1
|
Liu YY, Wu K, Dong YT, Jia R, Chen XH, Ge AY, Cao JL, Zhang YM. Lateral habenula induces cognitive and affective dysfunctions in mice with neuropathic pain via an indirect pathway to the ventral tegmental area. Neuropsychopharmacology 2025; 50:1039-1050. [PMID: 40089563 DOI: 10.1038/s41386-025-02084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Neuropathic pain, which has become a major public health concern, is frequently accompanied by the deterioration of affective behavior and cognitive function. However, the brain circuitry underlying these changes is poorly understood. Therefore, we aimed to identify in a mouse model the converging circuit that influences the sensory, affective, and cognitive consequences of neuropathic pain. The lateral habenula (LHb) and ventral tegmental area (VTA) have been confirmed to play critical roles in the regulation of pain, cognition, and depression. Given the essential role of the LHb in depression and cognition, we attempted to clarify how neural circuitry involving the LHb integrates pain-related information. Our data confirmed that the VTA receives projections from the LHb, but our results suggest that inhibition of this direct pathway has no effect on the behavior of mice with chronic neuropathic pain. The rostromedial tegmental nucleus (RMTg), a GABAergic structure believed to underlie the transient inhibition of DAergic neurons in the VTA, received glutamatergic inputs from the LHb and projected strongly to the VTA. Furthermore, our data suggest that a projection from LHb glutamatergic neurons to RMTg GABAergic neurons in the VTA, constituting an indirect LHbGlu → RMTgGABA → VTADA pathway, participates in peripheral nerve injury-induced nociceptive hypersensitivity, depressive-like behavior, and cognitive dysfunction. Ex vivo extracellular recordings of LHb neurons showed that the proportion of burst-firing cells in the LHb was significantly increased in indirect projections rather than in direct projections. This may explain the functional discrepancies between direct and indirect projections of the LHb to the VTA. Collectively, our study identifies a pivotal role of the LHbGlu → RMTgGABA → VTADA pathway in processing pain. This pathway may offer new therapeutic targets to treat neuropathic pain and its associated depressive-like and cognitive impairments.
Collapse
Affiliation(s)
- Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ru Jia
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - An-Yu Ge
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Deng X, Xu W, Liu Y, Jing H, Zhong J, Sun K, Zhou R, Xu L, Wu X, Zhang B, Chen W, Jiang S, Chen G, Zhu Y. Social rank modulates methamphetamine-seeking in dominant and subordinate male rodents via distinct dopaminergic pathways. Nat Neurosci 2025:10.1038/s41593-025-01951-0. [PMID: 40355612 DOI: 10.1038/s41593-025-01951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2025] [Indexed: 05/14/2025]
Abstract
Social status has a profound impact on mental health and propensity towards drug addiction. However, the neural mechanisms underlying the effects of social rank on drug-seeking behavior remain unclear. Here we found that dominant male rodents (based on the tube test) had denser mesocortical dopaminergic projections and were more resistant to methamphetamine (METH)-seeking, whereas subordinates had heightened dopaminergic function in the mesolimbic pathway and were more vulnerable to METH seeking. Optogenetic activation of the mesocortical dopaminergic pathway promoted winning and suppressed METH seeking in subordinates, whereas lesions of the mesocortical pathway increased METH seeking in dominants. Elevation of social rank with forced win training in subordinates led to remodeling of the dopaminergic system and prevented METH-seeking behavior. In females, however, both ranks were susceptible to METH seeking, with mesocorticolimbic pathways comparable to those in subordinate males. These results provide a framework for understanding the neural basis of the impact of social status on drug-seeking.
Collapse
Affiliation(s)
- Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Xu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yutong Liu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiyang Jing
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiafeng Zhong
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaige Sun
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ruiyi Zhou
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Xu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaocong Wu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baofang Zhang
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wanqi Chen
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shaolei Jiang
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China.
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, and State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China.
| |
Collapse
|
3
|
Wu CH, Camelot L, Lecca S, Mameli M. Neuromodulatory signaling contributing to the encoding of aversion. Trends Neurosci 2025:S0166-2236(25)00078-5. [PMID: 40318995 DOI: 10.1016/j.tins.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
The appropriate and rapid encoding of stimuli bearing a negative valence enables behaviors that are essential for survival. Recent advances in neuroscience using rodents as a model system highlight the relevance of cell type-specific neuronal activities in diverse brain networks for the encoding of aversion, as well as their importance for subsequent behavioral strategies. Within these networks, neuromodulators influence cell excitability, adjust fast synaptic neurotransmission, and affect plasticity, ultimately modulating behaviors. In this review we first discuss contemporary findings leveraging the use of cutting-edge neurotechnologies to define aversion-related neural circuits. The spatial and temporal dynamics of the release of neuromodulators and neuropeptides upon exposure to aversive stimuli are described within defined brain circuits. Together, these mechanistic insights update the present neural framework through which aversion drives motivated behaviors.
Collapse
Affiliation(s)
- Cheng-Hsi Wu
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Léa Camelot
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Salvatore Lecca
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMRS) 839, 75005 Paris, France.
| |
Collapse
|
4
|
Gazit Shimoni N, Tose AJ, Seng C, Jin Y, Lukacsovich T, Yang H, Verharen JPH, Liu C, Tanios M, Hu E, Read J, Tang LW, Lim BK, Tian L, Földy C, Lammel S. Changes in neurotensin signalling drive hedonic devaluation in obesity. Nature 2025; 641:1238-1247. [PMID: 40140571 PMCID: PMC12119351 DOI: 10.1038/s41586-025-08748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
Calorie-rich foods, particularly those that are high in fat and sugar, evoke pleasure in both humans and animals1. However, prolonged consumption of such foods may reduce their hedonic value, potentially contributing to obesity2-4. Here we investigated this phenomenon in mice on a chronic high-fat diet (HFD). Although these mice preferred high-fat food over regular chow in their home cages, they showed reduced interest in calorie-rich foods in a no-effort setting. This paradoxical decrease in hedonic feeding has been reported previously3-7, but its neurobiological basis remains unclear. We found that in mice on regular diet, neurons in the lateral nucleus accumbens (NAcLat) projecting to the ventral tegmental area (VTA) encoded hedonic feeding behaviours. In HFD mice, this behaviour was reduced and uncoupled from neural activity. Optogenetic stimulation of the NAcLat→VTA pathway increased hedonic feeding in mice on regular diet but not in HFD mice, though this behaviour was restored when HFD mice returned to a regular diet. HFD mice exhibited reduced neurotensin expression and release in the NAcLat→VTA pathway. Furthermore, neurotensin knockout in the NAcLat and neurotensin receptor blockade in the VTA each abolished optogenetically induced hedonic feeding behaviour. Enhancing neurotensin signalling via overexpression normalized aspects of diet-induced obesity, including weight gain and hedonic feeding. Together, our findings identify a neural circuit mechanism that links the devaluation of hedonic foods with obesity.
Collapse
Affiliation(s)
- Neta Gazit Shimoni
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Amanda J Tose
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Charlotte Seng
- Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Yihan Jin
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- Max Planck Florida Institute For Neuroscience, Jupiter, FL, USA
| | - Tamás Lukacsovich
- Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Hongbin Yang
- Department of Neurobiology and Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jeroen P H Verharen
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Christine Liu
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Michael Tanios
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Eric Hu
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Jonathan Read
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Lilly W Tang
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Byung Kook Lim
- Division of Biological Sciences, University of California San Diego, San Diego, CA, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- Max Planck Florida Institute For Neuroscience, Jupiter, FL, USA
| | - Csaba Földy
- Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Stephan Lammel
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Valenti O, Rekawek KA, Wieser S, Bulut H, Scholze P, Boehm S. Plasticity of ventral tegmental area disturbance during abstinence after repeated amphetamine exposure: restoration by selective activation of group II metabotropic glutamate receptors. Front Pharmacol 2025; 16:1534101. [PMID: 40337518 PMCID: PMC12055554 DOI: 10.3389/fphar.2025.1534101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Background and aims The psychostimulant actions of amphetamine (AMPH) have been correlated with its ability to orchestrate ventral tegmental area (VTA) dopamine (DA) neuron activity states and, thus, DA release in output regions: in rats, a single exposure is sufficient to reduce the fraction of spontaneously active DA neurons, i.e., DA neuron population activity, whereas AMPH abstinence after repeated exposure leads to an increase. Here, this switch in DA neuron activity was resolved in detail in mice, and its sensitivity towards activation of group II metabotropic glutamate receptor (mGluR2 and mGluR3) was investigated. Experimental procedure All experiments were conducted on C57BL/6J male mice. After repeated AMPH administration (2 mg/kg), the amine was withdrawn for up to 15 days and VTA DA neuron activity was assessed. The involvement VTA afferent regions with respect to AMPH actions was analyzed either by local instillation of drugs or through inactivation by tetrodotoxin. Selective agonists or allosteric modulators of mGluR2 and mGluR3 were used to explore whether group II mGluR might interfere with VTA disturbances caused by the amine. Results After repeated AMPH exposure, VTA DA neuron activity remained reduced for 4 days and then rose to a hyperdopaminergic state within 15 days. The initial hypodopaminergia was coordinated by an amygdala (AMG) - nucleus accumbens (NAc) -VTA pathway, whereas the hyperactivity relied on ventral hippocampus (vHPC). Hypodopaminergic VTA activity was recovered towards physiological levels by activation of mGluR2, but not mGluR3, and this remission was contingent on glutamatergic transmission within NAc and propagation via the ventral pallidum. Results of a light-dark transition task confirmed anxiolytic efficaciousness of mGluR2 activation. The hyperdopaminergic VTA activity, in contrast, was normalized by selective activation of mGluR3, but not mGluR2, within vHPC. AMPH re-exposure after abstinence turned VTA activity down, but this suppression involved alternative circuits and could no longer be rescued by mGluR activation. Conclusion Thus, abstinence from repeated AMPH intake drives VTA activity from hypo-into hyperdopaminergic states, and both can be readjusted towards physiological levels via different members of group II mGluRs.
