of the DSCAM-mediated cell adhesion and generate three-dimensional views of the adhesion interfaces of DSCAM by electron tomography. The results show that mouse DSCAM forms a regular pattern at the adhesion interfaces. The Ig-like domains contribute to both trans homophilic interactions and cis assembly of the pattern, and the FnIII domains are crucial for the cis pattern formation as well as the interaction with the cell membrane. By contrast, no obvious assembly pattern is observed at the adhesion interfaces mediated by mouse DSCAML1 or Drosophila DSCAMs, suggesting the different structural roles and mechanisms of DSCAMs in mediating cell adhesion and neural network formation.
Collapse
|
24
|
West ER, Cepko CL. Development and diversification of bipolar interneurons in the mammalian retina. Dev Biol 2021; 481:30-42. [PMID: 34534525 DOI: 10.1016/j.ydbio.2021.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
The bipolar interneurons of the mammalian retina have evolved as a diverse set of cells with distinct subtype characteristics, which reflect specialized contributions to visual circuitry. Fifteen subtypes of bipolar interneurons have been identified in the mouse retina, each with characteristic gene expression, morphology, and light responses. This review provides an overview of the developmental events that underlie the generation of the diverse bipolar cell class, summarizing the current knowledge of genetic programs that establish and maintain bipolar subtype fates, as well as the events that shape the final distribution of bipolar subtypes. With much left to be discovered, bipolar interneurons present an ideal model system for studying the interplay between cell-autonomous and non-cell-autonomous mechanisms that influence neuronal subtype development within the central nervous system.
Collapse
Affiliation(s)
- Emma R West
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
DeSantis DF, Smith CJ. Tetris in the Nervous System: What Principles of Neuronal Tiling Can Tell Us About How Glia Play the Game. Front Cell Neurosci 2021; 15:734938. [PMID: 34512272 PMCID: PMC8430210 DOI: 10.3389/fncel.2021.734938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/14/2022] Open
Abstract
The precise organization and arrangement of neural cells is essential for nervous system functionality. Cellular tiling is an evolutionarily conserved phenomenon that organizes neural cells, ensuring non-redundant coverage of receptive fields in the nervous system. First recorded in the drawings of Ramon y Cajal more than a century ago, we now have extensive knowledge of the biochemical and molecular mechanisms that mediate tiling of neurons. The advent of live imaging techniques in both invertebrate and vertebrate model organisms has enhanced our understanding of these processes. Despite advancements in our understanding of neuronal tiling, we know relatively little about how glia, an essential non-neuronal component of the nervous system, tile and contribute to the overall spatial arrangement of the nervous system. Here, we discuss lessons learned from neurons and apply them to potential mechanisms that glial cells may use to tile, including cell diversity, contact-dependent repulsion, and chemical signaling. We also discuss open questions in the field of tiling and what new technologies need to be developed in order to better understand glial tiling.
Collapse
Affiliation(s)
- Dana F DeSantis
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Cody J Smith
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
26
|
Lemieux M, Thiry L, Laflamme OD, Bretzner F. Role of DSCAM in the Development of Neural Control of Movement and Locomotion. Int J Mol Sci 2021; 22:ijms22168511. [PMID: 34445216 PMCID: PMC8395195 DOI: 10.3390/ijms22168511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
Locomotion results in an alternance of flexor and extensor muscles between left and right limbs generated by motoneurons that are controlled by the spinal interneuronal circuit. This spinal locomotor circuit is modulated by sensory afferents, which relay proprioceptive and cutaneous inputs that inform the spatial position of limbs in space and potential contacts with our environment respectively, but also by supraspinal descending commands of the brain that allow us to navigate in complex environments, avoid obstacles, chase prey, or flee predators. Although signaling pathways are important in the establishment and maintenance of motor circuits, the role of DSCAM, a cell adherence molecule associated with Down syndrome, has only recently been investigated in the context of motor control and locomotion in the rodent. DSCAM is known to be involved in lamination and delamination, synaptic targeting, axonal guidance, dendritic and cell tiling, axonal fasciculation and branching, programmed cell death, and synaptogenesis, all of which can impact the establishment of motor circuits during development, but also their maintenance through adulthood. We discuss herein how DSCAM is important for proper motor coordination, especially for breathing and locomotion.
Collapse
Affiliation(s)
- Maxime Lemieux
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Louise Thiry
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Olivier D. Laflamme
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC G1V 4G2, Canada
- Correspondence:
| |
Collapse
|
27
|
Abstract
Neurons develop dendritic morphologies that bear cell type-specific features in dendritic field size and geometry, branch placement and density, and the types and distributions of synaptic contacts. Dendritic patterns influence the types and numbers of inputs a neuron receives, and the ways in which neural information is processed and transmitted in the circuitry. Even subtle alterations in dendritic structures can have profound consequences on neuronal function and are implicated in neurodevelopmental disorders. In this chapter, I review how growing dendrites acquire their exquisite patterns by drawing examples from diverse neuronal cell types in vertebrate and invertebrate model systems. Dendrite morphogenesis is shaped by intrinsic and extrinsic factors such as transcriptional regulators, guidance and adhesion molecules, neighboring cells and synaptic partners. I discuss molecular mechanisms that regulate dendrite morphogenesis with a focus on five aspects of dendrite patterning: (1) Dendritic cytoskeleton and cellular machineries that build the arbor; (2) Gene regulatory mechanisms; (3) Afferent cues that regulate dendritic arbor growth; (4) Space-filling strategies that optimize dendritic coverage; and (5) Molecular cues that specify dendrite wiring. Cell type-specific implementation of these patterning mechanisms produces the diversity of dendrite morphologies that wire the nervous system.
