1
|
Morello G, La Cognata V, Guarnaccia M, D’Agata V, Cavallaro S. Cracking the Code of Neuronal Cell Fate. Cells 2023; 12:1057. [PMID: 37048129 PMCID: PMC10093029 DOI: 10.3390/cells12071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|
2
|
Hossain MA, Hasegawa-Ogawa M, Manome Y, Igarashi M, Wu C, Suzuki K, Igarashi J, Iwamoto T, Okano HJ, Eto Y. Generation and characterization of motor neuron progenitors and motor neurons using metachromatic leukodystrophy-induced pluripotent stem cells. Mol Genet Metab Rep 2022; 31:100852. [PMID: 35782608 PMCID: PMC9248224 DOI: 10.1016/j.ymgmr.2022.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 10/29/2022] Open
|
3
|
The evolutionary history of the polyQ tract in huntingtin sheds light on its functional pro-neural activities. Cell Death Differ 2022; 29:293-305. [PMID: 34974533 PMCID: PMC8817008 DOI: 10.1038/s41418-021-00914-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease is caused by a pathologically long (>35) CAG repeat located in the first exon of the Huntingtin gene (HTT). While pathologically expanded CAG repeats are the focus of extensive investigations, non-pathogenic CAG tracts in protein-coding genes are less well characterized. Here, we investigated the function and evolution of the physiological CAG tract in the HTT gene. We show that the poly-glutamine (polyQ) tract encoded by CAGs in the huntingtin protein (HTT) is under purifying selection and subjected to stronger selective pressures than CAG-encoded polyQ tracts in other proteins. For natural selection to operate, the polyQ must perform a function. By combining genome-edited mouse embryonic stem cells and cell assays, we show that small variations in HTT polyQ lengths significantly correlate with cells' neurogenic potential and with changes in the gene transcription network governing neuronal function. We conclude that during evolution natural selection promotes the conservation and purity of the CAG-encoded polyQ tract and that small increases in its physiological length influence neural functions of HTT. We propose that these changes in HTT polyQ length contribute to evolutionary fitness including potentially to the development of a more complex nervous system.
Collapse
|
4
|
What Can We Learn from Animal Models to Study Schizophrenia? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:15-33. [DOI: 10.1007/978-3-030-97182-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Morello G, Villari A, Spampinato AG, La Cognata V, Guarnaccia M, Gentile G, Ciotti MT, Calissano P, D’Agata V, Severini C, Cavallaro S. Transcriptional Profiles of Cell Fate Transitions Reveal Early Drivers of Neuronal Apoptosis and Survival. Cells 2021; 10:3238. [PMID: 34831459 PMCID: PMC8620386 DOI: 10.3390/cells10113238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Neuronal apoptosis and survival are regulated at the transcriptional level. To identify key genes and upstream regulators primarily responsible for these processes, we overlayed the temporal transcriptome of cerebellar granule neurons following induction of apoptosis and their rescue by three different neurotrophic factors. We identified a core set of 175 genes showing opposite expression trends at the intersection of apoptosis and survival. Their functional annotations and expression signatures significantly correlated to neurological, psychiatric and oncological disorders. Transcription regulatory network analysis revealed the action of nine upstream transcription factors, converging pro-apoptosis and pro-survival-inducing signals in a highly interconnected functionally and temporally ordered manner. Five of these transcription factors are potential drug targets. Transcriptome-based computational drug repurposing produced a list of drug candidates that may revert the apoptotic core set signature. Besides elucidating early drivers of neuronal apoptosis and survival, our systems biology-based perspective paves the way to innovative pharmacology focused on upstream targets and regulatory networks.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Ambra Villari
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Antonio Gianmaria Spampinato
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Giulia Gentile
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (M.T.C.); (C.S.)
| | - Pietro Calissano
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena, 295, 00161 Rome, Italy;
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Via Santa Sofia, 87, 95123 Catania, Italy;
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (M.T.C.); (C.S.)
