1
|
Schneeberger S, Kim SJ, Geesdorf MN, Friebel E, Eede P, Jendrach M, Boltengagen A, Braeuning C, Ruhwedel T, Hülsmeier AJ, Gimber N, Foerster M, Obst J, Andreadou M, Mundt S, Schmoranzer J, Prokop S, Kessler W, Kuhlmann T, Möbius W, Nave KA, Hornemann T, Becher B, Edgar JM, Karaiskos N, Kocks C, Rajewsky N, Heppner FL. Interleukin-12 signaling drives Alzheimer's disease pathology through disrupting neuronal and oligodendrocyte homeostasis. NATURE AGING 2025; 5:622-641. [PMID: 40082619 PMCID: PMC12003168 DOI: 10.1038/s43587-025-00816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/23/2025] [Indexed: 03/16/2025]
Abstract
Neuroinflammation including interleukin (IL)-12/IL-23-signaling is central to Alzheimer's disease (AD) pathology. Inhibition of p40, a subunit of IL-12/IL-23, attenuates pathology in AD-like mice; however, its signaling mechanism and expression pattern remained elusive. Here we show that IL-12 receptors are predominantly expressed in neurons and oligodendrocytes in AD-like APPPS1 mice and in patients with AD, whereas IL-23 receptor transcripts are barely detectable. Consistently, deletion of the IL-12 receptor in neuroectodermal cells ameliorated AD pathology in APPPS1 mice, whereas removal of IL-23 receptors had no effect. Genetic ablation of IL-12 signaling alone reverted the loss of mature oligodendrocytes, restored myelin homeostasis, rescued the amyloid-β-dependent reduction of parvalbumin-positive interneurons and restored phagocytosis-related changes in microglia of APPPS1 mice. Furthermore, IL-12 protein expression was increased in human AD brains compared to healthy age-matched controls, and human oligodendrocyte-like cells responded profoundly to IL-12 stimulation. We conclude that oligodendroglial and neuronal IL-12 signaling, but not IL-23 signaling, are key in orchestrating AD-related neuroimmune crosstalk and that IL-12 represents an attractive therapeutic target in AD.
Collapse
Affiliation(s)
- Shirin Schneeberger
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Seung Joon Kim
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Maria N Geesdorf
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ekaterina Friebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pascale Eede
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marina Jendrach
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anastasiya Boltengagen
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Caroline Braeuning
- Genomics Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Electron Microscopy Unit City Campus, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Niclas Gimber
- AMBIO Advanced Medical Bioimaging Core Facility, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marlene Foerster
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juliane Obst
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Myrto Andreadou
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jan Schmoranzer
- AMBIO Advanced Medical Bioimaging Core Facility, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Prokop
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Wiebke Kessler
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Electron Microscopy Unit City Campus, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University of Zürich, Zürich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Julia M Edgar
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Nikos Karaiskos
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christine Kocks
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Cluster of Excellence, NeuroCure, Berlin, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Berlin, Germany.
- National Center for Tumor Diseases (NCT), Berlin, Germany.
- Charité - Universitätsmedizin, Berlin, Germany.
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Cluster of Excellence, NeuroCure, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
| |
Collapse
|
2
|
Varanasi SM, Gulani Y, Rachamala HK, Mukhopadhyay D, Angom RS. Neuropilin-1: A Multifaceted Target for Cancer Therapy. Curr Oncol 2025; 32:203. [PMID: 40277760 PMCID: PMC12025621 DOI: 10.3390/curroncol32040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/26/2025] Open
Abstract
Neuropilin-1 (NRP1), initially identified as a neuronal guidance protein, has emerged as a multifaceted regulator in cancer biology. Beyond its role in axonal guidance and angiogenesis, NRP1 is increasingly recognized for its significant impact on tumor progression and therapeutic outcomes. This review explores the diverse functions of NRP1 in cancer, encompassing its influence on tumor cell proliferation, migration, invasion, and metastasis. NRP1 interacts with several key signaling pathways, including vascular endothelial growth factor (VEGF), semaphorins, and transforming growth factor-beta (TGF-β), modulating the tumor microenvironment and promoting angiogenesis. Moreover, NRP1 expression correlates with poor prognosis in various malignancies, underscoring its potential as a prognostic biomarker. Therapeutically, targeting NRP1 holds promise as a novel strategy to inhibit tumor growth and enhance the efficacy of regular treatments such as chemotherapy and radiotherapy. Strategies involving NRP1-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and gene silencing techniques, are being actively investigated in preclinical and clinical settings. Despite challenges in specificity and delivery, advances in understanding NRP1 biology offer new avenues for personalized cancer therapy. Although several types of cancer cells can express NRPs, the role of NRPs in tumor pathogenesis is largely unknown. Future investigations are needed to enhance our understanding of the effects and mechanisms of NRPs on the proliferation, apoptosis, and migration of neuronal, endothelial, and cancer cells. The novel frameworks or multi-omics approaches integrate data from multiple databases to better understand cancer's molecular and clinical features, develop personalized therapies, and help identify biomarkers. This review highlights the pivotal role of NRP1 in cancer pathogenesis and discusses its implications for developing targeted therapeutic approaches to improve patient outcomes, highlighting the role of OMICS in targeting cancer patients for personalized therapy.
Collapse
Affiliation(s)
| | | | | | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (Y.G.); (H.K.R.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (Y.G.); (H.K.R.)
| |
Collapse
|
3
|
Aksan B, Mauceri D. Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure. J Biomed Sci 2025; 32:33. [PMID: 40050849 PMCID: PMC11884128 DOI: 10.1186/s12929-025-01128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025] Open
Abstract
Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Institute of Anatomy and Cell Biology, Dept. Molecular and Cellular Neuroscience, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
4
|
Lu YP, Luo YL, Wu ZY, Han C, Jin YZ, Han JM, Chen SY, Teng F, Han F, Liu XX, Lu YM. Semaphorin 3s signaling in the central nervous system: Mechanisms and therapeutic implication for brain diseases. Pharmacol Ther 2025; 267:108800. [PMID: 39855276 DOI: 10.1016/j.pharmthera.2025.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Class 3 semaphorins (Sema3s), identified as secreted soluble proteins, present many therapeutic potentials. Recent evidence has suggested that Sema3s as molecular cue participate in neuroregulation, angiogenesis, and microenvironment homeostasis of the central nervous system. Moreover, Sema3s signaling pathways may be targeted for enhancing neural network connectivity, promoting neural regeneration and repair, and inhibiting pathological angiogenesis. Due to the complex co-expression patterns and crosstalk among Sema3s, new drugs targeting Sema3s-related signaling pathways are expected to be discovered to counter brain diseases. This review summarizes the specific roles of Sema3s in pathological processes of various brain diseases, and provides potential targeted strategies for the prevention and treatment.
Collapse
Affiliation(s)
- Ya-Ping Lu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 210019, China
| | - Yi-Ling Luo
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhou-Yue Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chao Han
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yin-Zhi Jin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jun-Ming Han
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Shu-Yang Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fei Teng
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 210019, China; The affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian 223300, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiu-Xiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Ying-Mei Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Herrera E, Chédotal A, Mason C. Development of the Binocular Circuit. Annu Rev Neurosci 2024; 47:303-322. [PMID: 38635868 DOI: 10.1146/annurev-neuro-111020-093230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Seeing in three dimensions is a major property of the visual system in mammals. The circuit underlying this property begins in the retina, from which retinal ganglion cells (RGCs) extend to the same or opposite side of the brain. RGC axons decussate to form the optic chiasm, then grow to targets in the thalamus and midbrain, where they synapse with neurons that project to the visual cortex. Here we review the cellular and molecular mechanisms of RGC axonal growth cone guidance across or away from the midline via receptors to cues in the midline environment. We present new views on the specification of ipsi- and contralateral RGC subpopulations and factors implementing their organization in the optic tract and termination in subregions of their targets. Lastly, we describe the functional and behavioral aspects of binocular vision, focusing on the mouse, and discuss recent discoveries in the evolution of the binocular circuit.
Collapse
Affiliation(s)
- Eloísa Herrera
- Instituto de Neurociencias (CSIC-UMH), Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Alicante, Spain;
| | - Alain Chédotal
- Université Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
- Institut de Pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- Institut de la Vision, INSERM, Sorbonne Université, Paris, France;
| | - Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Zuckerman Institute, Columbia University, New York, NY, USA;
| |
Collapse
|
6
|
Liu ZZ, Liu LY, Zhu LY, Zhu J, Luo JY, Wang YF, Xu HA. Plexin B3 guides axons to cross the midline in vivo. Front Cell Neurosci 2024; 18:1292969. [PMID: 38628398 PMCID: PMC11018898 DOI: 10.3389/fncel.2024.1292969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
During the development of neural circuits, axons are guided by a variety of molecular cues to navigate through the brain and establish precise connections with correct partners at the right time and place. Many axon guidance cues have been identified and they play pleiotropic roles in not only axon guidance but also axon fasciculation, axon pruning, and synaptogenesis as well as cell migration, angiogenesis, and bone formation. In search of receptors for Sema3E in axon guidance, we unexpectedly found that Plexin B3 is highly expressed in retinal ganglion cells of zebrafish embryos when retinal axons are crossing the midline to form the chiasm. Plexin B3 has been characterized to be related to neurodevelopmental disorders. However, the investigation of its pathological mechanisms is hampered by the lack of appropriate animal model. We provide evidence that Plexin B3 is critical for axon guidance in vivo. Plexin B3 might function as a receptor for Sema3E while Neuropilin1 could be a co-receptor. The intracellular domain of Plexin B3 is required for Semaphorin signaling transduction. Our data suggest that zebrafish could be an ideal animal model for investigating the role and mechanisms of Sema3E and Plexin B3 in vivo.