Collapse
|
28
|
Mitsogiannis MD, Pancho A, Aerts T, Sachse SM, Vanlaer R, Noterdaeme L, Schmucker D, Seuntjens E. Subtle Roles of Down Syndrome Cell Adhesion Molecules in Embryonic Forebrain Development and Neuronal Migration. Front Cell Dev Biol 2021; 8:624181. [PMID: 33585465 PMCID: PMC7876293 DOI: 10.3389/fcell.2020.624181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022] Open
Abstract
Down Syndrome (DS) Cell Adhesion Molecules (DSCAMs) are transmembrane proteins of the immunoglobulin superfamily. Human DSCAM is located within the DS critical region of chromosome 21 (duplicated in Down Syndrome patients), and mutations or copy-number variations of this gene have also been associated to Fragile X syndrome, intellectual disability, autism, and bipolar disorder. The DSCAM paralogue DSCAM-like 1 (DSCAML1) maps to chromosome 11q23, implicated in the development of Jacobsen and Tourette syndromes. Additionally, a spontaneous mouse DSCAM deletion leads to motor coordination defects and seizures. Previous research has revealed roles for DSCAMs in several neurodevelopmental processes, including synaptogenesis, dendritic self-avoidance, cell sorting, axon growth and branching. However, their functions in embryonic mammalian forebrain development have yet to be completely elucidated. In this study, we revealed highly dynamic spatiotemporal patterns of Dscam and Dscaml1 expression in definite cortical layers of the embryonic mouse brain, as well as in structures and ganglionic eminence-derived neural populations within the embryonic subpallium. However, an in-depth histological analysis of cortical development, ventral forebrain morphogenesis, cortical interneuron migration, and cortical-subcortical connectivity formation processes in Dscam and Dscaml1 knockout mice (Dscam del17 and Dscaml1 GT ) at several embryonic stages indicated that constitutive loss of Dscam and Dscaml1 does not affect these developmental events in a significant manner. Given that several Dscam- and Dscaml1-linked neurodevelopmental disorders are associated to chromosomal region duplication events, we furthermore sought to examine the neurodevelopmental effects of Dscam and Dscaml1 gain of function (GOF). In vitro, ex vivo, and in vivo GOF negatively impacted neural migration processes important to cortical development, and affected the morphology of maturing neurons. Overall, these findings contribute to existing knowledge on the molecular etiology of human neurodevelopmental disorders by elucidating how dosage variations of genes encoding adhesive cues can disrupt cell-cell or cell-environment interactions crucial for neuronal migration.
Collapse
Affiliation(s)
- Manuela D. Mitsogiannis
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anna Pancho
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tania Aerts
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sonja M. Sachse
- Neuronal Wiring Laboratory, Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ria Vanlaer
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lut Noterdaeme
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dietmar Schmucker
- Neuronal Wiring Laboratory, Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium
- Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Eve Seuntjens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Lin TY, Chen PJ, Yu HH, Hsu CP, Lee CH. Extrinsic Factors Regulating Dendritic Patterning. Front Cell Neurosci 2021; 14:622808. [PMID: 33519386 PMCID: PMC7838386 DOI: 10.3389/fncel.2020.622808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Stereotypic dendrite arborizations are key morphological features of neuronal identity, as the size, shape and location of dendritic trees determine the synaptic input fields and how information is integrated within developed neural circuits. In this review, we focus on the actions of extrinsic intercellular communication factors and their effects on intrinsic developmental processes that lead to dendrite patterning. Surrounding neurons or supporting cells express adhesion receptors and secreted proteins that respectively, act via direct contact or over short distances to shape, size, and localize dendrites during specific developmental stages. The different ligand-receptor interactions and downstream signaling events appear to direct dendrite morphogenesis by converging on two categorical mechanisms: local cytoskeletal and adhesion modulation and global transcriptional regulation of key dendritic growth components, such as lipid synthesis enzymes. Recent work has begun to uncover how the coordinated signaling of multiple extrinsic factors promotes complexity in dendritic trees and ensures robust dendritic patterning.
Collapse
Affiliation(s)
- Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
30
|
Hayase Y, Amano S, Hashizume K, Tominaga T, Miyamoto H, Kanno Y, Ueno-Inoue Y, Inoue T, Yamada M, Ogata S, Balan S, Hayashi K, Miura Y, Tokudome K, Ohno Y, Nishijo T, Momiyama T, Yanagawa Y, Takizawa A, Mashimo T, Serikawa T, Sekine A, Nakagawa E, Takeshita E, Yoshikawa T, Waga C, Inoue K, Goto YI, Nabeshima Y, Ihara N, Yamakawa K, Taya S, Hoshino M. Down syndrome cell adhesion molecule like-1 (DSCAML1) links the GABA system and seizure susceptibility. Acta Neuropathol Commun 2020; 8:206. [PMID: 33256836 PMCID: PMC7706048 DOI: 10.1186/s40478-020-01082-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022] Open
Abstract
The Ihara epileptic rat (IER) is a mutant model with limbic-like seizures whose pathology and causative gene remain elusive. In this report, via linkage analysis, we identified Down syndrome cell adhesion molecule-like 1(Dscaml1) as the responsible gene for IER. A single base mutation in Dscaml1 causes abnormal splicing, leading to lack of DSCAML1. IERs have enhanced seizure susceptibility and accelerated kindling establishment. Furthermore, GABAergic neurons are severely reduced in the entorhinal cortex (ECx) of these animals. Voltage-sensitive dye imaging that directly presents the excitation status of brain slices revealed abnormally persistent excitability in IER ECx. This suggests that reduced GABAergic neurons may cause weak sustained entorhinal cortex activations, leading to natural kindling via the perforant path that could cause dentate gyrus hypertrophy and epileptogenesis. Furthermore, we identified a single nucleotide substitution in a human epilepsy that would result in one amino acid change in DSCAML1 (A2105T mutation). The mutant DSCAML1A2105T protein is not presented on the cell surface, losing its homophilic cell adhesion ability. We generated knock-in mice (Dscaml1A2105T) carrying the corresponding mutation and observed reduced GABAergic neurons in the ECx as well as spike-and-wave electrocorticogram. We conclude that DSCAML1 is required for GABAergic neuron placement in the ECx and suppression of seizure susceptibility in rodents. Our findings suggest that mutations in DSCAML1 may affect seizure susceptibility in humans.