Collapse
Affiliation(s)
- Ornella Valenti
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Anna Rekawek
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sophie Wieser
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Molecular Biotechnology, Fachhochschule (FH) Campus Wien, Vienna, Austria
| | - Hilal Bulut
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Petra Scholze
- Division of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stefan Boehm
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Cross EA, Borland JM, Shaughnessy EK, Lee SD, Vu V, Sambor EA, Meisel RL, Huhman KL, Albers HE. Distinct subcircuits within the mesolimbic dopamine system encode the salience and valence of social stimuli. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06793-z. [PMID: 40249519 DOI: 10.1007/s00213-025-06793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
RATIONALE The mesolimbic dopamine (DA) system (MDS) is the canonical "reward" pathway that has been studied extensively in the context of the rewarding properties of food and drugs of abuse. In contrast, little is known about the role of the MDS in the processing of the rewarding and aversive properties of social stimuli. OBJECTIVE Social interactions can be characterized by their salience (i.e., importance) and their rewarding or aversive properties (i.e., valence). Here, we test the novel hypothesis that projections from the medial ventral tegmental area (VTA) to the nucleus accumbens (NAc) core code the salience of social stimuli through phasic release of DA in response to rewarding and aversive social stimuli. In contrast, lateral VTA (lVTA) projections to the NAc shell are proposed to encode social valence, with increased tonic DA signaling rewarding interactions and decreased tonic DA signaling aversive ones. METHODS Using DA amperometry, which monitors DA signaling with a high degree of temporal and anatomical resolution, we measured DA release in the NAc core or shell during rewarding and aversive social interactions. Anatomical and functional studies were conducted utilizing retrograde tracing and immunohistochemistry. RESULTS These studies support the hypothesis that distinct MDS subcircuits (i.e., mVTA to NAc core and lVTA to NAc shell) signal the salience and valence, respectively, of social stimuli. CONCLUSION Together, these data provide a novel conceptualization of how functional and anatomical heterogeneity within the MDS detect and distinguish between social salience, social reward, and social aversion.
Collapse
Affiliation(s)
- Erica A Cross
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5090, Atlanta, GA, 30303, USA
| | - Johnathan M Borland
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5090, Atlanta, GA, 30303, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emma K Shaughnessy
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5090, Atlanta, GA, 30303, USA
| | - Susan D Lee
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5090, Atlanta, GA, 30303, USA
| | - Vivian Vu
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5090, Atlanta, GA, 30303, USA
| | - Elizabeth A Sambor
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5090, Atlanta, GA, 30303, USA
| | - Robert L Meisel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kim L Huhman
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5090, Atlanta, GA, 30303, USA
| | - H Elliott Albers
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5090, Atlanta, GA, 30303, USA.
| |
Collapse
|
7
|
Morris LS, Costi S, Hameed S, Collins KA, Stern ER, Chowdhury A, Morel C, Salas R, Iosifescu DV, Han MH, Mathew SJ, Murrough JW. Effects of KCNQ potassium channel modulation on ventral tegmental area activity and connectivity in individuals with depression and anhedonia. Mol Psychiatry 2025:10.1038/s41380-025-02957-7. [PMID: 40133425 DOI: 10.1038/s41380-025-02957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 02/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Up to half of individuals with depression do not respond to first-line treatments, possibly due to a lack of treatment interventions informed by neurobiology. A novel therapeutic approach for depression has recently emerged from translational work targeting aberrant activity of ventral tegmental area (VTA) dopamine neurons via modulation of the KCNQ voltage-gated potassium channels. In this study, individuals with major depressive disorder (MDD) with elevated anhedonia were randomized to five weeks of the KCNQ channel opener, ezogabine (up to 900 mg/day) or placebo. Participants completed functional MRI during a monetary anticipation task and resting-state at baseline and at end-of-treatment. The clinical results were reported previously. Here, we examined VTA activity during monetary anticipation and resting-state functional connectivity between the VTA and the ventromedial prefrontal cortex (mesocortical pathway) and ventral striatum (mesolimbic pathway) at baseline and end-of-treatment. Results indicated a significant drug-by-time interaction in VTA activation during anticipation (F(1,34) = 4.36, p = 0.044), where VTA activation was reduced from pre-to-post ezogabine, compared to placebo. Mesocortical functional connectivity was also higher in depressed participants at baseline compared to a healthy control group (t(56) = 2.68, p = 0.01) and associated with VTA hyper-activity during task-based functional MRI at baseline (R = 0.352, p = 0.033). Mesocortical connectivity was also reduced from pre-to-post ezogabine, compared to placebo (significant drug-by-time interaction, F(1,33) = 4.317, p = 0.046). Together this translational work is consistent with preclinical findings highlighting VTA hyper-activity in depression, and suggesting a mechanism of action for KCNQ channel openers in normalizing this hyper-activity in individuals with both depression and anhedonia.
Collapse
Affiliation(s)
- Laurel S Morris
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Sara Costi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Sara Hameed
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Emily R Stern
- Nathan Kline Institute, Orangeburg, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Avijit Chowdhury
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Carole Morel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ramiro Salas
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
- Neuroscience Department, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. Debakey VA Medical Center, Houston, TX, USA
| | - Dan V Iosifescu
- Nathan Kline Institute, Orangeburg, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, PR China
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjay J Mathew
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
- Michael E. Debakey VA Medical Center, Houston, TX, USA
| | - James W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA.
- VISN 2 Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
8
|
Morris LS, Beltrán JM, Murrough JW, Morel C. Cross-species dissection of the modular role of the ventral tegmental area in depressive disorders. Neuroscience 2025; 569:248-266. [PMID: 39914519 PMCID: PMC11885014 DOI: 10.1016/j.neuroscience.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Depressive disorders, including major depressive disorder (MDD), represent one of the most prevalent set of disorders worldwide. MDD is characterized by a range of cognitive, behavioral, and neurobiological changes that contribute to the vast array of symptom profiles that make this disorder particularly difficult to treat. A multitude of established evidence suggests a role for the dopamine system, stemming in part from the ventral tegmental area (VTA), in mediating symptoms and behavioral changes that underlie depression. Developments in cutting-edge technologies in pre-clinical models of depressive phenotypes, such as retrograde tracing, electrophysiological recordings, immunohistochemistry, and molecular profiling, have allowed a deeper characterization of singular VTA neuron molecular, physiological, and projection properties. These developments have highlighted that the VTA is not a homogenous cell population but instead comprises vast cellular diversity that underscores its modular role across various functions related to reward processing, aversion, salience processing, learning and motivation. In this review, we begin by introducing the various cell types and brain regions that comprise the VTA circuitry. Then, we introduce the role of the VTA in reward processing as it compares to aversion processing. Next, we characterize distinct neural pathways within the VTA circuitry to understand the effects of chronic social and non-social stress and tie together how these neurobiological changes manifest into specific behavioral phenotypes. Finally, we relate these preclinical findings to clinical findings to parse the heterogeneity of depressive phenotypes and explain the efficacy of recent novel pharmacological interventions that may target the VTA in MDD.
Collapse
Affiliation(s)
- L S Morris
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York NY United States; Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK.
| | - J M Beltrán
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York NY United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York NY United States
| | - J W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York NY United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York NY United States; VISN 2 Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center Bronx NY United States
| | - C Morel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York NY United States.
| |
Collapse
|
9
|
Kritzer MF, Adler A, Locklear M. Androgen effects on mesoprefrontal dopamine systems in the adult male brain. Neuroscience 2025; 568:519-534. [PMID: 38977069 DOI: 10.1016/j.neuroscience.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Epidemiological data show that males are more often and/or more severely affected by symptoms of prefrontal cortical dysfunction in schizophrenia, Parkinson's disease and other disorders in which dopamine circuits associated with the prefrontal cortex are dysregulated. This review focuses on research showing that these dopamine circuits are powerfully regulated by androgens. It begins with a brief overview of the sex differences that distinguish prefrontal function in health and prefrontal dysfunction or decline in aging and/or neuropsychiatric disease. This review article then spotlights data from human subjects and animal models that specifically identify androgens as potent modulators of prefrontal cortical operations and of closely related, functionally critical measures of prefrontal dopamine level or tone. Candidate mechanisms by which androgens dynamically control mesoprefrontal dopamine systems and impact prefrontal states of hypo- and hyper-dopaminergia in aging and disease are then considered. This is followed by discussion of a working model that identifies a key locus for androgen modulation of mesoprefrontal dopamine systems as residing within the prefrontal cortex itself. The last sections of this review critically consider the ways in which the organization and regulation of mesoprefrontal dopamine circuits differ in the adult male and female brain, and highlights gaps where more research is needed.
Collapse
Affiliation(s)
- Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, United States.
| | - Alexander Adler
- Department of Oncology and Immuno-Oncology, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States
| | | |
Collapse
|
10
|
Zhang W, Gao H, Wang Q, Liu D, Zhang E. Strengthening the Cavitation Resistance of Cylinder Liners Using Surface Treatment with Electroless Ni-P (ENP) Plating and High-Temperature Heat Treatment. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1087. [PMID: 40077314 PMCID: PMC11901195 DOI: 10.3390/ma18051087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
As internal combustion engines (ICEs) develop towards higher explosion pressures and lower weights, their structures need to be more compact; thus, the wall thickness of their cylinder liners is reducing. However, intense vibrations in the cylinder liner can lead to coolant cavitation and, in severe cases, penetration of the liner, posing a significant reliability issue for ICEs. Therefore, research on cylinder liner cavitation has attracted increasing interest. Gray cast iron is widely used in cylinder liners for its hardness and wear resistance; however, additional surface plating is necessary to improve cavitation resistance. This study developed a novel surface-modification technology using electroless Ni-P plating combined with high-temperature heat treatment to create cylinder liners with refined grains, low weight loss rate, and high hardness. The heat-treatment temperature ranged from 100 to 600 °C. An ultrasonic cavitation tester was used to simulate severe cavitation conditions, and we analyzed and compared Ni-P-plated and heat-treated Ni-P-plated surfaces. The findings showed that the combination of Ni-P plating with high-temperature heat treatment led to smoother, more refined surface grains and the formation of cellular granular structures. After heat treatment, the plating structure converted from amorphous to crystalline. From 100 to 600 °C, the weight loss of specimens was within the range of 0.162% to 0.573%, and the weight loss (80.2% lower than the plated surface) and weight loss rate at 600 °C were the smallest. Additionally, cavitation resistance improved by 80.1%. The microhardness of the heat-treated plated surface reached 895 HV at 600 °C, constituting a 306 HV (65.8%) increase compared with that of the unplated surface, and a 560 HV increase compared with that of the maximum hardness of the plated surface without heat treatment of 335 HV, with an enhancement rate of 62.6%.