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| |
Collapse
|
6
|
Yang LJ, Cui H. Olig2 knockdown alleviates hypoxic-ischemic brain damage in newborn rats. Histol Histopathol 2021; 36:675-684. [PMID: 34013967 DOI: 10.14670/hh-18-344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Neuronal damage is an important pathological mechanism in neonatal hypoxic-ischemic brain damage (HIBD). We found in our previous studies that oligodendrocyte transcription factor 2 (Olig2) downregulation was able to increase cell survival in the brain. However, the specific mechanism has yet to be clarified. METHODS Sprague-Dawley rats aged 3 d were randomly divided into three groups: the normal control group, the Olig2-RNAi group, and the RNAi-negative control group. The normal control group received no treatment, the Olig2-RNAi group received the Olig2 RNAi adenovirus, and the RNAi-negative control group was given the control adenovirus after the completion of the HIBD model. Infarct lesions and their volumes were observed by triphenyltetrazolium chloride (TTC) staining 3 d after the completion of the adenovirus local injection. The condition of the tissue was characterized by hematoxylin-eosin staining 7 d after the model was established, and cell viability was determined by azure methylene blue staining. Subcellular damage was analyzed by transmission electron microscopy. Rotarod analysis was performed to detect moving behavior ability and an MWM assay was conducted to evaluate the memory. RESULTS TTC staining showed a smaller brain injury area in the Olig2-RNAi group than in the RNAi-negative control group. Hematoxylin-eosin staining indicated the presence of severe cell injury in the hippocampal region after HIBD, which improved after Olig2 knockdown. Azure methylene blue staining and electron microscopy results suggested that the cells improved after Olig2 knockdown. The rats stayed longer on the rotating rod, and their latency in the water maze test was gradually shortened relative to that of the rats in the Olig2-RNAi negative control group. CONCLUSION Olig2 knockdown can promote the repair of hypoxic-ischemic brain damage in newborn rats.
Collapse
Affiliation(s)
- L J Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - H Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Zhang N, Liu C, Zhang R, Jin L, Yin X, Zheng X, Siebert HC, Li Y, Wang Z, Loers G, Petridis AK. Amelioration of clinical course and demyelination in the cuprizone mouse model in relation to ketogenic diet. Food Funct 2021; 11:5647-5663. [PMID: 32539054 DOI: 10.1039/c9fo02944c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ketogenic diet (KD) is defined as a high-fat, low-carbohydrate diet with appropriate amounts of protein, which has broad neuroprotective effects. However, the mechanisms of ameliorating the demyelination and of the neuroprotective effects of KD have not yet been completely elucidated. Therefore, the present study investigated the protection mechanism of KD treatment in the cuprizone (bis-cyclohexanone oxalydihydrazone, CPZ)-induced demyelination mice model, with special emphasis on neuroinflammation. After the KD treatment, an increased ketone body level in the blood of mice was detected, and a significant increase in the distance traveled within the central area was observed in the open field test, which reflected the increased exploration and decreased anxiety of mice that received CPZ. The results of Luxol fast blue and myelin basic protein (MBP) immunohistochemistry staining for the evaluation of the myelin content within the corpus callosum revealed a noticeable increase in the number of myelinated fibers and myelin score after KD administration in these animals. Concomitant, the protein expressions of glial fibrillary acidic protein (GFAP, an astrocyte marker), ionized calcium-binding adaptor molecule 1 (Iba-1, a microglial marker), CD68 (an activated microglia marker) and CD16/32 (a M1 microglial marker) were down-regulated, while the expression of oligodendrocyte lineage transcription factor 2 (OLIG2, an oligodendrocyte precursor cells marker) was up-regulated by the KD treatment. In addition, the KD treatment not only reduced the level of the C-X-C motif chemokine 10 (CXCL10), which is correlated to the recruitment of activated microglia, but also inhibited the production of proinflammatory cytokines, including interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α), which are closely correlated to the M1 phenotype microglia. It is noteworthy, that the expression levels of histone deacetylase 3 (HADC3) and nod-like receptor pyrin domain containing 3 (NLRP3) significantly decreased after KD administration. In conclusion, these data demonstrate that KD decreased the reactive astrocytes and activated the microglia in the corpus callosum, and that KD inhibited the HADC3 and NLRP3 inflammasome signaling pathway in CPZ-treated mice. This suggests that the inhibition of the HADC3 and NLRP3 signaling pathway may be a novel mechanism by which KD exerts its protective actions for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Xiaohan Yin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Hans-Christian Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Yubao Li