Collapse
Affiliation(s)
- Zhi-Zhi Liu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| | - Ling-Yan Liu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| | - Lou-Yin Zhu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
| | - Jian Zhu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
| | - Jia-Yu Luo
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| | - Ye-Fan Wang
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
| | - Hong A. Xu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| |
Collapse
|
7
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Le VH, Orniacki C, Murcia-Belmonte V, Denti L, Schütz D, Stumm R, Ruhrberg C, Erskine L. CXCL12 promotes the crossing of retinal ganglion cell axons at the optic chiasm. Development 2024; 151:dev202446. [PMID: 38095299 PMCID: PMC10820821 DOI: 10.1242/dev.202446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
Binocular vision requires the segregation of retinal ganglion cell (RGC) axons extending from the retina into the ipsilateral and contralateral optic tracts. RGC axon segregation occurs at the optic chiasm, which forms at the ventral diencephalon midline. Using expression analyses, retinal explants and genetically modified mice, we demonstrate that CXCL12 (SDF1) is required for axon segregation at the optic chiasm. CXCL12 is expressed by the meninges bordering the optic pathway, and CXCR4 by both ipsilaterally and contralaterally projecting RGCs. CXCL12 or ventral diencephalon meninges potently promoted axon outgrowth from both ipsilaterally and contralaterally projecting RGCs. Further, a higher proportion of axons projected ipsilaterally in mice lacking CXCL12 or its receptor CXCR4 compared with wild-type mice as a result of misrouting of presumptive contralaterally specified RGC axons. Although RGCs also expressed the alternative CXCL12 receptor ACKR3, the optic chiasm developed normally in mice lacking ACKR3. Our data support a model whereby meningeal-derived CXCL12 helps drive axon growth from CXCR4-expressing RGCs towards the diencephalon midline, enabling contralateral axon growth. These findings further our understanding of the molecular and cellular mechanisms controlling optic pathway development.
Collapse
Affiliation(s)
- Viet-Hang Le
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
| | - Clarisse Orniacki
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
| | - Verónica Murcia-Belmonte
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Laura Denti
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Dagmar Schütz
- Institute for Pharmacology/Toxicology, Jena University Hospital,Drackendorfer Str. 1, D-07747 Jena, Germany
| | - Ralf Stumm
- Institute for Pharmacology/Toxicology, Jena University Hospital,Drackendorfer Str. 1, D-07747 Jena, Germany
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
9
|
Fries M, Brown TW, Jolicoeur C, Boulan B, Boudreau-Pinsonneault C, Javed A, Abram P, Cayouette M. Pou3f1 orchestrates a gene regulatory network controlling contralateral retinogeniculate projections. Cell Rep 2023; 42:112985. [PMID: 37590135 DOI: 10.1016/j.celrep.2023.112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 05/26/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
The balance of contralateral and ipsilateral retinogeniculate projections is critical for binocular vision, but the transcriptional programs regulating this process remain ill defined. Here we show that the Pou class homeobox protein POU3F1 is expressed in nascent mouse contralateral retinal ganglion cells (cRGCs) but not ipsilateral RGCs (iRGCs). Upon Pou3f1 inactivation, the proportion of cRGCs is reduced in favor of iRGCs, leading to abnormal projection ratios at the optic chiasm. Conversely, misexpression of Pou3f1 in progenitors increases the production of cRGCs. Using CUT&RUN and RNA sequencing in gain- and loss-of-function assays, we demonstrate that POU3F1 regulates expression of several key members of the cRGC gene regulatory network. Finally, we report that POU3F1 is sufficient to induce RGC-like cell production, even in late-stage retinal progenitors of Atoh7 knockout mice. This work uncovers POU3F1 as a regulator of the cRGC transcriptional program, opening possibilities for optic nerve regenerative therapies.
Collapse
Affiliation(s)
- Michel Fries
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Thomas W Brown
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 1A1, Canada
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Benoit Boulan
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Camille Boudreau-Pinsonneault
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 1A1, Canada
| | - Awais Javed
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pénélope Abram
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, QC H3C 3J7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 1A1, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
10
|
Ghasemi M, Roshandel E, Mohammadian M, Farhadihosseinabadi B, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials. Stem Cell Res Ther 2023; 14:122. [PMID: 37143147 PMCID: PMC10161443 DOI: 10.1186/s13287-023-03264-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. MAIN BODY Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. CONCLUSION The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Tabriz University of Medical Science, Tabriz, Iran
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Ott LC, Han CY, Mueller JL, Rahman AA, Hotta R, Goldstein AM, Stavely R. Bone Marrow Stem Cells Derived from Nerves Have Neurogenic Properties and Potential Utility for Regenerative Therapy. Int J Mol Sci 2023; 24:5211. [PMID: 36982286 PMCID: PMC10048809 DOI: 10.3390/ijms24065211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Neurons and glia of the peripheral nervous system are derived from progenitor cell populations, originating from embryonic neural crest. The neural crest and vasculature are intimately associated during embryonic development and in the mature central nervous system, in which they form a neurovascular unit comprised of neurons, glia, pericytes, and vascular endothelial cells that play important roles in health and disease. Our group and others have previously reported that postnatal populations of stem cells originating from glia or Schwann cells possess neural stem cell qualities, including rapid proliferation and differentiation into mature glia and neurons. Bone marrow receives sensory and sympathetic innervation from the peripheral nervous system and is known to contain myelinating and unmyelinating Schwann cells. Herein, we describe a population of neural crest-derived Schwann cells residing in a neurovascular niche of bone marrow in association with nerve fibers. These Schwann cells can be isolated and expanded. They demonstrate plasticity in vitro, generating neural stem cells that exhibit neurogenic potential and form neural networks within the enteric nervous system in vivo following transplantation to the intestine. These cells represent a novel source of autologous neural stem cells for the treatment of neurointestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
12
|
Min KW, Kim N, Lee JH, Sung Y, Kim M, Lee EJ, Kim JM, Kim JH, Lee J, Cho W, Yang JM, Kim N, Kim J, Lee CJ, Park YG, Lee SH, Lee HW, Kim JW. Visuomotor anomalies in achiasmatic mice expressing a transfer-defective Vax1 mutant. Exp Mol Med 2023; 55:385-400. [PMID: 36737666 PMCID: PMC9981622 DOI: 10.1038/s12276-023-00930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 02/05/2023] Open
Abstract
In binocular animals that exhibit stereoscopic visual responses, the axons of retinal ganglion cells (RGCs) connect to brain areas bilaterally by forming a commissure called the optic chiasm (OC). Ventral anterior homeobox 1 (Vax1) contributes to the formation of the OC, acting endogenously in optic pathway cells and exogenously in growing RGC axons. Here, we generated Vax1AA/AA mice expressing the Vax1AA mutant, which is incapable of intercellular transfer. We found that RGC axons cannot take up Vax1AA protein from the Vax1AA/AA mouse optic stalk (OS) and grow slowly to arrive at the hypothalamus at a late stage. The RGC axons of Vax1AA/AA mice connect exclusively to ipsilateral brain areas after failing to access the midline, resulting in reduced visual acuity and abnormal oculomotor responses. Overall, our study provides physiological evidence for the necessity of intercellular transfer of Vax1 and the importance of the bilateral RGC axon projection in proper visuomotor responses.
