1
|
Murillo Gonzalez DJ, Hernandez Granados BA, Sabandal PR, Han K. Social setting interacts with hyper dopamine to boost the stimulant effect of ethanol. Addict Biol 2024; 29:e13420. [PMID: 38898729 PMCID: PMC11187408 DOI: 10.1111/adb.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Alcohol consumption occurring in a social or solitary setting often yields different behavioural responses in human subjects. For example, social drinking is associated with positive effects while solitary drinking is linked to negative effects. However, the neurobiological mechanism by which the social environment during alcohol intake impacts on behavioural responses remains poorly understood. We investigated whether distinct social environments affect behavioural responses to ethanol and the role of the dopamine system in this phenomenon in the fruit fly Drosophila melanogaster. The wild-type Canton-S (CS) flies showed higher locomotor response when exposed to ethanol in a group setting than a solitary setting, and there was no difference in females and males. Dopamine signalling is crucial for the locomotor stimulating effect of ethanol. When subjected to ethanol exposure alone, the dopamine transport mutant flies fumin (fmn) with hyper dopamine displayed the locomotor response similar to CS. When subjected to ethanol in a group setting, however, the fmn's response to the locomotor stimulating effect was substantially augmented compared with CS, indicating synergistic interaction of dopamine signalling and social setting. To identify the dopamine signalling pathway important for the social effect, we examined the flies defective in individual dopamine receptors and found that the D1 receptor dDA1/Dop1R1 is the major receptor mediating the social effect. Taken together, this study underscores the influence of social context on the neural and behavioural responses to ethanol.
Collapse
Affiliation(s)
- Dilean J. Murillo Gonzalez
- Department of Biological SciencesThe University of Texas at El PasoEl PasoTXUSA
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| | - Bryan A. Hernandez Granados
- Department of Biological SciencesThe University of Texas at El PasoEl PasoTXUSA
- Department of BiochemistryVanderbilt UniversityNashvilleTNUSA
| | | | - Kyung‐An Han
- Department of Biological SciencesThe University of Texas at El PasoEl PasoTXUSA
| |
Collapse
|
2
|
Sleep Modulates Alcohol Toxicity in Drosophila. Int J Mol Sci 2022; 23:ijms232012091. [PMID: 36292943 PMCID: PMC9603330 DOI: 10.3390/ijms232012091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol abuse is a significant public health problem. While considerable research has shown that alcohol use affects sleep, little is known about the role of sleep deprivation in alcohol toxicity. We investigated sleep as a factor modulating alcohol toxicity using Drosophila melanogaster, a model for studies of sleep, alcohol, and aging. Following 24 h of sleep deprivation using a paradigm that similarly affects males and females and induces rebound sleep, flies were given binge-like alcohol exposures. Sleep deprivation increased mortality, with no sex-dependent differences. Sleep deprivation also abolished functional tolerance measured at 24 h after the initial alcohol exposure, although there was no effect on alcohol absorbance or clearance. We investigated the effect of chronic sleep deprivation using mutants with decreased sleep, insomniac and insulin-like peptide 2, finding increased alcohol mortality. Furthermore, we investigated whether pharmacologically inducing sleep prior to alcohol exposure using the GABAA-receptor agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) mitigated the effects of alcohol toxicity on middle-aged flies, flies with environmentally disrupted circadian clocks, and flies with short sleep. Pharmacologically increasing sleep prior to alcohol exposure decreased alcohol-induced mortality. Thus, sleep prior to binge-like alcohol exposure affects alcohol-induced mortality, even in vulnerable groups such as aging flies and those with circadian dysfunction.
Collapse
|
3
|
Ishii K, Cortese M, Leng X, Shokhirev MN, Asahina K. A neurogenetic mechanism of experience-dependent suppression of aggression. SCIENCE ADVANCES 2022; 8:eabg3203. [PMID: 36070378 PMCID: PMC9451153 DOI: 10.1126/sciadv.abg3203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aggression is an ethologically important social behavior, but excessive aggression can be detrimental to fitness. Social experiences among conspecific individuals reduce aggression in many species, the mechanism of which is largely unknown. We found that loss-of-function mutation of nervy (nvy), a Drosophila homolog of vertebrate myeloid translocation genes (MTGs), increased aggressiveness only in socially experienced flies and that this could be reversed by neuronal expression of human MTGs. A subpopulation of octopaminergic/tyraminergic neurons labeled by nvy was specifically required for such social experience-dependent suppression of aggression, in both males and females. Cell type-specific transcriptomic analysis of these neurons revealed aggression-controlling genes that are likely downstream of nvy. Our results illustrate both genetic and neuronal mechanisms by which the nervous system suppresses aggression in a social experience-dependent manner, a poorly understood process that is considered important for maintaining the fitness of animals.
Collapse
Affiliation(s)
- Kenichi Ishii
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matteo Cortese
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xubo Leng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Maxim N. Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kenta Asahina
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Huang G, Dierick HA. The need for unbiased genetic screens to dissect aggression in Drosophila melanogaster. Front Behav Neurosci 2022; 16:901453. [PMID: 35979224 PMCID: PMC9377312 DOI: 10.3389/fnbeh.2022.901453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aggression is an evolutionarily conserved behavior present in most animals and is necessary for survival when competing for limited resources and mating partners. Studies have shown that aggression is modulated both genetically and epigenetically, but details of how the molecular and cellular mechanisms interact to determine aggressive behavior remain to be elucidated. In recent decades, Drosophila melanogaster has emerged as a powerful model system to understand the mechanisms that regulate aggression. Surprisingly most of the findings discovered to date have not come from genetic screens despite the fly's long and successful history of using screens to unravel its biology. Here, we highlight the tools and techniques used to successfully screen for aggression-linked behavioral elements in Drosophila and discuss the potential impact future screens have in advancing our knowledge of the underlying genetic and neural circuits governing aggression.
Collapse
Affiliation(s)
- Gary Huang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Herman A Dierick
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
5
|
Eddison M. A genetic screen for Drosophila social isolation mutants and analysis of sex pistol. Sci Rep 2021; 11:17395. [PMID: 34462500 PMCID: PMC8405609 DOI: 10.1038/s41598-021-96871-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Prolonged periods of forced social isolation is detrimental to well-being, yet we know little about which genes regulate susceptibility to its effects. In the fruit fly, Drosophila melanogaster, social isolation induces stark changes in behavior including increased aggression, locomotor activity, and resistance to ethanol sedation. To identify genes regulating sensitivity to isolation, I screened a collection of sixteen hundred P-element insertion lines for mutants with abnormal levels of all three isolation-induced behaviors. The screen identified three mutants whose affected genes are likely central to regulating the effects of isolation in flies. One mutant, sex pistol (sxp), became extremely aggressive and resistant to ethanol sedation when socially isolated. sxp also had a high level of male–male courtship. The mutation in sxp reduced the expression of two minor isoforms of the actin regulator hts (adducin), as well as mildly reducing expression of CalpA, a calcium-dependent protease. As a consequence, sxp also had increased expression of the insulin-like peptide, dILP5. Analysis of the social behavior of sxp suggests that these minor hts isoforms function to limit isolation-induced aggression, while chronically high levels of dILP5 increase male–male courtship.