Collapse
Affiliation(s)
- Yoneko Hayase
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Shigeru Amano
- Graduate School of Medicine Faculty of Health Science, Department of Laboratory Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Koichi Hashizume
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Takashi Tominaga
- Laboratory for Neural Circuit System, Institute of Neuroscience, Tokushima Bunri University, Sanuki, 769-2300, Japan
| | - Hiroyuki Miyamoto
- International Research Center for Neurointelligence (IRCN), The University of Tokyo, Tokyo, 187-8502, Japan
| | - Yukie Kanno
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yukiko Ueno-Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Mayumi Yamada
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Shigehiro Ogata
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ken Hayashi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yoshiki Miura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kentaro Tokudome
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, 569-1094, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, 569-1094, Japan
| | - Takuma Nishijo
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yuchio Yanagawa
- Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Akiko Takizawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-839, Japan
| | - Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihiro Sekine
- Omics-Based Medicine, Center for Preventive Medical Science, Chiba University, Chiba, 260-0856, Japan
| | - Eiji Nakagawa
- Department of Pediatric Neurology, National Center Hospital, NCNP, Tokyo, 187-8551, Japan
| | - Eri Takeshita
- Department of Pediatric Neurology, National Center Hospital, NCNP, Tokyo, 187-8551, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chikako Waga
- Department of Mental Retardation and Birth Defect Research, NCNP, Tokyo, 187-8551, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, NCNP, Tokyo, 187-8551, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, NCNP, Tokyo, 187-8551, Japan
| | - Yoichi Nabeshima
- Foundation for Biomedical Research and Innovation, Kobe, 650-0047, Japan
| | - Nobuo Ihara
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kazuhiro Yamakawa
- Graduate School of Medical Science, Nagoya City University, Nagoya, 467-8601, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
31
|
Moyer AJ, Gardiner K, Reeves RH. All Creatures Great and Small: New Approaches for Understanding Down Syndrome Genetics. Trends Genet 2020; 37:444-459. [PMID: 33097276 DOI: 10.1016/j.tig.2020.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022]
Abstract
Human chromosome 21 (Hsa21) contains more than 500 genes, making trisomy 21 one of the most complex genetic perturbations compatible with life. The ultimate goal of Down syndrome (DS) research is to design therapies that improve quality of life for individuals with DS by understanding which subsets of Hsa21 genes contribute to DS-associated phenotypes throughout the lifetime. However, the complexity of DS pathogenesis has made developing appropriate animal models an ongoing challenge. Here, we examine lessons learned from a variety of model systems, including yeast, nematode, fruit fly, and zebrafish, and discuss emerging methods for creating murine models that better reflect the genetic basis of trisomy 21.
Collapse
Affiliation(s)
- Anna J Moyer
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Katheleen Gardiner
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA (retired)
| | - Roger H Reeves
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
32
|
Abstract
Many of the immunoglobulin superfamily (IgSF) molecules play pivotal roles in cell communication. The Sidekick (Sdk) gene, first described in Drosophila, encodes the single-pass transmembrane protein, Sdk, which is one of the largest among IgSF membrane proteins. Sdk first appeared in multicellular animals during the Precambrian age and later evolved to Sdk1 and Sdk2 in vertebrates by gene duplication. In flies, a single Sdk is involved in positioning photoreceptor neurons and their axons in the visual system and is responsible for dynamically rearranging cell shapes by strictly populating tricellular adherens junctions in epithelia. In vertebrates, Sdk1 and Sdk2 are expressed by unique sets of cell types and distinctively participate in the formation and/or maintenance of neural circuits in the retina, indicating that they are determinants of synaptic specificity. These functions are mediated by specific homophilic binding of their ectodomains and by intracellular association with PDZ scaffold proteins. Recent human genetic studies as well as animal experiments implicate that Sdk genes may influence various neurodevelopmental and psychiatric disorders, such as autism spectrum disorders, attention-deficit hyperactivity disorder, addiction, and depression. The gigantic Sdk1 gene is susceptible to erratic gene rearrangements or mutations in both somatic and germ-line cells, potentially contributing to neurological disorders and some types of cancers. This review summarizes what is known about the structure and roles of Sdks.
Collapse
Affiliation(s)
- Masahito Yamagata
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, United States
| |
Collapse
|
33
|
Laflamme OD, Lemieux M, Thiry L, Bretzner F. DSCAM Mutation Impairs Motor Cortex Network Dynamic and Voluntary Motor Functions. Cereb Cortex 2020; 29:2313-2330. [PMID: 29718256 DOI: 10.1093/cercor/bhy097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 01/25/2023] Open
Abstract
While it is well known that netrin-1 and its receptors UNC5 and UNC40 family members are involved in the normal establishment of the motor cortex and its corticospinal tract, less is known about its other receptor Down syndrome cell adherence molecule (DSCAM). DSCAM is expressed in the developing motor cortex, regulates axonal outgrowth of cortical neurons, and its mutation impairs the dendritic arborization of cortical neurons, thus suggesting that it might be involved in the normal development and functioning of the motor cortex. In comparison to WT littermates, DSCAM2J mutant mice slipped and misplaced their paw while walking on the rungs of a horizontal ladder, and exhibited more difficulties in stepping over an obstacle while walking at slow speed. Anterograde tracing showed a normal pyramidal decussation and corticospinal projection, but a more dorsal distribution of their axonal terminals in the spinal gray matter. Intracortical microstimulations showed a reduced corticospinal and intracortical efficacy, whereas stimulations of the pyramidal tract revealed a normal spinal efficacy and excitability of corticospinal tract axons, thus arguing for a dysfunctional cortical development. Our study reveals impairment of the network dynamics within the motor cortex, reducing corticospinal drive and impairing voluntary locomotor functions upon DSCAM2J mutation.