Collapse
Affiliation(s)
- Kwang Wook Min
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Namsuk Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Neurovascular Unit, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jae Hoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Younghoon Sung
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Museong Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Eun Jung Lee
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jong-Myeong Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jae-Hyun Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jaeyoung Lee
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Wonjin Cho
- Department of Bio & Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jee Myung Yang
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Dongguk-ro 27, Ilsandong-gu, Goyang, Gyeong-gi, Republic of Korea
| | - Nury Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Young-Gyun Park
- Department of Bio & Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung-Hee Lee
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
13
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
14
|
Fernández‐Nogales M, López‐Cascales MT, Murcia‐Belmonte V, Escalante A, Fernández‐Albert J, Muñoz‐Viana R, Barco A, Herrera E. Multiomic Analysis of Neurons with Divergent Projection Patterns Identifies Novel Regulators of Axon Pathfinding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200615. [PMID: 35988153 PMCID: PMC9561852 DOI: 10.1002/advs.202200615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Axon pathfinding is a key step in neural circuits formation. However, the transcriptional mechanisms regulating its progression remain poorly understood. The binary decision of crossing or avoiding the midline taken by some neuronal axons during development represents a robust model to investigate the mechanisms that control the selection of axonal trajectories. Here, to identify novel regulators of axon guidance, this work compares the transcriptome and chromatin occupancy profiles of two neuronal subpopulations, ipsilateral (iRGC) and contralateral retinal ganglion cells (cRGC), with similar functions but divergent axon trajectories. These analyses retrieved a number of genes encoding for proteins not previously implicated in axon pathfinding. In vivo functional experiments confirm the implication of some of these candidates in axonal navigation. Among the candidate genes, γ-synuclein is identified as essential for inducing midline crossing. Footprint and luciferase assays demonstrate that this small-sized protein is regulated by the transcription factor (TF) Pou4f1 in cRGCs. It is also shown that Lhx2/9 are specifically expressed in iRGCs and control a program that partially overlaps with that regulated by Zic2, previously described as essential for iRGC specification. Overall, the analyses identify dozens of new molecules potentially involved in axon guidance and reveal the regulatory logic behind the selection of axonal trajectories.
Collapse
Affiliation(s)
- Marta Fernández‐Nogales
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Maria Teresa López‐Cascales
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Verónica Murcia‐Belmonte
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Augusto Escalante
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Jordi Fernández‐Albert
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Rafael Muñoz‐Viana
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Angel Barco
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Eloísa Herrera
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| |
Collapse
|
15
|
Smith GT, Radin DP, Tsirka SE. From protein-protein interactions to immune modulation: Therapeutic prospects of targeting Neuropilin-1 in high-grade glioma. Front Immunol 2022; 13:958620. [PMID: 36203599 PMCID: PMC9532003 DOI: 10.3389/fimmu.2022.958620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
In the past several years there has been a marked increase in our understanding of the pathophysiological hallmarks of glioblastoma development and progression, with specific respect to the contribution of the glioma tumor microenvironment to the rapid progression and treatment resistance of high-grade gliomas. Despite these strides, standard of care therapy still only targets rapidly dividing tumor cells in the glioma, and does little to curb the pro-tumorigenic functions of non-cancerous cells entrenched in the glioma microenvironment. This tumor promoting environment as well as the heterogeneity of high-grade gliomas contribute to the poor prognosis of this malignancy. The interaction of non-malignant cells in the microenvironment with the tumor cells accentuate phenotypes such as rapid proliferation or immunosuppression, so therapeutically modulating one target expressed on one cell type may be insufficient to restrain these rapidly developing neoplasias. With this in mind, identifying a target expressed on multiple cell types and understanding how it governs tumor-promoting functions in each cell type may have great utility in better managing this disease. Herein, we review the physiology and pathological effects of Neuropilin-1, a transmembrane co-receptor which mediates signal transduction pathways when associated with multiple other receptors. We discuss its effects on the properties of endothelial cells and on immune cell types within gliomas including glioma-associated macrophages, microglia, cytotoxic T cells and T regulatory cells. We also consider its effects when elaborated on the surface of tumor cells with respect to proliferation, stemness and treatment resistance, and review attempts to target Neuroplin-1 in the clinical setting.
Collapse
Affiliation(s)
- Gregory T. Smith
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Daniel P. Radin
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Stony Brook Medical Scientist Training Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Stella E. Tsirka
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Stony Brook Medical Scientist Training Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- *Correspondence: Stella E. Tsirka,
| |
Collapse
|
16
|
Li Y, Schor J, Bartko J, Albert G, Halterman MW. The transcription factor C/EBPβ promotes vascular endothelial growth factor A expression and neural stem cell expansion. FEBS Lett 2022; 596:1661-1671. [PMID: 35593120 DOI: 10.1002/1873-3468.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/28/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022]
Abstract
The bZIP transcription factor CCAAT enhancer-binding protein β (C/EBPβ) exhibits neurogenic, neuritogenic, and pro-survival effects in the central nervous system. Here, we show that C/EBPβ regulates neural stem cell (NSC) expansion and vascular endothelial growth factor A (VEGF-A) level by acting on a C/EBPβ-responsive element within the Vegf-a promoter. As predicted, C/EBPβ depletion reduced VEGF-A production, NSC number, and average neurosphere size in proliferating cultures. Conversely, deletion of the C/EBPβ repressor CHOP-10 induced C/EBPβ and VEGF-A expression, while stimulating NSC expansion. These data highlight the role of C/EBPβ in regulating VEGF-A production and the growth of NSCs and suggest CHOP-dependent antagonism of C/EBPβ may function as a transcriptional rheostat linking stress-associated cues with stem cell quiescence among other pathological responses affecting the neurogenic niche.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794
| | - Jonathan Schor
- Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, 14642
| | - Jonathan Bartko
- Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, 14642
| | - George Albert
- Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, 14642
| | - Marc W Halterman
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794
| |
Collapse
|
17
|
Kingston R, Amin D, Misra S, Gross JM, Kuwajima T. Serotonin transporter-mediated molecular axis regulates regional retinal ganglion cell vulnerability and axon regeneration after nerve injury. PLoS Genet 2021; 17:e1009885. [PMID: 34735454 PMCID: PMC8594818 DOI: 10.1371/journal.pgen.1009885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/16/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
Molecular insights into the selective vulnerability of retinal ganglion cells (RGCs) in optic neuropathies and after ocular trauma can lead to the development of novel therapeutic strategies aimed at preserving RGCs. However, little is known about what molecular contexts determine RGC susceptibility. In this study, we show the molecular mechanisms underlying the regional differential vulnerability of RGCs after optic nerve injury. We identified RGCs in the mouse peripheral ventrotemporal (VT) retina as the earliest population of RGCs susceptible to optic nerve injury. Mechanistically, the serotonin transporter (SERT) is upregulated on VT axons after injury. Utilizing SERT-deficient mice, loss of SERT attenuated VT RGC death and led to robust retinal axon regeneration. Integrin β3, a factor mediating SERT-induced functions in other systems, is also upregulated in RGCs and axons after injury, and loss of integrin β3 led to VT RGC protection and axon regeneration. Finally, RNA sequencing analyses revealed that loss of SERT significantly altered molecular signatures in the VT retina after optic nerve injury, including expression of the transmembrane protein, Gpnmb. GPNMB is rapidly downregulated in wild-type, but not SERT- or integrin β3-deficient VT RGCs after injury, and maintaining expression of GPNMB in RGCs via AAV2 viruses even after injury promoted VT RGC survival and axon regeneration. Taken together, our findings demonstrate that the SERT-integrin β3-GPNMB molecular axis mediates selective RGC vulnerability and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Rody Kingston
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Dwarkesh Amin
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Sneha Misra
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey M. Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Takaaki Kuwajima
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
19
|
Ahmed K, Ali AS, Delwadia N, Greven MA. Neurodevelopmental Outcomes Following Intravitreal Bevacizumab With Laser Versus Laser Photocoagulation Alone for Retinopathy of Prematurity. Ophthalmic Surg Lasers Imaging Retina 2021; 51:220-224. [PMID: 32348538 DOI: 10.3928/23258160-20200326-03] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/25/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To assess neurodevelopmental outcomes of infants with treatment-warranted retinopathy of prematurity (TW-ROP) treated with intravitreal bevacizumab (IVB) plus diode laser photocoagulation (DLP) compared to DLP alone. PATIENTS AND METHODS A retrospective review was performed of infants who underwent treatment for TW-ROP with IVB+DLP or DLP alone from 2010 to 2017. Baseline characteristics and coexisting medical comorbidities were recorded. The presence of neurodevelopmental delay (NDD) at 2-year follow-up and composite Bayley-III scores were recorded. RESULTS Sixty-six infants were included in the study; 18 received IVB+DLP, and 48 received DLP alone. Average Bayley-III scores for cognition, language, and motor, as well as rates of documental NDD, did not differ between the groups. CONCLUSION This study does not demonstrate an increased risk of NDD in infants with TW-ROP treated with IVB+DLP compared with DLP alone. [Ophthalmic Surg Lasers Imaging Retina. 2020;51:220-224.].