Collapse
Affiliation(s)
- Wenjuan Zhang
- School of Mechanical and Electric Engineering, Sanming University, Sanming 365004, China;
| | - Hao Gao
- School of Mechanical and Electric Engineering, Sanming University, Sanming 365004, China;
| | - Qianting Wang
- SINOMACH Intelligence Technology Co., Ltd., Guangzhou 510700, China;
| | - Dong Liu
- ZYNP International Corporation, Industrial Cluster District, Mengzhou 454750, China;
- Henan Key Laboratory of Friction Pair Sealing Technology and Application for Cylinder Liner of Internal Combustion Engine, Mengzhou 454750, China
| | - Enlai Zhang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China;
| |
Collapse
|
11
|
Prévost ED, Ward LA, Alas D, Aimale G, Ikenberry S, Fox K, Pelletier J, Ly A, Ball J, Kilpatrick ZP, Price K, Polter AM, Root DH. Untangling dopamine and glutamate in the ventral tegmental area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640201. [PMID: 40060543 PMCID: PMC11888473 DOI: 10.1101/2025.02.25.640201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Ventral tegmental area (VTA) dopamine neurons are of great interest for their central roles in motivation, learning, and psychiatric disorders. While hypotheses of VTA dopamine neuron function posit a homogenous role in behavior (e.g., prediction error), they do not account for molecular heterogeneity. We find that glutamate-dopamine, nonglutamate-dopamine, and glutamate-only neurons are dissociable in their signaling of reward and aversion-related stimuli, prediction error, and electrical properties. In addition, glutamate-dopamine and nonglutamate-dopamine neurons differ in dopamine release dynamics. Aversion-related recordings of all dopamine neurons (not considering glutamate co-transmission) showed a mixed response that obscured dopamine subpopulation function. Within glutamate-dopamine neurons, glutamate and dopamine release had dissociable contributions toward reward and aversion-based learning and performance. Based on our results, we propose a new hypothesis on VTA dopamine neuron function: that dopamine neuron signaling patterns and their roles in motivated behavior depend on whether or not they co-transmit dopamine with glutamate.
Collapse
Affiliation(s)
- Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301
| | - Lucy A. Ward
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301
| | - Daniel Alas
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301
| | - Giulia Aimale
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301
| | - Sara Ikenberry
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301
| | - Katie Fox
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301
| | - Julianne Pelletier
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301
| | - Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301
| | - Jayson Ball
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301
| | - Zachary P. Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, 1111 Engineering Center, Boulder, CO 80309
| | - Kailyn Price
- Department of Pharmacology & Physiology, George Washington University, Washington, D.C. 20052
| | - Abigail M. Polter
- Department of Pharmacology & Physiology, George Washington University, Washington, D.C. 20052
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301
| |
Collapse
|
12
|
Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q. Monoamine alterations in Alzheimer's disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2025; 47:457-482. [PMID: 39331291 PMCID: PMC11872848 DOI: 10.1007/s11357-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Ava Bai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
13
|
Engeln M, Ahmed SH. Remission from addiction: erasing the wrong circuits or making new ones? Nat Rev Neurosci 2025; 26:115-130. [PMID: 39663409 DOI: 10.1038/s41583-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Chronic relapse is a hallmark of substance-use disorders (SUDs), but many people with SUDs do recover and eventually enter remission. Many preclinical studies in this field aim to identify interventions that can precipitate recovery by reversing or erasing the neuronal circuit changes caused by chronic drug use. A better understanding of remission from SUDs can also come from preclinical studies that model factors known to influence recovery in humans, such as the negative consequences of drug use and positive environmental influences. In this Perspective we discuss human neuroimaging studies that have provided information about recovery from SUDs and highlight mechanisms identified in preclinical studies - such as the reconfiguration of neuronal circuits - that could contribute to remission. We also analyse how studies of memory and forgetting can provide insights into the mechanisms of remission. Overall, we propose that remission can be driven by the introduction of new neuronal changes (which outcompete those induced by drugs) as well as by the erasure of drug-induced changes.
Collapse
Affiliation(s)
- Michel Engeln
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France.
| | - Serge H Ahmed
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
14
|
Shinohara R, Furuyashiki T. Prefrontal contributions to mental resilience: Lessons from rodent studies of stress and antidepressant actions. Neurosci Res 2025; 211:16-23. [PMID: 36549388 DOI: 10.1016/j.neures.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Individual variability of stress susceptibility led to the concept of stress resilience to adapt well upon stressors. However, the neural mechanisms of stress resilience and its relevance to antidepressant actions remain elusive. In rodents, chronic stress induces dendritic atrophy and decreases dendritic spine density in the medial prefrontal cortex (mPFC), recapitulating prefrontal alterations in depressive patients, and the mPFC promotes stress resilience. Whereas dopamine neurons projecting to the nucleus accumbens potentiated by chronic stress promote stress susceptibility, dopamine neurons projecting to the mPFC activated upon acute stress contribute to dendritic growth of mPFC neurons via dopamine D1 receptors, leading to stress resilience. Rodent studies have also identified the roles of prefrontal D1 receptors as well as D1 receptor-expressing mPFC neurons projecting to multiple subcortical areas and dendritic spine formation in the mPFC for the sustained antidepressant-like effects of low-dose ketamine. Thus, understanding the cellular and neural-circuit mechanism of prefrontal D1 receptor actions paves the way for bridging the gap between stress resilience and the sustained antidepressant-like effects. The mechanistic understanding of stress resilience might be exploitable for developing antidepressants based on a naturally occurring mechanism, thus safer than low-dose ketamine.
Collapse
Affiliation(s)
- Ryota Shinohara
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| |
Collapse
|
15
|
Johnson NL, Cotelo-Larrea A, Stetzik LA, Akkaya UM, Zhang Z, Gadziola MA, Varga AG, Ma M, Wesson DW. Dopaminergic signaling to ventral striatum neurons initiates sniffing behavior. Nat Commun 2025; 16:336. [PMID: 39747223 PMCID: PMC11696867 DOI: 10.1038/s41467-024-55644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum in mice is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 dopamine receptor-expressing neurons are coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.
Collapse
Affiliation(s)
- Natalie L Johnson
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Anamaria Cotelo-Larrea
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Umit M Akkaya
- Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Zihao Zhang
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Marie A Gadziola
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Adrienn G Varga
- Department of Neuroscience, Breathing Research and Therapeutics Center, McKnight Brain Institute; University of Florida College of Medicine, Gainesville, FL, USA
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
16
|
Zeidler Z, Gomez MF, Gupta TA, Shari M, Wilke SA, DeNardo LA. Prefrontal dopamine activity is critical for rapid threat avoidance learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.02.592069. [PMID: 39803535 PMCID: PMC11722269 DOI: 10.1101/2024.05.02.592069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The medial prefrontal cortex (mPFC) is required for learning associations that determine whether animals approach or avoid potential threats in the environment. Dopaminergic (DA) projections from the ventral tegmental area (VTA) to the mPFC carry information, particularly about aversive outcomes, that may inform prefrontal computations. But the role of prefrontal DA in learning based on aversive outcomes remains poorly understood. Here, we used platform mediated avoidance (PMA) to study the role of mPFC DA in threat avoidance learning in mice. We show that activity in VTA-mPFC dopaminergic terminals is required for avoidance learning, but not for escape, conditioned fear, or to recall a previously learned avoidance strategy. mPFC DA is most dynamic in the early stages of learning, and encodes aversive outcomes, their omissions, and threat-induced behaviors. Computational models of PMA behavior and DA activity revealed that mPFC DA influences learning rates and encodes the predictive relationships between cues and adaptive behaviors. Taken together, these data indicate that mPFC DA is necessary to rapidly learn behaviors required to avoid signaled threats, but not for learning cue-threat associations.
Collapse
Affiliation(s)
- Zachary Zeidler
- Department of Physiology; David Geffen School of Medicine, University of California, Los Angeles, California
| | - Marta Fernandez Gomez
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Tanya A. Gupta
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| | | | - Scott A. Wilke
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Laura A. DeNardo
- Department of Physiology; David Geffen School of Medicine, University of California, Los Angeles, California
- Lead contact
| |
Collapse
|
17
|
Ben-Zion Z, Levy I. Representation of Anticipated Rewards and Punishments in the Human Brain. Annu Rev Psychol 2025; 76:197-226. [PMID: 39418537 PMCID: PMC11930275 DOI: 10.1146/annurev-psych-022324-042614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Subjective value is a core concept in neuroeconomics, serving as the basis for decision making. Despite the extensive literature on the neural encoding of subjective reward value in humans, the neural representation of punishment value remains relatively understudied. This review synthesizes current knowledge on the neural representation of reward value, including methodologies, involved brain regions, and the concept of a common currency representation of diverse reward types in decision-making and learning processes. We then critically examine existing research on the neural representation of punishment value, highlighting conceptual and methodological challenges in human studies and insights gained from animal research. Finally, we explore how individual differences in reward and punishment processing may be linked to various mental illnesses, with a focus on stress-related psychopathologies. This review advocates for the integration of both rewards and punishments within value-based decision-making and learning frameworks, leveraging insights from cross-species studies and utilizing ecological gamified paradigms to reflect real-life scenarios.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, U.S. Department of Veterans Affairs, West Haven, Connecticut, USA
- Department of Comparative Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
- Clinical Neuroscience Division, National Center for PTSD, U.S. Department of Veterans Affairs, Orange, Connecticut, USA
| | - Ifat Levy
- Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychology, Yale University, New Haven, Connecticut, USA
- Department of Comparative Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
18
|
Mancini C, Babicola L, Chila G, Di Segni M, Municchi D, D’Addario SL, Spoleti E, Passeri A, Cifani C, Andolina D, Cabib S, Ferlazzo F, Iosa M, Rossi R, Di Lorenzo G, Renzi M, Ventura R. Secure attachment to caregiver prevents adult depressive symptoms in a sex-dependent manner: A translational study. iScience 2024; 27:111328. [PMID: 39758994 PMCID: PMC11700650 DOI: 10.1016/j.isci.2024.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025] Open
Abstract
Although clinically relevant, evidence for a protective effect of early secure attachment against the development of depressive symptoms in adulthood is still inconsistent. This study used a translational approach to overcome this limitation. The analysis of a non-clinical adult population revealed a moderating effect of secure attachment on depressive symptoms in women only. Thus, we tested the causal link between early attachment with caregiver and adult depressive-like phenotypes in a mouse model of early adversities that is especially effective in females. Repeated cross fostering (RCF) in the first postnatal days prevented the development of pups' secure attachment with the caregiver as tested in a rodent version of the "strange situation"-the standard human test-induced depressive-like behaviors and altered activity of the ventral tegmental area dopamine neurons in adulthood. Finally, a stable alternative caregiver during the RCF experience prevented all these effects, modeling human "earned attachment."