Collapse
Affiliation(s)
- Olivier D Laflamme
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec, CHUL, 2705 Boul. Laurier, Québec, Canada
| | - Maxime Lemieux
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec, CHUL, 2705 Boul. Laurier, Québec, Canada
| | - Louise Thiry
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec, CHUL, 2705 Boul. Laurier, Québec, Canada
| | - Frédéric Bretzner
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec, CHUL, 2705 Boul. Laurier, Québec, Canada.,Faculty of Medicine, Department of Psychiatry and Neurosciences, Université Laval, Québec, Canada
| |
Collapse
|
34
|
Rangel Olguin AG, Rochon PL, Krishnaswamy A. New Optical Tools to Study Neural Circuit Assembly in the Retina. Front Neural Circuits 2020; 14:44. [PMID: 32848633 PMCID: PMC7424070 DOI: 10.3389/fncir.2020.00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
During development, neurons navigate a tangled thicket of thousands of axons and dendrites to synapse with just a few specific targets. This phenomenon termed wiring specificity, is critical to the assembly of neural circuits and the way neurons manage this feat is only now becoming clear. Recent studies in the mouse retina are shedding new insight into this process. They show that specific wiring arises through a series of stages that include: directed axonal and dendritic growth, the formation of neuropil layers, positioning of such layers, and matching of co-laminar synaptic partners. Each stage appears to be directed by a distinct family of recognition molecules, suggesting that the combinatorial expression of such family members might act as a blueprint for retinal connectivity. By reviewing the evidence in support of each stage, and by considering their underlying molecular mechanisms, we attempt to synthesize these results into a wiring model which generates testable predictions for future studies. Finally, we conclude by highlighting new optical methods that could be used to address such predictions and gain further insight into this fundamental process.
Collapse
|
35
|
Experience-Dependent Development of Dendritic Arbors in Mouse Visual Cortex. J Neurosci 2020; 40:6536-6556. [PMID: 32669356 DOI: 10.1523/jneurosci.2910-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022] Open
Abstract
The dendritic arbor of neurons constrains the pool of available synaptic partners and influences the electrical integration of synaptic currents. Despite these critical functions, our knowledge of the dendritic structure of cortical neurons during early postnatal development and how these dendritic structures are modified by visual experience is incomplete. Here, we present a large-scale dataset of 849 3D reconstructions of the basal arbor of pyramidal neurons collected across early postnatal development in visual cortex of mice of either sex. We found that the basal arbor grew substantially between postnatal day 7 (P7) and P30, undergoing a 45% increase in total length. However, the gross number of primary neurites and dendritic segments was largely determined by P7. Growth from P7 to P30 occurred primarily through extension of dendritic segments. Surprisingly, comparisons of dark-reared and typically reared mice revealed that a net gain of only 15% arbor length could be attributed to visual experience; most growth was independent of experience. To examine molecular contributions, we characterized the role of the activity-regulated small GTPase Rem2 in both arbor development and the maintenance of established basal arbors. We showed that Rem2 is an experience-dependent negative regulator of dendritic segment number during the visual critical period. Acute deletion of Rem2 reduced directionality of dendritic arbors. The data presented here establish a highly detailed, quantitative analysis of basal arbor development that we believe has high utility both in understanding circuit development as well as providing a framework for computationalists wishing to generate anatomically accurate neuronal models.SIGNIFICANCE STATEMENT Dendrites are the sites of the synaptic connections among neurons. Despite their importance for neural circuit function, only a little is known about the postnatal development of dendritic arbors of cortical pyramidal neurons and the influence of experience. Here we show that the number of primary basal dendritic arbors is already established before eye opening, and that these arbors primarily grow through lengthening of dendritic segments and not through addition of dendritic segments. Surprisingly, visual experience has a modest net impact on overall arbor length (15%). Experiments in KO animals revealed that the gene Rem2 is positive regulator of dendritic length and a negative regulator of dendritic segments.
Collapse
|
36
|
ZHAO W, ZOU W. [Intrinsic and extrinsic mechanisms regulating neuronal dendrite morphogenesis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:90-99. [PMID: 32621417 PMCID: PMC8800678 DOI: 10.3785/j.issn.1008-9292.2020.02.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 06/11/2023]
Abstract
Neurons are the structural and functional unit of the nervous system. Precisely regulated dendrite morphogenesis is the basis of neural circuit assembly. Numerous studies have been conducted to explore the regulatory mechanisms of dendritic morphogenesis. According to their action regions, we divide them into two categories: the intrinsic and extrinsic regulators of neuronal dendritic morphogenesis. Intrinsic factors are cell type-specific transcription factors, actin polymerization or depolymerization regulators and regulators of the secretion or endocytic pathways. These intrinsic factors are produced by neuron itself and play an important role in regulating the development of dendrites. The extrinsic regulators are either secreted proteins or transmembrane domain containing cell adhesion molecules. They often form receptor-ligand pairs to mediate attractive or repulsive dendritic guidance. In this review, we summarize recent findings on the intrinsic and external molecular mechanisms of dendrite morphogenesis from multiple model organisms, including Caenorhabditis elegans, Drosophila and mice. These studies will provide a better understanding on how defective dendrite development and maintenance are associated with neurological diseases.