Collapse
|
20
|
Shen J, Wang Y, Yao K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp Eye Res 2021; 205:108506. [PMID: 33609512 DOI: 10.1016/j.exer.2021.108506] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Glaucoma is a neuropathic disease that causes optic nerve damage, loss of retinal ganglion cells (RGCs), and visual field defects. Most glaucoma patients have no early signs or symptoms. Conventional pharmacological glaucoma medications and surgeries that focus on lowering intraocular pressure are not sufficient; RGCs continue to die, and the patient's vision continues to decline. Recent evidence has demonstrated that neuroprotective approaches could be a promising strategy for protecting against glaucoma. In the case of glaucoma, neuroprotection aims to prevent or slow down disease progression by mitigating RGCs death and optic nerve degeneration. Notably, new pharmacologic medications such as antiglaucomatous agents, antibiotics, dietary supplementation, novel neuroprotective molecules, neurotrophic factors, translational methods such as gene therapy and cell therapy, and electrical stimulation-based physiotherapy are emerging to attenuate the death of RGCs, or to make RGCs resilient to attacks. Understanding the roles of these interventions in RGC protection may offer benefits over traditional pharmacological medications and surgeries. In this review, we summarize the recent neuroprotective strategy for glaucoma, both in clinical trials and in laboratory research.
Collapse
Affiliation(s)
- Junhui Shen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yuanqi Wang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
21
|
Short CA, Onesto MM, Rempel SK, Catlett TS, Gomez TM. Familiar growth factors have diverse roles in neural network assembly. Curr Opin Neurobiol 2021; 66:233-239. [PMID: 33477094 PMCID: PMC8058242 DOI: 10.1016/j.conb.2020.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
The assembly of neuronal circuits during development depends on guidance of axonal growth cones by molecular cues deposited in their environment. While a number of families of axon guidance molecules have been identified and reviewed, important and diverse activities of traditional growth factors are emerging. Besides clear and well recognized roles in the regulation of cell division, differentiation and survival, new research shows later phase roles for a number of growth factors in promoting neuronal migration, axon guidance and synapse formation throughout the nervous system.
Collapse
Affiliation(s)
- Caitlin A Short
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Massimo M Onesto
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States; Stanford University School of Medicine, United States
| | - Sarah K Rempel
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy S Catlett
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy M Gomez
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
22
|
Wiszniak S, Schwarz Q. Exploring the Intracrine Functions of VEGF-A. Biomolecules 2021; 11:biom11010128. [PMID: 33478167 PMCID: PMC7835749 DOI: 10.3390/biom11010128] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A or VEGF) is a highly conserved secreted signalling protein best known for its roles in vascular development and angiogenesis. Many non-endothelial roles for VEGF are now established, with the discovery that VEGF and its receptors VEGFR1 and VEGFR2 are expressed in many non-vascular cell-types, as well as various cancers. In addition to secreted VEGF binding to its receptors in the extracellular space at the cell membrane (i.e., in a paracrine or autocrine mode), intracellularly localised VEGF is emerging as an important signalling molecule regulating cell growth, survival, and metabolism. This intracellular mode of signalling has been termed “intracrine”, and refers to the direct action of a signalling molecule within the cell without being secreted. In this review, we describe examples of intracrine VEGF signalling in regulating cell growth, differentiation and survival, both in normal cell homeostasis and development, as well as in cancer. We further discuss emerging evidence for the molecular mechanisms underpinning VEGF intracrine function, as well as the implications this intracellular mode of VEGF signalling may have for use and design of anti-VEGF cancer therapeutics.
Collapse
|
23
|
Rafipay A, Dun X, Parkinson DB, Erskine L, Vargesson N. Knockdown of slit signaling during limb development leads to a reduction in humerus length. Dev Dyn 2021; 250:1340-1357. [DOI: 10.1002/dvdy.284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Alexandra Rafipay
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen Aberdeen UK
| | - Xin‐Peng Dun
- Peninsula Medical School, Faculty of Health University of Plymouth Plymouth UK
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health University of Plymouth Plymouth UK
| | - Lynda Erskine
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen Aberdeen UK
| | - Neil Vargesson
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen Aberdeen UK
| |
Collapse
|
24
|
Han H, Yang C, Zhang Y, Han C, Zhang G. Vascular Endothelial Growth Factor Mediates the Sprouted Axonogenesis of Breast Cancer in Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:515-526. [PMID: 33345997 DOI: 10.1016/j.ajpath.2020.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
Nerve infiltration into the tumor is a common feature of the tumor microenvironment. The mechanisms of axonogenesis in breast cancer remain unclear. We hypothesized that vascular endothelial growth factor (VEGF), as well as nerve growth factor (NGF), is involved in the axonogenesis of breast cancer. A N-methyl-N-nitrosourea (MNU)-induced rat model of breast cancer was used to explore the presence of axonogenesis in breast tumor and the involvement of VEGF, as well as NGF, in the axonogenesis of breast tumor. Nerve infiltration into the tumor was found in MNU-induced rat model of breast cancer including the sensory and sympathetic nerve fibers. Nerve density was increased following the growth of tumor. The sensory neurons innervating the thoracic and abdominal mammary tumors peaked at T5 to T6 and L1 to L2 dorsal root ganglions, respectively. Either VEGF receptor inhibitor or antibody against VEGF receptor 2, as well as NGF receptor inhibitor, apparently decreased both the nerve density and vascular density of breast tumor. The reduced nerve density was correlated with the decreased vascular density induced by these treatments. In cultured dorsal root ganglion neurons, phosphatidylinositol 3 (PI3K)/Akt, extracellular signal-regulated protein kinase (ERK), and p38 inhibitors significantly attenuated VEGF-induced neurite elongation. These findings provide direct evidence that VEGF, as well as NGF, may control the axonogenesis of breast cancer.
Collapse
Affiliation(s)
- Hongxiu Han
- Department of Pathology, Tongji Hospital, Tongji University, Shangha, China; Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chunxue Yang
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Zhang
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changhao Han
- Department of Clinical Medicine, Second Clinical Medical College, Chongqing Medical University, Chongqing, China
| | - Guohua Zhang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Yoshino Y, Roy B, Dwivedi Y. Altered miRNA landscape of the anterior cingulate cortex is associated with potential loss of key neuronal functions in depressed brain. Eur Neuropsychopharmacol 2020; 40:70-84. [PMID: 32600964 PMCID: PMC7655604 DOI: 10.1016/j.euroneuro.2020.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/05/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs), a family of non-coding RNAs, have recently gained a considerable attention in neuropsychiatric disorders. Being a pleiotropic modulator of target gene(s), miRNA has been recognized as central to downstream gene regulatory networks. In the recent past, reports have suggested their role in changing the epigenetic landscape in brain of subjects with major depressive disorder (MDD). Anterior cingulate cortex (ACC) is a brain area implicated in several complex cognitive functions, such as impulse control, emotion, and decision-making and is associated with psychopathology associated with mood regulation. In this study, we examined whether MDD is associated with altered miRNA transcriptome in ACC and whether altered miRNA landscape is associated with modifications in specific gene network(s) at the functional level. Using next generation sequencing (NGS), it was observed that 117 miRNAs (4.61%) were significantly upregulated and 54 (2.13%) were downregulated in MDD subjects (n = 22) compared with non-psychiatric controls (n = 25). Using 24 most significantly upregulated miRNAs in the MDD group, we determined functional enrichment of target genes and found them to be associated with long-term potentiation, neurotrophin signaling, and axon guidance. Intra- and inter-cluster similarities of enriched terms based on overrepresented gene list showed neurobiological functions associated with neuronal growth and survival. Web centric parameters and ontology enrichment functions identified two major domains related to phosphatidyl signaling, GTPase signaling, neuronal migration, and neurotrophin signaling. Our findings of altered miRNA landscape along with a shift in targetome relate to previously reported morphometric changes and neuronal atrophy in ACC of MDD subjects.
Collapse
Affiliation(s)
- Yuta Yoshino
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
26
|
Balashova L, Bykovskaya S, Korobova L, Kuznetsova Y, Kantardgy E, Mukhin V, Popov A. Immunological outcomes in infants with ROP after dexamethasone and aminophylline. Clin Exp Pharmacol Physiol 2020; 47:1368-1373. [PMID: 32198937 DOI: 10.1111/1440-1681.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/18/2020] [Accepted: 03/18/2020] [Indexed: 11/28/2022]
Abstract
This research aims to improve anaesthesia services given to preterm infants by the use of dexamethasone and aminophylline administrated under sevoflurane, and to analyze its effect on the cell-mediated immunity (CD4+CD25+Foxp3+(T-reg) and CD4+CD25highFoxp3+CD127low). We have examined 74 premature babies with retinopathy of prematurity (ROP) at the 3-5 stages during the 25-32 week gestation period (1-6 months after birth). Both immunomodulators had no significant effect on clinical parameters after one dose (P > .05). Aminophylline (2.4% solution, 0.1 mL/kg or 0.132 mL per infant on average) and dexamethasone (0.4% solution, 0.1 mg/kg or 0.132 mL per infant on average) were intravenously injected 15 minutes before the end of the surgery. Required anaesthesia depth was maintained with inhalation anaesthetic (1.5-2.0 IAC), and the minimum fresh gas flow was not less than 2 L. Blood samples were taken from the vein (anaesthesia induction stage) into the tubes containing EDTA (the anticoagulant), stored at 20-25°C, and then, processed and stained within 24 hours after sampling. Both immunomodulators had no significant effect on clinical parameters after one dose (P > .05). Short-term shift in regulatory T-cell level affected by dexamethasone has a negative effect combined with further withdrawal effect that this hormonal drug has. Aminophylline has such clinical effects as improving pulmonary ventilation, decrease in apnoea frequency, and improving blood gas indices. Aminophylline has less expressed but more prolonged positive effect during the day when used for several days. It may lead to a persistent positive effect with progressive treatment outcomes.