- College of agriculture, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Athanasios K Petridis
- Neurosurgical Department, Heinrich Heine University of Düsseldorf, Moorenstraße 5, 40255 Düsseldorf, Germany
| |
Collapse
|
8
|
Wang X, Li X, Liu X, Yin Y, Dang Y, Lei F. Giant Intracranial Xanthoma with Cloudy Vision as the First Symptom: A Case Report and Literature Review. Int J Gen Med 2021; 14:1101-1105. [PMID: 33790639 PMCID: PMC8006969 DOI: 10.2147/ijgm.s290893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
A 31-year-old male with mild dizziness complained of cloudy vision in his right eye for 5 days. The visual acuity of both eyes was normal, while the visual contrast sensitivity of both eyes slightly reduced. Fundus examination showed the swollen and radial superficial hemorrhage of his both optic nerves. Brain MRI scan indicated a huge tumor in the right temporal lobe with clear boundary, close to the skull. The midline structure shifted to the left. Blood tests indicated no hyperlipidemia or lipid disorders. The patient then received tumor resection. The size of the tumor was 5.6 cm × 7.5 cm × 10.1 cm. Histology suggested many foam cell accumulations and the tumor was positive for CD34, CD99, Vimentin, β-Catenin and CD68, but negative for EMA, GFAP, IDH-1, Oliga-2, PR, S-100, and CD1a. Three months after surgery, MRI showed the midline structure was back to normal. The swollen and radial superficial hemorrhage of optic nerves had disappeared. The visual acuity and visual field remained normal.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Ophthalmology, Henan University of Science and Technology School of Medicine, Luoyang, Henan, 471000, People’s Republic of China
- Sanmenxia Central Hospital, Henan University of Science and Technology, Sanmenxia, Henan, 472000, People’s Republic of China
| | - Xuejiao Li
- Sanmenxia Central Hospital, Henan University of Science and Technology, Sanmenxia, Henan, 472000, People’s Republic of China
| | - XuHui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Yizhe Yin
- Department of Ophthalmology, Henan University of Science and Technology School of Medicine, Luoyang, Henan, 471000, People’s Republic of China
| | - Yalong Dang
- Sanmenxia Central Hospital, Henan University of Science and Technology, Sanmenxia, Henan, 472000, People’s Republic of China
| | - Fang Lei
- Department of Ophthalmology, Henan University of Science and Technology School of Medicine, Luoyang, Henan, 471000, People’s Republic of China
| |
Collapse
|
9
|
Lv Y, Wu S, Lin Y, Wang X, Wang J, Cai S, Huang L. Association of rs1059004 polymorphism in the OLIG2 locus with functional brain network in first-episode negative schizophrenia. Psychiatry Res Neuroimaging 2020; 303:111130. [PMID: 32563948 DOI: 10.1016/j.pscychresns.2020.111130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
Schizophrenia has often been viewed as a disorder of connectivity. The single nucleotide polymorphism rs1059004 in the oligodendrocyte lineage transcription factor 2 gene locus has been reported to be associated with schizophrenia. We measured the functional connectivity and functional brain network topology properties in 49 schizophrenic patients and 47 healthy controls. We compared the strength and diversity of the functional connectivity and topological properties of functional networks between different genotypes. The correlations among functional connectivity, topological properties and behavioral performances were also investigated in this study. We found that the connectivity strength of schizophrenic patients carrying the risk A allele was generally decreased whereas connectivity diversity was increased. Regarding topological properties, all groups showed small-world properties, the nodal efficiency showed significant differences in the right precuneus and left middle temporal pole between different genotypes in schizophrenic patients. Moreover, the nodal efficiency in the left middle temporal pole was positively correlated with the neuropsychological assessment battery results of the schizophrenic patients who were homozygous for the C allele. Our results elucidate the contribution of rs1059004 to the functional brain network, and may help enhance the present understanding of the role of risk gene in the functional dysconnectivity of schizophrenia.