Collapse
|
37
|
Graham HK, Duan X. Molecular mechanisms regulating synaptic specificity and retinal circuit formation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e379. [PMID: 32267095 DOI: 10.1002/wdev.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
The central nervous system (CNS) is composed of precisely assembled circuits which support a variety of physiological functions and behaviors. These circuits include multiple subtypes of neurons with unique morphologies, electrical properties, and molecular identities. How these component parts are precisely wired-up has been a topic of great interest to the field of developmental neurobiology and has implications for our understanding of the etiology of many neurological disorders and mental illnesses. To date, many molecules involved in synaptic choice and specificity have been identified, including members of several families of cell-adhesion molecules (CAMs), which are cell-surface molecules that mediate cell-cell contacts and subsequent intracellular signaling. One favored hypothesis is that unique expression patterns of CAMs define specific neuronal subtype populations and determine compatible pre- and postsynaptic neuronal partners based on the expression of these unique CAMs. The mouse retina has served as a beautiful model for investigations into mammalian CAM interactions due to its well-defined neuronal subtypes and distinct circuits. Moreover, the retina is readily amenable to visualization of circuit organization and electrophysiological measurement of circuit function. The advent of recent genetic, genomic, and imaging technologies has opened the field up to large-scale, unbiased approaches for identification of new molecular determinants of synaptic specificity. Thus, building on the foundation of work reviewed here, we can expect rapid expansion of the field, harnessing the mouse retina as a model to understand the molecular basis for synaptic specificity and functional circuit assembly. This article is categorized under: Nervous System Development > Vertebrates: General Principles Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Hannah K Graham
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA.,Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA.,Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA.,Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
38
|
Sanes JR, Zipursky SL. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell 2020; 181:536-556. [DOI: 10.1016/j.cell.2020.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
39
|
Alvarez-Lee A, Martínez-Díaz SF, Gutiérrez-Rivera JN, Lanz-Mendoza H. Induction of innate immune response in whiteleg shrimp (Litopenaeus vannamei) embryos. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103577. [PMID: 31852626 DOI: 10.1016/j.dci.2019.103577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
The immune response of commercially relevant marine invertebrates has been extensively studied, in search of new disease-control strategies. Immune training is considered a novel approach that could help improve resistance to different pathogens. Here, we stimulated the white shrimp (Litopenaeus vannamei) during embryo development by exposure to heat-killed bacteria and evaluated their effect on hatching, larval development, and the expression of immune-related genes. In addition, we evaluated its impact on the response of shrimp nauplii during a challenge with Vibrio parahaemolyticus. We observed that the percentage of hatching and the resistance to bacterial infection increased due to the treatment of embryos with heat-killed cells of Vibrio and Bacillus. Apparently different stimuli could generate a differential pattern of gene expression, e.g., Vibrio induced a strong effector immune response whereas Bacillus elicited a protective immune profile. In addition, each response was triggered by molecular patterns detected in the environment. The results obtained in this study provide new insights for immune training to improve shrimp farming.
Collapse
Affiliation(s)
- Angélica Alvarez-Lee
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politecnico Nacional SN, Playa Palo de Santa Rita, 23096, La Paz, B.C.S, Mexico
| | - Sergio F Martínez-Díaz
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politecnico Nacional SN, Playa Palo de Santa Rita, 23096, La Paz, B.C.S, Mexico.
| | - Jesus Neftalí Gutiérrez-Rivera
- Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Colonia Playa Palo de Santa Rita, 23090, La Paz, BCS, Mexico
| | - Humberto Lanz-Mendoza
- Instituto Nacional de Salud Pública, Avenida Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, 62100, Cuernavaca, MOR, Mexico.
| |
Collapse
|
40
|
Su J, Charalambakis NE, Sabbagh U, Somaiya RD, Monavarfeshani A, Guido W, Fox MA. Retinal inputs signal astrocytes to recruit interneurons into visual thalamus. Proc Natl Acad Sci U S A 2020; 117:2671-2682. [PMID: 31964831 PMCID: PMC7007527 DOI: 10.1073/pnas.1913053117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inhibitory interneurons comprise a fraction of the total neurons in the visual thalamus but are essential for sharpening receptive field properties and improving contrast-gain of retinogeniculate transmission. During early development, these interneurons undergo long-range migration from germinal zones, a process regulated by the innervation of the visual thalamus by retinal ganglion cells. Here, using transcriptomic approaches, we identified a motogenic cue, fibroblast growth factor 15 (FGF15), whose expression in the visual thalamus is regulated by retinal input. Targeted deletion of functional FGF15 in mice led to a reduction in thalamic GABAergic interneurons similar to that observed in the absence of retinal input. This loss may be attributed, at least in part, to misrouting of interneurons into nonvisual thalamic nuclei. Unexpectedly, expression analysis revealed that FGF15 is generated by thalamic astrocytes and not retino-recipient neurons. Thus, these data show that retinal inputs signal through astrocytes to direct the long-range recruitment of interneurons into the visual thalamus.