Collapse
Affiliation(s)
- Larisa Balashova
- Library of Children's Ophthalmology, Pirogov Russian National Research Medical University (PRNIMU), Moscow, Russia
| | - Svetlana Bykovskaya
- Departament of Cell's Technology and Regenerative Medicine, Pirogov Russian National Research Medical University (PRNIMU), Moscow, Russia
| | - Ludmila Korobova
- Departament of Anesthesiology, Pirogov Russian National Research Medical University (PRNIMU), Moscow, Russia
| | - Yulia Kuznetsova
- Department of Ophthalmology, Pirogov Russian National Research Medical University (PRNIMU), Moscow, Russia
| | - Elena Kantardgy
- Library of Children's Ophthalmology, Pirogov Russian National Research Medical University (PRNIMU), Moscow, Russia
| | - Vladimir Mukhin
- Departament of Cell's Technology and Regenerative Medicine, Pirogov Russian National Research Medical University (PRNIMU), Moscow, Russia
| | - Andrey Popov
- Library of Children's Ophthalmology, Pirogov Russian National Research Medical University (PRNIMU), Moscow, Russia
| |
Collapse
|
27
|
Pai ELL, Chen J, Fazel Darbandi S, Cho FS, Chen J, Lindtner S, Chu JS, Paz JT, Vogt D, Paredes MF, Rubenstein JLR. Maf and Mafb control mouse pallial interneuron fate and maturation through neuropsychiatric disease gene regulation. eLife 2020; 9:e54903. [PMID: 32452758 PMCID: PMC7282818 DOI: 10.7554/elife.54903] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Maf (c-Maf) and Mafb transcription factors (TFs) have compensatory roles in repressing somatostatin (SST+) interneuron (IN) production in medial ganglionic eminence (MGE) secondary progenitors in mice. Maf and Mafb conditional deletion (cDKO) decreases the survival of MGE-derived cortical interneurons (CINs) and changes their physiological properties. Herein, we show that (1) Mef2c and Snap25 are positively regulated by Maf and Mafb to drive IN morphological maturation; (2) Maf and Mafb promote Mef2c expression which specifies parvalbumin (PV+) INs; (3) Elmo1, Igfbp4 and Mef2c are candidate markers of immature PV+ hippocampal INs (HIN). Furthermore, Maf/Mafb neonatal cDKOs have decreased CINs and increased HINs, that express Pnoc, an HIN specific marker. Our findings not only elucidate key gene targets of Maf and Mafb that control IN development, but also identify for the first time TFs that differentially regulate CIN vs. HIN production.
Collapse
Affiliation(s)
- Emily Ling-Lin Pai
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Jin Chen
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California San FranciscoSan FranciscoUnited States
| | - Siavash Fazel Darbandi
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
| | - Frances S Cho
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
| | - Jiapei Chen
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Susan Lindtner
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
| | - Julia S Chu
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
| | - Jeanne T Paz
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State UniversityGrand RapidsUnited States
| | - Mercedes F Paredes
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - John LR Rubenstein
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
28
|
Harde E, Nicholson L, Furones Cuadrado B, Bissen D, Wigge S, Urban S, Segarra M, Ruiz de Almodóvar C, Acker-Palmer A. EphrinB2 regulates VEGFR2 during dendritogenesis and hippocampal circuitry development. eLife 2019; 8:49819. [PMID: 31868584 PMCID: PMC6927743 DOI: 10.7554/elife.49819] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic factor that play important roles in the nervous system, although it is still unclear which receptors transduce those signals in neurons. Here, we show that in the developing hippocampus VEGFR2 (also known as KDR or FLK1) is expressed specifically in the CA3 region and it is required for dendritic arborization and spine morphogenesis in hippocampal neurons. Mice lacking VEGFR2 in neurons (Nes-cre Kdrlox/-) show decreased dendritic arbors and spines as well as a reduction in long-term potentiation (LTP) at the associational-commissural – CA3 synapses. Mechanistically, VEGFR2 internalization is required for VEGF-induced spine maturation. In analogy to endothelial cells, ephrinB2 controls VEGFR2 internalization in neurons. VEGFR2-ephrinB2 compound mice (Nes-cre Kdrlox/+ Efnb2lox/+) show reduced dendritic branching, reduced spine head size and impaired LTP. Our results demonstrate the functional crosstalk of VEGFR2 and ephrinB2 in vivo to control dendritic arborization, spine morphogenesis and hippocampal circuitry development.
Collapse
Affiliation(s)
- Eva Harde
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Max Planck Institute for Brain Research, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - LaShae Nicholson
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Max Planck Institute for Brain Research, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - Beatriz Furones Cuadrado
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - Diane Bissen
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Max Planck Institute for Brain Research, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - Sylvia Wigge
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - Severino Urban
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Marta Segarra
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - Carmen Ruiz de Almodóvar
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany.,European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Max Planck Institute for Brain Research, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| |
Collapse
|
29
|
Luck R, Urban S, Karakatsani A, Harde E, Sambandan S, Nicholson L, Haverkamp S, Mann R, Martin-Villalba A, Schuman EM, Acker-Palmer A, Ruiz de Almodóvar C. VEGF/VEGFR2 signaling regulates hippocampal axon branching during development. eLife 2019; 8:49818. [PMID: 31868583 PMCID: PMC6927742 DOI: 10.7554/elife.49818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Axon branching is crucial for proper formation of neuronal networks. Although originally identified as an angiogenic factor, VEGF also signals directly to neurons to regulate their development and function. Here we show that VEGF and its receptor VEGFR2 (also known as KDR or FLK1) are expressed in mouse hippocampal neurons during development, with VEGFR2 locally expressed in the CA3 region. Activation of VEGF/VEGFR2 signaling in isolated hippocampal neurons results in increased axon branching. Remarkably, inactivation of VEGFR2 also results in increased axon branching in vitro and in vivo. The increased CA3 axon branching is not productive as these axons are less mature and form less functional synapses with CA1 neurons. Mechanistically, while VEGF promotes the growth of formed branches without affecting filopodia formation, loss of VEGFR2 increases the number of filopodia and enhances the growth rate of new branches. Thus, a controlled VEGF/VEGFR2 signaling is required for proper CA3 hippocampal axon branching during mouse hippocampus development.
Collapse
Affiliation(s)
- Robert Luck
- Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany.,European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Severino Urban
- Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Andromachi Karakatsani
- Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany.,European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Eva Harde
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt am Main, Germany.,Neurovascular Interface group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt am Main, Germany
| | - Sivakumar Sambandan
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - LaShae Nicholson
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt am Main, Germany.,Neurovascular Interface group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt am Main, Germany
| | - Silke Haverkamp
- Imaging Facility, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Rebecca Mann
- Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Ana Martin-Villalba
- Department of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Erin Margaret Schuman
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt am Main, Germany.,Neurovascular Interface group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt am Main, Germany
| | - Carmen Ruiz de Almodóvar
- Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany.,European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
30
|
Murcia-Belmonte V, Erskine L. Wiring the Binocular Visual Pathways. Int J Mol Sci 2019; 20:ijms20133282. [PMID: 31277365 PMCID: PMC6651880 DOI: 10.3390/ijms20133282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) extend axons out of the retina to transmit visual information to the brain. These connections are established during development through the navigation of RGC axons along a relatively long, stereotypical pathway. RGC axons exit the eye at the optic disc and extend along the optic nerves to the ventral midline of the brain, where the two nerves meet to form the optic chiasm. In animals with binocular vision, the axons face a choice at the optic chiasm—to cross the midline and project to targets on the contralateral side of the brain, or avoid crossing the midline and project to ipsilateral brain targets. Ipsilaterally and contralaterally projecting RGCs originate in disparate regions of the retina that relate to the extent of binocular overlap in the visual field. In humans virtually all RGC axons originating in temporal retina project ipsilaterally, whereas in mice, ipsilaterally projecting RGCs are confined to the peripheral ventrotemporal retina. This review will discuss recent advances in our understanding of the mechanisms regulating specification of ipsilateral versus contralateral RGCs, and the differential guidance of their axons at the optic chiasm. Recent insights into the establishment of congruent topographic maps in both brain hemispheres also will be discussed.