Collapse
Affiliation(s)
- Mark Eddison
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA.
| |
Collapse
|
6
|
Pandey P, Singh A, Kaur H, Ghosh-Roy A, Babu K. Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009346. [PMID: 33524034 PMCID: PMC7877767 DOI: 10.1371/journal.pgen.1009346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/11/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Ethanol is a widely used drug, excessive consumption of which could lead to medical conditions with diverse symptoms. Ethanol abuse causes dysfunction of memory, attention, speech and locomotion across species. Dopamine signaling plays an essential role in ethanol dependent behaviors in animals ranging from C. elegans to humans. We devised an ethanol dependent assay in which mutants in the dopamine autoreceptor, dop-2, displayed a unique sedative locomotory behavior causing the animals to move in circles while dragging the posterior half of their body. Here, we identify the posterior dopaminergic sensory neuron as being essential to modulate this behavior. We further demonstrate that in dop-2 mutants, ethanol exposure increases dopamine secretion and functions in a DVA interneuron dependent manner. DVA releases the neuropeptide NLP-12 that is known to function through cholinergic motor neurons and affect movement. Thus, DOP-2 modulates dopamine levels at the synapse and regulates alcohol induced movement through NLP-12.
Collapse
Affiliation(s)
- Pratima Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Anuradha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Harjot Kaur
- National Brain Research Centre, Gurgaon, India
| | | | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
7
|
Jacomin AC, Gohel R, Hussain Z, Varga A, Maruzs T, Eddison M, Sica M, Jain A, Moffat KG, Johansen T, Jenny A, Juhasz G, Nezis IP. Degradation of arouser by endosomal microautophagy is essential for adaptation to starvation in Drosophila. Life Sci Alliance 2020; 4:4/2/e202000965. [PMID: 33318080 PMCID: PMC7756965 DOI: 10.26508/lsa.202000965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/09/2022] Open
Abstract
Drosophila EPS8-family protein Arouser is constitutively degraded by endosomal microautophagy; its stabilisation upon starvation is essential to the animal adaptation and survival. Hunger drives food-seeking behaviour and controls adaptation of organisms to nutrient availability and energy stores. Lipids constitute an essential source of energy in the cell that can be mobilised during fasting by autophagy. Selective degradation of proteins by autophagy is made possible essentially by the presence of LIR and KFERQ-like motifs. Using in silico screening of Drosophila proteins that contain KFERQ-like motifs, we identified and characterized the adaptor protein Arouser, which functions to regulate fat storage and mobilisation and is essential during periods of food deprivation. We show that hypomorphic arouser mutants are not satiated, are more sensitive to food deprivation, and are more aggressive, suggesting an essential role for Arouser in the coordination of metabolism and food-related behaviour. Our analysis shows that Arouser functions in the fat body through nutrient-related signalling pathways and is degraded by endosomal microautophagy. Arouser degradation occurs during feeding conditions, whereas its stabilisation during non-feeding periods is essential for resistance to starvation and survival. In summary, our data describe a novel role for endosomal microautophagy in energy homeostasis, by the degradation of the signalling regulatory protein Arouser.
Collapse
Affiliation(s)
| | - Raksha Gohel
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Zunoon Hussain
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Agnes Varga
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
| | - Tamas Maruzs
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Mark Eddison
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Margaux Sica
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Ashish Jain
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kevin G Moffat
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA.,Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, USA.,Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, USA.,Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Gabor Juhasz
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary.,Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Ioannis P Nezis
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
8
|
Insulin and Leptin/Upd2 Exert Opposing Influences on Synapse Number in Fat-Sensing Neurons. Cell Metab 2020; 32:786-800.e7. [PMID: 32976758 PMCID: PMC7642105 DOI: 10.1016/j.cmet.2020.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 01/20/2023]
Abstract
Energy-sensing neural circuits decide to expend or conserve resources based, in part, on the tonic, steady-state, energy-store information they receive. Tonic signals, in the form of adipose tissue-derived adipokines, set the baseline level of activity in the energy-sensing neurons, thereby providing context for interpretation of additional inputs. However, the mechanism by which tonic adipokine information establishes steady-state neuronal function has heretofore been unclear. We show here that under conditions of nutrient surplus, Upd2, a Drosophila leptin ortholog, regulates actin-based synapse reorganization to reduce bouton number in an inhibitory circuit, thus establishing a neural tone that is permissive for insulin release. Unexpectedly, we found that insulin feeds back on these same inhibitory neurons to conversely increase bouton number, resulting in maintenance of negative tone. Our results point to a mechanism by which two surplus-sensing hormonal systems, Upd2/leptin and insulin, converge on a neuronal circuit with opposing outcomes to establish energy-store-dependent neuron activity.
Collapse
|
9
|
Abstract
Preference for spatial locations to maximize favorable outcomes and minimize aversive experiences helps animals survive and adapt to the changing environment. Both visual and non-visual cues play a critical role in spatial navigation and memory of a place supports and guides these strategies. Here we present the neural, genetic and behavioral processes involved in place memory formation using Drosophila melanogaster with a focus on non-visual cue based spatial memories. The work presented here highlights the work done by Dr. Troy Zars and his colleagues with an emphasis on role of biogenic amines in learning, cell biological mechanisms of neural systems and behavioral plasticity of place conditioning.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Psychology, College of Science, California State University-East Bay, Hayward, CA, USA
| | - Holly LaFerriere
- Department of Biology, Bemidji State University, Bemidji, MN, USA
| |
Collapse
|
10
|
Engel GL, Taber K, Vinton E, Crocker AJ. Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:7. [PMID: 30992041 PMCID: PMC6469124 DOI: 10.1186/s12993-019-0159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.
Collapse
Affiliation(s)
- Gregory L. Engel
- Department of Psychological Sciences, Castleton University, Castleton, VT 05735 USA
| | - Kreager Taber
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Elizabeth Vinton
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Amanda J. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| |
Collapse
|
11
|
Choi HJ, Cha SJ, Kim K. Glutathione transferase modulates acute ethanol-induced sedation in Drosophila neurones. INSECT MOLECULAR BIOLOGY 2019; 28:246-252. [PMID: 30347459 DOI: 10.1111/imb.12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heavy alcohol consumption leads to neuropathological damage and alcohol use disorder, which affects the health of people and results in a cost burden. However, the genes modulating sensitivity to ethanol remain largely unknown. Here, we identified a novel gene, Drosophila glutathione transferase omega 1 (GstO1), which plays a critical role in regulating sensitivity to ethanol sedation. GstO1 mutant flies showed highly increased ethanol sensitivity. Furthermore, the expression level of GstO1 regulates the behavioural response to ethanol, because decreasing and increasing GstO1 affects sedation sensitivity in a contrasting manner. In addition, the RNA interference-mediated knockdown of GstO1 expression reveals that GstO1 mediates sensitivity to ethanol sedation in neurones, including dopaminergic and serotonergic neurones. Altogether, our findings provide the first evidence for the involvement of glutathione transferase in the response to alcohol in Drosophila and provide a novel mechanistic insight into the toxicity and sensitivity of ethanol exposure.
Collapse
Affiliation(s)
- H-J Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Korea
| | - S J Cha
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Korea
| | - K Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Korea
| |
Collapse
|
12
|
Ryvkin J, Bentzur A, Zer-Krispil S, Shohat-Ophir G. Mechanisms Underlying the Risk to Develop Drug Addiction, Insights From Studies in Drosophila melanogaster. Front Physiol 2018; 9:327. [PMID: 29740329 PMCID: PMC5928757 DOI: 10.3389/fphys.2018.00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
The ability to adapt to environmental changes is an essential feature of biological systems, achieved in animals by a coordinated crosstalk between neuronal and hormonal programs that allow rapid and integrated organismal responses. Reward systems play a key role in mediating this adaptation by reinforcing behaviors that enhance immediate survival, such as eating or drinking, or those that ensure long-term survival, such as sexual behavior or caring for offspring. Drugs of abuse co-opt neuronal and molecular pathways that mediate natural rewards, which under certain circumstances can lead to addiction. Many factors can contribute to the transition from drug use to drug addiction, highlighting the need to discover mechanisms underlying the progression from initial drug use to drug addiction. Since similar responses to natural and drug rewards are present in very different animals, it is likely that the central systems that process reward stimuli originated early in evolution, and that common ancient biological principles and genes are involved in these processes. Thus, the neurobiology of natural and drug rewards can be studied using simpler model organisms that have their systems stripped of some of the immense complexity that exists in mammalian brains. In this paper we review studies in Drosophila melanogaster that model different aspects of natural and drug rewards, with an emphasis on how motivational states shape the value of the rewarding experience, as an entry point to understanding the mechanisms that contribute to the vulnerability of drug addiction.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Shir Zer-Krispil
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
13
|
Lowenstein EG, Velazquez-Ulloa NA. A Fly's Eye View of Natural and Drug Reward. Front Physiol 2018; 9:407. [PMID: 29720947 PMCID: PMC5915475 DOI: 10.3389/fphys.2018.00407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.