Collapse
Affiliation(s)
- Jianmin Su
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Naomi E Charalambakis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Ubadah Sabbagh
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Rachana D Somaiya
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Aboozar Monavarfeshani
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202;
| | - Michael A Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016;
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
41
|
Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S. What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 2020; 109:29-53. [DOI: 10.1016/j.neubiorev.2019.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
42
|
Wang K, Kang Z, Jiang E, Yan H, Zhu H, Liu J, Qu L, Lan X, Pan C. Genetic effects of DSCAML1 identified in genome-wide association study revealing strong associations with litter size and semen quality in goat (Capra hircus). Theriogenology 2020; 146:20-25. [PMID: 32036056 DOI: 10.1016/j.theriogenology.2020.01.079] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 01/31/2023]
Abstract
The down syndrome cell adhesion molecule like 1 (DSCAML1), is associated with the development of the nervous system and neurologic diseases. Previous Genome-wide association studies have shown that it is associated with sperm morphology, suggesting it has a critical role in fecundity. In this study, expression profiles of goat DSCAML1 mRNA were analyzed. The results showed that its expression in the testis differ significantly between the mitotic stage and meiotic stage. Three insertion/deletion (indel) variants of goat DSCAML1 were determined in the Shaanbei White Cashmere Goat (SWCG, n = 2162). Based on the association analysis, two indels (P2-16bp, P14-15bp) were significantly related to sperm quality (sperm motility and sperm density) in male goat and three loci were markedly related to the first-birth litter size in female goat (P = 4.0 × 10-6; P = 1.0 × 10-6; P = 4.7 × 10-2). In male goats, the different genotypes of P2-16bp and P14-15bp revealed a noticeable effect on the expression of DSCAML1. Moreover, the effects observed in the first-birth litter followed a similar trend, which may provide the basis for further research of DSCAML1 gene function and marker assisted selection (MAS) programs to improve reproductive traits.
Collapse
Affiliation(s)
- Ke Wang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Zihong Kang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Enhui Jiang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Hailong Yan
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, 037000, China
| | - Haijing Zhu
- Life Science Research Center, Yulin University, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, 719000, China
| | - Jinwang Liu
- Life Science Research Center, Yulin University, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, 719000, China
| | - Lei Qu
- Life Science Research Center, Yulin University, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, 719000, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
43
|
Ma M, Kler S, Pan YA. Structural Neural Connectivity Analysis in Zebrafish With Restricted Anterograde Transneuronal Viral Labeling and Quantitative Brain Mapping. Front Neural Circuits 2020; 13:85. [PMID: 32038180 PMCID: PMC6989443 DOI: 10.3389/fncir.2019.00085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
The unique combination of small size, translucency, and powerful genetic tools makes larval zebrafish a uniquely useful vertebrate system to investigate normal and pathological brain structure and function. While functional connectivity can now be assessed by optical imaging (via fluorescent calcium or voltage reporters) at the whole-brain scale, it remains challenging to systematically determine structural connections and identify connectivity changes during development or disease. To address this, we developed Tracer with Restricted Anterograde Spread (TRAS), a novel vesicular stomatitis virus (VSV)-based neural circuit labeling approach. TRAS makes use of replication-incompetent VSV (VSVΔG) and a helper virus (lentivirus) to enable anterograde transneuronal spread between efferent axons and their direct postsynaptic targets but restricts further spread to downstream areas. We integrated TRAS with the Z-Brain zebrafish 3D atlas for quantitative connectivity analysis and identified targets of the retinal and habenular efferent projections, in patterns consistent with previous reports. We compared retinofugal connectivity patterns between wild-type and down syndrome cell adhesion molecule-like 1 (dscaml1) mutant zebrafish and revealed differences in topographical distribution. These results demonstrate the utility of TRAS for quantitative structural connectivity analysis that would be valuable for detecting novel efferent targets and mapping connectivity changes underlying neurological or behavioral deficits.
Collapse
Affiliation(s)
- Manxiu Ma
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Stanislav Kler
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Y Albert Pan
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
44
|
Garrett AM, Bosch PJ, Steffen DM, Fuller LC, Marcucci CG, Koch AA, Bais P, Weiner JA, Burgess RW. CRISPR/Cas9 interrogation of the mouse Pcdhg gene cluster reveals a crucial isoform-specific role for Pcdhgc4. PLoS Genet 2019; 15:e1008554. [PMID: 31877124 PMCID: PMC6957209 DOI: 10.1371/journal.pgen.1008554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/13/2020] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
The mammalian Pcdhg gene cluster encodes a family of 22 cell adhesion molecules, the gamma-Protocadherins (γ-Pcdhs), critical for neuronal survival and neural circuit formation. The extent to which isoform diversity–a γ-Pcdh hallmark–is required for their functions remains unclear. We used a CRISPR/Cas9 approach to reduce isoform diversity, targeting each Pcdhg variable exon with pooled sgRNAs to generate an allelic series of 26 mouse lines with 1 to 21 isoforms disrupted via discrete indels at guide sites and/or larger deletions/rearrangements. Analysis of 5 mutant lines indicates that postnatal viability and neuronal survival do not require isoform diversity. Surprisingly, given reports that it might not independently engage in trans-interactions, we find that γC4, encoded by Pcdhgc4, is the only critical isoform. Because the human orthologue is the only PCDHG gene constrained in humans, our results indicate a conserved γC4 function that likely involves distinct molecular mechanisms. The γ-Protocadherins (γ-Pcdhs) are a family of 22 molecules that serve many crucial functions during neural development. They can combine to form multimers at the cell surface, such that each combination specifically recognizes the same combination at the surface of other cells. In this way, 22 molecules can generate thousands of distinct recognition complexes. To test the extent to which molecular diversity is required for the γ-Pcdhs to serve their many functions, we used CRISPR/Cas9 gene editing to make a series of mouse mutants in which different combinations of the γ-Pcdhs are disrupted. We report 25 new mouse lines with between 1 and 21 intact members of the γ-Pcdh family. Further, we found that for the critical function of neuronal survival–and consequently the survival of the animal–the molecular diversity was not essential. Rather, a single member of the family called γC4 was the only one necessary or sufficient for this function; databases of human genome sequences suggest that this important role is conserved. These new strains will be invaluable for disentangling the role of molecular diversity in the γ-Pcdhs’ functions, and as we have already found, will help identify specific functions for specific γ-Pcdh family members.