Collapse
Affiliation(s)
- Camilla Mancini
- University of Camerino, School of Pharmacy, Pharmacology Unit, Camerino, Italy
| | | | - Gilda Chila
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Matteo Di Segni
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Diana Municchi
- Department of Psychology, Sapienza University, Rome, Italy
| | | | - Elena Spoleti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Alice Passeri
- Department of Psychology, Sapienza University, Rome, Italy
| | - Carlo Cifani
- University of Camerino, School of Pharmacy, Pharmacology Unit, Camerino, Italy
| | - Diego Andolina
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University, Rome, Italy
| | - Simona Cabib
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University, Rome, Italy
| | - Fabio Ferlazzo
- Department of Psychology, Sapienza University, Rome, Italy
| | - Marco Iosa
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University, Rome, Italy
| | - Rodolfo Rossi
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Giorgio Di Lorenzo
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Massimiliano Renzi
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Rossella Ventura
- Department of Psychology, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
19
|
Parker KE, Kuo CC, Buckley AR, Patterson AP, Duong V, Hunter SC, McCall JG. Monosynaptic ventral tegmental area glutamate projections to the locus coeruleus enhance aversive processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.615025. [PMID: 39713345 PMCID: PMC11661122 DOI: 10.1101/2024.10.04.615025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Distinct excitatory synaptic inputs to the locus coeruleus (LC) modulate behavioral flexibility. Here we identify a novel monosynaptic glutamatergic input to the LC from the ventral tegmental area (VTA). We show robust VTA axonal projections provide direct glutamatergic transmission to LC. Despite weak synaptic summation, optogenetic activation of these axons enhances LC tonic firing and facilitates real-time and conditioned aversive behaviors. We hypothesized this projection may modulate synaptic integration with other excitatory inputs. We then used coincident VTA-LC photostimulation with local electrical stimulation and observed enhanced LC burst induction. To determine whether this integration also occurs in vivo, we took an analogous approach measuring reward-seeking behavior during unpredictable probabilistic punishment. Here, glutamatergic VTA-LC photostimulation during a concurrent noxious stimulus did not delay reward-seeking behavior, but increased probability of task failure. Together, we identified a novel VTA-LC glutamatergic projection that drives concurrent synaptic summation during salient stimuli to promote behavioral avoidance.
Collapse
Affiliation(s)
- Kyle E. Parker
- Department of Anesthesiology, Center for Clinical Pharmacology, Washington University Pain Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Center for Clinical Pharmacology, Washington University Pain Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex R. Buckley
- Department of Anesthesiology, Center for Clinical Pharmacology, Washington University Pain Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Abigail P. Patterson
- Department of Anesthesiology, Center for Clinical Pharmacology, Washington University Pain Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Vincent Duong
- Department of Anesthesiology, Center for Clinical Pharmacology, Washington University Pain Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah C. Hunter
- Department of Anesthesiology, Center for Clinical Pharmacology, Washington University Pain Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Center for Clinical Pharmacology, Washington University Pain Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
20
|
Duvarci S. Dopaminergic circuits controlling threat and safety learning. Trends Neurosci 2024; 47:1014-1027. [PMID: 39472156 DOI: 10.1016/j.tins.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The ability to learn from experience that certain cues and situations are associated with threats or safety is crucial for survival and adaptive behavior. Understanding the neural substrates of threat and safety learning has high clinical significance because deficits in these forms of learning characterize anxiety disorders. Traditionally, dopamine neurons were thought to uniformly support reward learning by signaling reward prediction errors. However, the dopamine system is functionally more diverse than was initially appreciated and is also critical for processing threat and safety. In this review, I highlight recent studies demonstrating that dopamine neurons generate prediction errors for threat and safety, and describe how dopamine projections to the amygdala, medial prefrontal cortex (mPFC), and striatum regulate associative threat and safety learning.
Collapse
Affiliation(s)
- Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany.
| |
Collapse
|
21
|
Uliana DL, Martinez A, Grace AA. THPP-1 PDE10A inhibitor reverses the cognitive deficits and hyperdopaminergic state in a neurodevelopment model of schizophrenia. Schizophr Res 2024; 274:315-326. [PMID: 39437478 DOI: 10.1016/j.schres.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder characterized by positive, negative, and cognitive symptoms. The neurodevelopmental methylazoxy-methanol acetate (MAM) rodent model replicates key neurobiological features of SCZ which includes hyperdopaminergic states in the ventral tegmental area (VTA) and cognitive deficits. Typical and atypical antipsychotics are primarily effective in treating the positive symptoms of SCZ but often fall short of addressing cognitive deficits. A promising therapeutic approach for treating all symptoms of SCZ has emerged through the inhibition of phosphodiesterase 10 A (PDE10A). Our study aim was to investigate the impact of acute and chronic THPP-1 (PDE10A inhibitor) treatment, in MAM rats, focusing on cognitive deficits and VTA dopamine (DA) activity. Adult offspring of pregnant rats treated with Saline or MAM (20 mg/kg) on gestational day 17 were treated with THPP-1 acutely (male/female rats; 3 mg/kg) at postnatal day (PD) 70-80 or chronically (males; 3 weeks; 2-3 mg/kg) from PD 70-91 and tested in the novel object recognition test and electrophysiological recording of DA neurons in the VTA. Acute THPP-1 treatment reversed cognitive impairments and normalized the increased number of active DA neurons in the VTA of male and female MAM rats, without affecting control rats. Also, chronic THPP-1 treatment reversed cognitive deficits and normalized DA hyperactivity in the VTA of male MAM rats. The efficacy of THPP-1 in reversing MAM-induced impairments underscores its ability to target disease-specific circuitry without affecting normal regulated systems in control rats. Our findings highlight the therapeutic potential of THPP-1 for addressing cognitive deficits and DA dysregulation in SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Angela Martinez
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Prévost ED, Phillips A, Lauridsen K, Enserro G, Rubinstein B, Alas D, McGovern DJ, Ly A, Hotchkiss H, Banks M, McNulty C, Kim YS, Fenno LE, Ramakrishnan C, Deisseroth K, Root DH. Monosynaptic Inputs to Ventral Tegmental Area Glutamate and GABA Co-transmitting Neurons. J Neurosci 2024; 44:e2184232024. [PMID: 39327007 PMCID: PMC11561872 DOI: 10.1523/jneurosci.2184-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
A unique population of ventral tegmental area (VTA) neurons co-transmits glutamate and GABA. However, the circuit inputs to VTA VGluT2+VGaT+ neurons are unknown, limiting our understanding of their functional capabilities. By coupling monosynaptic rabies tracing with intersectional genetic targeting in male and female mice, we found that VTA VGluT2+VGaT+ neurons received diverse brainwide inputs. The largest numbers of monosynaptic inputs to VTA VGluT2+VGaT+ neurons were from superior colliculus (SC), lateral hypothalamus (LH), midbrain reticular nucleus, and periaqueductal gray, whereas the densest inputs relative to brain region volume were from the dorsal raphe nucleus, lateral habenula, and VTA. Based on these and prior data, we hypothesized that LH and SC inputs were from glutamatergic neurons. Optical activation of glutamatergic LH neurons activated VTA VGluT2+VGaT+ neurons regardless of stimulation frequency and resulted in flee-like ambulatory behavior. In contrast, optical activation of glutamatergic SC neurons activated VTA VGluT2+VGaT+ neurons for a brief period of time at high frequency and resulted in head rotation and arrested ambulatory behavior (freezing). Stimulation of glutamatergic LH neurons, but not glutamatergic SC neurons, was associated with VTA VGluT2+VGaT+ footshock-induced activity and inhibition of LH glutamatergic neurons disrupted VTA VGluT2+VGaT+ tailshock-induced activity. We interpret these results such that inputs to VTA VGluT2+VGaT+ neurons may integrate diverse signals related to the detection and processing of motivationally salient outcomes.
Collapse
Affiliation(s)
- Emily D Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Alysabeth Phillips
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Kristoffer Lauridsen
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Gunnar Enserro
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Bodhi Rubinstein
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Daniel Alas
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Dillon J McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Hayden Hotchkiss
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Makaila Banks
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Connor McNulty
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Yoon Seok Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Lief E Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Charu Ramakrishnan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
- Department of Bioengineering, Stanford University, Stanford, California 94305
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - David H Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| |
Collapse
|
23
|
Jung K, Krüssel S, Yoo S, An M, Burke B, Schappaugh N, Choi Y, Gu Z, Blackshaw S, Costa RM, Kwon HB. Dopamine-mediated formation of a memory module in the nucleus accumbens for goal-directed navigation. Nat Neurosci 2024; 27:2178-2192. [PMID: 39333785 PMCID: PMC11537966 DOI: 10.1038/s41593-024-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Spatial memories guide navigation efficiently toward desired destinations. However, the neuronal and circuit mechanisms underlying the encoding of goal locations and its translation into goal-directed navigation remain unclear. Here we demonstrate that mice rapidly form a spatial memory of a shelter during shelter experiences, guiding escape behavior toward the goal location-a shelter-when under threat. Dopaminergic neurons in the ventral tegmental area and their projection to the nucleus accumbens (NAc) encode safety signals associated with the shelter. Optogenetically induced phasic dopamine signals are sufficient to create a place memory that directs escape navigation. Converging dopaminergic and hippocampal glutamatergic inputs to the NAc mediate the formation of a goal-related memory within a subpopulation of NAc neurons during shelter experiences. Artificial co-activation of this goal-related NAc ensemble with neurons in the dorsal periaqueductal gray was sufficient to trigger memory-guided, rather than random, escape behavior. These findings provide causal evidence of cognitive circuit modules linking memory with goal-directed action.