Collapse
Affiliation(s)
- Eve G Lowenstein
- Department of Biology, Lewis & Clark College, Portland, OR, United States
| | | |
Collapse
|
14
|
Kang D, Wang D, Xu J, Quan C, Guo X, Wang H, Luo J, Yang Z, Chen S, Chen J. The InR/Akt/TORC1 Growth-Promoting Signaling Negatively Regulates JAK/STAT Activity and Migratory Cell Fate during Morphogenesis. Dev Cell 2018; 44:524-531.e5. [DOI: 10.1016/j.devcel.2018.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/06/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
|
15
|
Park A, Ghezzi A, Wijesekera TP, Atkinson NS. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 2017; 122:22-35. [PMID: 28161376 DOI: 10.1016/j.neuropharm.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Drosophila melanogaster has become a significant model organism for alcohol research. In flies, a rich variety of behaviors can be leveraged for identifying genes affecting alcohol responses and adaptations. Furthermore, almost all genes can be easily genetically manipulated. Despite the great evolutionary distance between flies and mammals, many of the same genes have been implicated in strikingly similar alcohol-induced behaviors. A major problem in medical research today is that it is difficult to extrapolate from any single model system to humans. Strong evolutionary conservation of a mechanistic response between distantly related organisms, such as flies and mammals, is a powerful predictor that conservation will continue all the way to humans. This review describes the state of the Drosophila alcohol research field. It describes common alcohol behavioral assays, the independent origins of resistance and tolerance, the results of classical genetic screens and candidate gene analysis, and the outcomes of recent genomics studies employing GWAS, transcriptome, miRNA, and genome-wide histone acetylation surveys. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Annie Park
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Rio Piedras. San Juan, PR, United States
| | - Thilini P Wijesekera
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Nigel S Atkinson
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
16
|
Dissel S, Klose M, Donlea J, Cao L, English D, Winsky-Sommerer R, van Swinderen B, Shaw PJ. Enhanced sleep reverses memory deficits and underlying pathology in Drosophila models of Alzheimer's disease. Neurobiol Sleep Circadian Rhythms 2016; 2:15-26. [PMID: 29094110 PMCID: PMC5662006 DOI: 10.1016/j.nbscr.2016.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To test the hypothesis that sleep can reverse cognitive impairment during Alzheimer's disease, we enhanced sleep in flies either co-expressing human amyloid precursor protein and Beta-secretase (APP:BACE), or in flies expressing human tau. The ubiquitous expression of APP:BACE or human tau disrupted sleep. The sleep deficits could be reversed and sleep could be enhanced when flies were administered the GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP). Expressing APP:BACE disrupted both Short-term memory (STM) and Long-term memory (LTM) as assessed using Aversive Phototaxic Suppression (APS) and courtship conditioning. Flies expressing APP:BACE also showed reduced levels of the synaptic protein discs large (DLG). Enhancing sleep in memory-impaired APP:BACE flies fully restored both STM and LTM and restored DLG levels. Sleep also restored STM to flies expressing human tau. Using live-brain imaging of individual clock neurons expressing both tau and the cAMP sensor Epac1-camps, we found that tau disrupted cAMP signaling. Importantly, enhancing sleep in flies expressing human tau restored proper cAMP signaling. Thus, we demonstrate that sleep can be used as a therapeutic to reverse deficits that accrue during the expression of toxic peptides associated with Alzheimer's disease. THIP can be used to enhance sleep in two Drosophila models of Alzheimer's disease. Enhanced sleep reverses memory deficits in fly's expressing human APP:BACE and tau. Enhanced sleep restores cAMP levels in clock neurons expressing tau. Sleep can be used as a therapeutic to reverse Alzheimer's disease related deficits.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Markus Klose
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Jeff Donlea
- Department of Neurobiology, University of California: Los Angeles Los Angeles, California, U.S.A
| | - Lijuan Cao
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Denis English
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences University of Surrey Guildford Surrey, GU2 7XH, United Kingdom
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane Qld 4072 Australia
| | - Paul J Shaw
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| |
Collapse
|
17
|
The Unique Dopamine/Ecdysteroid Receptor Modulates Ethanol-Induced Sedation in Drosophila. J Neurosci 2016; 36:4647-57. [PMID: 27098705 DOI: 10.1523/jneurosci.3774-15.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/23/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Steroids profoundly influence behavioral responses to alcohol by activating canonical nuclear hormone receptors and exerting allosteric effects on ion channels. Accumulating evidence has demonstrated that steroids can also trigger biological effects by directly binding G-protein-coupled receptors (GPCRs), yet physiological roles of such unconventional steroid signaling in controlling alcohol-induced behaviors remain unclear. The dopamine/ecdysteroid receptor (DopEcR) is a GPCR that mediates nongenomic actions of ecdysteroids, the major steroid hormones in insects. Here, we report that Drosophila DopEcR plays a critical role in ethanol-induced sedation.DopEcR mutants took longer than control flies to become sedated during exposure to ethanol, despite having normal ethanol absorption or metabolism. RNAi-mediated knockdown of DopEcR expression revealed that this receptor is necessary after eclosion, and is required in particular neuronal subsets, including cholinergic and peptidergic neurons, to mediate this behavior. Additionally, flies ubiquitously overexpressing DopEcR cDNA had a tendency to become sedated quickly upon ethanol exposure. These results indicate that neuronal subset-specific expression of DopEcR in adults is required for normal sedation upon exposure to ethanol. We also obtained evidence indicating that DopEcR may promote ethanol sedation by suppressing epidermal growth factor receptor/extracellular signal-regulated kinase signaling. Last, genetic and pharmacological analyses suggested that in adult flies ecdysone may serve as an inverse agonist of DopEcR and suppress the sedation-promoting activity of DopEcR in the context of ethanol exposure. Our findings provide the first evidence for the involvement of nongenomic G-protein-coupled steroid receptors in the response to alcohol, and shed new light on the potential roles of steroids in alcohol-use disorders. SIGNIFICANCE STATEMENT Alcohol abuse is an alarming personal and societal burden. The improvement of prevention and treatment strategies for alcohol-use disorders requires a better understanding of their biological basis. Steroid hormones profoundly affect alcohol-induced behaviors, but the contribution of their unconventional, nongenomic actions during these responses has not yet been elucidated. We found that Drosophila DopEcR, a unique G-protein-coupled receptor (GPCR) with dual specificity for dopamine and steroids, mediates noncanonical steroid actions to promote ethanol-induced sedation. Because steroid signaling and the behavioral response to alcohol are evolutionarily well conserved, our findings suggest that analogous mammalian receptors likely play important roles in alcohol-use disorders. Our work provides a foundation for further characterizing the function and mechanisms of action of nonclassical steroid GPCR signaling.