Collapse
Affiliation(s)
- Yahui Lv
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Sijia Wu
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yanyan Lin
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Xuwen Wang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai jiaotong university, Shanghai 200030, China
| | - Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| |
Collapse
|
10
|
Radhakrishnan S, Trentz OA, Reddy MS, Rela M, Kandasamy M, Sellathamby S. In vitro transdifferentiation of human adipose tissue-derived stem cells to neural lineage cells - a stage-specific incidence. Adipocyte 2019; 8:164-177. [PMID: 31033391 PMCID: PMC6768268 DOI: 10.1080/21623945.2019.1607424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 01/31/2023] Open
Abstract
The present Study investigated the intrinsic ability of adipose tissue-derived stem cells (ADSCs) and their neural transdifferentiation in a stage-specific manner. Woodbury's Chemical induction was implemented with modifications to achieve neural transdifferentiation. In Group I, ADSCs were preinduced with β-mercaptoethanol (β-ME) and later, with neural induction medium (NIM). In Group II, ADSCs were directly treated with NIM. In Group III, a DNA methyltransferase (DNMT) inhibitor 5-azacytidine was applied to understand whether transdifferentiation is controlled by epigenetic marks. Irrespective of the presence of (β-ME), the differentiation protocol resulted in glial-lineage cells. Group III produced poorly -differentiated neural cells with neuron-specific enolase positivity. A neuroprogenitor stage (NPC) was identified at d 11 after induction only in Group I. In other groups, this stage was not morphologically distinct. We explored the stage-specific incidence NPC, by alternatively treating them with basic fibroblast growth factor (bFGF), and antioxidants to validate if different signalling could cause varied outcomes (Group IV). They differentiated into neurons, as defined by cell polarity and expression of specific proteins. Meanwhile, neuroprogenitors exposed to NIM (Group I) produced glial-lineage cells. Further refinement and study of the occurrence and terminal differentiation of neuroprogenitors would identify a promising source for neural tissue replacement.
Collapse
Affiliation(s)
- Subathra Radhakrishnan
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, India
| | - Omana Anna Trentz
- MIOT Institute of Research (MIR), MIOT International, Chennai, India
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, India
| | - Mohamed Rela
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, India
| | - Mahesh Kandasamy
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|
11
|
Alameda F, Velarde JM, Carrato C, Vidal N, Arumí M, Naranjo D, Martinez-Garcia M, Ribalta T, Balañá C. Prognostic value of stem cell markers in glioblastoma. Biomarkers 2019; 24:677-683. [DOI: 10.1080/1354750x.2019.1652345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francesc Alameda
- Department of Pathology, Hospital del Mar, Barcelona, Spain
- Universitat Autonoma, Barcelona, Spain
| | - José María Velarde
- Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Noemí Vidal
- Department of Pathology, Hospital de Bellvitge, L'Hospitalet de Llobregat, Spain
| | | | | | | | - Teresa Ribalta
- Department of Pathology, Hospital Clinic i Provincial, Barcelona, Spain
| | - Carme Balañá
- Department of Medical Oncology, Catalan Institute of Oncology, Badalona, Spain
| |
Collapse
|
12
|
Release of methylene blue from graphene oxide-coated electrospun nanofibrous scaffolds to modulate functions of neural progenitor cells. Acta Biomater 2019; 88:346-356. [PMID: 30822551 DOI: 10.1016/j.actbio.2019.02.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/09/2019] [Accepted: 02/22/2019] [Indexed: 01/14/2023]
Abstract
Transplantation of neural progenitor cells (NPCs) can repair the damaged neurons and therefore holds significant promise as a new treatment strategy for Alzheimer's disease (AD). Development of functional scaffolds for the growth, proliferation, and differentiation of NPCs offers a useful approach for AD therapy. In our study, the functional scaffolds were obtained by fabrication of a poly(lactic-co-glycolic acid) (PLGA) nanofibrous mat by the electrospinning technique, followed by coating of a layer of graphene oxide (GO) and then physisorption of methylene blue (MB) under mild conditions. The precoating of GO on the nanofibrous scaffolds allows efficient loading and release of MB from the substrate for regulating the functions of NPCs. The NPCs cultured on the scaffolds remained in the quiescence phase due to the activation of autophagy signaling pathway by MB. Moreover, the MB-loaded nanofibrous scaffolds diminish tau phosphorylation and protect NPCs from apoptosis. Definitely, more work, especially the in vivo experiment, is highly desired to demonstrate the feasibility of the current strategy for AD treatment. STATEMENT OF SIGNIFICANCE: Transplantation of neural progenitor cells (NPCs) can repair the damaged neurons and hold significant promise as a new treatment strategy for Alzheimer's disease (AD). Development of functional scaffolds for the growth, proliferation, and differentiation of NPCs offers a novel and useful approach for AD therapy. In this work, we have developed a GO and MB sequentially coated PLGA nanofibrous mat as a new scaffold for NPC transplantation and tauopathy inhibition. The coating of GO that we have demonstrated significantly enhanced the loading and release of MB on the scaffolds. Furthermore, NPCs cultured on the nanofibrous scaffolds entered quiescence phase through the activation of autophagy signaling pathway, leading to improved performance of NPCs to cope with stressors of disease. More importantly, the release of MB from the scaffolds leads to attenuation of tauopathy and protection of NPCs, which may represent a novel, versatile, and effective therapeutic approach for AD and other neurodegenerative diseases.