Collapse
Affiliation(s)
- Kanghoon Jung
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
- Allen Institute for Neural Dynamics, Seattle, WA, USA.
- Allen Institute, Seattle, WA, USA.
| | - Sarah Krüssel
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Sooyeon Yoo
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Myungmo An
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Benjamin Burke
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nicholas Schappaugh
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Youngjin Choi
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zirong Gu
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rui M Costa
- Allen Institute, Seattle, WA, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Hyung-Bae Kwon
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
24
|
Mah A, Golden CEM, Constantinople CM. Dopamine transients encode reward prediction errors independent of learning rates. Cell Rep 2024; 43:114840. [PMID: 39395170 PMCID: PMC11571066 DOI: 10.1016/j.celrep.2024.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024] Open
Abstract
Biological accounts of reinforcement learning posit that dopamine encodes reward prediction errors (RPEs), which are multiplied by a learning rate to update state or action values. These values are thought to be represented by corticostriatal synaptic weights, which are updated by dopamine-dependent plasticity. This suggests that dopamine release reflects the product of the learning rate and RPE. Here, we characterize dopamine encoding of learning rates in the nucleus accumbens core (NAcc) in a volatile environment. Using a task with semi-observable states offering different rewards, we find that rats adjust how quickly they initiate trials across states using RPEs. Computational modeling and behavioral analyses show that learning rates are higher following state transitions and scale with trial-by-trial changes in beliefs about hidden states, approximating normative Bayesian strategies. Notably, dopamine release in the NAcc encodes RPEs independent of learning rates, suggesting that dopamine-independent mechanisms instantiate dynamic learning rates.
Collapse
Affiliation(s)
- Andrew Mah
- Center for Neural Science, New York University, New York, NY, USA
| | - Carla E M Golden
- Center for Neural Science, New York University, New York, NY, USA
| | | |
Collapse
|
25
|
Reynolds LM, Gulmez A, Fayad SL, Campos RC, Rigoni D, Nguyen C, Le Borgne T, Topilko T, Rajot D, Franco C, Fernandez SP, Marti F, Heck N, Mourot A, Renier N, Barik J, Faure P. Transient nicotine exposure in early adolescent male mice freezes their dopamine circuits in an immature state. Nat Commun 2024; 15:9017. [PMID: 39424848 PMCID: PMC11489768 DOI: 10.1038/s41467-024-53327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
How nicotine acts on developing neurocircuitry in adolescence to promote later addiction vulnerability remains largely unknown, but may hold the key for informing more effective intervention efforts. We found transient nicotine exposure in early adolescent (PND 21-28) male mice was sufficient to produce a marked vulnerability to nicotine in adulthood (PND 60 + ), associated with disrupted functional connectivity in dopaminergic circuits. These mice showed persistent adolescent-like behavioral and physiological responses to nicotine, suggesting that nicotine exposure in adolescence prolongs an immature, imbalanced state in the function of these circuits. Chemogenetically resetting the balance between the underlying dopamine circuits unmasked the mature behavioral response to acute nicotine in adolescent-exposed mice. Together, our results suggest that the perseverance of a developmental imbalance between dopamine pathways may alter vulnerability profiles for later dopamine-dependent psychopathologies.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France.
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France.
| | - Aylin Gulmez
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | - Sophie L Fayad
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Renan Costa Campos
- Université Côte d'Azur, Nice 06560, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Daiana Rigoni
- Université Côte d'Azur, Nice 06560, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Claire Nguyen
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Tinaïg Le Borgne
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Thomas Topilko
- Laboratoire de Plasticité Structurale INSERM U1127, CNRS UMR7225, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Domitille Rajot
- Laboratoire de Plasticité Structurale INSERM U1127, CNRS UMR7225, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Clara Franco
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Sebastian P Fernandez
- Université Côte d'Azur, Nice 06560, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Fabio Marti
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Nicolas Heck
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Alexandre Mourot
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Nicolas Renier
- Laboratoire de Plasticité Structurale INSERM U1127, CNRS UMR7225, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Jacques Barik
- Université Côte d'Azur, Nice 06560, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Philippe Faure
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France.
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France.
| |
Collapse
|
26
|
Ebrahimi MN, Banazadeh M, Alitaneh Z, Jaafari Suha A, Esmaeili A, Hasannejad-Asl B, Siahposht-Khachaki A, Hassanshahi A, Bagheri-Mohammadi S. The distribution of neurotransmitters in the brain circuitry: Mesolimbic pathway and addiction. Physiol Behav 2024; 284:114639. [PMID: 39004195 DOI: 10.1016/j.physbeh.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Understanding the central nervous system (CNS) circuitry and its different neurotransmitters that underlie reward is essential to improve treatment for many common health issues, such as addiction. Here, we concentrate on understanding how the mesolimbic circuitry and neurotransmitters are organized and function, and how drug exposure affects synaptic and structural changes in this circuitry. While the role of some reward circuits, like the cerebral dopamine (DA)/glutamate (Glu)/gamma aminobutyric acid (GABA)ergic pathways, in drug reward, is well known, new research using molecular-based methods has shown functional alterations throughout the reward circuitry that contribute to various aspects of addiction, including craving and relapse. A new understanding of the fundamental connections between brain regions as well as the molecular alterations within these particular microcircuits, such as neurotrophic factor and molecular signaling or distinct receptor function, that underlie synaptic and structural plasticity evoked by drugs of abuse has been made possible by the ability to observe and manipulate neuronal activity within specific cell types and circuits. It is exciting that these discoveries from preclinical animal research are now being applied in the clinic, where therapies for human drug dependence, such as deep brain stimulation and transcranial magnetic stimulation, are being tested. Therefore, this chapter seeks to summarize the current understanding of the important brain regions (especially, mesolimbic circuitry) and neurotransmitters implicated in drug-related behaviors and the molecular mechanisms that contribute to altered connectivity between these areas, with the postulation that increased knowledge of the plasticity within the drug reward circuit will lead to new and improved treatments for addiction.
Collapse
Affiliation(s)
- Mohammad Navid Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Alitaneh
- Quantitative and System Biology, Department of Natural Sciences, University of California Merced, USA
| | - Ali Jaafari Suha
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Hassanshahi
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
27
|
Hernandez Silva JC, Pausic N, Marroquin Rivera A, Labonté B, Proulx CD. Chronic Social Defeat Stress Induces Pathway-Specific Adaptations at Lateral Habenula Neuronal Outputs. J Neurosci 2024; 44:e2082232024. [PMID: 39164106 PMCID: PMC11426382 DOI: 10.1523/jneurosci.2082-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/15/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024] Open
Abstract
The lateral habenula (LHb) has emerged as a pivotal brain region implicated in depression, displaying hyperactivity in human and animal models of depression. While the role of LHb efferents in depressive disorders has been acknowledged, the specific synaptic alterations remain elusive. Here, employing optogenetics, retrograde tracing, and ex vivo whole-cell patch-clamp techniques, we investigated synaptic transmission in male mice subjected to chronic social defeat stress (CSDS) at three major LHb neuronal outputs: the dorsal raphe nucleus (DRN), the ventral tegmental area (VTA), and the rostromedial tegmental nucleus (RMTg). Our findings uncovered distinct synaptic adaptations in LHb efferent circuits in response to CSDS. Specifically, CSDS induced in susceptible mice postsynaptic potentiation and postsynaptic depression at the DRN and VTA neurons, respectively, receiving excitatory inputs from the LHb, while CSDS altered presynaptic transmission at the LHb terminals in RMTg in both susceptible and resilient mice. Moreover, whole-cell recordings at projection-defined LHb neurons indicate decreased spontaneous activity in VTA-projecting LHb neurons, accompanied by an imbalance in excitatory-inhibitory inputs at the RMTg-projecting LHb neurons. Collectively, these novel findings underscore the circuit-specific alterations in LHb efferents following chronic social stress, shedding light on potential synaptic adaptations underlying stress-induced depressive-like states.
Collapse
Affiliation(s)
- Jose Cesar Hernandez Silva
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Nikola Pausic
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Arturo Marroquin Rivera
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Benoît Labonté
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Christophe D Proulx
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| |
Collapse
|
28
|
Mohammadkhani A, Qiao M, Borgland SL. Distinct Neuromodulatory Effects of Endogenous Orexin and Dynorphin Corelease on Projection-Defined Ventral Tegmental Dopamine Neurons. J Neurosci 2024; 44:e0682242024. [PMID: 39187377 PMCID: PMC11426376 DOI: 10.1523/jneurosci.0682-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) respond to motivationally relevant cues, and circuit-specific signaling drives different aspects of motivated behavior. Orexin (ox; also known as hypocretin) and dynorphin (dyn) are coexpressed lateral hypothalamic (LH) neuropeptides that project to the VTA. These peptides have opposing effects on the firing activity of VTADA neurons via orexin 1 (Ox1R) or kappa opioid (KOR) receptors. Given that Ox1R activation increases VTADA firing, and KOR decreases firing, it is unclear how the coreleased peptides contribute to the net activity of DA neurons. We tested if optical stimulation of LHox/dyn neuromodulates VTADA neuronal activity via peptide release and if the effects of optically driven LHox/dyn release segregate based on VTADA projection targets including the basolateral amygdala (BLA) or the lateral or medial shell of the nucleus accumbens (lAcbSh, mAchSh). Using a combination of circuit tracing, optogenetics, and patch-clamp electrophysiology in male and female orexincre mice, we showed a diverse response of LHox/dyn optical stimulation on VTADA neuronal firing, which is not mediated by fast transmitter release and is blocked by antagonists to KOR and Ox1R signaling. Additionally, where optical stimulation of LHox/dyn inputs in the VTA inhibited firing of the majority of BLA-projecting VTADA neurons, optical stimulation of LHox/dyn inputs in the VTA bidirectionally affects firing of either lAcbSh- or mAchSh-projecting VTADA neurons. These findings indicate that LHox/dyn corelease may influence the output of the VTA by balancing ensembles of neurons within each population which contribute to different aspects of reward seeking.