Collapse
|
18
|
Abstract
UNLABELLED Alcohol use disorders (AUDs) affect people at great individual and societal cost. Individuals at risk for AUDs are sensitive to alcohol's rewarding effects and/or resistant to its aversive and sedating effects. The molecular basis for these traits is poorly understood. Here, we show that p70 S6 kinase (S6k), acting downstream of the insulin receptor (InR) and the small GTPase Arf6, is a key mediator of ethanol-induced sedation in Drosophila. S6k signaling in the adult nervous system determines flies' sensitivity to sedation. Furthermore, S6k activity, measured via levels of phosphorylation (P-S6k), is a molecular marker for sedation and overall neuronal activity: P-S6k levels are decreased when neurons are silenced, as well as after acute ethanol sedation. Conversely, P-S6k levels rebound upon recovery from sedation and are increased when neuronal activity is enhanced. Reducing neural activity increases sensitivity to ethanol-induced sedation, whereas neuronal activation decreases ethanol sensitivity. These data suggest that ethanol has acute silencing effects on adult neuronal activity, which suppresses InR/Arf6/S6k signaling and results in behavioral sedation. In addition, we show that activity of InR/Arf6/S6k signaling determines flies' behavioral sensitivity to ethanol-induced sedation, highlighting this pathway in acute responses to ethanol. SIGNIFICANCE STATEMENT Genetic factors play a major role in the development of addiction. Identifying these genes and understanding their molecular mechanisms is a necessary first step in the development of targeted therapeutic intervention. Here, we show that signaling from the insulin receptor in Drosophila neurons determines flies' sensitivity to ethanol-induced sedation. We show that this signaling cascade includes the small GTPase Arf6 and S6 kinase (S6k). In addition, activity of S6k is regulated by acute ethanol exposure and by neuronal activity. S6k activity is therefore both an acute target of ethanol exposure and a regulator of ethanol's effects on behavior.
Collapse
|
19
|
Morozova TV, Huang W, Pray VA, Whitham T, Anholt RRH, Mackay TFC. Polymorphisms in early neurodevelopmental genes affect natural variation in alcohol sensitivity in adult drosophila. BMC Genomics 2015; 16:865. [PMID: 26503115 PMCID: PMC4624176 DOI: 10.1186/s12864-015-2064-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/13/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Alcohol abuse and alcoholism are significant public health problems, but the genetic basis for individual variation in alcohol sensitivity remains poorly understood. Drosophila melanogaster presents a powerful model system for dissecting the genetic underpinnings that determine individual variation in alcohol-related phenotypes. We performed genome wide association analyses for alcohol sensitivity using the sequenced, inbred lines of the D. melanogaster Genetic Reference Panel (DGRP) together with extreme QTL mapping in an advanced intercross population derived from sensitive and resistant DGRP lines. RESULTS The DGRP harbors substantial genetic variation for alcohol sensitivity and tolerance. We identified 247 candidate genes affecting alcohol sensitivity in the DGRP or the DGRP-derived advanced intercross population, some of which met a Bonferroni-corrected significance threshold, while others occurred among the top candidate genes associated with variation in alcohol sensitivity in multiple analyses. Among these were candidate genes associated with development and function of the nervous system, including several genes in the Dopamine decarboxylase (Ddc) cluster involved in catecholamine synthesis. We found that 58 of these genes formed a genetic interaction network. We verified candidate genes using mutational analysis, targeted gene disruption through RNAi knock-down and transcriptional profiling. Two-thirds of the candidate genes have been implicated in previous Drosophila, mouse and human studies of alcohol-related phenotypes. CONCLUSIONS Individual variation in alcohol sensitivity in Drosophila is highly polygenic and in part determined by variation in evolutionarily conserved signaling pathways that are associated with catecholamine neurotransmitter biosynthesis and early development of the nervous system.
Collapse
Affiliation(s)
- Tatiana V Morozova
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Wen Huang
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Victoria A Pray
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Thomas Whitham
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
- Department of Biochemistry and Physiology, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Robert R H Anholt
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA.
| |
Collapse
|
20
|
Ojelade SA, Acevedo SF, Kalahasti G, Rodan AR, Rothenfluh A. RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate Behavioral Responses to Alcohol via Cofilin. PLoS One 2015; 10:e0137465. [PMID: 26366560 PMCID: PMC4569326 DOI: 10.1371/journal.pone.0137465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/17/2015] [Indexed: 11/18/2022] Open
Abstract
Responses to the effects of ethanol are highly conserved across organisms, with reduced responses to the sedating effects of ethanol being predictive of increased risk for human alcohol dependence. Previously, we described that regulators of actin dynamics, such as the Rho-family GTPases Rac1, Rho1, and Cdc42, alter Drosophila's sensitivity to ethanol-induced sedation. The GTPase activating protein RhoGAP18B also affects sensitivity to ethanol. To better understand how different RhoGAP18B isoforms affect ethanol sedation, we examined them for their effects on cell shape, GTP-loading of Rho-family GTPase, activation of the actin-severing cofilin, and actin filamentation. Our results suggest that the RhoGAP18B-PA isoform acts on Cdc42, while PC and PD act via Rac1 and Rho1 to activate cofilin. In vivo, a loss-of-function mutation in the cofilin-encoding gene twinstar leads to reduced ethanol-sensitivity and acts in concert with RhoGAP18B. Different RhoGAP18B isoforms, therefore, act on distinct subsets of Rho-family GTPases to modulate cofilin activity, actin dynamics, and ethanol-induced behaviors.
Collapse
Affiliation(s)
- Shamsideen A. Ojelade
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
- Program in Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Summer F. Acevedo
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Geetha Kalahasti
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Aylin R. Rodan
- Division of Nephrology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States of America
| | - Adrian Rothenfluh
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
- Program in Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
21
|
Grotewiel M, Bettinger JC. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder. Alcohol Clin Exp Res 2015; 39:1292-311. [PMID: 26173477 PMCID: PMC4656040 DOI: 10.1111/acer.12785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Despite the profound clinical significance and strong heritability of alcohol use disorder (AUD), we do not yet have a comprehensive understanding of the naturally occurring genetic variance within the human genome that drives its development. This lack of understanding is likely to be due in part to the large phenotypic and genetic heterogeneities that underlie human AUD. As a complement to genetic studies in humans, many laboratories are using the invertebrate model organisms (iMOs) Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (nematode worm) to identify genetic mechanisms that influence the effects of alcohol (ethanol) on behavior. While these extremely powerful models have identified many genes that influence the behavioral responses to alcohol, in most cases it has remained unclear whether results from behavioral-genetic studies in iMOs are directly applicable to understanding the genetic basis of human AUD. METHODS In this review, we critically evaluate the utility of the fly and worm models for identifying genes that influence AUD in humans. RESULTS Based on results published through early 2015, studies in flies and worms have identified 91 and 50 genes, respectively, that influence 1 or more aspects of behavioral responses to alcohol. Collectively, these fly and worm genes correspond to 293 orthologous genes in humans. Intriguingly, 51 of these 293 human genes have been implicated in AUD by at least 1 study in human populations. CONCLUSIONS Our analyses strongly suggest that the Drosophila and C. elegans models have considerable utility for identifying orthologs of genes that influence human AUD.