Collapse
|
13
|
Lim Y, Cho IT, Shi X, Grinspan JB, Cho G, Golden JA. Arx Expression Suppresses Ventralization of the Developing Dorsal Forebrain. Sci Rep 2019; 9:226. [PMID: 30659230 PMCID: PMC6338776 DOI: 10.1038/s41598-018-36194-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/11/2018] [Indexed: 12/22/2022] Open
Abstract
Early brain development requires a tight orchestration between neural tube patterning and growth. How pattern formation and brain growth are coordinated is incompletely understood. Previously we showed that aristaless-related homeobox (ARX), a paired-like transcription factor, regulates cortical progenitor pool expansion by repressing an inhibitor of cell cycle progression. Here we show that ARX participates in establishing dorsoventral identity in the mouse forebrain. In Arx mutant mice, ventral genes, including Olig2, are ectopically expressed dorsally. Furthermore, Gli1 is upregulated, suggesting an ectopic activation of SHH signaling. We show that the ectopic Olig2 expression can be repressed by blocking SHH signaling, implicating a role for SHH signaling in Olig2 induction. We further demonstrate that the ectopic Olig2 accounts for the reduced Pax6 and Tbr2 expression, both dorsal specific genes essential for cortical progenitor cell proliferation. These data suggest a link between the control of dorsoventral identity of progenitor cells and the control of their proliferation. In summary, our data demonstrate that ARX functions in a gene regulatory network integrating normal forebrain patterning and growth, providing important insight into how mutations in ARX can disrupt multiple aspects of brain development and thus generate a wide spectrum of neurodevelopmental phenotypes observed in human patients.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Il-Taeg Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiuyu Shi
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Judith B Grinspan
- Department of Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ginam Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Baker EW, Kinder HA, Hutcheson JM, Duberstein KJJ, Platt SR, Howerth EW, West FD. Controlled Cortical Impact Severity Results in Graded Cellular, Tissue, and Functional Responses in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:61-73. [DOI: 10.1089/neu.2017.5551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Emily W. Baker
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Holly A. Kinder
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jessica M. Hutcheson
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Kylee Jo J. Duberstein
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Simon R. Platt
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Elizabeth W. Howerth
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Franklin D. West
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
15
|
Sun L, Xia L, Wang M, Zhu D, Wang Y, Bi D, Song J, Ma C, Gao C, Zhang X, Sun Y, Wang X, Zhu C, Xing Q. Variants of the OLIG2 Gene are Associated with Cerebral Palsy in Chinese Han Infants with Hypoxic-Ischemic Encephalopathy. Neuromolecular Med 2018; 21:75-84. [PMID: 30178266 DOI: 10.1007/s12017-018-8510-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Cerebral palsy (CP) is a leading cause of neurological disability among young children. Congenial and adverse perinatal clinical conditions, such as genetic factors, perinatal infection, and asphyxia, are risk factors for CP. Oligodendrocyte transcription factor (OLIG2) is a protein that is expressed in brain oligodendrocyte cells and is involved in neuron repair after brain injury. In this study, we employed a Chinese Han cohort of 763 CP infants and 738 healthy controls to study the association of OLIG2 gene polymorphisms with CP. We found marginal association of the SNP rs6517135 with CP (p = 0.044) at the genotype level, and the association was greatly strengthened when we focused on the subgroup of CP infants who suffered from hypoxic-ischemic encephalopathy (HIE) after birth, with p = 0.003 (OR = 0.558) at the allele level and p = 0.007 at the genotype level, indicating a risk-associated role of the T allele of the SNP rs6517135 under HIE conditions. The haplotype CTTG for rs6517135-rs1005573-rs6517137-rs9653711 in OLIG2 was also significantly associated with the occurrence of CP in infants with HIE (p = 0.01, OR = 0.521). Our results indicate that in the Han Chinese population, the polymorphisms of OLIG2 were associated with CP, especially in patients who had suffered HIE injury. This finding could be used to develop personalized care for infants with high susceptibility to CP.