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Min Qiao
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
29
|
Elum JE, Szelenyi ER, Juarez B, Murry AD, Loginov G, Zamorano CA, Gao P, Wu G, Ng-Evans S, Yee JX, Xu X, Golden SA, Zweifel LS. Distinct dynamics and intrinsic properties in ventral tegmental area populations mediate reward association and motivation. Cell Rep 2024; 43:114668. [PMID: 39207900 PMCID: PMC11514737 DOI: 10.1016/j.celrep.2024.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Ventral tegmental area (VTA) dopamine neurons regulate reward-related associative learning and reward-driven motivated behaviors, but how these processes are coordinated by distinct VTA neuronal subpopulations remains unresolved. Here, we compare the contribution of two primarily dopaminergic and largely non-overlapping VTA subpopulations, all VTA dopamine neurons and VTA GABAergic neurons of the mouse midbrain, to these processes. We find that the dopamine subpopulation that projects to the nucleus accumbens (NAc) core preferentially encodes reward-predictive cues and prediction errors. In contrast, the subpopulation that projects to the NAc shell preferentially encodes goal-directed actions and relative reward anticipation. VTA GABA neuron activity strongly contrasts VTA dopamine population activity and preferentially encodes reward outcome and retrieval. Electrophysiology, targeted optogenetics, and whole-brain input mapping reveal multiple convergent sources that contribute to the heterogeneity among VTA dopamine subpopulations that likely underlies their distinct encoding of reward-related associations and motivation that defines their functions in these contexts.
Collapse
Affiliation(s)
- Jordan E Elum
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Eric R Szelenyi
- Department of Biological Structure, University of Washington, Seattle, WA, USA; University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
| | - Barbara Juarez
- Department of Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Alexandria D Murry
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Grigory Loginov
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Catalina A Zamorano
- Department of Pharmacology, University of Washington, Seattle, WA, USA; University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
| | - Pan Gao
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ginny Wu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Scott Ng-Evans
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Joshua X Yee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Sam A Golden
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA; Department of Biological Structure, University of Washington, Seattle, WA, USA; University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
| | - Larry S Zweifel
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA.
| |
Collapse
|
30
|
Boyle N, Betts S, Lu H. Monoaminergic Modulation of Learning and Cognitive Function in the Prefrontal Cortex. Brain Sci 2024; 14:902. [PMID: 39335398 PMCID: PMC11429557 DOI: 10.3390/brainsci14090902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Extensive research has shed light on the cellular and functional underpinnings of higher cognition as influenced by the prefrontal cortex. Neurotransmitters act as key regulatory molecules within the PFC to assist with synchronizing cognitive state and arousal levels. The monoamine family of neurotransmitters, including dopamine, serotonin, and norepinephrine, play multifaceted roles in the cognitive processes behind learning and memory. The present review explores the organization and signaling patterns of monoamines within the PFC, as well as elucidates the numerous roles played by monoamines in learning and higher cognitive function.
Collapse
Affiliation(s)
| | | | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (N.B.); (S.B.)
| |
Collapse
|
31
|
Gershman SJ, Assad JA, Datta SR, Linderman SW, Sabatini BL, Uchida N, Wilbrecht L. Explaining dopamine through prediction errors and beyond. Nat Neurosci 2024; 27:1645-1655. [PMID: 39054370 DOI: 10.1038/s41593-024-01705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
The most influential account of phasic dopamine holds that it reports reward prediction errors (RPEs). The RPE-based interpretation of dopamine signaling is, in its original form, probably too simple and fails to explain all the properties of phasic dopamine observed in behaving animals. This Perspective helps to resolve some of the conflicting interpretations of dopamine that currently exist in the literature. We focus on the following three empirical challenges to the RPE theory of dopamine: why does dopamine (1) ramp up as animals approach rewards, (2) respond to sensory and motor features and (3) influence action selection? We argue that the prediction error concept, once it has been suitably modified and generalized based on an analysis of each computational problem, answers each challenge. Nonetheless, there are a number of additional empirical findings that appear to demand fundamentally different theoretical explanations beyond encoding RPE. Therefore, looking forward, we discuss the prospects for a unifying theory that respects the diversity of dopamine signaling and function as well as the complex circuitry that both underlies and responds to dopaminergic transmission.
Collapse
Affiliation(s)
- Samuel J Gershman
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA.
| | - John A Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Scott W Linderman
- Department of Statistics and Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Bernardo L Sabatini
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Linda Wilbrecht
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
32
|
Simon RC, Loveless MC, Yee JX, Goh B, Cho SG, Nasir Z, Hashikawa K, Stuber GD, Zweifel LS, Soden ME. Opto-seq reveals input-specific immediate-early gene induction in ventral tegmental area cell types. Neuron 2024; 112:2721-2731.e5. [PMID: 38901431 PMCID: PMC11343674 DOI: 10.1016/j.neuron.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
The ventral tegmental area (VTA) is a critical node in circuits governing motivated behavior and is home to diverse populations of neurons that release dopamine, gamma-aminobutyric acid (GABA), glutamate, or combinations of these neurotransmitters. The VTA receives inputs from many brain regions, but a comprehensive understanding of input-specific activation of VTA neuronal subpopulations is lacking. To address this, we combined optogenetic stimulation of select VTA inputs with single-nucleus RNA sequencing (snRNA-seq) and highly multiplexed in situ hybridization to identify distinct neuronal clusters and characterize their spatial distribution and activation patterns. Quantification of immediate-early gene (IEG) expression revealed that different inputs activated select VTA subpopulations, which demonstrated cell-type-specific transcriptional programs. Within dopaminergic subpopulations, IEG induction levels correlated with differential expression of ion channel genes. This new transcriptomics-guided circuit analysis reveals the diversity of VTA activation driven by distinct inputs and provides a resource for future analysis of VTA cell types.
Collapse
Affiliation(s)
- Rhiana C Simon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Mary C Loveless
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Joshua X Yee
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Brandon Goh
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Su G Cho
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Zainab Nasir
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Koichi Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Larry S Zweifel
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Marta E Soden
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Johnson NL, Cotelo-Larrea A, Stetzik LA, Akkaya UM, Zhang Z, Gadziola MA, Varga AG, Ma M, Wesson DW. Sniffing can be initiated by dopamine's actions on ventral striatum neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581052. [PMID: 39229099 PMCID: PMC11370338 DOI: 10.1101/2024.02.19.581052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The neuromodulatory systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 receptor-expressing neurons in the ventral striatum are also coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.
Collapse
|
34
|
Zhou S, Chen W, Yang H. Dopamine. Trends Endocrinol Metab 2024:S1043-2760(24)00186-3. [PMID: 39138070 DOI: 10.1016/j.tem.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Siyao Zhou
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital, Liangzhu Laboratory, The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310000, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310000, China
| | - Wenqiang Chen
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Steno Diabetes Center Copenhagen, Herlev 2730, Denmark.
| | - Hongbin Yang
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital, Liangzhu Laboratory, The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310000, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
35
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
36
|
Lenoir M, Engeln M, Navailles S, Girardeau P, Ahmed SH. A large-scale c-Fos brain mapping study on extinction of cocaine-primed reinstatement. Neuropsychopharmacology 2024; 49:1459-1467. [PMID: 38664549 PMCID: PMC11251268 DOI: 10.1038/s41386-024-01867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 07/17/2024]
Abstract
Individuals with cocaine addiction can experience many craving episodes and subsequent relapses, which represents the main obstacle to recovery. Craving is often favored when abstinent individuals ingest a small dose of cocaine, encounter cues associated with drug use or are exposed to stressors. Using a cocaine-primed reinstatement model in rat, we recently showed that cocaine-conditioned interoceptive cues can be extinguished with repeated cocaine priming in the absence of drug reinforcement, a phenomenon we called extinction of cocaine priming. Here, we applied a large-scale c-Fos brain mapping approach following extinction of cocaine priming in male rats to identify brain regions implicated in processing the conditioned interoceptive stimuli of cocaine priming. We found that cocaine-primed reinstatement is associated with increased c-Fos expression in key brain regions (e.g., dorsal and ventral striatum, several prefrontal areas and insular cortex), while its extinction mostly disengages them. Moreover, while reinstatement behavior was correlated with insular and accumbal activation, extinction of cocaine priming implicated parts of the ventral pallidum, the mediodorsal thalamus and the median raphe. These brain patterns of activation and inhibition suggest that after repeated priming, interoceptive signals lose their conditioned discriminative properties and that action-outcome associations systems are mobilized in search for new contingencies, a brain state that may predispose to rapid relapse.
Collapse
Affiliation(s)
- Magalie Lenoir
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| | - Michel Engeln
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| | | | - Paul Girardeau
- Univ. Bordeaux, UFR des Sciences Odontologiques, Bordeaux, France
| | - Serge H Ahmed
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| |
Collapse
|
37
|
Cross EA, Borland JM, Shaughnessy EK, Lee SD, Vu V, Sambor EA, Huhman KL, Albers HE. Distinct subcircuits within the mesolimbic dopamine system encode the salience and valence of social stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604824. [PMID: 39091886 PMCID: PMC11291110 DOI: 10.1101/2024.07.23.604824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The mesolimbic dopamine (DA) system (MDS) is the canonical "reward" pathway that has been studied extensively in the context of the rewarding properties of sex, food, and drugs of abuse. In contrast, very little is known about the role of the MDS in the processing of the rewarding and aversive properties of social stimuli. Social interactions can be characterized by their salience (i.e., importance) and their rewarding or aversive properties (i.e., valence). Here, we test the novel hypothesis that projections from the medial ventral tegmental area (VTA) to the nucleus accumbens (NAc) core codes for the salience of social stimuli through the phasic release of DA in response to both rewarding and aversive social stimuli. In contrast, we hypothesize that projections from the lateral VTA to the NAc shell codes for the rewarding properties of social stimuli by increasing the tonic release of DA and the aversive properties of social stimuli by reducing the tonic release of DA. Using DA amperometry, which monitors DA signaling with a high degree of temporal and anatomical resolution, we measured DA signaling in the NAc core or shell while rewarding and aversive social interactions were taking place. These findings, as well as additional anatomical and functional studies, provide strong support for the proposed neural circuitry underlying the response of the MDS to social stimuli. Together, these data provide a novel conceptualization of how the functional and anatomical heterogeneity within the MDS detect and distinguish between social salience, social reward, and social aversion. Significance Statement Social interactions of both positive and negative valence are highly salient stimuli that profoundly impact social behavior and social relationships. Although DA projections from the VTA to the NAc are involved in reward and aversion little is known about their role in the saliency and valence of social stimuli. Here, we report that DA projections from the mVTA to the NAc core signal the salience of social stimuli, whereas projections from the lVTA to the NAc shell signal valence of social stimuli. This work extends our current understanding of the role of DA in the MDS by characterizing its subcircuit connectivity and associated function in the processing of rewarding and aversive social stimuli.