Collapse
Affiliation(s)
- Mike Grotewiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| |
Collapse
|
22
|
Abstract
Alcohol abuse is highly prevalent, but little is understood about the molecular causes. Here, we report that Ras suppressor 1 (Rsu1) affects ethanol consumption in flies and humans. Drosophila lacking Rsu1 show reduced sensitivity to ethanol-induced sedation. We show that Rsu1 is required in the adult nervous system for normal sensitivity and that it acts downstream of the integrin cell adhesion molecule and upstream of the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase to regulate the actin cytoskeleton. In an ethanol preference assay, global loss of Rsu1 causes high naïve preference. In contrast, flies lacking Rsu1 only in the mushroom bodies of the brain show normal naïve preference but then fail to acquire ethanol preference like normal flies. Rsu1 is, thus, required in distinct neurons to modulate naïve and acquired ethanol preference. In humans, we find that polymorphisms in RSU1 are associated with brain activation in the ventral striatum during reward anticipation in adolescents and alcohol consumption in both adolescents and adults. Together, these data suggest a conserved role for integrin/Rsu1/Rac1/actin signaling in modulating reward-related phenotypes, including ethanol consumption, across phyla.
Collapse
|
23
|
Karikari TK, Aleksic J. Neurogenomics: An opportunity to integrate neuroscience, genomics and bioinformatics research in Africa. Appl Transl Genom 2015; 5:3-10. [PMID: 26937352 PMCID: PMC4745356 DOI: 10.1016/j.atg.2015.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 02/02/2023]
Abstract
Modern genomic approaches have made enormous contributions to improving our understanding of the function, development and evolution of the nervous system, and the diversity within and between species. However, most of these research advances have been recorded in countries with advanced scientific resources and funding support systems. On the contrary, little is known about, for example, the possible interplay between different genes, non-coding elements and environmental factors in modulating neurological diseases among populations in low-income countries, including many African countries. The unique ancestry of African populations suggests that improved inclusion of these populations in neuroscience-related genomic studies would significantly help to identify novel factors that might shape the future of neuroscience research and neurological healthcare. This perspective is strongly supported by the recent identification that diseased individuals and their kindred from specific sub-Saharan African populations lack common neurological disease-associated genetic mutations. This indicates that there may be population-specific causes of neurological diseases, necessitating further investigations into the contribution of additional, presently-unknown genomic factors. Here, we discuss how the development of neurogenomics research in Africa would help to elucidate disease-related genomic variants, and also provide a good basis to develop more effective therapies. Furthermore, neurogenomics would harness African scientists' expertise in neuroscience, genomics and bioinformatics to extend our understanding of the neural basis of behaviour, development and evolution.
Collapse
Affiliation(s)
- Thomas K. Karikari
- Neuroscience, School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jelena Aleksic
- Wellcome Trust — Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
24
|
Dissel S, Angadi V, Kirszenblat L, Suzuki Y, Donlea J, Klose M, Koch Z, English D, Winsky-Sommerer R, van Swinderen B, Shaw PJ. Sleep restores behavioral plasticity to Drosophila mutants. Curr Biol 2015; 25:1270-81. [PMID: 25913403 DOI: 10.1016/j.cub.2015.03.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/18/2015] [Accepted: 03/18/2015] [Indexed: 12/01/2022]
Abstract
Given the role that sleep plays in modulating plasticity, we hypothesized that increasing sleep would restore memory to canonical memory mutants without specifically rescuing the causal molecular lesion. Sleep was increased using three independent strategies: activating the dorsal fan-shaped body, increasing the expression of Fatty acid binding protein (dFabp), or by administering the GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP). Short-term memory (STM) or long-term memory (LTM) was evaluated in rutabaga (rut) and dunce (dnc) mutants using aversive phototaxic suppression and courtship conditioning. Each of the three independent strategies increased sleep and restored memory to rut and dnc mutants. Importantly, inducing sleep also reverses memory defects in a Drosophila model of Alzheimer's disease. Together, these data demonstrate that sleep plays a more fundamental role in modulating behavioral plasticity than previously appreciated and suggest that increasing sleep may benefit patients with certain neurological disorders.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Veena Angadi
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yasuko Suzuki
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeff Donlea
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford 1 3SR, UK
| | - Markus Klose
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Zachary Koch
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Denis English
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey 2 7XH, UK
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul J Shaw
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Sandhu S, Kollah AP, Lewellyn L, Chan RF, Grotewiel M. An inexpensive, scalable behavioral assay for measuring ethanol sedation sensitivity and rapid tolerance in Drosophila. J Vis Exp 2015:52676. [PMID: 25939022 PMCID: PMC4423423 DOI: 10.3791/52676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Alcohol use disorder (AUD) is a serious health challenge. Despite a large hereditary component to AUD, few genes have been unambiguously implicated in their etiology. The fruit fly, Drosophila melanogaster, is a powerful model for exploring molecular-genetic mechanisms underlying alcohol-related behaviors and therefore holds great promise for identifying and understanding the function of genes that influence AUD. The use of the Drosophila model for these types of studies depends on the availability of assays that reliably measure behavioral responses to ethanol. This report describes an assay suitable for assessing ethanol sensitivity and rapid tolerance in flies. Ethanol sensitivity measured in this assay is influenced by the volume and concentration of ethanol used, a variety of previously reported genetic manipulations, and also the length of time the flies are housed without food immediately prior to testing. In contrast, ethanol sensitivity measured in this assay is not affected by the vigor of fly handling, sex of the flies, and supplementation of growth medium with antibiotics or live yeast. Three different methods for quantitating ethanol sensitivity are described, all leading to essentially indistinguishable ethanol sensitivity results. The scalable nature of this assay, combined with its overall simplicity to set-up and relatively low expense, make it suitable for small and large scale genetic analysis of ethanol sensitivity and rapid tolerance in Drosophila.
Collapse
Affiliation(s)
- Simran Sandhu
- Department of Human and Molecular Genetics, Virginia Commonwealth University
| | - Arnavaz P Kollah
- Department of Human and Molecular Genetics, Virginia Commonwealth University
| | - Lara Lewellyn
- Department of Human and Molecular Genetics, Virginia Commonwealth University
| | - Robin F Chan
- Department of Human and Molecular Genetics, Virginia Commonwealth University
| | - Mike Grotewiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University; VCU Alcohol Research Center, Virginia Commonwealth University;
| |
Collapse
|
26
|
Chan RF, Lewellyn L, DeLoyht JM, Sennett K, Coffman S, Hewitt M, Bettinger JC, Warrick JM, Grotewiel M. Contrasting influences of Drosophila white/mini-white on ethanol sensitivity in two different behavioral assays. Alcohol Clin Exp Res 2014; 38:1582-93. [PMID: 24890118 PMCID: PMC4049357 DOI: 10.1111/acer.12421] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/12/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol (EtOH)-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white(mini-w), a derivative of the endogenous gene white(w). Whether the mini-w transgenic marker or the endogenous w gene influences behavioral responses to acute EtOH exposure in flies has not been systematically investigated. METHODS We manipulated mini-w and w expression via (i) transposons marked with mini-w, (ii) RNAi against mini-w and w, and (iii) a null allele of w. We assessed EtOH sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of EtOH) and an assay based on EtOH-induced sedation. RESULTS In eRING assays, EtOH-induced impairment of climbing correlated inversely with expression of the mini-w marker from a series of transposon insertions. Additionally, flies harboring a null allele of w or flies with RNAi-mediated knockdown of mini-w were significantly more sensitive to EtOH in eRING assays than controls expressing endogenous w or the mini-w marker. In contrast, EtOH sensitivity and rapid tolerance measured in the EtOH sedation assay were not affected by decreased expression of mini-w or endogenous w in flies. CONCLUSIONS EtOH sensitivity measured in the eRING assay is noticeably influenced by w and mini-w, making eRING problematic for studies on EtOH-related behavior in Drosophila using transgenes marked with mini-w. In contrast, the EtOH sensitivity assay described here is a suitable behavioral paradigm for studies on EtOH sensitivity and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-w.