Collapse
MESH Headings
- Alleles
- Asian People/genetics
- Asphyxia Neonatorum/complications
- Case-Control Studies
- Cerebral Palsy/etiology
- Cerebral Palsy/genetics
- Child
- Child, Preschool
- Female
- Fetal Growth Retardation/epidemiology
- Genetic Predisposition to Disease
- Genotype
- Haplotypes/genetics
- Humans
- Hypoxia-Ischemia, Brain/complications
- Infant
- Infant, Low Birth Weight
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/epidemiology
- Infant, Premature, Diseases/genetics
- Male
- Oligodendrocyte Transcription Factor 2/deficiency
- Oligodendrocyte Transcription Factor 2/genetics
- Oligodendrocyte Transcription Factor 2/physiology
- Oligodendroglia/metabolism
- Polymorphism, Single Nucleotide
- Pregnancy
- Pregnancy Complications/epidemiology
- Risk
Collapse
Affiliation(s)
- Liya Sun
- Institute of Biomedical Science and Children's Hospital, Fudan University, Shanghai, 201102, China
- Shanghai Center for Women and Children's Health, Shanghai, 200062, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingtai Wang
- Nursing School, Sias International University, Zhengzhou, 451150, China
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Child Rehabilitation Center, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yangong Wang
- Institute of Biomedical Science and Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Dan Bi
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Caiyun Ma
- Department of Pediatrics, Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, 450053, China
| | - Chao Gao
- Department of Pediatrics, Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, 450053, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanyan Sun
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.
- Henan Key Laboratory of Child Brain Injury, Zhengzhou University, Kangfuqian Street 7, Zhengzhou, 450052, China.
| | - Qinghe Xing
- Institute of Biomedical Science and Children's Hospital, Fudan University, Shanghai, 201102, China.
- Shanghai Center for Women and Children's Health, Shanghai, 200062, China.
| |
Collapse
|
16
|
刘 川, 林 春, 郭 培, 张 昕, 朱 晓. [Exposure to propofol down-regulates myelin basic protein expression in zebrafish embryos: its neurotoxicity on oligodendrocytes and the molecular mechanisms]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1115-1120. [PMID: 30377113 PMCID: PMC6744183 DOI: 10.12122/j.issn.1673-4254.2018.09.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the mechanism underlying propofol- induced down-regulation of myelin basic protein (MBP) in zebrafish embryos. METHODS Zebrafish embryos (6-48 h post-fertilization [hpf]) were randomized into 4 equal groups for exposure to dimethyl sulfoxide (DMSO), 20 μg/mL propofol, 30 μg/mL propofol, or no particular treatment (control group). The larvae were collected at 48 or 72 hpf for detecting the mRNA levels of MBP, Olig1, Olig2, and Sox10 using qRT-PCR (n=80). The protein expression of MBP was quantitatively detected using Western blotting (n=80), and the apoptosis of the oligodendrocytes was investigated using TUNEL staining (n=6). RESULTS Exposure to 20 and 30 μg/mL propofol caused significant reductions in the mRNA expressions of Olig1, Olig2, and Sox10 at 48 and 72 hpf (P < 0.05) and also in MBP mRNA and protein levels at 72 hpf (P < 0.05). Exposure to 30 μg/mL propofol induced more obvious reduction in MBP protein expression than 20 μg/mL propofol at 72 hpf (P < 0.05), and the exposures resulted in a significant increase of oligodendrocyte apoptosis at 72 hpf (P < 0.05). CONCLUSIONS Propofol exposure reduces MBP expression at both the mRNA and protein levels in zebrafish embryos by down-regulating the expressions of Olig1, Olig2 and Sox10 mRNA levels and increasing apoptosis of the oligodendrocytes.
Collapse
Affiliation(s)
- 川 刘
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 春水 林
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 培培 郭
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 昕 张
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓勤 朱
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Liu H, Zhai J, Wang B, Fang M. Olig2 Silence Ameliorates Cuprizone-Induced Schizophrenia-Like Symptoms in Mice. Med Sci Monit 2017; 23:4834-4840. [PMID: 28989170 PMCID: PMC5644458 DOI: 10.12659/msm.903842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The pathogenesis of schizophrenia is complex and oligodendrocyte abnormality is an important component of the pathogenesis found in schizophrenia. This study was designed to evaluate the function of olig2 in cuprizone-induced schizophrenia-like symptoms in a mouse model, and to assess the related mechanisms. Material/Methods The schizophrenia-like symptoms were modeled by administration of cuprizone in mice. Open-field and elevated-plus maze tests were applied to detect behavioral changes. Adenovirus encoding olig2 siRNA was designed to silence olig2 expression. Real-time PCR and western blotting were applied to detect myelin basic protein (MBP), 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), glial fibrillary acidic protein (GFAP) and olig2 expressions. Results Open field test showed that the distance and time spent in the center area were significantly decreased in cuprizone mice (model mice) when compared with control mice (p<0.05). By contrast, olig2 silence could significantly increase the time and distance spent in the center area compared with the model mice (p<0.05). As revealed by elevated-plus maze test, the mice in the model group preferred the open arm and spent more time and distance in the open arm compared with control mice (p<0.05), while olig2 silence significantly reversed the abnormalities (p<0.05). Mechanically, MBP and CNPase expression were reduced in the model group compared with the control (p<0.05). However, olig2 silence reversed the reduction caused by cuprizone modeling (p<0.05). In addition, GFAP was elevated after cuprizone modeling compared with control (p<0.05), and was significantly inhibited by olig2 silence compared with model (p<0.05). Conclusions Cuprizone-induced schizophrenia-like symptoms involved olig2 upregulation. The silence of olig2 could prevent changes, likely through regulating MBP, CNPase, and GFAP expressions.