Collapse
Affiliation(s)
- E A Cross
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - J M Borland
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota,55455
| | - E K Shaughnessy
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - S D Lee
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - V Vu
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - E A Sambor
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - K L Huhman
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - H E Albers
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
38
|
Gooding SW, Lewis E, Chau C, Sandhu S, Glienke J, Whistler JL. Nucleus accumbens sub-regions experience distinct dopamine release responses following acute and chronic morphine exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601282. [PMID: 39005415 PMCID: PMC11244850 DOI: 10.1101/2024.06.28.601282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
It is well established that dopamine neurons of the ventral tegmental area (VTA) play a critical role in reward and aversion as well as pathologies including drug dependence and addiction. The distinct effects of acute and chronic opioid exposure have been previously characterized at VTA synapses. Recent work suggests that distinct VTA projections that target the medial and lateral shell of the nucleus accumbens (NAc), may play opposing roles in modulating behavior. It is possible that these two anatomically and functionally distinct pathways also have disparate roles in opioid reward, tolerance, and withdrawal in the brain. In this study we monitored dopamine release in the medial or lateral shell of the NAc of male mice during a week-long morphine treatment paradigm. We measured dopamine release in response to an intravenous morphine injection both acutely and following a week of repeated morphine. We also measured dopamine in response to a naloxone injection both prior to and following repeated morphine treatment. Morphine induced a transient increase in dopamine in the medial NAc shell that was much larger than the slower rise observed in the lateral shell. Surprisingly, chronic morphine treatment induced a sensitization of the medial dopamine response to morphine that opposed a diminished response observed in the saline-treated control group. This study expands on our current understanding of the medial NAc shell as hub of opioid-induced dopamine fluctuation. It also highlights the need for future opioid studies to appreciate the heterogeneity of dopamine neurons. Significance Statement The social and economic consequences of the opioid epidemic are tragic and far-reaching. Yet, opioids are indisputably necessary in clinical settings where they remain the most useful treatment for severe pain. To combat this crisis, we must improve our understanding of opioid function in the brain, particularly the neural mechanisms that underlie opioid dependence and addictive behaviors. This study uses fiber photometry to examine dopamine changes that occur in response to repeated morphine, and morphine withdrawal, at multiple stages of a longitudinal opioid-dependence paradigm. We reveal key differences in how dopamine levels respond to opioid administration in distinct sub-regions of the ventral striatum and lay a foundation for future opioid research that appreciates our contemporary understanding of the dopamine system.
Collapse
Affiliation(s)
| | - Elinor Lewis
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Christine Chau
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Suhail Sandhu
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Julianna Glienke
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
39
|
Grajales-Reyes JG, Chen B, Meseguer D, Schneeberger M. Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation? Physiology (Bethesda) 2024; 39:0. [PMID: 38536114 PMCID: PMC11368520 DOI: 10.1152/physiol.00034.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.
Collapse
Affiliation(s)
- Jose G Grajales-Reyes
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bandy Chen
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
40
|
Velazquez-Hernandez G, Miller NW, Curtis VR, Rivera-Pacheco CM, Lowe SM, Moy SS, Zannas AS, Pégard NC, Burgos-Robles A, Rodriguez-Romaguera J. Social threat alters the behavioral structure of social motivation and reshapes functional brain connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599379. [PMID: 38948883 PMCID: PMC11212885 DOI: 10.1101/2024.06.17.599379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Traumatic social experiences redefine socially motivated behaviors to enhance safety and survival. Although many brain regions have been implicated in signaling a social threat, the mechanisms by which global neural networks regulate such motivated behaviors remain unclear. To address this issue, we first combined traditional and modern behavioral tracking techniques in mice to assess both approach and avoidance, as well as sub-second behavioral changes, during a social threat learning task. We were able to identify previously undescribed body and tail movements during social threat learning and recognition that demonstrate unique alterations into the behavioral structure of social motivation. We then utilized inter-regional correlation analysis of brain activity after a mouse recognizes a social threat to explore functional communication amongst brain regions implicated in social motivation. Broad brain activity changes were observed within the nucleus accumbens, the paraventricular thalamus, the ventromedial hypothalamus, and the nucleus of reuniens. Inter-regional correlation analysis revealed a reshaping of the functional connectivity across the brain when mice recognize a social threat. Altogether, these findings suggest that reshaping of functional brain connectivity may be necessary to alter the behavioral structure of social motivation when a social threat is encountered.
Collapse
|
41
|
Faget L, Oriol L, Lee WC, Zell V, Sargent C, Flores A, Hollon NG, Ramanathan D, Hnasko TS. Ventral pallidum GABA and glutamate neurons drive approach and avoidance through distinct modulation of VTA cell types. Nat Commun 2024; 15:4233. [PMID: 38762463 PMCID: PMC11102457 DOI: 10.1038/s41467-024-48340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.
Collapse
Affiliation(s)
- Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| | - Lucie Oriol
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Wen-Chun Lee
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Cody Sargent
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Andrew Flores
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Nick G Hollon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
42
|
Szabó D, Franke V, Bianco S, Batiuk MY, Paul EJ, Kukalev A, Pfisterer UG, Irastorza-Azcarate I, Chiariello AM, Demharter S, Zea-Redondo L, Lopez-Atalaya JP, Nicodemi M, Akalin A, Khodosevich K, Ungless MA, Winick-Ng W, Pombo A. A single dose of cocaine rewires the 3D genome structure of midbrain dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593308. [PMID: 38766140 PMCID: PMC11100777 DOI: 10.1101/2024.05.10.593308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Midbrain dopamine neurons (DNs) respond to a first exposure to addictive drugs and play key roles in chronic drug usage1-3. As the synaptic and transcriptional changes that follow an acute cocaine exposure are mostly resolved within a few days4,5, the molecular changes that encode the long-term cellular memory of the exposure within DNs remain unknown. To investigate whether a single cocaine exposure induces long-term changes in the 3D genome structure of DNs, we applied Genome Architecture Mapping and single nucleus transcriptomic analyses in the mouse midbrain. We found extensive rewiring of 3D genome architecture at 24 hours past exposure which remains or worsens by 14 days, outlasting transcriptional responses. The cocaine-induced chromatin rewiring occurs at all genomic scales and affects genes with major roles in cocaine-induced synaptic changes. A single cocaine exposure triggers extensive long-lasting changes in chromatin condensation in post-synaptic and post-transcriptional regulatory genes, for example the unfolding of Rbfox1 which becomes most prominent 14 days post exposure. Finally, structurally remodeled genes are most expressed in a specific DN sub-type characterized by low expression of the dopamine auto-receptor Drd2, a key feature of highly cocaine-sensitive cells. These results reveal an important role for long-lasting 3D genome remodelling in the cellular memory of a single cocaine exposure, providing new hypotheses for understanding the inception of drug addiction and 3D genome plasticity.
Collapse
Affiliation(s)
- Dominik Szabó
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Vedran Franke
- Bioinformatics & Omics Data Science platform, Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, 10115 Berlin, Germany
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Mykhailo Y. Batiuk
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Eleanor J. Paul
- MRC London Institute of Medical Sciences (LMS), London W12 0HS, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Alexander Kukalev
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Ulrich G. Pfisterer
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Ibai Irastorza-Azcarate
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Andrea M. Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Samuel Demharter
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Luna Zea-Redondo
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Jose P. Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550, Sant Joan d’Alacant, Spain
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Altuna Akalin
- Bioinformatics & Omics Data Science platform, Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, 10115 Berlin, Germany
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Mark A. Ungless
- MRC London Institute of Medical Sciences (LMS), London W12 0HS, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Warren Winick-Ng
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Toronto, Canada
| | - Ana Pombo
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
43
|
Avvisati R, Kaufmann AK, Young CJ, Portlock GE, Cancemi S, Costa RP, Magill PJ, Dodson PD. Distributional coding of associative learning in discrete populations of midbrain dopamine neurons. Cell Rep 2024; 43:114080. [PMID: 38581677 PMCID: PMC7616095 DOI: 10.1016/j.celrep.2024.114080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/12/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Midbrain dopamine neurons are thought to play key roles in learning by conveying the difference between expected and actual outcomes. Recent evidence suggests diversity in dopamine signaling, yet it remains poorly understood how heterogeneous signals might be organized to facilitate the role of downstream circuits mediating distinct aspects of behavior. Here, we investigated the organizational logic of dopaminergic signaling by recording and labeling individual midbrain dopamine neurons during associative behavior. Our findings show that reward information and behavioral parameters are not only heterogeneously encoded but also differentially distributed across populations of dopamine neurons. Retrograde tracing and fiber photometry suggest that populations of dopamine neurons projecting to different striatal regions convey distinct signals. These data, supported by computational modeling, indicate that such distributional coding can maximize dynamic range and tailor dopamine signals to facilitate specialized roles of different striatal regions.