Collapse
Affiliation(s)
- Robin F. Chan
- Molecular Biology and Genetics Program, Virginia Commonwealth University, Richmond, VA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Lara Lewellyn
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Jacqueline M. DeLoyht
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, VA
| | - Kristyn Sennett
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Scarlett Coffman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Matthew Hewitt
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Jill C. Bettinger
- Molecular Biology and Genetics Program, Virginia Commonwealth University, Richmond, VA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, VA
| | | | - Mike Grotewiel
- Molecular Biology and Genetics Program, Virginia Commonwealth University, Richmond, VA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, VA
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
27
|
Morozova TV, Mackay TFC, Anholt RRH. Genetics and genomics of alcohol sensitivity. Mol Genet Genomics 2014; 289:253-69. [PMID: 24395673 PMCID: PMC4037586 DOI: 10.1007/s00438-013-0808-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/22/2013] [Indexed: 01/20/2023]
Abstract
Alcohol abuse and alcoholism incur a heavy socioeconomic cost in many countries. Both genetic and environmental factors contribute to variation in the inebriating effects of alcohol and alcohol addiction among individuals within and across populations. From a genetics perspective, alcohol sensitivity is a quantitative trait determined by the cumulative effects of multiple segregating genes and their interactions with the environment. This review summarizes insights from model organisms as well as human populations that represent our current understanding of the genetic and genomic underpinnings that govern alcohol metabolism and the sedative and addictive effects of alcohol on the nervous system.
Collapse
Affiliation(s)
- Tatiana V. Morozova
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| | - Trudy F. C. Mackay
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| | - Robert R. H. Anholt
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| |
Collapse
|
28
|
Zamora-Martinez ER, Edwards S. Neuronal extracellular signal-regulated kinase (ERK) activity as marker and mediator of alcohol and opioid dependence. Front Integr Neurosci 2014; 8:24. [PMID: 24653683 PMCID: PMC3949304 DOI: 10.3389/fnint.2014.00024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/19/2014] [Indexed: 11/13/2022] Open
Abstract
Early pioneering work in the field of biochemistry identified phosphorylation as a crucial post-translational modification of proteins with the ability to both indicate and arbitrate complex physiological processes. More recent investigations have functionally linked phosphorylation of extracellular signal-regulated kinase (ERK) to a variety of neurophysiological mechanisms ranging from acute neurotransmitter action to long-term gene expression. ERK phosphorylation serves as an intracellular bridging mechanism that facilitates neuronal communication and plasticity. Drugs of abuse, including alcohol and opioids, act as artificial yet powerful rewards that impinge upon natural reinforcement processes critical for survival. The graded progression from initial exposure to addiction (or substance dependence) is believed to result from drug- and drug context-induced adaptations in neuronal signaling processes across brain reward and stress circuits following excessive drug use. In this regard, commonly abused drugs as well as drug-associated experiences are capable of modifying the phosphorylation of ERK within central reinforcement systems. In addition, chronic drug and alcohol exposure may drive ERK-regulated epigenetic and structural alterations that underlie a long-term propensity for escalating drug use. Under the influence of such a neurobiological vulnerability, encountering drug-associated cues and contexts can produce subsequent alterations in ERK signaling that drive relapse to drug and alcohol seeking. Current studies are determining precisely which molecular and regional ERK phosphorylation-associated events contribute to the addiction process, as well as which neuroadaptations need to be targeted in order to return dependent individuals to a healthy state.
Collapse
Affiliation(s)
- Eva R Zamora-Martinez
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute La Jolla, CA, USA
| | - Scott Edwards
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
29
|
Ojelade SA, Acevedo SF, Rothenfluh A. The role of the actin cytoskeleton in regulating Drosophila behavior. Rev Neurosci 2014; 24:471-84. [PMID: 24077615 DOI: 10.1515/revneuro-2013-0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Over the past decade, the function of the cytoskeleton has been studied extensively in developing and mature neurons. Actin, a major cytoskeletal protein, is indispensable for the structural integrity and plasticity of neurons and their synapses. Disruption of actin dynamics has significant consequence for neurons, neuronal circuits, and the functions they govern. In particular, cell adhesion molecules, members of the Rho family of GTPases, and actin-binding proteins are important modulators of actin dynamics and neuronal as well as behavioral plasticity. In this review, we discuss recent advances in Drosophila that highlight the importance of actin regulatory proteins in mediating fly behaviors such as circadian rhythm, courtship behavior, learning and memory, and the development of drug addiction.
Collapse
|
30
|
EGFR and FGFR pathways have distinct roles in Drosophila mushroom body development and ethanol-induced behavior. PLoS One 2014; 9:e87714. [PMID: 24498174 PMCID: PMC3909204 DOI: 10.1371/journal.pone.0087714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) signaling has a conserved role in ethanol-induced behavior in flies and mice, affecting ethanol-induced sedation in both species. However it is not known what other effects EGFR signaling may have on ethanol-induced behavior, or what roles other Receptor Tyrosine Kinase (RTK) pathways may play in ethanol induced behaviors. We examined the effects of both the EGFR and Fibroblast Growth Factor Receptor (FGFR) RTK signaling pathways on ethanol-induced enhancement of locomotion, a behavior distinct from sedation that may be associated with the rewarding effects of ethanol. We find that both EGFR and FGFR genes influence ethanol-induced locomotion, though their effects are opposite - EGFR signaling suppresses this behavior, while FGFR signaling promotes it. EGFR signaling affects development of the Drosophila mushroom bodies in conjunction with the JNK MAP kinase basket (bsk), and with the Ste20 kinase tao, and we hypothesize that the EGFR pathway affects ethanol-induced locomotion through its effects on neuronal development. We find, however, that FGFR signaling most likely affects ethanol-induced behavior through a different mechanism, possibly through acute action in adult neurons.
Collapse
|
31
|
Vanderheyden WM, Gerstner JR, Tanenhaus A, Yin JC, Shaw PJ. ERK phosphorylation regulates sleep and plasticity in Drosophila. PLoS One 2013; 8:e81554. [PMID: 24244744 PMCID: PMC3828275 DOI: 10.1371/journal.pone.0081554] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 10/21/2013] [Indexed: 11/20/2022] Open
Abstract
Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK) in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERKSEM) pan-neuronally in the adult fly using GeneSwitch (Gsw) Gsw-elav-GAL4. Conversely, disrupting ERK reduces sleep and prevents both the behavioral and structural plasticity normally induced by social enrichment. Finally, using transgenic flies carrying a cAMP response Element (CRE)-luciferase reporter we show that activating ERK enhances CRE-Luc activity while disrupting ERK reduces it. These data suggest that ERK phosphorylation is an important mediator in transducing waking experience into sleep.
Collapse
Affiliation(s)
- William M. Vanderheyden
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Anatomy, Washington University Medical School, Saint Louis, Missouri, United States of America
- * E-mail:
| | - Jason R. Gerstner
- Translational Research Laboratories, Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anne Tanenhaus
- Departments of Genetics and Neurology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Jerry C. Yin
- Departments of Genetics and Neurology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Paul J. Shaw
- Department of Anatomy, Washington University Medical School, Saint Louis, Missouri, United States of America
| |
Collapse
|
32
|
Zhang YV, Raghuwanshi RP, Shen WL, Montell C. Food experience-induced taste desensitization modulated by the Drosophila TRPL channel. Nat Neurosci 2013; 16:1468-76. [PMID: 24013593 PMCID: PMC3785572 DOI: 10.1038/nn.3513] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/09/2013] [Indexed: 01/13/2023]
Abstract
Animals tend to reject bitter foods. However, long-term exposure to some unpalatable tastants increases acceptance of these foods. Here we show that dietary exposure to an unappealing but safe additive, camphor, caused the fruit fly Drosophila melanogaster to decrease camphor rejection. The transient receptor potential-like (TRPL) cation channel was a direct target for camphor in gustatory receptor neurons, and long-term feeding on a camphor diet led to reversible downregulation of TRPL protein concentrations. The turnover of TRPL was controlled by an E3 ubiquitin ligase, Ube3a. The decline in TRPL levels and increased acceptance of camphor reversed after returning the flies to a camphor-free diet long term. We propose that dynamic regulation of taste receptors by ubiquitin-mediated protein degradation comprises an important molecular mechanism that allows an animal to alter its taste behavior in response to a changing food environment.