Collapse
Affiliation(s)
- Andrew M. Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, Michigan, United States of America
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail: (AMG); (JAW); (RWB)
| | - Peter J. Bosch
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - David M. Steffen
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Leah C. Fuller
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Charles G. Marcucci
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Alexis A. Koch
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Preeti Bais
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Joshua A. Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (AMG); (JAW); (RWB)
| | - Robert W. Burgess
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail: (AMG); (JAW); (RWB)
| |
Collapse
|
45
|
Kuwako KI, Okano H. The LKB1-SIK Pathway Controls Dendrite Self-Avoidance in Purkinje Cells. Cell Rep 2019; 24:2808-2818.e4. [PMID: 30208308 DOI: 10.1016/j.celrep.2018.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/12/2018] [Accepted: 08/08/2018] [Indexed: 02/08/2023] Open
Abstract
Strictly controlled dendrite patterning underlies precise neural connection. Dendrite self-avoidance is a crucial system preventing self-crossing and clumping of dendrites. Although many cell-surface molecules that regulate self-avoidance have been identified, the signaling pathway that orchestrates it remains poorly understood, particularly in mammals. Here, we demonstrate that the LKB1-SIK kinase pathway plays a pivotal role in the self-avoidance of Purkinje cell (PC) dendrites by ensuring dendritic localization of Robo2, a regulator of self-avoidance. LKB1 is activated in developing PCs, and PC-specific deletion of LKB1 severely disrupts the self-avoidance of PC dendrites without affecting gross morphology. SIK1 and SIK2, downstream kinases of LKB1, mediate LKB1-dependent dendrite self-avoidance. Furthermore, loss of LKB1 leads to significantly decreased Robo2 levels in the dendrite but not in the cell body. Finally, restoration of dendritic Robo2 level via overexpression largely rescues the self-avoidance defect in LKB1-deficient PCs. These findings reveal an LKB1-pathway-mediated developmental program that establishes dendrite self-avoidance.
Collapse
Affiliation(s)
- Ken-Ichiro Kuwako
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
46
|
Soto F, Tien NW, Goel A, Zhao L, Ruzycki PA, Kerschensteiner D. AMIGO2 Scales Dendrite Arbors in the Retina. Cell Rep 2019; 29:1568-1578.e4. [PMID: 31693896 PMCID: PMC6871773 DOI: 10.1016/j.celrep.2019.09.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/21/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
The size of dendrite arbors shapes their function and differs vastly between neuron types. The signals that control dendritic arbor size remain obscure. Here, we find that in the retina, starburst amacrine cells (SACs) and rod bipolar cells (RBCs) express the homophilic cell-surface protein AMIGO2. In Amigo2 knockout (KO) mice, SAC and RBC dendrites expand while arbors of other retinal neurons remain stable. SAC dendrites are divided into a central input region and a peripheral output region that provides asymmetric inhibition to direction-selective ganglion cells (DSGCs). Input and output compartments scale precisely with increased arbor size in Amigo2 KO mice, and SAC dendrites maintain asymmetric connectivity with DSGCs. Increased coverage of SAC dendrites is accompanied by increased direction selectivity of DSGCs without changes to other ganglion cells. Our results identify AMIGO2 as a cell-type-specific dendritic scaling factor and link dendrite size and coverage to visual feature detection.
Collapse
Affiliation(s)
- Florentina Soto
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Nai-Wen Tien
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anurag Goel
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lei Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
47
|
Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function. J Neurosci 2019; 40:143-158. [PMID: 31685652 DOI: 10.1523/jneurosci.1783-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
Down syndrome cell adhesion molecules (dscam and dscaml1) are essential regulators of neural circuit assembly, but their roles in vertebrate neural circuit function are still mostly unexplored. We investigated the functional consequences of dscaml1 deficiency in the larval zebrafish (sexually undifferentiated) oculomotor system, where behavior, circuit function, and neuronal activity can be precisely quantified. Genetic perturbation of dscaml1 resulted in deficits in retinal patterning and light adaptation, consistent with its known roles in mammals. Oculomotor analyses revealed specific deficits related to the dscaml1 mutation, including severe fatigue during gaze stabilization, reduced saccade amplitude and velocity in the light, greater disconjugacy, and impaired fixation. Two-photon calcium imaging of abducens neurons in control and dscaml1 mutant animals confirmed deficits in saccade-command signals (indicative of an impairment in the saccadic premotor pathway), whereas abducens activation by the pretectum-vestibular pathway was not affected. Together, we show that loss of dscaml1 resulted in impairments in specific oculomotor circuits, providing a new animal model to investigate the development of oculomotor premotor pathways and their associated human ocular disorders.SIGNIFICANCE STATEMENT Dscaml1 is a neural developmental gene with unknown behavioral significance. Using the zebrafish model, this study shows that dscaml1 mutants have a host of oculomotor (eye movement) deficits. Notably, the oculomotor phenotypes in dscaml1 mutants are reminiscent of human ocular motor apraxia, a neurodevelopmental disorder characterized by reduced saccade amplitude and gaze stabilization deficits. Population-level recording of neuronal activity further revealed potential subcircuit-specific requirements for dscaml1 during oculomotor behavior. These findings underscore the importance of dscaml1 in the development of visuomotor function and characterize a new model to investigate potential circuit deficits underlying human oculomotor disorders.