Collapse
Affiliation(s)
- Riccardo Avvisati
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Anna-Kristin Kaufmann
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Callum J Young
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol BS8 1UB, UK
| | - Gabriella E Portlock
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Sophie Cancemi
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Rui Ponte Costa
- Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol BS8 1UB, UK
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Paul D Dodson
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
44
|
Glykos V, Fujisawa S. Memory-specific encoding activities of the ventral tegmental area dopamine and GABA neurons. eLife 2024; 12:RP89743. [PMID: 38512339 PMCID: PMC10957172 DOI: 10.7554/elife.89743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Although the midbrain dopamine (DA) system plays a crucial role in higher cognitive functions, including updating and maintaining short-term memory, the encoding properties of the somatic spiking activity of ventral tegmental area (VTA) DA neurons for short-term memory computations have not yet been identified. Here, we probed and analyzed the activity of optogenetically identified DA and GABA neurons while mice engaged in short-term memory-dependent behavior in a T-maze task. Single-neuron analysis revealed that significant subpopulations of DA and GABA neurons responded differently between left and right trials in the memory delay. With a series of control behavioral tasks and regression analysis tools, we show that firing rate differences are linked to short-term memory-dependent decisions and cannot be explained by reward-related processes, motivated behavior, or motor-related activities. This evidence provides novel insights into the mnemonic encoding activities of midbrain DA and GABA neurons.
Collapse
Affiliation(s)
- Vasileios Glykos
- Laboratory for Systems Neurophysiology, RIKEN Center for Brain ScienceWakoJapan
- Synapse Biology Unit, Okinawa Institute of Science and TechnologyOkinawaJapan
| | - Shigeyoshi Fujisawa
- Laboratory for Systems Neurophysiology, RIKEN Center for Brain ScienceWakoJapan
| |
Collapse
|
45
|
Melugin PR, Nolan SO, Kandov E, Ferrara CF, Farahbakhsh ZZ, Siciliano CA. Medial prefrontal dopamine dynamics reflect allocation of selective attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583245. [PMID: 38496533 PMCID: PMC10942305 DOI: 10.1101/2024.03.04.583245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The mesocortical dopamine system is comprised of midbrain dopamine neurons that predominantly innervate the medial prefrontal cortex (mPFC) and exert a powerful neuromodulatory influence over this region 1,2 . mPFC dopamine activity is thought to be critical for fundamental neurobiological processes including valence coding and decision-making 3,4 . Despite enduring interest in this pathway, the stimuli and conditions that engage mPFC dopamine release have remained enigmatic due to inherent limitations in conventional methods for dopamine monitoring which have prevented real-time in vivo observation 5 . Here, using a fluorescent dopamine sensor enabling time-resolved recordings of cortical dopamine activity in freely behaving mice, we reveal the coding properties of this system and demonstrate that mPFC dopamine dynamics conform to a selective attention signal. Contrary to the long-standing theory that mPFC dopamine release preferentially encodes aversive and stressful events 6-8 , we observed robust dopamine responses to both appetitive and aversive stimuli which dissipated with increasing familiarity irrespective of stimulus intensity. We found that mPFC dopamine does not evolve as a function of learning but displays striking temporal precedence with second-to-second changes in behavioral engagement, suggesting a role in allocation of attentional resources. Systematic manipulation of attentional demand revealed that quieting of mPFC dopamine signals the allocation of attentional resources towards an expected event which, upon detection triggers a sharp dopamine transient marking the transition from decision-making to action. The proposed role of mPFC dopamine as a selective attention signal is the first model based on direct observation of time-resolved dopamine dynamics and reconciles decades of competing theories.
Collapse
|
46
|
Hammer N, Vogel P, Lee S, Roeper J. Optogenetic action potentials and intrinsic pacemaker interplay in retrogradely identified midbrain dopamine neurons. Eur J Neurosci 2024; 59:1311-1331. [PMID: 38056070 DOI: 10.1111/ejn.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
Dissecting the diversity of midbrain dopamine (DA) neurons by optotagging is a promising addition to better identify their functional properties and contribution to motivated behavior. Retrograde molecular targeting of DA neurons with specific axonal projection allows further refinement of this approach. Here, we focus on adult mouse DA neurons in the substantia nigra pars compacta (SNc) projecting to dorsal striatum (DS) by demonstrating the selectivity of a floxed AAV9-based retrograde channelrhodopsin-eYFP (ChR-eYFP) labeling approach in DAT-cre mice. Furthermore, we show the utility of a sparse labeling version for anatomical single-cell reconstruction and demonstrate that ChR-eYFR expressing DA neurons retain intrinsic functional properties indistinguishable from conventionally retrogradely red-beads-labeled neurons. We systematically explore the properties of optogenetically evoked action potentials (oAPs) and their interaction with intrinsic pacemaking in this defined subpopulation of DA neurons. We found that the shape of the oAP and its first derivative, as a proxy for extracellularly recorded APs, is highly distinct from spontaneous APs (sAPs) of the same neurons and systematically varies across the pacemaker duty cycle. The timing of the oAP also affects the backbone oscillator of the intrinsic pacemaker by introducing transient "compensatory pauses". Characterizing this systematic interplay between oAPs and sAPs in defined DA neurons will also facilitate a refinement of DA neuron optotagging in vivo.
Collapse
Affiliation(s)
- Niklas Hammer
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, Germany
| | - Pascal Vogel
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, Germany
| | - Sanghun Lee
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, Germany
| | - Jochen Roeper
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, Germany
| |
Collapse
|
47
|
Lu X, Xue J, Lai Y, Tang X. Heterogeneity of mesencephalic dopaminergic neurons: From molecular classifications, electrophysiological properties to functional connectivity. FASEB J 2024; 38:e23465. [PMID: 38315491 DOI: 10.1096/fj.202302031r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The mesencephalic dopamine (DA) system is composed of neuronal subtypes that are molecularly and functionally distinct, are responsible for specific behaviors, and are closely associated with numerous brain disorders. Existing research has made significant advances in identifying the heterogeneity of mesencephalic DA neurons, which is necessary for understanding their diverse physiological functions and disease susceptibility. Moreover, there is a conflict regarding the electrophysiological properties of the distinct subsets of midbrain DA neurons. This review aimed to elucidate recent developments in the heterogeneity of midbrain DA neurons, including subpopulation categorization, electrophysiological characteristics, and functional connectivity to provide new strategies for accurately identifying distinct subtypes of midbrain DA neurons and investigating the underlying mechanisms of these neurons in various diseases.
Collapse
Affiliation(s)
- Xiaying Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Jinhua Xue
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yudong Lai
- Department of Human Anatomy, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Xiaolu Tang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| |
Collapse
|
48
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
49
|
Liu D, Hu SW, Wang D, Zhang Q, Zhang X, Ding HL, Cao JL. An Ascending Excitatory Circuit from the Dorsal Raphe for Sensory Modulation of Pain. J Neurosci 2024; 44:e0869232023. [PMID: 38124016 PMCID: PMC10860493 DOI: 10.1523/jneurosci.0869-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
The dorsal raphe nucleus (DRN) is an important nucleus in pain regulation. However, the underlying neural pathway and the function of specific cell types remain unclear. Here, we report a previously unrecognized ascending facilitation pathway, the DRN to the mesoaccumbal dopamine (DA) circuit, for regulating pain. Chronic pain increased the activity of DRN glutamatergic, but not serotonergic, neurons projecting to the ventral tegmental area (VTA) (DRNGlu-VTA) in male mice. The optogenetic activation of DRNGlu-VTA circuit induced a pain-like response in naive male mice, and its inhibition produced an analgesic effect in male mice with neuropathic pain. Furthermore, we discovered that DRN ascending pathway regulated pain through strengthened excitatory transmission onto the VTA DA neurons projecting to the ventral part of nucleus accumbens medial shell (vNAcMed), thereby activated the mesoaccumbal DA neurons. Correspondingly, optogenetic manipulation of this three-node pathway bilaterally regulated pain behaviors. These findings identified a DRN ascending excitatory pathway that is crucial for pain sensory processing, which can potentially be exploited toward targeting pain disorders.
Collapse
Affiliation(s)
- Di Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
50
|
Zeng K, Jiao ZH, Jiang Q, He R, Zhang Y, Li WG, Xu TL, Chen Y. Genetically Encoded Photocatalysis Enables Spatially Restricted Optochemical Modulation of Neurons in Live Mice. ACS CENTRAL SCIENCE 2024; 10:163-175. [PMID: 38292609 PMCID: PMC10823520 DOI: 10.1021/acscentsci.3c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024]
Abstract
Light provides high temporal precision for neuronal modulations. Small molecules are advantageous for neuronal modulation due to their structural diversity, allowing them to suit versatile targets. However, current optochemical methods release uncaged small molecules with uniform concentrations in the irradiation area, which lack spatial specificity as counterpart optogenetic methods from genetic encoding for photosensitive proteins. Photocatalysis provides spatial specificity by generating reactive species in the proximity of photocatalysts. However, current photocatalytic methods use antibody-tagged heavy-metal photocatalysts for spatial specificity, which are unsuitable for neuronal applications. Here, we report a genetically encoded metal-free photocatalysis method for the optochemical modulation of neurons via deboronative hydroxylation. The genetically encoded photocatalysts generate doxorubicin, a mitochondrial uncoupler, and baclofen by uncaging stable organoboronate precursors. The mitochondria, nucleus, membrane, cytosol, and ER-targeted drug delivery are achieved by this method. The distinct signaling pathway dissection in a single projection is enabled by the dual optogenetic and optochemical control of synaptic transmission. The itching signaling pathway is investigated by photocatalytic uncaging under live-mice skin for the first time by visible light irradiation. The cell-type-specific release of baclofen reveals the GABABR activation on NaV1.8-expressing nociceptor terminals instead of pan peripheral sensory neurons for itch alleviation in live mice.
Collapse
Affiliation(s)
- Kaixing Zeng
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
- School
of Physical Science and Technology, ShanghaiTech
University, 100 Haike Road, Shanghai 201210, China
| | - Zhi-Han Jiao
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qin Jiang
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ru He
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
- School
of Physical Science and Technology, ShanghaiTech
University, 100 Haike Road, Shanghai 201210, China
| | - Yixin Zhang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Wei-Guang Li
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Department
of Rehabilitation Medicine, Huashan Hospital, Institute for Translational
Brain Research, State Key Laboratory of Medical Neurobiology and Ministry
of Education Frontiers Centre for Brain Science, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Tian-Le Xu
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yiyun Chen
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
- School
of Physical Science and Technology, ShanghaiTech
University, 100 Haike Road, Shanghai 201210, China
- School
of Chemistry and Material Sciences, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|