Collapse
Affiliation(s)
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
31
|
Mason C, Guillery R. Conversations with Ray Guillery on albinism: linking Siamese cat visual pathway connectivity to mouse retinal development. Eur J Neurosci 2019; 49:913-927. [PMID: 30801828 DOI: 10.1111/ejn.14396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
In albinism of all species, perturbed melanin biosynthesis in the eye leads to foveal hypoplasia, retinal ganglion cell misrouting, and, consequently, altered binocular vision. Here, written before he died, Ray Guillery chronicles his discovery of the aberrant circuitry from eye to brain in the Siamese cat. Ray's characterization of visual pathway anomalies in this temperature sensitive mutation of tyrosinase and thus melanin synthesis in domestic cats opened the exploration of albinism and simultaneously, a genetic approach to the organization of neural circuitry. I follow this account with a remembrance of Ray's influence on my work. Beginning with my postdoc research with Ray on the cat visual pathway, through my own work on the mechanisms of retinal axon guidance in the developing mouse, Ray and I had a continuous and rich dialogue about the albino visual pathway. I will present the questions Ray posed and clues we have to date on the still-elusive link between eye pigment and the proper balance of ipsilateral and contralateral retinal ganglion cell projections to the brain.
Collapse
Affiliation(s)
- Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| | - Ray Guillery
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| |
Collapse
|
32
|
Shadad O, Chaulagain R, Luukko K, Kettunen P. Establishment of tooth blood supply and innervation is developmentally regulated and takes place through differential patterning processes. J Anat 2019; 234:465-479. [PMID: 30793310 DOI: 10.1111/joa.12950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 01/08/2023] Open
Abstract
Teeth are richly supported by blood vessels and peripheral nerves. The aim of this study was to describe in detail the developmental time-course and localization of blood vessels during early tooth formation and to compare that to innervation, as well as to address the putative role of vascular endothelial growth factor (VEGF), which is an essential regulator of vasculature development, in this process. The localization of blood vessels and neurites was compared using double immunofluorescence staining on sections at consecutive stages of the embryonic (E) and postnatal (PN) mandibular first molar tooth germ (E11-PN7). Cellular mRNA expression domains of VEGF and its signaling receptor VEGFR2 were studied using sectional radioactive in situ hybridization. Expression of VEGF mRNA and the encoded protein were studied by RT-PCR and western blot analysis, respectively, in the cap and early bell stage tooth germs, respectively. VEGFR2 was immunolocalized on tooth tissue sections. Smooth muscle cells were investigated by anti-alpha smooth muscle actin (αSMA) antibodies. VEGF showed developmentally regulated epithelial and mesenchymal mRNA expression domains including the enamel knot signaling centers that correlated with the growth and navigation of the blood vessels expressing Vegfr2 and VEGFR2 to the dental papilla and enamel organ. Developing blood vessels were present in the jaw mesenchyme including the presumptive dental mesenchyme before the appearance of the epithelial dental placode and dental neurites. Similarly, formation of a blood vessel plexus around the bud stage tooth germ and ingrowth of vessels into dental papilla at E14 preceded ingrowth of neurites. Subsequently, pioneer blood vessels in the dental papilla started to receive smooth muscle coverage at the early embryonic bell stage. Establishment and patterning of the blood vessels and nerves during tooth formation are developmentally regulated, stepwise processes that likely involve differential patterning mechanisms. Development of tooth vascular supply is proposed to be regulated by local, tooth-specific regulation by epithelial-mesenchymal tissue interactions and involving tooth target expressed VEGF signaling. Further investigations on tooth vascular development by local VEGF signaling, as well as how tooth innervation and development of blood vessels are integrated with advancing tooth organ formation by local signaling mechanisms, are warranted.
Collapse
Affiliation(s)
- Omnia Shadad
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway.,Centre for International Health, University of Bergen, Bergen, Norway
| | - Rajib Chaulagain
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway.,Centre for International Health, University of Bergen, Bergen, Norway
| | - Keijo Luukko
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway.,Section of Orthodontics, Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Paivi Kettunen
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway
| |
Collapse
|
33
|
Nakamoto C, Durward E, Horie M, Nakamoto M. Nell2 regulates the contralateral-versus-ipsilateral visual projection as a domain-specific positional cue. Development 2019; 146:dev.170704. [PMID: 30745429 DOI: 10.1242/dev.170704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023]
Abstract
In mammals with binocular vision, retinal ganglion cell (RGC) axons from each eye project to eye-specific domains in the contralateral and ipsilateral dorsal lateral geniculate nucleus (dLGN), underpinning disparity-based stereopsis. Although domain-specific axon guidance cues that discriminate contralateral and ipsilateral RGC axons have long been postulated as a key mechanism for development of the eye-specific retinogeniculate projection, the molecular nature of such cues has remained elusive. Here, we show that the extracellular glycoprotein Nell2 (neural epidermal growth factor-like-like 2) is expressed in the dorsomedial region of the dLGN, which ipsilateral RGC axons terminate in and contralateral axons avoid. In Nell2 mutant mice, contralateral RGC axons abnormally invaded the ipsilateral domain of the dLGN, and ipsilateral axons terminated in partially fragmented patches, forming a mosaic pattern of contralateral and ipsilateral axon-termination zones. In vitro, Nell2 exerted inhibitory effects on contralateral, but not ipsilateral, RGC axons. These results provide evidence that Nell2 acts as a domain-specific positional label in the dLGN that discriminates contralateral and ipsilateral RGC axons, and that it plays essential roles in the establishment of the eye-specific retinogeniculate projection.
Collapse
Affiliation(s)
- Chizu Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Elaine Durward
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Masato Horie
- Department of CNS Research, Otsuka Pharmaceutical, 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masaru Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
34
|
Lindenmaier LB, Parmentier N, Guo C, Tissir F, Wright KM. Dystroglycan is a scaffold for extracellular axon guidance decisions. eLife 2019; 8:42143. [PMID: 30758284 PMCID: PMC6395066 DOI: 10.7554/elife.42143] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Axon guidance requires interactions between extracellular signaling molecules and transmembrane receptors, but how appropriate context-dependent decisions are coordinated outside the cell remains unclear. Here we show that the transmembrane glycoprotein Dystroglycan interacts with a changing set of environmental cues that regulate the trajectories of extending axons throughout the mammalian brain and spinal cord. Dystroglycan operates primarily as an extracellular scaffold during axon guidance, as it functions non-cell autonomously and does not require signaling through its intracellular domain. We identify the transmembrane receptor Celsr3/Adgrc3 as a binding partner for Dystroglycan, and show that this interaction is critical for specific axon guidance events in vivo. These findings establish Dystroglycan as a multifunctional scaffold that coordinates extracellular matrix proteins, secreted cues, and transmembrane receptors to regulate axon guidance.
Collapse
Affiliation(s)
| | - Nicolas Parmentier
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Fadel Tissir
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
35
|
The role of placental growth factor (PlGF) and its receptor system in retinal vascular diseases. Prog Retin Eye Res 2018; 69:116-136. [PMID: 30385175 DOI: 10.1016/j.preteyeres.2018.10.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family. Upon binding to VEGF- and neuropilin-receptor sub-types, PlGF modulates a range of neural, glial and vascular cell responses that are distinct from VEGF-A. As PlGF expression is selectively associated with pathological angiogenesis and inflammation, its blockade does not affect the healthy vasculature. PlGF actions have been extensively described in tumor biology but more recently there has been accumulating preclinical evidence that indicates that this growth factor could have an important role in retinal diseases. High levels of PlGF have been found in aqueous humor, vitreous and/or retina of patients exhibiting retinopathies, especially those with diabetic retinopathy (DR) and neovascular age-related macular degeneration (nvAMD). Expression of this growth factor seems to correlate closely with many of the key pathogenic features of early and late retinopathy in preclinical models. For example, studies using genetic modification and/or pharmacological treatment to block PlGF in the laser-induced choroidal neovascularization (CNV) model, oxygen-induced retinopathy model, as well as various murine diabetic models, have shown that PlGF deletion or inhibition can reduce neovascularization, retinal leakage, inflammation and gliosis, without affecting vascular development or inducing neuronal degeneration. Moreover, an inhibitory effect of PlGF blockade on retinal scarring in the mouse CNV model has also been recently demonstrated and was found to be unique for PlGF inhibition, as compared to various VEGF inhibition strategies. Together, these preclinical results suggest that anti-PlGF therapy might have advantages over anti-VEGF treatment, and that it may have clinical applications as a standalone treatment or in combination with anti-VEGF. Additional clinical studies are clearly needed to further elucidate the role of PlGF and its potential as a therapeutic target in ocular diseases.