Collapse
Affiliation(s)
- Yali V. Zhang
- Departments of Biological Chemistry and Department of Neuroscience The Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Rakesh P. Raghuwanshi
- Departments of Biological Chemistry and Department of Neuroscience The Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Wei L. Shen
- Departments of Biological Chemistry and Department of Neuroscience The Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology University of California Santa Barbara, Santa Barbara, CA, 93110, USA
- Departments of Biological Chemistry and Department of Neuroscience The Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Devineni AV, Heberlein U. The evolution of Drosophila melanogaster as a model for alcohol research. Annu Rev Neurosci 2013; 36:121-38. [PMID: 23642133 DOI: 10.1146/annurev-neuro-062012-170256] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal models have been widely used to gain insight into the mechanisms underlying the acute and long-term effects of alcohol exposure. The fruit fly Drosophila melanogaster encounters ethanol in its natural habitat and possesses many adaptations that allow it to survive and thrive in ethanol-rich environments. Several assays to study ethanol-related behaviors in flies, ranging from acute intoxication to self-administration and reward, have been developed in the past 20 years. These assays have provided the basis for studying the physiological and behavioral effects of ethanol and for identifying genes mediating these effects. In this review we describe the ecological relationship between flies and ethanol, the effects of ethanol on fly development and behavior, the use of flies as a model for alcohol addiction, and the interaction between ethanol and social behavior. We discuss these advances in the context of their utility to help decipher the mechanisms underlying the diverse effects of ethanol, including those that mediate ethanol dependence and addiction in humans.
Collapse
Affiliation(s)
- Anita V Devineni
- Program in Neuroscience and Department of Anatomy, University of California-San Francisco, CA 94158, USA.
| | | |
Collapse
|
34
|
Adult neuronal Arf6 controls ethanol-induced behavior with Arfaptin downstream of Rac1 and RhoGAP18B. J Neurosci 2013; 32:17706-13. [PMID: 23223291 DOI: 10.1523/jneurosci.1944-12.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorders affect millions of individuals. However, the genes and signaling pathways involved in behavioral ethanol responses and addiction are poorly understood. Here we identify a conserved biochemical pathway that underlies the sedating effects of ethanol in Drosophila. Mutations in the Arf6 small GTPase signaling pathway cause hypersensitivity to ethanol-induced sedation. We show that Arf6 functions in the adult nervous system to control ethanol-induced behavior. We also find that the Drosophila Arfaptin protein directly binds to the activated forms of Arf6 and Rac1 GTPases, and mutants in Arfaptin also display ethanol sensitivity. Arf6 acts downstream of Rac1 and Arfaptin to regulate ethanol-induced behaviors, and we thus demonstrate that this conserved Rac1/Arfaptin/Arf6 pathway is a major mediator of ethanol-induced behavioral responses.
Collapse
|
35
|
Robinson BG, Atkinson NS. Is alcoholism learned? Insights from the fruit fly. Curr Opin Neurobiol 2013; 23:529-34. [PMID: 23462335 DOI: 10.1016/j.conb.2013.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Alcohol addiction is a complex, unique human disease. Breaking addiction down into contributing endophenotypes enables its study in a variety of model systems. The Drosophila model system has been most often used to study alcohol sensitivity, tolerance, and physiological dependence. However, none of these endophenotypes can account for the near-permanent quality of the addicted state. It has been recently discussed that addictive drugs may hijack the learning-and-memory machinery to produce persistent behavioral changes. Learning and memory is amenable to experimental study, and provides us with a window into how alcohol affects higher-order mental functions that are likely to contribute compulsive drug use. Here, we review the Drosophila literature that links alcohol-related behaviors to learning and memory.
Collapse
Affiliation(s)
- Brooks G Robinson
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1 University Station C0920, Austin, TX 78712, USA
| | | |
Collapse
|
36
|
Rothenfluh A, Cowan CW. Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: actin or reactin'? Curr Opin Neurobiol 2013; 23:507-12. [PMID: 23428655 DOI: 10.1016/j.conb.2013.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/15/2013] [Accepted: 01/24/2013] [Indexed: 11/29/2022]
Abstract
Neurons rely on their cytoskeleton to give them shape and stability, and on cytoskeletal dynamics for growth and synaptic plasticity. Because drug addiction is increasingly seen as the inappropriate learning of strongly reinforcing stimuli, the role of the cytoskeleton in shaping drug memories has been of increasing interest in recent years. Does the cytoskeleton have an active role in shaping these memories, and to what extent do alterations in the cytoskeleton reflect the acute actions of drug exposure, or homeostatic reactions to the chronic exposure to drugs of abuse? Here we will review recent advances in understanding the role of the cytoskeleton in the development of drug addiction, with a focus on actin filaments, as they have been studied in greater detail.
Collapse
Affiliation(s)
- Adrian Rothenfluh
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, United States.
| | | |
Collapse
|
37
|
Kim T, Hinton DJ, Johng S, Wang JB, Choi DS. Levo-tetrahydropalmatine decreases ethanol drinking and antagonizes dopamine D2 receptor-mediated signaling in the mouse dorsal striatum. Behav Brain Res 2013; 244:58-65. [PMID: 23376703 DOI: 10.1016/j.bbr.2013.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/18/2013] [Accepted: 01/24/2013] [Indexed: 12/20/2022]
Abstract
An herb derived compound, levo-tetrahydropalmatine (L-THP), attenuates self-administration of cocaine and opiates in rodents. Since L-THP mainly antagonizes dopamine D2 receptors (D2R) in the brain, it is likely to regulate other addictive behaviors as well. Here, we examined whether L-THP regulates ethanol drinking in C57BL/6J mice using a two-bottle choice drinking experiment. L-THP treated mice consumed less ethanol compared to vehicle-treated mice during the 15% ethanol drinking session while water consumption remained similar between each group. We then examined the molecular basis underlying the pharmacological effect of L-THP in mice. Our results indicated that a single injection of L-THP increased active phosphorylated forms of PKA, AKT and ERK in the caudate-putamen (CPu), but not in the nucleus accumbens (NAc), of alcohol naïve mice. Interestingly, we found that systematic treatment with L-THP for 4 consecutive days while mice were drinking 15% ethanol increased pPKA levels in the CPu, but not in the NAc. In contrast to the effect of acute L-THP treatment, no differences were detected for pAKT or pERK in either striatal regions. Together, our findings suggest that reduction of ethanol drinking by L-THP treatment is possibly correlated with D2R-mediated PKA signaling in the CPu.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
38
|
Kapfhamer D, King I, Zou ME, Lim JP, Heberlein U, Wolf FW. JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity. PLoS One 2012; 7:e50594. [PMID: 23227189 PMCID: PMC3515618 DOI: 10.1371/journal.pone.0050594] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/25/2012] [Indexed: 02/08/2023] Open
Abstract
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.