Collapse
Affiliation(s)
- Hongxia Liu
- Jining Neuro-Psychiatric Hospital, Jining, Shandong, China (mainland)
| | - Jinguo Zhai
- Jining Medical University, Jining, Shandong, China (mainland)
| | - Bin Wang
- Jining Neuro-Psychiatric Hospital, Jining, Shandong, China (mainland)
| | - Maosheng Fang
- Wuhan Mental Health Center, Wuhan, Hubei, China (mainland)
| |
Collapse
|
18
|
Regulation of oligodendrocyte differentiation: Insights and approaches for the management of neurodegenerative disease. PATHOPHYSIOLOGY 2016; 23:203-10. [DOI: 10.1016/j.pathophys.2016.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/26/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023] Open
|
19
|
Ali FR, Cheng K, Kirwan P, Metcalfe S, Livesey FJ, Barker RA, Philpott A. The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation in vivo and in vitro. Development 2014; 141:2216-24. [DOI: 10.1242/dev.106377] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Generation of neurons from patient fibroblasts using a combination of developmentally defined transcription factors has great potential in disease modelling, as well as ultimately for use in regeneration and repair. However, generation of physiologically mature neurons in vitro remains problematic. Here we demonstrate the cell-cycle-dependent phosphorylation of a key reprogramming transcription factor, Ascl1, on multiple serine-proline sites. This multisite phosphorylation is a crucial regulator of the ability of Ascl1 to drive neuronal differentiation and maturation in vivo in the developing embryo; a phosphomutant form of Ascl1 shows substantially enhanced neuronal induction activity in Xenopus embryos. Mechanistically, we see that this un(der)phosphorylated Ascl1 is resistant to inhibition by both cyclin-dependent kinase activity and Notch signalling, both of which normally limit its neurogenic potential. Ascl1 is a central component of reprogramming transcription factor cocktails to generate neurons from human fibroblasts; the use of phosphomutant Ascl1 in place of the wild-type protein significantly promotes neuronal maturity after human fibroblast reprogramming in vitro. These results demonstrate that cell-cycle-dependent post-translational modification of proneural proteins directly regulates neuronal differentiation in vivo during development, and that this regulatory mechanism can be harnessed to promote maturation of neurons obtained by transdifferentiation of human cells in vitro.