Collapse
|
36
|
Herrera E, Agudo-Barriuso M, Murcia-Belmonte V. Cranial Pair II: The Optic Nerves. Anat Rec (Hoboken) 2018; 302:428-445. [DOI: 10.1002/ar.23922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/19/2017] [Accepted: 05/14/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Eloísa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH); Av. Santiago Ramón y Cajal, s/n., 03550 Sant Joan d'Alacant Alicante Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina; Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca); Murcia Spain
| | - Verónica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH); Av. Santiago Ramón y Cajal, s/n., 03550 Sant Joan d'Alacant Alicante Spain
| |
Collapse
|
37
|
Retinal ganglion cell axon sorting at the optic chiasm requires dystroglycan. Dev Biol 2018; 442:210-219. [PMID: 30149005 DOI: 10.1016/j.ydbio.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
In the developing visual system, retinal ganglion cell (RGC) axons project from the retina to several distal retinorecipient regions in the brain. Several molecules have been implicated in guiding RGC axons in vivo, but the role of extracellular matrix molecules in this process remains poorly understood. Dystroglycan is a laminin-binding transmembrane protein important for formation and maintenance of the extracellular matrix and basement membranes and has previously been implicated in axon guidance in the developing spinal cord. Using two genetic models of functional dystroglycan loss, we show that dystroglycan is necessary for correct sorting of contralateral and ipsilateral RGC axons at the optic chiasm. Mis-sorted axons still target retinorecipient brain regions and persist in adult mice, even after axon pruning is complete. Our results highlight the importance of the extracellular matrix for axon sorting at an intermediate choice point in the developing visual circuit.
Collapse
|
38
|
Abstract
During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit formation is of interest not only to developmental neuroscientists but also for a better comprehension of neural disorders. Recent studies have demonstrated how crosstalk between different families of guidance receptors can regulate axonal navigation at choice points, and how changes in growth cone behaviour at intermediate targets require changes in the surface expression of receptors. These changes can be achieved by a variety of mechanisms, including transcription, translation, protein-protein interactions, and the specific trafficking of proteins and mRNAs. Here, I review these axon guidance mechanisms, highlighting the most recent advances in the field that challenge the textbook model of axon guidance.
Collapse
Affiliation(s)
- Esther T Stoeckli
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
39
|
Kou CTJ, Kandpal RP. Differential Expression Patterns of Eph Receptors and Ephrin Ligands in Human Cancers. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7390104. [PMID: 29682554 PMCID: PMC5851329 DOI: 10.1155/2018/7390104] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, which are activated by ephrin ligands that either are anchored to the membrane or contain a transmembrane domain. These molecules play important roles in the development of multicellular organisms, and the physiological functions of these receptor-ligand pairs have been extensively documented in axon guidance, neuronal development, vascular patterning, and inflammation during tissue injury. The recognition that aberrant regulation and expression of these molecules lead to alterations in proliferative, migratory, and invasive potential of a variety of human cancers has made them potential targets for cancer therapeutics. We present here the involvement of Eph receptors and ephrin ligands in lung carcinoma, breast carcinoma, prostate carcinoma, colorectal carcinoma, glioblastoma, and medulloblastoma. The aberrations in their abundances are described in the context of multiple signaling pathways, and differential expression is suggested as the mechanism underlying tumorigenesis.
Collapse
Affiliation(s)
- Chung-Ting Jimmy Kou
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Raj P. Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
40
|
The Primodos components Norethisterone acetate and Ethinyl estradiol induce developmental abnormalities in zebrafish embryos. Sci Rep 2018; 8:2917. [PMID: 29440757 PMCID: PMC5811427 DOI: 10.1038/s41598-018-21318-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Primodos was a hormone pregnancy test used between 1958-1978 that has been implicated with causing a range of birth defects ever since. Though Primodos is no longer used, it's components, Norethisterone acetate and Ethinyl estradiol, are used in other medications today including treatments for endometriosis and contraceptives. However, whether Primodos caused birth defects or not remains controversial, and has been little investigated. Here we used the developing zebrafish embryo, a human cell-line and mouse retinal explants to investigate the actions of the components of Primodos upon embryonic and tissue development. We show that Norethisterone acetate and Ethinyl estradiol cause embryonic damage in a dose and time responsive manner. The damage occurs rapidly after drug exposure, affecting multiple organ systems. Moreover, we found that the Norethisterone acetate and Ethinyl estradiol mixture can affect nerve outgrowth and blood vessel patterning directly and accumulates in the forming embryo for at least 24 hrs. These data demonstrate that Norethisterone acetate and Ethinyl estradiol are potentially teratogenic, depending on dose and embryonic stage of development in the zebrafish. Further work in mammalian model species are now required to build on these findings and determine if placental embryos also are affected by synthetic sex hormones and their mechanisms of action.
Collapse
|
41
|
Schlau M, Terheyden-Keighley D, Theis V, Mannherz HG, Theiss C. VEGF Triggers the Activation of Cofilin and the Arp2/3 Complex within the Growth Cone. Int J Mol Sci 2018; 19:ijms19020384. [PMID: 29382077 PMCID: PMC5855606 DOI: 10.3390/ijms19020384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 01/05/2023] Open
Abstract
A crucial neuronal structure for the development and regeneration of neuronal networks is the axonal growth cone. Affected by different guidance cues, it grows in a predetermined direction to reach its final destination. One of those cues is the vascular endothelial growth factor (VEGF), which was identified as a positive effector for growth cone movement. These positive effects are mainly mediated by a reorganization of the actin network. This study shows that VEGF triggers a tight colocalization of cofilin and the Arp2/3 complex to the actin cytoskeleton within chicken dorsal root ganglia (DRG). Live cell imaging after microinjection of GFP (green fluorescent protein)-cofilin and RFP (red fluorescent protein)-LifeAct revealed that both labeled proteins rapidly redistributed within growth cones, and showed a congruent distribution pattern after VEGF supplementation. Disruption of signaling upstream of cofilin via blocking LIM-kinase (LIMK) activity resulted in growth cones displaying regressive growth behavior. Microinjection of GFP-p16b (a subunit of the Arp2/3 complex) and RFP-LifeAct revealed that both proteins redistributed into lamellipodia of the growth cone within minutes after VEGF stimulation. Disruption of the signaling to the Arp2/3 complex in the presence of VEGF by inhibition of N-WASP (neuronal Wiskott–Aldrich–Scott protein) caused retraction of growth cones. Hence, cofilin and the Arp2/3 complex appear to be downstream effector proteins of VEGF signaling to the actin cytoskeleton of DRG growth cones. Our data suggest that VEGF simultaneously affects different pathways for signaling to the actin cytoskeleton, since activation of cofilin occurs via inhibition of LIMK, whereas activation of Arp2/3 is achieved by stimulation of N-WASP.
Collapse
Affiliation(s)
- Matthias Schlau
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Daniel Terheyden-Keighley
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Verena Theis
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Hans Georg Mannherz
- Research Group Molecular Cardiology, University Hospital Bergmannsheil and St. Josef Hospital, c/o Clinical Pharmacology, Ruhr-University, 44780 Bochum, Germany.
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| |
Collapse
|
42
|
Peng J, Fabre PJ, Dolique T, Swikert SM, Kermasson L, Shimogori T, Charron F. Sonic Hedgehog Is a Remotely Produced Cue that Controls Axon Guidance Trans-axonally at a Midline Choice Point. Neuron 2018; 97:326-340.e4. [DOI: 10.1016/j.neuron.2017.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/10/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
|
43
|
Yang P, Sun X, Kou ZW, Wu KW, Huang YL, Sun FY. VEGF Axonal Transport Dependent on Kinesin-1B and Microtubules Dynamics. Front Mol Neurosci 2017; 10:424. [PMID: 29311814 PMCID: PMC5742618 DOI: 10.3389/fnmol.2017.00424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 12/05/2017] [Indexed: 01/19/2023] Open
Abstract
Axon-transport plays an important role in neuronal activity and survival. Reduced endogenous VEGF can cause neuronal damage and axon degeneration. It is unknown at this time if VEGF can be transported within the axon or whether it can be released by axonal depolarization. We transfected VEGF-eGFP plasmids in cultured hippocampal neurons and tracked their movement in the axons by live-cell confocal imaging. Then, we co-transfected phVEGF-eGFP and kinesin-1B-DsRed vectors into neurons and combined with immunoprecipitation and two-color imaging to study the mechanism of VEGF axon-trafficking. We found that VEGF vesicles morphologically co-localized and biochemically bounded with kinesin-1B, as well as co-trafficked with it in the axons. Moreover, the capacity for axonal trafficking of VEGF was reduced by administration of nocodazole, an inhibitor of microtubules, or kinesin-1B shRNA. In addition, we found that VEGF could release from the cultured neurons under acute depolarizing stimulation with potassium chloride. Therefore, present findings suggest that neuronal VEGF is stored in the vesicles, actively released, and transported in the axons, which depends on the presence of kinesin-1B and functional microtubules. These results further help us to understand the importance of neuronal VEGF in the maintenance of neuronal activity and survival throughout life.
Collapse
Affiliation(s)
- Ping Yang
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiao Sun
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zeng-Wei Kou
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kun-Wei Wu
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ya-Lin Huang
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Feng-Yan Sun
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Guidance of retinal axons in mammals. Semin Cell Dev Biol 2017; 85:48-59. [PMID: 29174916 DOI: 10.1016/j.semcdb.2017.11.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022]
Abstract
In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision.