Collapse
Affiliation(s)
- David Kapfhamer
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (DK); (FWW)
| | - Ian King
- Department of Anatomy, Program in Neuroscience, University of California San Francisco, San Francisco, California, United States of America
| | - Mimi E. Zou
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Jana P. Lim
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Ulrike Heberlein
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- Department of Anatomy, Program in Neuroscience, University of California San Francisco, San Francisco, California, United States of America
| | - Fred W. Wolf
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (DK); (FWW)
| |
Collapse
|
39
|
Drosophila neuroligin 1 regulates synaptic growth and function in response to activity and phosphoinositide-3-kinase. Mol Cell Neurosci 2012; 51:89-100. [PMID: 22954894 DOI: 10.1016/j.mcn.2012.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/17/2012] [Accepted: 08/17/2012] [Indexed: 12/26/2022] Open
Abstract
Neuroligins are postsynaptic neural cell adhesion molecules that mediate synaptic maturation and function in vertebrates and invertebrates, but their mechanisms of action and regulation are not well understood. At the Drosophila larval neuromuscular junction (NMJ), previous analysis demonstrated a requirement for Drosophila neuroligin 1 (dnlg1) in synaptic growth and maturation. The goal of the present study was to better understand the effects and mechanisms of loss-of-function and overexpression of dnlg1 on synapse size and function, and to identify signaling pathways that control dnlg1 expression. Consistent with reduced synapse size, evoked excitatory junctional currents (EJCs) were diminished in dnlg1 mutants but displayed normal Ca(2+) sensitivity and short-term plasticity. However, postsynaptic function was also perturbed, in that glutamate receptor staining and the distribution of amplitudes of miniature excitatory junctional currents (mEJCs) were abnormal in mutants. All the above phenotypes were rescued by a genomic transgene. Overexpression of dnlg1 in muscle resulted in synaptic overgrowth, but reduced the amplitudes of EJCs and mEJCs. Overgrowth and reduced EJC amplitude required Drosophila neurexin 1 (dnrx1) function, suggesting that increased DNlg1/DNrx1 signaling attenuates synaptic transmission and regulates growth through a retrograde mechanism. In contrast, reduced mEJC amplitude was independent of dnrx1. Synaptic overgrowth, triggered by neuronal hyperactivity, absence of the E3 ubiquitin ligase highwire, and increased phosphoinositide-3-kinase (PI3K) signaling in motor neurons reduced synaptic DNlg1 levels. Likewise, postsynaptic attenuation of PI3K, which increases synaptic strength, was associated with reduced DNlg1 levels. These observations suggest that activity and PI3K signaling pathways modulate growth and synaptic transmission through dnlg1-dependent mechanisms.
Collapse
|
40
|
Morozova TV, Goldman D, Mackay TFC, Anholt RRH. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks. Genome Biol 2012; 13:239. [PMID: 22348705 PMCID: PMC3334563 DOI: 10.1186/gb-2012-13-2-239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/09/2012] [Indexed: 12/02/2022] Open
Abstract
Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms.
Collapse
Affiliation(s)
- Tatiana V Morozova
- Department of Biology, Box 7617, North Carolina State University, Raleigh, NC 27695, USA
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Trudy FC Mackay
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert RH Anholt
- Department of Biology, Box 7617, North Carolina State University, Raleigh, NC 27695, USA
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
41
|
Kaun KR, Devineni AV, Heberlein U. Drosophila melanogaster as a model to study drug addiction. Hum Genet 2012; 131:959-75. [PMID: 22350798 PMCID: PMC3351628 DOI: 10.1007/s00439-012-1146-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/04/2012] [Indexed: 12/24/2022]
Abstract
Animal studies have been instrumental in providing knowledge about the molecular and neural mechanisms underlying drug addiction. Recently, the fruit fly Drosophilamelanogaster has become a valuable system to model not only the acute stimulating and sedating effects of drugs but also their more complex rewarding properties. In this review, we describe the advantages of using the fly to study drug-related behavior, provide a brief overview of the behavioral assays used, and review the molecular mechanisms and neural circuits underlying drug-induced behavior in flies. Many of these mechanisms have been validated in mammals, suggesting that the fly is a useful model to understand the mechanisms underlying addiction.
Collapse
Affiliation(s)
- Karla R Kaun
- Department of Anatomy, University of California-San Francisco, 1550 4th Street, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
42
|
One, Two, and Many—A Perspective on What Groups of Drosophila melanogaster Can Tell Us About Social Dynamics. GENE-ENVIRONMENT INTERPLAY 2012; 77:59-78. [DOI: 10.1016/b978-0-12-387687-4.00003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
LaFerriere H, Ostrowski D, Guarnieri DJ, Zars T. The arouser EPS8L3 gene is critical for normal memory in Drosophila. PLoS One 2011; 6:e22867. [PMID: 21818402 PMCID: PMC3144953 DOI: 10.1371/journal.pone.0022867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 07/07/2011] [Indexed: 11/21/2022] Open
Abstract
The genetic mechanisms that influence memory formation and sensitivity to the effects of ethanol on behavior in Drosophila have some common elements. So far, these have centered on the cAMP/PKA signaling pathway, synapsin and fas2-dependent processes, pumilio-dependent regulators of translation, and a few other genes. However, there are several genes that are important for one or the other behaviors, suggesting that there is an incomplete overlap in the mechanisms that support memory and ethanol sensitive behaviors. The basis for this overlap is far from understood. We therefore examined memory in arouser (aru) mutant flies, which have recently been identified as having ethanol sensitivity deficits. The aru mutant flies showed memory deficits in both short-term place memory and olfactory memory tests. Flies with a revertant aru allele had wild-type levels of memory performance, arguing that the aru gene, encoding an EPS8L3 product, has a role in Drosophila memory formation. Furthermore, and interestingly, flies with the aru8–128 insertion allele had deficits in only one of two genetic backgrounds in place and olfactory memory tests. Flies with an aru imprecise excision allele had deficits in tests of olfactory memory. Quantitative measurements of aru EPS8L3 mRNA expression levels correlate decreased expression with deficits in olfactory memory while over expression is correlated with place memory deficits. Thus, mutations of the aru EPS8L3 gene interact with the alleles of a particular genetic background to regulate arouser expression and reveals a role of this gene in memory.
Collapse
Affiliation(s)
- Holly LaFerriere
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Daniela Ostrowski
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Douglas J. Guarnieri
- Department of Anatomy, University of California, San Francisco, San Francisco, California, United States of America
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
44
|
Devineni AV, McClure KD, Guarnieri DJ, Corl AB, Wolf FW, Eddison M, Heberlein U. The genetic relationships between ethanol preference, acute ethanol sensitivity, and ethanol tolerance in Drosophila melanogaster. Fly (Austin) 2011; 5:191-9. [PMID: 21750412 DOI: 10.4161/fly.5.3.16987] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The relationship between alcohol consumption, sensitivity, and tolerance is an important question that has been addressed in humans and rodent models. Studies have shown that alcohol consumption and risk of abuse may correlate with (1) increased sensitivity to the stimulant effects of alcohol, (2) decreased sensitivity to the depressant effects of alcohol, and (3) increased alcohol tolerance. However, many conflicting results have been observed. To complement these studies, we utilized a different organism and approach to analyze the relationship between ethanol consumption and other ethanol responses. Using a set of 20 Drosophila melanogaster mutants that were isolated for altered ethanol sensitivity, we measured ethanol-induced hyperactivity, ethanol sedation, sedation tolerance, and ethanol consumption preference. Ethanol preference showed a strong positive correlation with ethanol tolerance, consistent with some rodent and human studies, but not with ethanol hyperactivity or sedation. No pairwise correlations were observed between ethanol hyperactivity, sedation, and tolerance. The evolutionary conservation of the relationship between tolerance and ethanol consumption in flies, rodents, and humans indicates that there are fundamental biological mechanisms linking specific ethanol responses.
Collapse
Affiliation(s)
- Anita V Devineni
- University of California, San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|