Collapse
Affiliation(s)
- Fahad R. Ali
- University of Cambridge, Department of Oncology, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Kevin Cheng
- University of Cambridge, Department of Oncology, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Peter Kirwan
- Gurdon Institute, Department of Biochemistry and Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Su Metcalfe
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Frederick J. Livesey
- Gurdon Institute, Department of Biochemistry and Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Anna Philpott
- University of Cambridge, Department of Oncology, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
20
|
Christou YA, Ohyama K, Placzek M, Monk PN, Shaw PJ. Wild-type but not mutant SOD1 transgenic astrocytes promote the efficient generation of motor neuron progenitors from mouse embryonic stem cells. BMC Neurosci 2013; 14:126. [PMID: 24134124 PMCID: PMC3853012 DOI: 10.1186/1471-2202-14-126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022] Open
Abstract
Background The efficient derivation of mature (Hb9+) motor neurons from embryonic stem cells is a sought-after goal in the understanding, and potential treatment, of motor neuron diseases. Conditions that promote the robust generation of motor neuron progenitors from embryonic stem cells and that promote the survival of differentiated motor neurons ex vivo are likely, therefore, to be critical in future biological/therapeutic/screening approaches. Previous studies have shown that astrocytes have a protective effect on differentiated motor neurons (in vivo and ex vivo), but it remains unclear whether astrocytes also play a beneficial role in the support of motor neuron progenitors. Here we explore the effect of murine astrocyte-conditioned medium on monolayer cultures of mouse embryonic stem cell-derived motor neuron progenitors. Results Our data show that wild-type astrocyte-conditioned medium significantly increases the number of Olig2+/Hb9- progenitors, which subsequently differentiate into Hb9+/Islet1+ post-mitotic motor neurons. Intriguingly, while astrocyte-conditioned medium derived from mice transgenic for wild-type human SOD1 mimics the effect of wild-type astrocytes, conditioned medium derived from astrocytes carrying an amyotrophic lateral sclerosis-related SOD1-G93A mutation shows no such beneficial effect. The effect of astrocyte-conditioned medium, moreover, is specific to motor neurons: we find that interneurons generated from mouse embryonic stem cells are unaffected by conditioned media from any type of astrocyte. Conclusions Our study indicates that conditioned medium derived from wild type astrocytes enhances the efficient generation of motor neurons from mouse embryonic stem cells by enhancing motor neuron progenitors. In contrast, conditioned medium from SOD1-G93A astrocytes does not show a similar enhancing effect.
Collapse
Affiliation(s)
- Yiota A Christou
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK.
| | | | | | | | | |
Collapse
|
21
|
Li Q, Canosa S, Flynn K, Michaud M, Krauthammer M, Madri JA. Modeling the neurovascular niche: unbiased transcriptome analysis of the murine subventricular zone in response to hypoxic insult. PLoS One 2013; 8:e76265. [PMID: 24146847 PMCID: PMC3795763 DOI: 10.1371/journal.pone.0076265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/22/2013] [Indexed: 01/13/2023] Open
Abstract
Premature infants often experience chronic hypoxia, resulting in cognitive & motor neurodevelopmental handicaps. These sometimes devastating handicaps are thought to be caused by compromised neural precursor cell (NPC) repair/recovery resulting in variable central nervous system (CNS) repair/recovery. We have identified differential responses of two mouse strains (C57BL/6 & CD1) to chronic hypoxia that span the range of responsiveness noted in the premature human population. We previously correlated several CNS tissue and cellular behaviors with the different behavioral parameters manifested by these two strains. In this report, we use unbiased array technology to interrogate the transcriptome of the subventricular zone (SVZ) in these strains. Our results illustrate differences in mRNA expression in the SVZ of both C57BL/6 and CD1 mice following hypoxia as well as differences between C57BL/6 and CD1 SVZ under both normoxic and hypoxic conditions. Differences in expression were found in gene sets associated with Sox10-mediated neural functions that explain, in part, the differential cognitive and motor responsiveness to hypoxic insult. This may shed additional light on our understanding of the variable responses noted in the human premature infant population and facilitate early intervention approaches. Further interrogation of the differentially expressed gene sets will provide a more complete understanding of the differential responses to, and recovery from, hypoxic insult allowing for more informed modeling of the ranges of disease severity observed in the very premature human population.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sandra Canosa
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Kelly Flynn
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael Michaud
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael Krauthammer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joseph A. Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
22
|
Transcription factor Olig2 defines subpopulations of retinal progenitor cells biased toward specific cell fates. Proc Natl Acad Sci U S A 2012; 109:7882-7. [PMID: 22543161 DOI: 10.1073/pnas.1203138109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previous lineage analyses have shown that retinal progenitor cells (RPCs) are multipotent throughout development, and expression-profiling studies have shown a great deal of molecular heterogeneity among RPCs. To determine if the molecular heterogeneity predicts that an RPC will produce particular types of progeny, clonal lineage analysis was used to investigate the progeny of a subset of RPCs, those that express the basic helix-loop-helix transcription factor, Olig2. The embryonic Olig2(+) RPCs underwent terminal divisions, producing small clones with primarily two of the five cell types being made by the pool of RPCs at that time. The later, postnatal Olig2(+) RPCs also made terminal divisions, which were biased toward production of rod photoreceptors and amacrine cell interneurons. These data indicate that the multipotent progenitor pool is made up of distinctive types of RPCs, which have biases toward producing subsets of retinal neurons in a terminal division, with the types of neurons produced varying over time. This strategy is similar to that of the developing Drosophila melanogaster ventral nerve cord, with the Olig2(+) cells behaving as ganglion mother cells.
Collapse
|