Collapse
|
45
|
Mahony C, McMenemy S, Rafipay AJ, Beedie SL, Fraga LR, Gütschow M, Figg WD, Erskine L, Vargesson N. CPS49-induced neurotoxicity does not cause limb patterning anomalies in developing chicken embryos. J Anat 2017; 232:568-574. [PMID: 29023763 DOI: 10.1111/joa.12712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 11/30/2022] Open
Abstract
Thalidomide notoriously caused severe birth defects, particularly to the limbs, in those exposed in utero following maternal use of the drug to treat morning sickness. How the drug caused these birth defects remains unclear. Many theories have been proposed including actions on the forming blood vessels. However, thalidomide survivors also have altered nerve patterns and the drug is known for its neurotoxic actions in adults following prolonged use. We have previously shown that CPS49, an anti-angiogenic analog of thalidomide, causes a range of limb malformations in a time-sensitive manner in chicken embryos. Here we investigated whether CPS49 also is neurotoxic and whether effects on nerve development impact upon limb development. We found that CPS49 is neurotoxic, just like thalidomide, and can cause some neuronal loss late developing chicken limbs, but only when the limb is already innervated. However, CPS49 exposure does not cause defects in limb size when added to late developing chicken limbs. In contrast, in early limb buds which are not innervated, CPS49 exposure affects limb area significantly. To investigate in more detail the role of neurotoxicity and its impact on chicken limb development we inhibited nerve innervation at a range of developmental timepoints through using β-bungarotoxin. We found that neuronal inhibition or ablation before, during or after limb outgrowth and innervation does not result in obvious limb cartilage patterning or number changes. We conclude that while CPS49 is neurotoxic, given the late innervation of the developing limb, and that neuronal inhibition/ablation throughout limb development does not cause similar limb patterning anomalies to those seen in thalidomide survivors, nerve defects are not the primary underlying cause of the severe limb patterning defects induced by CPS49/thalidomide.
Collapse
Affiliation(s)
- Chris Mahony
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Scott McMenemy
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alexandra J Rafipay
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Shaunna-Leigh Beedie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lucas Rosa Fraga
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
46
|
Erskine L, François U, Denti L, Joyce A, Tillo M, Bruce F, Vargesson N, Ruhrberg C. VEGF-A and neuropilin 1 (NRP1) shape axon projections in the developing CNS via dual roles in neurons and blood vessels. Development 2017; 144:2504-2516. [PMID: 28676569 PMCID: PMC5536872 DOI: 10.1242/dev.151621] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
Abstract
Visual information is relayed from the eye to the brain via retinal ganglion cell (RGC) axons. Mice lacking NRP1 or NRP1-binding VEGF-A isoforms have defective RGC axon organisation alongside brain vascular defects. It is not known whether axonal defects are caused exclusively by defective VEGF-A signalling in RGCs or are exacerbated by abnormal vascular morphology. Targeted NRP1 ablation in RGCs with a Brn3bCre knock-in allele reduced axonal midline crossing at the optic chiasm and optic tract fasciculation. In contrast, Tie2-Cre-mediated endothelial NRP1 ablation induced axon exclusion zones in the optic tracts without impairing axon crossing. Similar defects were observed in Vegfa120/120 and Vegfa188/188 mice, which have vascular defects as a result of their expression of single VEGF-A isoforms. Ectopic midline vascularisation in endothelial Nrp1 and Vegfa188/188 mutants caused additional axonal exclusion zones within the chiasm. As in vitro and in vivo assays demonstrated that vessels do not repel axons, abnormally large or ectopically positioned vessels are likely to present physical obstacles to axon growth. We conclude that proper axonal wiring during brain development depends on the precise molecular control of neurovascular co-patterning. Summary: NRP1 plays a dual role in retinal ganglion cells and in vascular endothelial cells to organise axons along the optic pathway between the mouse retina and diencephalon.
Collapse
Affiliation(s)
- Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Urielle François
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Laura Denti
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Andy Joyce
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Miguel Tillo
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Freyja Bruce
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
47
|
Abstract
Although much is known about the regenerative capacity of retinal ganglion cells, very significant barriers remain in our ability to restore visual function following traumatic injury or disease-induced degeneration. Here we summarize our current understanding of the factors regulating axon guidance and target engagement in regenerating axons, and review the state of the field of neural regeneration, focusing on the visual system and highlighting studies using other model systems that can inform analysis of visual system regeneration. This overview is motivated by a Society for Neuroscience Satellite meeting, "Reconnecting Neurons in the Visual System," held in October 2015 sponsored by the National Eye Institute as part of their "Audacious Goals Initiative" and co-organized by Carol Mason (Columbia University) and Michael Crair (Yale University). The collective wisdom of the conference participants pointed to important gaps in our knowledge and barriers to progress in promoting the restoration of visual system function. This article is thus a summary of our existing understanding of visual system regeneration and provides a blueprint for future progress in the field.
Collapse
|
48
|
Martins LF, Costa RO, Pedro JR, Aguiar P, Serra SC, Teixeira FG, Sousa N, Salgado AJ, Almeida RD. Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep 2017. [PMID: 28646200 PMCID: PMC5482809 DOI: 10.1038/s41598-017-03592-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used for cell-based therapies in regenerative medicine, with increasing importance in central and peripheral nervous system repair. However, MSCs grafting present disadvantages, such as, a high number of cells required for transplantation and low survival rate when transplanted into the central nervous system (CNS). In line with this, MSCs secretome which present on its composition a wide range of molecules (neurotrophins, cytokines) and microvesicles, can be a solution to surpass these problems. However, the effect of MSCs secretome in axonal elongation is poorly understood. In this study, we demonstrate that application of MSCs secretome to both rat cortical and hippocampal neurons induces an increase in axonal length. In addition, we show that this growth effect is axonal intrinsic with no contribution from the cell body. To further understand which are the molecules required for secretome-induced axonal outgrowth effect, we depleted brain-derived neurotrophic factor (BDNF) from the secretome. Our results show that in the absence of BDNF, secretome-induced axonal elongation effect is lost and that axons present a reduced axonal growth rate. Altogether, our results demonstrate that MSCs secretome is able to promote axonal outgrowth in CNS neurons and this effect is mediated by BDNF.
Collapse
Affiliation(s)
- Luís F Martins
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui O Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joana R Pedro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paulo Aguiar
- INEB - Instituto de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fabio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,School of Health, Polytechnic of Porto (ESS-IPP), Porto, Portugal. .,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
49
|
Lizano PL, Yao JK, Tandon N, Mothi SS, Montrose DM, Keshavan MS. Association of sFlt-1 and worsening psychopathology in relatives at high risk for psychosis: A longitudinal study. Schizophr Res 2017; 183:75-81. [PMID: 27863935 PMCID: PMC5432401 DOI: 10.1016/j.schres.2016.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Angiogenic dysfunction and abnormalities in psychopathology and brain structure have been reported in schizophrenia, but their relationships are mostly unknown. We recently demonstrated that sFlt-1, anti-angiogenic factor, was significantly elevated in patients at familial high-risk for psychosis (FHR). We hypothesized that elevated sFlt-1 correlates with baseline and longitudinal changes in psychopathology, cognition, and brain structure. METHODS Plasma sFlt-1 in FHR (n=35) and HC (n=39) was obtained at baseline. Schizotypal, cognitive, soft neurologic signs, and structural brain imaging (1.5T T1-weighted MRI, FreeSurfer software) measures were obtained in both groups. Longitudinal clinical and brain structural measures were obtained in a subgroup of FHR patients. Baseline data analysis used correlations between sFlt-1 and clinical/imaging measures and adjusted for multiple corrections. Linear mixed-effects models described differences in trajectories between high sFlt-1 and low sFlt-1. RESULTS Baseline sFlt-1 was significantly correlated with soft neurologic signs (r=0.27, p=0.02) and right entorhinal volume (r=0.50, p=0.02), but not other baseline clinical/brain structural measures. Longitudinal examination of the FHR group (sFlt-1 high, n=14; sFlt-1 low, n=14) demonstrated that high sFlt-1 was significantly associated with worsening schizotypal symptoms (t=2.4, p=0.018). Reduced right hippocampal/parahippocampal volume/thickness trajectories were observed in high versus low sFlt-1 groups. CONCLUSIONS The findings from this FHR study demonstrate that peripheral markers of angiogenic dysfunction can predict longitudinal clinical and brain structural changes. Also, these findings further support the hypothesis of altered microvascular circulation in schizophrenia and those at risk.
Collapse
Affiliation(s)
- Paulo L Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States
| | - Jeffrey K Yao
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; VA Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States.
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Baylor College of Medicine, Houston, TX, United States
| | - Suraj Sarvode Mothi
- Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States
| | - Debra M Montrose
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
50
|
Zhang C, Kolodkin AL, Wong RO, James RE. Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annu Rev Neurosci 2017; 40:395-424. [PMID: 28460185 DOI: 10.1146/annurev-neuro-072116-031607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Rebecca E James
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| |
Collapse
|