Collapse
|
48
|
Sundararajan L, Smith CJ, Watson JD, Millis BA, Tyska MJ, Miller DM. Actin assembly and non-muscle myosin activity drive dendrite retraction in an UNC-6/Netrin dependent self-avoidance response. PLoS Genet 2019; 15:e1008228. [PMID: 31220078 PMCID: PMC6605669 DOI: 10.1371/journal.pgen.1008228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 06/04/2019] [Indexed: 01/08/2023] Open
Abstract
Dendrite growth is constrained by a self-avoidance response that induces retraction but the downstream pathways that balance these opposing mechanisms are unknown. We have proposed that the diffusible cue UNC-6(Netrin) is captured by UNC-40(DCC) for a short-range interaction with UNC-5 to trigger self-avoidance in the C. elegans PVD neuron. Here we report that the actin-polymerizing proteins UNC-34(Ena/VASP), WSP-1(WASP), UNC-73(Trio), MIG-10(Lamellipodin) and the Arp2/3 complex effect dendrite retraction in the self-avoidance response mediated by UNC-6(Netrin). The paradoxical idea that actin polymerization results in shorter rather than longer dendrites is explained by our finding that NMY-1 (non-muscle myosin II) is necessary for retraction and could therefore mediate this effect in a contractile mechanism. Our results also show that dendrite length is determined by the antagonistic effects on the actin cytoskeleton of separate sets of effectors for retraction mediated by UNC-6(Netrin) versus outgrowth promoted by the DMA-1 receptor. Thus, our findings suggest that the dendrite length depends on an intrinsic mechanism that balances distinct modes of actin assembly for growth versus retraction. Neurons may extend highly branched dendrites to detect input over a broad receptive field. The formation of actin filaments may drive dendrite elongation. The architecture of the dendritic arbor also depends on mechanisms that limit expansion. For example, sister dendrites from a single neuron usually do not overlap due to self-avoidance. Although cell surface proteins are known to mediate self-avoidance, the downstream pathways that drive dendrite retraction in this phenomenon are largely unknown. Studies of the highly branched PVD sensory neuron in C. elegans have suggested a model of self-avoidance in which the UNC-40/DCC receptor captures the diffusible cue UNC-6/Netrin at the tips of PVD dendrites where it interacts with the UNC-5 receptor on an opposing sister dendrite to induce retraction. Here we report genetic evidence that UNC-5-dependent retraction requires downstream actin polymerization. This finding evokes a paradox: How might actin polymerization drive both dendrite growth and retraction? We propose two answers: (1) Distinct sets of effectors are involved in actin assembly for growth vs retraction; (2) Non-muscle myosin interacts with a nascent actin assemblage to trigger retraction. Our results show that dendrite length depends on the balanced effects of specific molecular components that induce growth vs retraction.
Collapse
Affiliation(s)
- Lakshmi Sundararajan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Cody J. Smith
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Joseph D. Watson
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Nashville, Tennessee, United States of America
| | - Bryan A. Millis
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, Nashville, Tennessee, United States of America
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Nashville, Tennessee, United States of America
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David M. Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
49
|
Schill EM, Wright CM, Jamil A, LaCombe JM, Roper RJ, Heuckeroth RO. Down syndrome mouse models have an abnormal enteric nervous system. JCI Insight 2019; 5:124510. [PMID: 30998504 PMCID: PMC6629165 DOI: 10.1172/jci.insight.124510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
Children with trisomy 21 (Down syndrome [DS]) have a 130-fold increased incidence of Hirschsprung Disease (HSCR), a developmental defect where the enteric nervous system (ENS) is missing from distal bowel (i.e., distal bowel is aganglionic). Treatment for HSCR is surgical resection of aganglionic bowel, but many children have bowel problems after surgery. Post-surgical problems like enterocolitis and soiling are especially common in children with DS. To determine how trisomy 21 affects ENS development, we evaluated the ENS in two DS mouse models, Ts65Dn and Tc1. These mice are trisomic for many chromosome 21 homologous genes, including Dscam and Dyrk1a, which are hypothesized to contribute to HSCR risk. Ts65Dn and Tc1 mice have normal ENS precursor migration at E12.5 and almost normal myenteric plexus structure as adults. However, Ts65Dn and Tc1 mice have markedly reduced submucosal plexus neuron density throughout the bowel. Surprisingly, the submucosal neuron defect in Ts65Dn mice is not due to excess Dscam or Dyrk1a, since normalizing copy number for these genes does not rescue the defect. These findings suggest the possibility that the high frequency of bowel problems in children with DS and HSCR may occur because of additional unrecognized problems with ENS structure.
Collapse
Affiliation(s)
- Ellen M. Schill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Christina M. Wright
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Alisha Jamil
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Jonathan M. LaCombe
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Randall J. Roper
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Robert O. Heuckeroth
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
50
|
Sundararajan L, Stern J, Miller DM. Mechanisms that regulate morphogenesis of a highly branched neuron in C. elegans. Dev Biol 2019; 451:53-67. [PMID: 31004567 DOI: 10.1016/j.ydbio.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/09/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
Abstract
The shape of an individual neuron is linked to its function with axons sending signals to other cells and dendrites receiving them. Although much is known of the mechanisms for axonal outgrowth, the striking complexity of dendritic architecture has hindered efforts to uncover pathways that direct dendritic branching. Here we review the results of an experimental strategy that exploits the power of genetic analysis and live cell imaging of the PVD sensory neuron in C. elegans to reveal key molecular drivers of dendrite morphogenesis.
Collapse
Affiliation(s)
- Lakshmi Sundararajan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jamie Stern
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|